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EXISTENCE AND UNIQUENESS OF MAXIMAL STRONG SOLUTION OF A 1D BLOOD

FLOW IN A NETWORK OF VESSELS

DEBAYAN MAITY, JEAN-PIERRE RAYMOND, AND ARNAB ROY

Abstract. We study the well-posedness of a system of one-dimensional partial differential equations modeling

blood flows in a network of vessels with viscoelastic walls. We prove the existence and uniqueness of maximal

strong solution for this type of hyperbolic/parabolic model. We also prove a stability estimate under suitable
nonlinear Robin boundary conditions.

1. Introduction

In this paper, we consider a one dimensional blood flow model in a network of vessels with viscoelastic walls.
In each vessel (of length 1 in nondimensional variables), the cross sectional area A(x, t) of the vessel at the axial
coordinate x ∈ I = (0, 1) and at time t > 0, the flow rate Q(x, t), and the average internal pressure P (x, t), over
a cross section, satisfy the mass conservation and momentum balance equations:

∂A

∂t
+
∂Q

∂x
= 0, x ∈ I, t > 0,

∂Q

∂t
+

∂

∂x

(
Q2

A

)
+
A

ρ

∂P

∂x
= −kf

Q

A
, x ∈ I, t > 0,

(1.1)

where ρ is the fluid density, assumed to be constant, and kf is the friction coefficient per unit length. To
close the system we need a constitutive law connecting the pressure P to the cross-sectional area A. In the
Kelvin-Voigt model, the pressure law (or vessel law) is given by:

P = Pext +
β

A0

(√
A−

√
A0

)
+

ν

A0

∂

∂t
(
√
A), (1.2)

where Pext denotes the constant external pressure, A0 denotes the reference cross-sectional area, ν is a viscoelastic
coefficient depending on the thickness h of the vessel, the coefficient β is related to the vessel stiffness, and is

defined by β =
√
πhE

1−σ2 , where E is the Young’s modulus and σ is the Poisson’s ratio. The system (1.1)-(1.2) has
to be completed by initial and boundary conditions.

For simplicity, we analyze models corresponding to the vessel law (1.2), but the results of the paper can be
adapted to more general vessel laws as those considered in [17].

When we substitute the pressure law (1.2) in (1.1)2, by taking (1.1)1 into account, we obtain the following
system

∂A

∂t
+
∂Q

∂x
= 0, x ∈ I, t > 0,

∂Q

∂t
+

∂

∂x

(
Q2

A

)
+
β
√
A

2A0ρ

∂A

∂x
+

ν

4A0A1/2ρ

∂Ai
∂x

∂Q

∂x
− ν
√
A

2A0ρ

∂2Q

∂x2
= −kf

Q

A
, x ∈ I, t > 0.

(1.3)
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When the viscoelastic coefficient ν is equal to zero, the system corresponding to (1.3) can be written as a
quasilinear hyperbolic system (see, e.g., [6, 18, 23, 10, 26]). The diffusive effect, induced by the viscous term

− ν
√
A

2A0ρ
∂2Q
∂x2 when ν > 0, makes the system of hyperbolic/parabolic nature. Even if, in blood flow models, the

hyperbolic nature of system (1.3) is dominent, because the viscous term − ν
√
A

2A0ρ
∂2Q
∂x2 is small compared to the

other terms, this additional viscous term plays a role in numerical simulations [19], in estimation problems
[7, 14], and when data coming from numerical models are compared with in vivo data [3, 4].

The viscoelastic behavior of vessels has been observed in several experimental studies [1, 27]. Several studies
demonstrate that the incorporation of viscoleastic tube laws allows more physiological predictions than those
obtained with elastic laws, because blood pressure and vessel deformation are often overestimated by 1D elastic
models [22, 21, 25]. For the analysis of other viscoelastic models we refer to [20, 22, 7].

In the numerical approximations of system (1.3), the viscous term is often considered as a viscous correction
in a quasilinear hyperbolic system, and therefore the viscous term is taken into account as a source term [18, 19].
Splitting methods are other numerical strategies, consisting of solving alternatively an hyperbolic system and a
parabolic equation, see [17, 24].

From the well-posedness point of view, the existence of global-in-time regular solutions under some smallness
conditions, or local-in-time regular solutions, for the quasilinear hyperbolic system corresponding to ν = 0, is
studied in [6] and in [10] in a single vessel. The coupling of a quasilinear hyperbolic system with a Windkessel
type boundary condition is considered in [9]. As far as we know, similar results in the viscous case, when ν > 0,
are not known. Another viscoelastic model is derived in [5] for a single vessel, but not for a network.

The goal of this paper is to prove the existence and uniqueness of maximal strong solution of a system
modeling a blood flow in a network of vessels, corresponding to (1.3) in each vessel. In this paper, due to its
length, we do not study outflow boundary conditions of Windkessel type. But several results of the present
paper may be extended to such models. This will be studied in a forthcoming paper.

Before studying a general network, for clarity, we introduce the first results for a binary vascular bifurcation
as represented in Figure 1. For i = 1, 2, 3, (Ai, Qi) satisfies (1.1) with the pressure law defined in (1.2). More
precisely, we consider the following system:

For i ∈ {1, 2, 3}, (Ai, Qi) satisfies

∂Ai
∂t

+
∂Qi
∂x

= 0, t ∈ (0, T ), x ∈ I,

∂Qi
∂t

+
∂

∂x

(
Q2
i

Ai

)
+
Ai
ρ

∂Pi
∂x

= −kf
Qi
Ai
, t ∈ (0, T ), x ∈ I,

Pi = Pext +
β

Ai,0

(√
Ai −

√
Ai,0

)
+

ν

Ai,0

∂

∂t
(
√
Ai),

(1.4)

where Ai,0 denotes the reference sectional area of the i-th vessel.
At the branching point, the balance of rate flows and the continuity of total pressures read as follows

Q1(1, t) = Q2(0, t) +Q3(0, t), t > 0,

P1(1, t) +
ρ

2

Q2
1

A2
1

(1, t) = P2(0, t) +
ρ

2

Q2
2

A2
2

(0, t) = P3(0, t) +
ρ

2

Q2
3

A2
3

(0, t), t > 0.
(1.5)

