Learning with Noise-Contrastive Estimation: Easing training by learning to scale
Matthieu Labeau, Alexandre Allauzen

To cite this version:
Matthieu Labeau, Alexandre Allauzen. Learning with Noise-Contrastive Estimation: Easing training by learning to scale. 27th International Conference on Computational Linguistics (COLING 2018), Aug 2018, Santa Fe, NM, United States. pp.3090-3101. hal-02912385

HAL Id: hal-02912385
https://hal.archives-ouvertes.fr/hal-02912385
Submitted on 5 Aug 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Learning with Noise-Contrastive Estimation:
Easing training by learning to scale.

Matthieu Labeau and Alexandre Allauzen
LIMSI, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
{matthieu.labeau, alexandre.allauzen}@limsi.fr

Abstract

Noise-Contrastive Estimation (NCE) is a learning criterion that is regularly used to train neural language models in place of Maximum Likelihood Estimation, since it avoids the computational bottleneck caused by the output softmax. In this paper, we analyse and explain some of the weaknesses of this objective function, linked to the mechanism of self-normalization, by closely monitoring comparative experiments. We then explore several remedies and modifications to propose tractable and efficient NCE training strategies. In particular, we propose to make the scaling factor a trainable parameter of the model, and to use the noise distribution to initialize the output bias. These solutions, yet simple, yield stable and competitive performances in either small and large scale language modelling tasks.

1 Introduction

In many tasks, such as machine translation and speech recognition, statistical language models play a key role. Neural models [1][2] have recently shown great improvement. However most of them share a common issue: a large output vocabulary implies a prohibitive computation time, due to the output normalization, along with a prediction challenge in a such high dimensional space. A workaround is to reduce the vocabulary size by considering sub-word units like morphemes or even characters. For several applications, this is an efficient solution, though the main issue is not directly addressed. Other trends consist in changing the output structure by using shortlists [3] or hierarchical softmax [4], while self-normalisation techniques [5][6][7] partially solve the issue at test time. Finally, sampling-based techniques like Importance sampling [8][9][10], and Noise-Contrastive Estimation or NCE [11][12] are also promising alternatives.

In this work, we focus on NCE, which uses a discriminative objective that approximates negative log-likelihood. Its main advantage is to consider the model as un-normalized instead of trying to approximate its normalization. With this objective function the model is explicitly learnt to estimate un-normalized probability distributions, while the partition function (or the scaling factor) is parametrized separately. While this method is very appealing in theory, empirical issues arise in large vocabulary applications: training divergence and instability, along with poor performance when compared to similar approaches, notably Importance Sampling. The contributions of this paper are twofold: first an empirical exploration of the NCE allows us to better explain the estimation process and why it sometimes fails; then we propose and explore several remedies yielding to tractable and efficient NCE training strategies.

While section 2 reviews two widely used training criteria for un-normalized model, Importance Sampling and NCE, section 3 provides an empirical analysis of the NCE. This algorithm is theoretically proven to converge when the partition function is parametrized separately. However, the scaling parameter

1 This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://creativecommons.org/licenses/by/4.0/

2 Neural Machine Translation and Speech Recognition can be seen as a language model where the sequence probability is conditioned on a source sentence or a speech signal.
is usually fixed and the un-normalized model therefore self-normalizes, as a side effect of the training procedure. We show experimentally that the training instability is tied to the difficulty of the model to self-normalize. After analysing the consequences of these issues, we experiment (section 4) with various solutions, including smoothing the sampling distribution or using the recent application of Negative sampling to language modelling (Melamud et al., 2017). Moreover, we propose to jointly learn the scaling parameter with the model and show that this approach yields a practical and efficient training strategy. We also propose to initialize the output bias to the logarithm of the noise distribution, which diminishes greatly the impact of the issues described in section 3.

