Ultralow effective interfacial tension between miscible molecular fluids - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Physical Review Fluids Année : 2020

Ultralow effective interfacial tension between miscible molecular fluids

Résumé

We exploit the deformation of drops spinning in a denser background fluid to investigate the effective interfacial tension (EIT) between miscible molecular fluids. We find that, for sufficiently low interfacial tension, spinning drops develop dumbbell shapes, with two large heads connected by a thinner central body. We show that this shape depends not only on the density and viscosity contrast between the drop and background fluids, but also on the fluid molecular structure, and hence on the stresses developing at their interface due to a different molecular interaction. We systematically investigate the dynamics of dumbbell-shaped drops of water-glycerol mixtures spinning in a pure glycerol reservoir. By developing a model for the deformation based on the balance of the shear stress opposing the deformation, the imposed normal stress on the drop, and an effective interfacial tension, we exploit the time evolution of the drop shape to measure the EIT. Our results show that the EIT in water-glycerol systems is orders of magnitude lower than that reported in previous experimental measurements, and in excellent agreement with values calculated via the phase field model proposed by Truzzolillo et al. [Phys. Rev. X 6, 041057 (2016)].
Fichier principal
Vignette du fichier
2003.09730.pdf (1.94 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02912991 , version 1 (06-11-2020)

Identifiants

Citer

Alessandro Carbonaro, Luca Cipelletti, Domenico Truzzolillo. Ultralow effective interfacial tension between miscible molecular fluids. Physical Review Fluids, 2020, 5 (7), pp.074001. ⟨10.1103/PhysRevFluids.5.074001⟩. ⟨hal-02912991⟩
52 Consultations
101 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More