The above system is completed by the following initial conditions

Ai(x, 0) = A0
i (x), Qi(x, 0) = Q0

i (x), x ∈ I, (1.6)

and boundary conditions

Q1(0, t) = h1(t), Q2(1, t) = h2(t), Q3(1, t) = h3(t), t > 0. (1.7)

Using the expression of Pi in (1.4)3, we want to eliminate all the terms involving Pi. Observe that using (1.4)1,
we can rewrite Pi as

Pi = Pext +
β

Ai,0

(√
Ai −

√
Ai,0

)
− ν

2Ai,0
√
Ai

∂Qi
∂x

.
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By differentiating the above pressure law with respect to x, we obtain

∂Pi
∂x

=
β

2Ai,0
√
Ai

∂Ai
∂x
− ∂

∂x

(
ν

2Ai,0
√
Ai

∂Qi
∂x

)
.

Using the above expression, we can write the system (1.4)–(1.7), in an arbitrary time interval (t0, t1), in the
following form:

For i ∈ {1, 2, 3}, (Ai, Qi) satisfies

∂Ai
∂t

+
∂Qi
∂x

= 0, t ∈ (t0, t1), x ∈ I,

ρ

Ai

∂Qi
∂t

+
ρ

Ai

(
2Qi
Ai

∂Qi
∂x
− Q2

i

A2
i

∂Ai
∂x

)
+

β

2Ai,0
√
Ai

∂Ai
∂x
− ∂

∂x

(
ν

2Ai,0
√
Ai

∂Qi
∂x

)
= −kfρ

Qi
A2
i

, t ∈ (t0, t1), x ∈ I,

Q1(1, t) = Q2(0, t) +Q3(0, t), t ∈ (t0, t1),

Q1(0, t) = h1(t), Q2(1, t) = h2(t), Q3(1, t) = h3(t), t ∈ (t0, t1),[
− ν

2A1,0

√
A1

∂Q1

∂x
+

β

A1,0

(√
A1 −

√
A1,0

)
+

1

2
ρ
Q2

1

A2
1

] ∣∣∣
x=1

=

[
− ν

2A2,0

√
A2

∂Q2

∂x
+

β

A2,0

(√
A2 −

√
A2,0

)
+

1

2
ρ
Q2

2

A2
2

] ∣∣∣
x=0

= −
[

ν

2A3,0

√
A3

∂Q3

∂x
+

β

A3,0

(√
A3 −

√
A3,0

)
+

1

2
ρ
Q2

3

A2
3

] ∣∣∣
x=0

, t ∈ (t0, t1),

Ai(x, t0) = A0
i (x), Qi(x, t0) = Q0

i (x), x ∈ I.

(1.8)

We shall need to consider system (1.8) over a time interval (t0, t1), and not necessarily over a fixed time interval
(0, T ), to prove the existence of maximal strong solutions (see Section 5.1).

From now on, to simplify the notation we set

A = (Ai)
3
i=1, A

0 = (A0
i )

3
i=1, A = (Ai)

3
i=1, Q = (Qi)

3
i=1, Q

0 = (Q0
i )

3
i=1, (A,Q) = (Ai, Qi)

3
i=1.

For −∞ < t0 < t1 <∞, we look for solutions to system (1.8) in the space

E(t0, t1) =
{

(A,Q) | A ∈ [H1(t0, t1;H1(I))]3, Q ∈ [L2(t0, t1;H2(I)) ∩H1(t0, t1;L2(I))]3
}
, (1.9)



4 DEBAYAN MAITY, JEAN-PIERRE RAYMOND, AND ARNAB ROY

equipped with the norm

|||(A,Q)|||E(t0,t1) =
∑3
i=1

(
‖Ai‖H1(t0,t1;H1(0,1)) + ‖Ai‖L∞(t0,t1;H1(0,1)) + ‖Qi‖L2(t0,t1;H2(0,1))

+‖Qi‖H1(t0,t1;L2(0,1)) + ‖Qi‖L∞(t0,t1;H1(0,1))

)
.

(1.10)

Moreover, for A ∈ [H1(I)]3, A ∈ [H1(t0, t1;H1(I))]3, we introduce the following quantities

γA = min
{
A(x) | x ∈ I

}
> 0, (1.11)

γA(t0, t1) = min
{
A(x, t) | x ∈ I, t ∈ [t0, t1]

}
> 0. (1.12)

We also introduce the spaces

EA(t0, t1) =
{
A ∈ [H1(t0, t1;H1(I))]3 | A(t0) = A

}
, (1.13)

and, for γ > 0,

EA(t0, t1; γ) =
{
A ∈ EA(t0, t1) | γA(t0, t1) > γ

}
. (1.14)

Definition 1.1. We say that a pair (A,Q) is a strong solution to system (1.8) over the time interval [0, T ]
when (A,Q) ∈ E(0, T ), γA(0, T ) > 0, (A,Q) satisfies (1.8)2−4 in the sense of distributions in I × (0, T ) and
(1.8)5−9 in the sense of traces.

We say that (A,Q) is a maximal strong solution to system (1.8) over the time interval [0, Tm) when either
Tm =∞, or Tm <∞ and, for all 0 < T < Tm, (A,Q) is a strong solution to system (1.8) over the time interval
[0, T ], and when

lim
T→Tm

(
|||(A,Q)|||E(0,T ) + max

{
|Ai(x, T )|−1 | 1 6 i 6 3, x ∈ [0, 1]

})
=∞. (1.15)

We are now in a position to state the main result of the paper in the case of the simple network represented
in Figure 1.

Theorem 1.2. Let us assume that, for i = 1, 2, 3, A0
i > 0, A0 ∈ [H1(I)]3, Q0 ∈ [H1(I)]3, hi ∈ H3/4

loc ([0,∞)),
and that the following compatibility conditions are satisfied

Q0
1(1) = Q0

2(0) +Q0
3(0),

Q0
1(0) = h1(0), Q0

2(1) = h2(0), Q0
3(1) = h3(0).