2 Training objectives and partition function

For neural language models (NLMs), the main computational burden lies in the summations over the (very large) vocabulary V. Indeed, a NLM parametrized by θ, outputs, for an input context H, a conditional distribution $P_{\theta}(w|H)$ for the next word, over V. This conditional distribution is defined using the softmax activation function:

$$P_{\theta}(w|H) = \frac{e^{s_{\theta}(w,H)}}{\sum_{w' \in V} e^{s_{\theta}(w',H)}}$$ \hspace{1cm} \text{(1)}$$

Here, $s_{\theta}(w, H)$ is a scoring function which depends on the network architecture. The denominator is the partition function $Z_{\theta}(H)$, which is used to ensure that for each input context H, output scores are normalized into a probability distribution. Then, each model can be written as an un-normalized model divided by the partition function. The natural objective is to minimize the negative log-likelihood of this conditional distribution for each tuple of input context and following word $(H,w) \in D$, where D is the training set:

$$\text{NLL}(\theta) = - \sum_{(H,w) \in D} \log P_{\theta}(w|H)$$ \hspace{1cm} \text{(2)}$$

Using the Stochastic Gradient Descent (SGD) to train this objective implies taking the objectives gradient to make the parameter updates. For one training example (H,w), the gradient of the log-probability will be computed as follows:

$$\frac{\partial}{\partial \theta} \log P_{\theta}(w|H) = \frac{\partial}{\partial \theta} s_{\theta}(w, H) - \sum_{w' \in V} P_{\theta}(w'|H) \frac{\partial}{\partial \theta} s_{\theta}(w', H).$$ \hspace{1cm} \text{(3)}$$

The first term tends to increase the conditional log-likelihood of the word w, whereas the second term lowers probabilities for all the other words in the vocabulary. Unfortunately, the partition function $Z_{\theta}(H)$ is necessary to compute both $P_{\theta}(w'|H)$ at test time, and the parameter gradients are necessary to update the model during the training process. In (Gutmann and Hyvärinen, 2013), the authors detail why knowing the partition function, which represents the ‘scale’ of the model, is essential to compute the likelihood.\footnote{Beyond the fact that the concept of likelihood only applies to probability density functions, which are normalized.}

Parametrizing separately the partition function (as a scaling parameter) would give irrelevant results, since we could minimize the negative log-likelihood independently of the data. Following this reasoning, we focus on objectives that allow for the estimation of un-normalized models. In the language modelling literature, methods based on Importance Sampling (IS) and NCE are the most widely used.

2.1 IS: approximating the partition function

As detailed in (Bengio and Sénécal, 2003), the idea is to rewrite the gradient described in equation 3 as an expectation that we estimate using importance sampling. We choose a distribution P_n from which it is easy to sample, and obtain the following gradient approximation:

$$2$$
While we replaced one summation over \mathcal{V}, the partition function remains. Rewriting it as an expectation, we can apply importance sampling a second time, using the same distribution P which allows un-normalized model estimation functions, with which the model learns to match a ratio of data and noise samples instead of directly matching the data samples.

Class the classification objective is given by maximizing the log-likelihood of the true examples to belong to $C=1$, and that given the number of free parameters, the output scores can be estimated (P_n samples from a noise distribution) considering a mixture of the data and noise distributions, for each example \hat{w}, and that given the number of free parameters, the output scores can be estimated (P_n samples from a noise distribution) considering a mixture of the data and noise distributions, for each example \hat{w}.

And thus, by approximating the partition function, we obtain a biased estimator for the maximum likelihood gradient. Both its bias and variance can be reduced by increasing the sample size k. In order to limit this growth, (Bengio and Sénécal, 2008) investigates on adapting P_n during training.

2.2 NCE: avoiding normalization

NCE was first described in (Gutmann and Hyvärinen, 2010), as a way of estimating a parametric probabilistic model from data in the case where the probability function of the model is un-normalized. Considering the partition function as a separate parameter, the objective function mimics maximum-likelihood estimation by learning to discriminate between true examples from data or generated from a noise distribution. This method has been applied to language modelling in (Mnih and Teh, 2012), considering a mixture of the data and noise distributions, for each example $(H, w) \in D$, we draw k noise samples from a noise distribution P_n. The posterior probability of the class C associated to the sample can be estimated ($C = 1$ if the sample comes for the data and $C = 0$ from the noise). Since the goal is to approximate the data distribution with a model parametrized by θ, the conditional class distribution is defined as $P(w|C = 1, H) = P_\theta(w|H)$ and $P(w|C = 0, H) = P_n(w)$, which gives the posterior class probabilities:

$$ P(C = 1|w, H) = \frac{P_\theta(w|H)}{P_\theta(w|H) + kP_n(w)} \quad \text{and} \quad P(C = 0|w, H) = \frac{kP_n(w)}{P_\theta(w|H) + kP_n(w)} $$

If σ denotes the sigmoid function, these equations can be rewritten as a logistic regression problem:

$$ P(C = 1|w, H) = \sigma \left(\log \frac{1}{k} \frac{P_\theta(w|H)}{P_n(w)} \right) $$

The reformulation obtained in equation \[\text{[7]}\] shows that training a classifier based on a logistic regression will estimate the log-ratio of two distributions: this allows the learned distribution to be un-normalized, and the partition function to be parametrized separately\footnote{Pihlaja et al., 2012 and Gutmann and Hirayama, 2011 show the NCE to be a particular case of larger classes of objective functions, with which the model learns to match a ratio of data and noise samples instead of directly matching the data samples, which allows un-normalized model estimation}. However, the partition function is context-dependent. In (Mnih and Teh, 2012), the authors argue that these context-dependent scaling parameters can be put to one, and that given the number of free parameters, the output scores $e^{s_\theta(w,H)}$ will self-normalize for each context. In what follows, we adopt this trick and for clarity denote $p_\theta(w|H) = e^{s_\theta(w,H)}$ the un-normalized model score. Since the class labels are by assumption Bernoulli distributed and independent, the classification objective is given by maximizing the log-likelihood of the true examples to belong to class $C = 1$ and the noise samples $(\hat{w}_i)_{1 \leq i \leq k} \to C = 0$, which is, for one example (H, w) from D:

$$ J_\theta^H(w) = \log \frac{p_\theta(w|H)}{p_\theta(w|H) + kP_n(w)} + \sum_{i=1}^k \log \frac{kP_n(\hat{w}_i)}{p_\theta(\hat{w}_i|H) + kP_n(\hat{w}_i)} $$

The gradient update is the following:
Figure 1: Left: Training cross-entropy curves on PTB with Maximum-Likelihood estimation, NCE on an un-normalized model and a model normalized before application of the NCE. Right: Training scores (see equation 10) of the same un-normalized and normalized models trained with NCE

$$\frac{\partial}{\partial \theta} J^H_{\theta}(w) = \frac{k P_n(w)}{p_0(w|H)} + k P_n(w) \frac{\partial}{\partial \theta} \log p_\theta(w|H) - \sum_{i=1}^{k} \left[\frac{p_\theta(\hat{w}_i|H)}{p_\theta(\hat{w}_i|H) + k P_n(\hat{w}_i)} \frac{\partial}{\partial \theta} \log p_\theta(\hat{w}_i|H) \right]$$

(9)

It is worth noting that this gradient converges to the Maximum-Likelihood Estimation (MLE) gradient as the number of samples k grows. Concerning the choice of the noise distribution, the estimation error of parameters θ is asymptotically independent of P_n when the ratio of noise samples by example k coming from the data is large enough. It is also shown that having both a noise distribution close to the data distribution and a high number of samples k lower the estimation error. (Mnih and Teh, 2012) compared using the uniform and unigram distribution in their experiments, finding the unigram distribution to give far more accurate results. In the literature, NCE was then mainly used in the context of machine translation: (Vaswani et al., 2013; Baltescu and Blunsom, 2015) report results with the unigram distribution, while (Zoph et al., 2016) used an uniform noise. However, despite strong theoretical guarantees, (Chen et al., 2016) highlighted the inconsistency of NCE training when dealing with very large vocabularies, showing very different perplexity results for close loss values. In another work (Józefowicz et al., 2016), NCE was shown far less data-efficient than IS.