(1.16)

Then, the system (1.8) admits a unique maximal strong solution over [0, Tm), for some Tm > 0. Both the
solution and the maximal time of existence Tm are unique.

Remark 1.3. In the above theorem, we state the existence of a unique maximal solution for the system (1.4)–
(1.6) with Dirichlet boundary conditions on the flow rate (1.7). Later on, we shall prove the existence of maximal
unique solution when the Dirichlet boundary conditions are replaced by nonlinear Dirichlet boundary conditions
(see Theorem 5.3) and nonlinear Robin boundary conditions (see Theorem 6.2). These nonlinear Robin boundary
conditions, which approximate Dirichlet boundary conditions, allow us to prove an energy estimate satisfied by
the corresponding solutions (see Proposition 6.3). In Theorem 5.3, the nonlinear Dirichlet boundary conditions
are introduced to take into account boundary conditions on the velocity.

To study the system (1.8), in Section 2, we rewrite it in the form of a linear system in which the nonlinear
terms are collected in source terms. The existence and regularity results for the associated nonhomogeneous
linear system are obtained in Section 3. The nonlinear terms are estimated in Section 4 and Theorem 1.2 is
proved in Section 5 with the Banach fixed point Theorem. In Section 6, by adapting results obtained in [10] for
the quasilinear hyperbolic system corresponding to our model when ν = 0, we prove an energy identity satisfied
by strong solutions of system (1.4)–(1.7). This energy identity is not sufficient to obtain a stability estimate
because of the nonhomogeneous Dirichlet boundary conditions in (1.7). We are able to prove that if, in (1.7), we
replace the classical nonhomogeneous Dirichlet boundary conditions by nonlinear Robin boundary conditions,
the associated nonlinear system admits a unique maximal strong solution, and that this solution satisfies a
stability estimate (see Theorem 6.2 and Proposition 6.3). We generalize the previous results to general networks
in Section 7.
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2. Reformulation of the nonlinear system

In order to prove the existence of solutions to system (1.8), we rewrite it in the form of a linearized system in
which the nonlinear terms of system (1.8) are right hand side terms in the equations. For that, for an arbitrary
A ∈ [H1(I)]3 satisfying γA > 0, we introduce the coefficients

Li
A

=
ρ

Ai
, N i

A
=

ν

2Ai,0
√
Ai
, i = 1, 2, 3, (2.1)

and, for i = 1, 2, 3, we define the nonlinear terms F i
A

and Gi
A

by

F i
A

(Ai, Qi) = −kfρ
Qi
A2
i

− 2ρQi
A2
i

∂Qi
∂x

+
ρQ2

i

A3
i

∂Ai
∂x
− ρ

(
1

Ai
− 1

Ai

)
∂Qi
∂t

+
∂

∂x

[(
ν

2Ai,0
√
Ai
− ν

2Ai,0
√
Ai

)
∂Qi
∂x

]
− β

2Ai,0
√
Ai

∂Ai
∂x
− 1

4Ai,0A
3/2
i

∂Ai
∂x

∂Qi
∂x

,

(2.2)

and

G1
A

(A1, Q1) =

[
β

A1,0

(√
A1 −

√
A1

)
+

ν

2A1,0

∂Q1

∂x

(
1√
A1

− 1√
A1

)
+

1

2
ρ
Q2

1

A2
1

] ∣∣∣
x=1

,

Gi
A

(Ai, Qi) =

[
β

Ai,0

(√
Ai −

√
Ai

)
+

ν

2Ai,0

∂Qi
∂x

(
1√
Ai
− 1√

Ai

)
+

1

2
ρ
Q2
i

A2
i

] ∣∣∣
x=0

, i = 2, 3. (2.3)

Moreover, the constant terms are defined by

g1
A

=

[
β

A1,0

(√
A1 −

√
A1,0

)] ∣∣∣
x=1

,

gi
A

=

[
β

Ai,0

(√
Ai −

√
Ai,0

)] ∣∣∣
x=0

, i = 2, 3. (2.4)

From now on, to simplify the presentation, we are going to choose (t0, t1) = (0, T ), but all the results can be
adapted to the case when (t0, t1) 6= (0, T ). With the nonlinear terms introduced above, the system (1.8) can
now be rewritten as:

For i ∈ {1, 2, 3}, (Ai, Qi) satisfies

∂Ai
∂t

+
∂Qi
∂x

= 0, t ∈ (0, T ), x ∈ I,

LiA0

∂Qi
∂t
− ∂

∂x

(
N i
A0

∂Qi
∂x

)
= F iA0(Ai, Qi), t ∈ (0, T ), x ∈ I,

Q1(1, t) = Q2(0, t) +Q3(0, t), t ∈ (0, T ),

Q1(0, t) = h1(t), Q2(1, t) = h2(t), Q3(1, t) = h3(t), t ∈ (0, T ),

−N1
A0

∂Q1

∂x
(1, t) + g1A0 +G1

A0(A1, Q1) = −N2
A0

∂Q2

∂x
(0, t) + g2A0 +G2

A0(A2, Q2)

= −N3
A0

∂Q3

∂x
(0, t) + g3A0 +G3

A0(A3, Q3), t ∈ (0, T ),

Ai(x, 0) = A0
i (x), Qi(x, 0) = Q0

i (x), x ∈ I.

(2.5)

In the above system, we use the nonlinear terms and the coefficients corresponding to A = A0. But in Section

5.1, we shall need to study system (1.8) over (0, T̂ ), and next over (T̂ , τ). This is why it is important to express

the dependence of the nonlinear terms and the coefficients on A0, or on A(T̂ ).
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3. Study of a linear model

The proof of Theorem 1.2 relies on the Banach fixed point Theorem. The idea is to replace the nonlinear
terms in (2.5) by given source terms fi and gi. Throughout this section, we assume that A ∈ [H1(I)]3 and
γA > 0 (γA is defined in (1.11)). To study system (2.5), we are going to establish regularity results for the
following linear system:

For i ∈ {1, 2, 3}, (Ai, Qi) satisfies
∂Ai
∂t

+
∂Qi
∂x

= 0 t ∈ (0, T ), x ∈ I,

Li
A

∂Qi
∂t
− ∂

∂x

(
N i
A

∂Qi
∂x

)
= fi t ∈ (0, T ), x ∈ I,

Q1(1, t) = Q2(0, t) +Q3(0, t) t ∈ (0, T ),

Q1(0, t) = h1(t), Q2(1, t) = h2(t), Q3(1, t) = h3(t), t ∈ (0, T ),

−N1
A

∂Q1

∂x
(1, t) + g1(t) = −N2

A

∂Q2

∂x
(0, t) + g2(t) = −N3

A

∂Q3

∂x
(0, t) + g3(t) t ∈ (0, T ),

Ai(x, 0) = A0
i (x), Qi(x, 0) = Q0

i (x) x ∈ I.