3 Training behaviour of NCE

To understand these instabilities, the training process of the same language model is monitored, varying only the training criterion, i.e MLE and NCE. For a better understanding, we also consider an 'intermediate' model denoted as NCE normalized. This model is trained using NCE; however, we normalize the scores $p_\theta(w|H) = e^{s_\theta(w,H)}$ into $P_\theta(w|H)$ right before computing the objective. While it is without any practical interest, this model will allow us to better assess the impact of the normalization process. We train the 3 models on the Penn Tree Bank (PTB) with a full vocabulary and $k = 100$ noise samples drawn from the unigram distribution for NCE. We use classic SGD. To reduce the impact of the training criterion, models are learnt for a minimum of 30 epochs. Beyond that limit, we backtrack the epoch when no progress has been made on the validation set perplexity, stopping training after 10 consecutive backtrackings.

3.1 The objective and partition functions

The training cross-entropy for the 3 models are drawn in the top graph of figure. When trained with MLE or NCE, the normalized model exhibits similar learning curves. However, the un-normalized model

4Hyperparameters are the same than those used in Melamud et al., 2017, except the vocabulary, i.e $\approx 44K$ words, instead of $10K$, to consider a more realistic learning situation for NCE.

5For the sake of clarity, backtrakings are discarded from the graphs, keeping only the epochs used to obtain the final model.
trained with NCE takes far longer to reach a comparable cross-entropy, ending with a higher value. In the bottom graph we can observe, for the normalized and un-normalized models trained with NCE, the values of minus the objective function and both of its terms (the first, data-dependent, and the second, containing the noise samples):

\[-J_\theta = \sum_{H,w \in D} - \log \frac{p_\theta(w|H)}{p_\theta(w|H) + k P_n(w)} - \sum_{H,w \in D} \sum_{i=1}^k \log \frac{k P_n(\hat{w}_i)}{p_\theta(\hat{w}_i|H) + k P_n(\hat{w}_i)} \] (10)

We can observe a small decrease of the second term for the normalized model, whereas for the un-normalized, it starts with high values and decreases to become closer to the normalized one. Moreover, the gap between the two data-dependent terms stays high at the end of training. For a deeper analysis, we study the values of the partition function during training. For both the normalized and the un-normalized models, the partition function \(Z_\theta(H)\) associated to each training context \(H\) is computed and the results over an epoch are summarized with an histogram. Each bin represents a range of values, and its height represent the fraction of training contexts whose partition function belongs to this range. For a better readability, both range values and bin heights are in log-scale. These histograms are shown in figure 2 for different epochs. While the repartition of the partition function values for the normalized model does not change much - which is logical, since the model is always integrated to 1 - we observe that these values for the un-normalized model are chunked together and are decreasing during learning (epochs 5, 10 and 15). However, this trend seems to slow down towards the end of training, since, at epoch 30, the repartition resemble to the one of the normalized model, only shifted to smaller values (which are still quite high).

3.2 Self-normalisation is crucial for NCE

Considering these results, we dissect what happens during the training of the un-normalized model. Let us rewrite the objective \(J_\theta\) as function of the following ratio:

\[r_\theta(w|H) = \frac{p_\theta(w|H)}{k P_n(w)}\quad \text{then} \quad -J_\theta = \sum_{H,w \in D} - \log \frac{r_\theta(w|H)}{r_\theta(w|H) + 1} - \sum_{H,w \in D} \sum_{i=1}^k \log \frac{1}{r_\theta(\hat{w}_i|H) + 1} \] (11)

\(^6\text{Since the objective } J_\theta^H \text{ is negative, we minimize } -J_\theta^H.\)

![Figure 2: Repartition of the values of the partition function \(Z_\theta(H)\) for all examples \((H, w)\) during specific epochs of training on PTB with NCE. The fully coloured bars represent the repartition for the un-normalized model, while the faded bars represent the repartition for the normalized model. Both scales are logarithmic.}

3094
The second term of $-J\theta$ is very high for large values of $r\theta$. Since values of P_n are always smaller than 1 and $k = 100$, and knowing the partition function at the beginning of training is large for all contexts, we can assume that $r\theta(\hat{w}_i|H)$ will be large for a least part of the set of noise samples $(\hat{w}_i)_{i=1}^k$. Thus, this second term is the largest part of the objective, whose minimization leads to a decrease of the model scale. However, this is done at the expense of the data-dependent term, since its score increases a little during the first few epochs. If we look at its gradient, we see from equation 9 that it is always scaled by the weight $1/(r\theta(w|H) + 1)$, which means that the objective will learn nearly nothing from data as long as the model scale has not decreased to a reasonable value. This shows that this ‘self-normalization’ mechanism is crucial for NCE, but we still need to understand what makes a scaling value ‘reasonable’.