(3.1)

Let us remark that the above linear system can be solved “in cascades”: The equations (3.1)3−6 satisfied by
Qi, with the initial condition for Qi in (3.1)7, can be solved independently of Ai. Once we have obtained the
regularity of Qi, we can easily get the regularity of Ai from (3.1)2. Thus, at first we concentrate in solving the
following system with homogeneous boundary conditions:

For i ∈ {1, 2, 3}, Qi satisfies

Li
A

∂Qi
∂t
− ∂

∂x

(
N i
A

∂Qi
∂x

)
= fi t ∈ (0, T ), x ∈ I,

Q1(1, t) = Q2(0, t) +Q3(0, t) t ∈ (0, T ),

Q1(0, t) = Q2(1, t) = Q3(1, t) = 0 t ∈ (0, T ),

−N1
A

∂Q1

∂x
(1, t) = −N2

A

∂Q2

∂x
(0, t) = −N3

A

∂Q3

∂x
(0, t) t ∈ (0, T ),

Qi(x, 0) = Q0
i (x) x ∈ I.

(3.2)

3.1. Study of system (3.2). We first study the following stationary system:

For i ∈ {1, 2, 3}, Qi satisfies

− ∂

∂x

(
N i
A

∂Qi
∂x

)
= fi in I,

Q1(1) = Q2(0) +Q3(0),

Q1(0) = Q2(1) = Q3(1) = 0,

−N1
A

dQ1

dx
(1) = −N2

A

dQ2

dx
(0) = −N3

A

dQ3

dx
(0).

(3.3)

We introduce the space

V =
{

(Q1, Q2, Q3) ∈
[
H1(I)

]3 | Q1(0) = 0 = Q2(1) = Q3(1), Q1(1) = Q2(0) +Q3(0)
}
,

and the bilinear form ′a′ defined on V × V by

a (Q,Φ) =

3∑
i=1

∫ 1

0

N i
A

dQi
dx

dΦi
dx

, Φ = (Φ1,Φ2,Φ3).

Lemma 3.1. A function Q ∈ (H2(I))3 satisfies (3.3) if and only if it is solution of the following variational
problem

Determine Q ∈ V such that a (Q,Φ) =

3∑
i=1

∫ 1

0

fiΦi dx for all Φ ∈ V. (3.4)
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Proof. If Q ∈ (H2(I))3 is solution of (3.3), then an integration by parts gives

a(Q,Φ) +

3∑
i=1

[
−N i

A

dQi
dx

(1)Φi(1) +N i
A

dQi
dx

(0)Φi(0)

]
=

3∑
i=1

∫ 1

0

fiΦidx.

Using the condition Φ1(0) = 0 = Φ2(1) = Φ3(1) and the Neumann boundary conditions (3.3)5 satisfied by
(Q1, Q2, Q3), we have

3∑
i=1

[
−N i

A

dQi
dx

(1)Φi(1) +N i
A

dQi
dx

(0)Φi(0)

]
= −N2

A

dQ2

dx
(0)Φ1(1) +N2

A

dQ2

dx
(0)Φ2(0) +N3

A

dQ3

dx
(0)Φ3(0)

=

[
−N2

A

dQ2

dx
(0) +N3

A

dQ3

dx
(0)

]
Φ3(0) = 0.

Thus, Q is a solution to the variational problem (3.4).
The converse statement can be proved in a classical way by first recovering equation (3.3)2, and next the

regularity of (Qi)
3
i=1 and the boundary conditions (3.3)3−5. The proof is complete.

Proposition 3.2. Let us assume that, for i = 1, 2, 3, fi ∈ L2(I). Then the system (3.3) admits a unique
solution Q ∈ (H2(I))3 and

3∑
i=1

‖Qi‖H2(I) 6 C

3∑
i=1

‖fi‖L2(I). (3.5)

Proof. The bilinear form a is continuous and coercive on V × V . The existence of a unique weak solution
to the variational problem (3.4) follows from the Lax-Milgram Lemma. The end of proof is classical.

We introduce the unbounded operator (A,D(A)) in [L2(I)]3 defined by

D(A) = {Q ∈ V ∩ [H2(I)]3 | Q = (Q1, Q2, Q3) satisfies (3.3)5},
AQ = (A1Q1,A2Q2,A3Q3) where

AiQi = − ∂

∂x

(
N i
A

∂Qi
∂x

)
for i = 1, 2, 3.

The following proposition is an easy consequence of Proposition 3.2 and of its proof.

Proposition 3.3. The operator (A,D(A)) is the infinitesimal generator of a strongly continuous analytic semi-
group on [L2(I)]3. Moreover, (A,D(A)) is a self-adjoint operator with compact resolvent in [L2(I)]3.

To define weak solutions to system (3.2), we introduce the following spaces

H(0, T ) =
[
H1(0, T ;L2(I))

]3
,

W (0, T ) =

{
Q ∈ L2(0, T ;V ) | dQ

dt
∈ L2(0, T ;V ′)

}
,

where V ′ is the dual of V with respect to the pivot space (L2(I))3.

Definition 3.4. We say that Q ∈W (0, T ) is a weak solution to (3.2) if the following conditions hold

3∑
i=1

〈Li
A

dQi
dt

(t), ξi

〉
V ′,V

+

1∫
0

N i
A

∂Qi
∂x

∂ξi
∂x

dx

 =

3∑
i=1

1∫
0

fiξi dx for all ξ = (ξi)
3
i=1 ∈ V, (3.6)

Qi(·, 0) = Q0
i . (3.7)

The main result of this subsection is the following:
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Theorem 3.5. Let fi ∈ L2(0, T ;L2(I)) and Q0 ∈ V . Then there exists a unique weak solution Q ∈W (0, T ) to
(3.2). Moreover, we have

Qi ∈ L2(0, T ;H2(I)) ∩H1(0, T ;L2(I)) ∩ L∞(0, T ;H1(I)), (3.8)

and

3∑
i=1

[
‖Qi‖L∞(0,T ;H1(I)) + ‖Qi‖L2(0,T ;H2(I)) + ‖Qi‖H1(0,T ;L2(I))

]
6 C

3∑
i=1

(
‖fi‖L2(0,T ;L2(I)) + ‖Q0

i ‖H1(I)

)
, (3.9)

where the constant C depends on Li, Ni, but is independent of T .

Proof. Due to Proposition 3.3, there exists a Hilbertian basis in (L2(I))3, namely
(ξ1,k, ξ2,k, ξ3,k)k∈N∗ , constituted of eigenfunctions of A, such that (ξ1,k, ξ2,k, ξ3,k) belongs to D(A) for all k ∈ N∗.
Using that basis, we can follow the lines of the proof of [8, Theorem 4, Chapter 7] to prove the existence of a
unique weak solution to system (3.2) in W (0, T ).

The estimate in (3.9) can be proved as in [8, Theorem 5, Chapter 7].

3.2. Study of system (3.1). We want to study the regularity of solutions of the linear problem (3.1).

Lemma 3.6. Let us assume that, for i = 1, 2, 3, hi ∈ H3/4
loc ([0,∞)), gi ∈ H1/4

loc ([0,∞)), Q0
i ∈ H1(I), and the

compatibility conditions (1.16) are satisfied.
Then, for i = 1, 2, 3, there exists a function Qi ∈ L2

loc([0,∞);H2(I)) ∩ H1
loc([0,∞);L2(I))

∩ L∞loc([0,∞);H1(I)) such that

Q1(0, t) = h1(t), Q1(1, t) = 0,
∂Q1

∂x
(1, t) = g1(t), Q1(·, 0) = Q0

1,

Q2(0, t) = 0, Q2(1, t) = h2(t),
∂Q2

∂x
(0, t) = g2(t), Q2(·, 0) = Q0

2,

Q3(0, t) = 0, Q3(1, t) = h3(t),
∂Q3

∂x
(0, t) = g3(t), Q3(·, 0) = Q0

3, for all t > 0.

(3.10)

Moreover, there exists a constant C > 0, independent of T > 0, such that, for i = 1, 2, 3, we have

‖Qi‖L2(0,T ;H2(I))∩H1(0,T ;L2(I))∩L∞(0,T ;H1(I)) 6 C(‖gi‖H1/4(0,T ) + ‖hi‖H3/4(0,T ) + ‖Q0
i ‖H1(I)). (3.11)

Proof. The proof of the above lemma follows from [15, Theorem 2.3, page 18].
We prove the following theorem:

Theorem 3.7. Let us assume that, for i = 1, 2, 3, hi ∈ H3/4
loc ([0,∞)) and gi ∈ H1/4

loc ([0,∞)), fi ∈ L2(0, T ;L2(I)),
and the following compatibility conditions are satisfied

Q0
1(1) = Q0

2(0) +Q0
3(0), Q0

1(0) = h1(0), Q0
2(1) = h2(0), Q0

3(1) = h3(0). (3.12)

Then, the system (3.1) admits a unique solution (A,Q) satisfying

∂Ai
∂t
∈ L∞(0, T ;L2(I)), Ai ∈ H1(0, T ;H1(I)),

Qi ∈ L2(0, T ;H2(I)) ∩H1(0, T ;L2(I)) ∩ L∞(0, T ;H1(I)), i = 1, 2, 3.
(3.13)
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Furthermore, there exists a constant CA, depending on A but independent of T , such that

3∑
i=1

[∥∥∥∥∂Ai∂t

∥∥∥∥
L∞(0,T ;L2(I))

+ ‖Ai‖H1(0,T ;H1(I)) + ‖Ai‖L∞(0,T ;H1(I))

+‖Qi‖L∞(0,T ;H1(I)) + ‖Qi‖L2(0,T ;H2(I)) + ‖Qi‖H1(0,T ;L2(I))

]
6 CA

3∑
i=1

(
‖fi‖L2(0,T ;L2(I)) + ‖gi‖H1/4(0,T ) + ‖hi‖H3/4(0,T ) + ‖A0

i ‖H1(I) + ‖Q0
i ‖H1(I)

)
, (3.14)

for all T > 0.

Proof. We first study the existence and uniqueness of a solution (Q1, Q2, Q3) in [L2(0, T ;H2(I))]3 ∩
[H1(0, T ;L2(I))]3 ∩ [L∞(0, T ;H1(I)]3 to system (3.1)3−7. Let (Q̃1, Q̃2, Q̃3) be a solution to (3.10) satisfying
(3.11), i.e,

‖Q̃i‖L2(0,T ;H2(I))∩H1(0,T ;L2(I))∩L∞(0,T ;H1(I)) 6 C(‖gi‖H1/4(0,T ) + ‖hi‖H3/4(0,T ) + ‖Q0
i ‖H1(I)). (3.15)

We look for Q = (Qi)
3
i=1 in the form (Q1, Q2, Q3) = (Q̃1, Q̃2, Q̃3) + (Q̂1, Q̂2, Q̂3). Thus, Q̂ = (Q̂1, Q̂2, Q̂3)

satisfies 

Li
A

∂Q̂i
∂t
− ∂

∂x

(
N i
A

∂Q̂i
∂x

)
= f̂i t ∈ (0, T ), x ∈ I, i ∈ {1, 2, 3},

Q̂1(1, t) = Q̂2(0, t) + Q̂3(0, t) t ∈ (0, T ),

Q̂1(0, t) = Q̂2(1, t) = Q̂3(1, t) = 0 t ∈ (0, T ),

−N1
A

∂Q̂1

∂x
(1, t) = −N2

A

∂Q̂2

∂x
(0, t) = −N3

A

∂Q̂3

∂x
(0, t) t ∈ (0, T ),

Q̂i(x, 0) = 0 x ∈ I, i ∈ {1, 2, 3},

(3.16)

where

f̂i = fi − LiA
∂Q̃i
∂t

+
∂

∂x

(
N i
A

∂Q̃i
∂x

)
.