3.3 Impact of the noise distribution P_n

While the un-normalized model underperforms its normalized counterpart, its cross-entropy is not that far off. Let us explore the repartition of the partition function values during the last epoch of training. In particular, we expect an impact of the P_n values. The histogram is shown in figure 3 each bin is coloured according to the proportion of examples associated to the highest values of P_n. It contains a significant proportion of examples associated to the highest values of P_n. We clearly observe that while the majority of the partition functions have values under ≈ 100, functions associated

7 Since we use the unigram distribution, it indicates here the examples who are among the 10 most frequent words.
with the words with the higher values of \(P_n \) - which are also the most sampled words - can take values that are far larger. To understand why, consider the weight of the gradient of the data-dependent term:

\[
\frac{1}{r_\theta(w|H) + 1} = \frac{kP_n(w)}{p_\theta(w|H) + kP_n(w)}.
\]

Having higher values of \(P_n \) means that the model does not need to scale back the partition function as much to be able to learn from data. Besides, if the noise distribution is correlated with the data distribution, an example with a high value of \(P_n \) tends to be more frequent. Therefore the model will be able to learn first from words \(w \) with the higher values of \(P_n(w) \). However, the lower \(P_n(w) \) is, the more difficult it will be for the model to learn about \(w \). And the associated partition function will have to be closer to 1 for the data-term gradient to be meaningful. To visualize how learning is affected, we study histograms showing the repartition of the values of \(r_\theta \) during a training epoch. They are presented in figure 4. Again, we show histograms for both models, at epochs 1, 5, 10, 20, and 30, while on top is a histogram of the initial repartition (before learning). Similarly, they are in log-scale. On the right are histograms for the normalized model. For epoch 1, there is a peak of data examples with higher values of \(P_n \) - frequent words - that have higher values of \(r_\theta \), while for noise samples, the repartition still follows the initial one - samples with higher \(P_n \) have a smaller \(r_\theta \). As learning progresses, a clear trend appears: values of \(r_\theta \) for data examples, seemingly ordered by values of \(P_n \), become well-separated of the values of \(r_\theta \) for noise samples. On the left are the repartition of values for the un-normalized model. While they are ordered by values of \(P_n \), a clear separation between data examples values and noise samples values takes far more time to appear, and a cluster of high values of \(r_\theta \) for noise samples still remains visible at epoch 30 - these high values correspond to small values of \(P_n \); in our case, rare words.

These observations show us that an higher discrepancy between high and low \(P_n \) leads to a more difficult learning procedure with NCE. As a consequence, and because of the Zipfian distribution of word frequencies, using the unigram distribution will be harder as the size of the vocabulary grows.

4 Practical solutions and learning to scale

As discussed in section 3, two quantities strongly impact NCE training: first, the noise distribution (and the number \(k \) of noise samples); then, the partition function. To evaluate different training strategies, we provide training cross-entropy curves in figure 5. As a comparison point, results with importance sampling are also reported since it is nowadays the best choice to train large language models. To verify the validity of our analysis on the PTB, we also report results on a larger corpus, the 1 Billion Word Benchmark (Chelba et al., 2014). In this case, the vocabulary contains \(64K \) words, which renders normalized models not competitive. We trained the models for at least one epoch, and up to a second if models made progress on the validation set perplexity. Final perplexity results are presented in table 1.