With Theorem 3.5, we have

3∑
i=1

[
‖Q̂i‖L∞(0,T ;H1(I)) + ‖Q̂i‖L2(0,T ;H2(I)) + ‖Q̂i‖H1(0,T ;L2(I))

]
6 C

3∑
i=1

‖f̂i‖L2(0,T ;L2(I)),

The above estimate together with (3.15) give

3∑
i=1

[
‖Qi‖L∞(0,T ;H1(I)) + ‖Qi‖L2(0,T ;H2(I)) + ‖Qi‖H1(0,T ;L2(I))

]
6 C

3∑
i=1

(
‖fi‖L2(0,T ;L2(I)) + ‖gi‖H1/4(0,T ) + ‖hi‖H3/4(0,T ) + ‖Q0

i ‖H1(I)

)
.

The estimate for (Ai)
3
i=1 is obtained with the help of the first equation of system (3.1).

4. Estimates of nonlinear terms

Throughout this section, for 0 < T 6∞, we set

IT = I × (0, T ), H2,1(IT ) = L2(0, T ;H2(I)) ∩H1(0, T ;L2(I)).
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4.1. Preliminary results. Let us recall some important lemmas which will be used later on.

Lemma 4.1. Let 1/2 < s 6 1. There is a bounded extension operator from {f ∈ Hs(0, T ) |
f(0) = 0} to Hs(0,∞), uniformly bounded with respect to T > 0.

Lemma 4.2. (i) Let us assume that g ∈ Hs2(0, T ) with g(0) = 0 and s2 > s1, s1, s2 ∈ (1/2, 1]. Then there
exists a constant C > 0 independent of T such that

‖g‖Hs1 (0,T ) 6 C(
√
T )1−s1/s2‖g‖Hs2 (0,T ). (4.1)

(ii) Let us assume that f ∈ Hs1(0, T ), g ∈ Hs2(0, T ) with s1, s2 ∈ (1/2, 1] and f(0) = g(0) = 0. Then there
exists a constant C > 0, independent of T such that fg ∈ Hs(0, T ) for s ∈ (1/2, 1) with s1 + s2 − s > 1/2 and

‖fg‖Hs(0,T ) 6 CT δ‖f‖Hs1 (0,T )‖g‖Hs2 (0,T ), (4.2)

for some δ > 0.
(iii) Let us assume that f ∈ Hs1(0, T ), g ∈ Hs2(0, T ) with s1, s2 ∈ (1/2, 1] and g(0) = 0. Then there exists a

constant C > 0, independent of T such that fg ∈ Hs(0, T ;U3) for s ∈ (1/2, 1) with s1 + s2 − s > 1/2 and

‖fg‖Hs(0,T ) 6 CT δ(‖f‖Hs1 (0,T ) + |f(0)|+ ‖g‖Hs2 (0,T )), (4.3)

for some δ > 0.

Proof. Step 1. Let us first prove (4.1). Let g be the extension of g to (0,∞) introduced in Lemma 4.1. Since
g(0) = 0, we have from Lemma 4.1 that

‖g‖L2(0,T ) 6
√
T‖g‖L∞(0,T ) 6

√
T‖g‖L∞(0,∞) 6

√
T‖g‖Hs2 (0,∞) 6 C

√
T‖g‖Hs2 (0,T ).

Let us now fix 1/2 < s1 < 1. By interpolation and the above inequality, we have

‖g‖Hs1 (0,T ) 6 ‖g‖Hs1 (0,∞) 6 ‖g‖
1−s1/s2
L2(0,∞)‖g‖

s1/s2
Hs2 (0,∞) 6 C‖g‖1−s1/s2L2(0,T ) ‖g‖

s1/s2
Hs2 (0,T )

6 C(
√
T )1−s1/s2‖g‖Hs2 (0,T ),

with C independent of T since g(0) = 0.
Step 2. We want to prove (4.2). We have f , g as extensions of f , g to (0,∞) respectively following Lemma

4.1. As s1 + s2 − s > 1/2, there exists ε > 0 such that s1 + s2 − s− ε > 1/2.
With [12, Proposition B1] and the estimate (4.1), we have

‖fg‖Hs(0,T ) 6 ‖fg‖Hs(0,∞) 6 C‖f‖Hs1 (0,∞)‖g‖Hs2−ε(0,∞)

6 C|‖f‖Hs1 (0,T )|‖g‖Hs2−ε(0,T ) 6 T δ|‖f‖Hs1 (0,T )|‖g‖Hs2 (0,T ),

where the constant C is independent of T as f(0) = g(0) = 0.
Step 3. To prove (4.3), we first write fg as

fg = (f − f(0))g + f(0)g.

Now we can use (4.2) to prove (4.3).

Lemma 4.3. There exists a constant C > 0, independent of T > 0 and 0 < γ 6 1, such that, for all
f ∈ H1(0, T ;H1(I)) and f(x, t) > γ in I × (0, T ), the functions

√
f , f1/4 and 1/f belong to H1(0, T ;H1(I))

and the following estimates hold:

‖
√
f‖H1(0,T ;H1(I)) + ‖

√
f‖L∞(0,T ;H1(I)) 6

C

γ3/2

(
‖f‖H1(0,T ;H1(I)) + ‖f‖L∞(0,T ;H1(I))

+ ‖f‖H1(0,T ;H1(I))‖f‖L∞(0,T ;H1(I))

)
, (4.4)

‖f1/4‖H1(0,T ;H1(I)) + ‖f1/4‖L∞(0,T ;H1(I)) 6
C

γ7/4

(
‖f‖H1(0,T ;H1(I)) + ‖f‖L∞(0,T ;H1(I))

+ ‖f‖H1(0,T ;H1(I))‖f‖L∞(0,T ;H1(I))

)
, (4.5)
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and

‖1/f‖H1(0,T ;H1(I)) + ‖1/f‖L∞(0,T ;H1(I)) 6
C

γ3

(
‖f‖H1(0,T ;H1(I)) + ‖f‖L∞(0,T ;H1(I))

+ ‖f‖H1(0,T ;H1(I))‖f‖L∞(0,T ;H1(I))

)
. (4.6)

Proof. The proof is easy and left to the reader.