4.1 Acting on the noise distribution \(P_n \)

As the number of noise samples \(k \) increases, the estimation error reduces, along with the necessity for the model to downscale the partition function. With \(k = 500 \), we can observe indeed a faster convergence with a lower final perplexity. On the large corpus, the conventional NCE model doesn’t even reach a perplexity under the size of the vocabulary, whereas augmenting \(k \) to 500 is not enough to reach a suitable perplexity. However, increasing \(k \) reduces the computational benefit of NCE, even with \(k \) far inferior to the vocabulary size. There is a trade-off in the choice of \(P_n \): the closer \(P_n \) is to the data distribution, the lower is the estimation error; however the Zipfian distribution of word frequencies implies too few updates for rare words if \(P_n \) is the usual unigram distribution. Therefore \(P_n \) is often distorted into \(P_n^\alpha \), with a parameter \(0 \leq \alpha \leq 1 \). This smoothing helps reducing the range of values of \(P_n \), and \(\alpha \) is usually set to 0.75. With this choice, convergence is indeed faster, but the final perplexity is not that better. However,

8 We also used the same hyperparameter settings than in [Melamud et al., 2017].
9 Besides the computation time constraints, the batch size is rapidly limited by the GPU memory, while a smaller batch size also increases the computation time.
10 We should note that for both these experiments, convergence being faster would imply reducing the number of epochs without backtracking, which we didn’t do here.
4.2 Shifting the partition function and learning to scale

Following a method introduced by (Chen et al., 2015), we could simply shift all values of the partition function by a fixed value Z_c. In practice, it means we set

$$p_\theta(w|H) = e^{s_\theta(w,H)} Z_c.$$

Another similar workaround consists in initializing the output bias to $-\log |V|$ (Vaswani et al., 2013; Melamud et al., 2017). It has the same effect as fixing $Z_c = |V|$ and initializing the bias to 0. In (Chen et al., 2015) this value is set to $\log Z_c = 9$. In this paper we propose to learn the best shifting value by adding Z_c to the model parameters θ. In this case Z_c can be seen as an extra bias term that learns a normalizing constant. The left graph of figure 5 shows training cross-entropy curves depending on the initial value of Z_c, revealing its impact. On both corpora, learning to scale allows the model to achieve a better perplexity than fixing it to an arbitrary e.g. $|V|$.

4.3 The case of Negative sampling

The Negative Sampling (NS) algorithm was popularized by the skip-gram embedding algorithm (Mikolov et al., 2013), and while closely linked to NCE, is not able to directly optimize the likelihood of a language model and learn conditional probabilities, as detailed in (Dyer, 2014). Recently, (Melamud et al., 2016; Melamud et al., 2017) showed Negative Sampling to be viable for language modelling. As previously, we use k samples $(\hat{w}_i)_{1 \leq i \leq k}$ from the unigram distribution. The objective maximizes the likelihood of a logistic regression that discriminates true examples from noise samples. However, here, the model directly parametrizes the log-odds, since $P(C = 1|w, H) = \sigma(s^{NS}_\theta(w, H))$, which gives the scoring function:

$$J^H_\theta(w) = \log \sigma(s^{NS}_\theta(w, H)) + \sum_{i=1}^{k} \log \sigma(-s^{NS}_\theta(\hat{w}_i, H))$$

(12)
Table 1: Best testing perplexities obtained on PTB with a full vocabulary, and on the 1 Billion Word Benchmark with a 64K words vocabulary. '-' indicates that the models were not trained due to technical limitations, and 'X' indicates that the model did not converge to a perplexity value under $|V|$.

<table>
<thead>
<tr>
<th></th>
<th>PTB</th>
<th>1BW Benchmark</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLE</td>
<td>150.2</td>
<td>-</td>
</tr>
<tr>
<td>Normalized NCE</td>
<td>159.3</td>
<td>-</td>
</tr>
<tr>
<td>NCE</td>
<td>306.0</td>
<td>X</td>
</tr>
<tr>
<td>NCE + $\alpha = 0.75$</td>
<td>277.0</td>
<td>X</td>
</tr>
<tr>
<td>NCE + $k = 500$</td>
<td>231.9</td>
<td>X</td>
</tr>
<tr>
<td>Importance Sampling</td>
<td>168.3</td>
<td>80.2</td>
</tr>
<tr>
<td>NS</td>
<td>228.3</td>
<td>99.0</td>
</tr>
<tr>
<td>NS + $\alpha = 0.75$</td>
<td>195.8</td>
<td>96.1</td>
</tr>
<tr>
<td>NCE + $Z_c =</td>
<td>V</td>
<td>$</td>
</tr>
<tr>
<td>NCE + $Z_c \in \theta$</td>
<td>151.8</td>
<td>76.0</td>
</tr>
<tr>
<td>NCE + Bias init. at $\log(P_n)$</td>
<td>148.4</td>
<td>74.7</td>
</tr>
</tbody>
</table>