Lemma 4.4. There exists a constant C > 0 such that, for all T > 0 and all f belonging to H2,1(IT ), the
following estimates hold∥∥∥∥∂f∂x (0, ·)

∥∥∥∥
H1/4(0,T )

+

∥∥∥∥∂f∂x (1, ·)
∥∥∥∥
H1/4(0,T )

6 C
(
‖f(·, 0)‖H1(I) + ‖f‖H2,1(IT )

)
, (4.7)

‖f(0, ·)‖H3/4(0,T ) + ‖f(1, ·)‖H3/4(0,T ) 6 C
(
‖f(·, 0)‖H1(I) + ‖f‖H2,1(IT )

)
. (4.8)

Proof. If f ∈ H2,1(IT ), then the fact that
∂f

∂x
(0, ·) and

∂f

∂x
(1, ·) belong to H1/4(0, T ) can be deduced from

[13, Chapter II, Lemma 3.4] or [11, Theorem 6.1], and the following estimate holds∥∥∥∥∂f∂x (0, ·)
∥∥∥∥
H1/4(0,T )

+

∥∥∥∥∂f∂x (1, ·)
∥∥∥∥
H1/4(0,T )

6 CT
(
‖f‖L2(0,T ;H2(I))∩H1(0,T ;L2(I)

)
,

with a constant CT which may depend on T. To obtain a constant independent of T, we proceed as follows.
With [13, Chapter II, Lemma 3.4]), we know that f(·, 0) belongs to H1(I). For some large λ > 0, we consider
the following problem

∂u

∂t
− ∂2u

∂x2
+ λu = 0 in I∞,

∂u

∂x
(0, t) =

∂u

∂x
(1, t) = 0 for all t > 0, u(x, 0) = f(x, 0) for all x ∈ I.

Due to [2, Part II, Chapter 1, Theorem 3.1], u belongs to H2,1(I∞) and

‖u‖H2,1(IT ) 6 ‖u‖H2,1(I∞) 6 C‖f(·, 0)‖H1(I), (4.9)

with IT = I × (0, T ). Let us set ũ = u − f. Then ũ ∈ H2,1(IT ) and ũ(x, 0) = 0 for all x ∈ I. Then, due to
Lemma 4.1, there exists u∗ ∈ H2,1(I∞) such that u∗ = ũ in [0, T ] and

‖u∗‖H2,1(I∞) 6 C‖ũ‖H2,1(IT ).

Moreover, using [11, Theorem 6.1], we obtain∥∥∥∥∂ũ∂x (0, ·)
∥∥∥∥
H1/4(0,T )

+

∥∥∥∥∂ũ∂x (1, ·)
∥∥∥∥
H1/4(0,T )

=

∥∥∥∥∂u∗∂x (0, ·)
∥∥∥∥
H1/4(0,T )

+

∥∥∥∥∂u∗∂x (1, ·)
∥∥∥∥
H1/4(0,T )

6

∥∥∥∥∂u∗∂x (0, ·)
∥∥∥∥
H1/4(0,∞)

+

∥∥∥∥∂u∗∂x (1, ·)
∥∥∥∥
H1/4(0,∞)

6 C‖u∗‖H2,1(I∞) 6 C‖ũ‖H2,1(IT ),

where the constant C is independent of T. Finally, the above estimate and (4.9) yield∥∥∥∥∂f∂x (0, ·)
∥∥∥∥
H1/4(0,T )

+

∥∥∥∥∂f∂x (1, ·)
∥∥∥∥
H1/4(0,T )

=

∥∥∥∥∂ũ∂x (0, ·)
∥∥∥∥
H1/4(0,T )

+

∥∥∥∥∂ũ∂x (1, ·)
∥∥∥∥
H1/4(0,T )

6 C‖ũ‖H2,1(IT ) 6 C
(
‖u‖H2,1(IT ) + ‖f‖H2,1(IT )

)
6 C

(
‖f(·, 0)‖H1(I) + ‖f‖H2,1(IT )

)
.

This completes the proof of estimate (4.7). Estimate (4.8) can be obtained in a similar manner.
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4.2. Analysis of nonlinear terms. Let

A ∈
[
H1(I)

]3
such that γA > 0,

where γA is defined in (1.11). For 0 6 t0 < t1 and γ > 0, we introduce the space

BA(t0, t1; γ) =
{

(A,Q) ∈ E(t0, t1) | A ∈ EA(t0, t1; γ)
}
,

where EA(t0, t1; γ) is defined in (1.14). The ball BA(t0, t1; γ, µ) in BA(t0, t1; γ) is defined as follows

BA(t0, t1; γ, µ) =
{

(A,Q) ∈ BA(t0, t1; γ) | |||(A,Q)|||E(t0,t1) 6 µ
}
. (4.10)

Our aim is to obtain different estimates for the nonlinear terms F i
A

, Gi
A

introduced in (2.2) - (2.4), in I×(t0, t1),

for an arbitrary time interval (t0, t1). For simplicity, we only treat the case when (t0, t1) = (0, T ), γ ∈ (0, 1),
and µ > 1, but the results can be stated with obvious modifications for an arbitrary time interval (t0, t1).

Now we prove the following proposition which will be used later on.