Therefore, this objective function corresponds to the log-ratio $\log r^\theta(w|H)$ for the NCE. Indeed, we can get back an estimation of the conditional probability using the model score and the noise distribution:

$$\hat{P}(w|H) \propto P_n(w) \exp \left(s^{NS}_\theta(w|H) \right)$$

(13)

The model directly learns what is, in the NCE, the ratio of the data and noise distribution, without knowing the values of P_n. The initial values of $r^\theta(w|H) = e^{s^{NS}_\theta(w|H)}$ simply depend on the model initialization, and the initial values of the partition function are close to 1. While the final perplexity values are not among the best we can observe on the bottom graph of figure 5 a far smoother learning curve than that of the ones for methods previously presented. More precisely, we avoid the initial increase in cross-entropy that is visible when we fix or learn Z_c (on the top graph). We believe this is due to having an initial model distribution very close to P_n, which is a consequence of multiplying final scores by P_n, as showed in equation 13. To verify this, we trained a NCE model for which we initialized the output bias with values of $\log P_n(w)$. It gave great results, especially on the smaller corpus. By looking at the repartitions of the values of the ratio and partition function at initialization, showed in figure 6 we can check that having $r^\theta(w|H) \approx P_n(w)$ mitigates the main issues described in section 3 first, our distribution is far closer to be normalized; then, the values of $r^\theta(w|H)$ are bundled together around $\frac{1}{k+1}$. This method clearly helps learning; furthermore, when used in complement to learning Z_c, it gives the best model on the PTB. It is however less impactful on the larger corpus. We believe it is due to the fact that the vocabulary is cut at 64K words and is thus very small for a corpus of this size: the frequency distribution does not have the Zipfian long tail of rare words, which mitigates the issue we try to solve with this initialization strategy.

4.4 Summary of training recommendations

To have a clearer idea of which solution to use depending on the size of the corpus and of the vocabulary, we experiment with the solutions presented earlier on smaller parts of the 1 Billion Word Benchmark, and with different vocabulary sizes. Testing cross-entropy curves are shown in figure 7. The top figure shows the experiments whose results we presented in table 1 with the full corpus and with $|V| = 64K$. The two leftmost figures show experiments with 10 and 100 times less data, while the center and rightmost figures show experiments with smaller and larger vocabularies on the full corpus. The main noticeable result is that learning Z_c as a parameter is not working well when we have less data - in this case, initializing the output bias to $-\log |V|$ is far more efficient, while initializing output bias with values of $\log P_n(w)$ gives even better results. However, this last method loses efficiency when the vocabulary becomes very large.

11Given the recommendation given in (Mikolov et al., 2013) on using $\alpha = 0.75$ with Negative Sampling, we suppose smoothing the noise distribution has an important impact, and added corresponding results, which are indeed better, to table 1.
large (here, for $|\mathcal{V}| = 256K$. Finally, combining this initialization scheme and the learning of Z_c as a parameter gives the best results across all configurations.

5 Conclusion

Training neural language models with large output vocabularies is still challenging. Noise contrastive estimation is one of the most promising training criteria but was empirically shown to be unstable. In this paper, we carried out an extensive analysis of the training process of NCE. We showed how setting the scaling parameters to 1 yields an implicit self-normalization step which necessarily precedes actual learning from data examples. The difficulty of this process depends on the value range of the noise distribution P_n. Given the Zipfian distribution of word frequencies in texts, learning with an unigram distribution is getting harder as the vocabulary size grows. This is quite inconsistent with the motivation of this learning criterion. However, we also explored several remedies and showed that when including the scaling parameter in the parameters of the model, the scaling process can be both stable and efficient. Additional improvements can be obtained by initializing the bias of the output layer according to the noise distribution. Combining this 'learning to scale' approach with the adapted initialization scheme yields a very competitive, yet simple, training strategy for neural language models with large vocabularies.

Acknowledgements

We wish to thank the anonymous reviewers for their helpful comments. This work has been funded by the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 645452 (QT21).
References

3100