Proposition 4.5. There exists a constant C > 0, independent of γ ∈ (0, 1), of µ > 1, and of T ∈ (0, 1), such
that, for all (A,Q) ∈ BA(0, T ; γ, µ), we have∥∥Ai −Ai∥∥L∞(0,T ;H1(I))

+ ‖Ai‖L2(0,T ;H1(I)) 6 Cµ
√
T (4.11)∥∥∥∥√Ai −√Ai∥∥∥∥

L∞(0,T ;H1(I))

+
∥∥∥√Ai∥∥∥

L2(0,T ;H1(I))
6 Cµ

√
T
√
γ
, (4.12)

‖Qi‖L2(0,T ;H1+s(I)) 6 CµT (1−s)/4, for s ∈ (0, 1), (4.13)

‖Qi‖L∞(IT ) + ‖Ai‖L∞(IT ) +
∥∥∥√Ai∥∥∥

L∞(IT )
6 Cµ, (4.14)∥∥∥∥√Ai −√Ai∥∥∥∥

H1(0,T ;H1(I))

6 Cµ

√
T
√
γ
, (4.15)∥∥(Ai)

2 − (Ai)
2
∥∥
H1(0,T ;H1(I))

6 Cµ2. (4.16)

Proof. We have

Ai(x, t)−Ai =

∫ t

0

∂tAi(x, s) ds and
√
Ai(x, t)−

√
Ai =

∫ t

0

∂t
√
Ai(x, s) ds.

Therefore ∥∥Ai −Ai∥∥L∞(0,T ;H1(0,1))
6
√
T‖∂tAi‖L2(0,T ;H1(0,1)) 6 µ

√
T .

In a similar manner, we can easily obtain∥∥∥∥√Ai −√Ai∥∥∥∥
L∞(0,T ;H1(0,1))

6 Cµ

√
T
√
γ
.

Using (4.12), we first obtain

‖Ai‖L∞(0,T ;H1(I)) 6 ‖Ai‖H1(I) +
∥∥Ai −Ai∥∥L∞(0,T ;H1(I))

6 µ+ Cµ
√
T ,

where the constant C is independent of T. Thus

‖Ai‖L2(0,T ;H1(0,1)) 6
√
T‖Ai‖L∞(0,T ;H1(I)) 6 Cµ(T +

√
T ).

Similarly, we can show that
∥∥∥√Ai∥∥∥

L2(0,T ;H1(0,1))
6 µ+Cµ

T
√
γ
. The estimate (4.13) can be proved by following

the arguments of [16, Proposition 6.4].
Estimate of F i

A
.
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Proposition 4.6. For all µ > 1 and γ ∈ (0, 1), there exists a positive constant CF (µ, γ), depending on µ and
γ, but independent of T ∈ (0, 1), such that, for all (A,Q) ∈ BA(0, T ; γ, µ), all (A1, Q1) ∈ BA(0, T ; γ, µ), and all
(A2, Q2) ∈ BA(0, T ; γ, µ), we have ∥∥∥F iA(Ai, Qi)

∥∥∥
L2(IT )

6 CF (µ, γ)Tα, (4.17)∥∥∥F iA(A1
i , Q

1
i )− F iA(A2

i , Q
2
i )
∥∥∥
L2(IT )

6 CF (µ, γ)Tα
∣∣∣∣∣∣(A1

i , Q
1
i )− (A2

i , Q
2
i )
∣∣∣∣∣∣
ET
, (4.18)

for some α > 0, independent of T ∈ (0, 1), of µ > 1, and of γ ∈ (0, 1).

Proof. Step 1. Proof of (4.17). Let us recall that

F i
A

(Ai, Qi) = −kfρ
Qi

(Ai)2
− 2ρQi

(Ai)2
∂Qi
∂x

+
ρ(Qi)

2

(Ai)3
∂Ai
∂x
− ρ

(
1

Ai
− 1

Ai

)
∂Qi
∂t

+
∂

∂x

[(
ν

2Ai,0
√
Ai
− ν

2Ai,0
√
Ai

)
∂Qi
∂x

]
− β

2Ai,0
√
Ai

∂Ai
∂x
− 1

4Ai,0A
3/2
i

∂Ai
∂x

∂Qi
∂x

,

• To estimate the first term of F i
A

, we write∥∥∥∥−kfρ Qi
(Ai)2

∥∥∥∥
L2(IT )

6
kfρ

γ2
‖Qi‖L2(IT ) 6 C

√
T

γ2
‖Qi‖L∞(0,T ;L2(I)) 6 Cµ

√
T

γ2
.

• The estimate of the second term of F i
A

is obtained as follows∥∥∥∥ 2ρQi
(Ai)2

∂Qi
∂x

∥∥∥∥
L2(IT )

6 C
µ

γ2

∥∥∥∥∂Qi∂x

∥∥∥∥
L2(IT )

6 Cµ

√
T

γ2

∥∥∥∥∂Qi∂x

∥∥∥∥
L∞(0,T ;L2(I))

6 Cµ2

√
T

γ2
.

• To estimate the third term of F i
A

(the estimate of sixth term is similar), using (4.11) and (4.14), we have∥∥∥∥ρ(Qi)
2

(Ai)3
∂Ai
∂x

∥∥∥∥
L2(IT )

6 C
µ2

γ3

∥∥∥∥∂Ai∂x

∥∥∥∥
L2(IT )

6 Cµ3

√
T

γ3
.

• To estimate the fourth term of F i
A

, with (4.11), we have∥∥∥∥ρ( 1

Ai
− 1

Ai

)
∂Qi
∂t

∥∥∥∥
L2(IT )

6 C
1

γ2
‖Ai −Ai‖L∞(0,T ;H1(I))

∥∥∥∥∂Qi∂t

∥∥∥∥
L2(IT )

6 Cµ2

√
T

γ2
.

• To estimate the fifth term of F i
A

, with (4.12), we obtain∥∥∥∥∥ ∂∂x
[(

ν

2Ai,0
√
Ai
− ν

2Ai,0
√
Ai

)
∂Qi
∂x

]∥∥∥∥∥
L2(IT )

6 C
1

γ2
‖
√
Ai −

√
Ai‖L∞(0,T ;H1(I))

∥∥∥∥∂Qi∂x

∥∥∥∥
L2(0,T ;H1(I))

6 Cµ2

√
T

γ5/2
.

• To estimate the last term of F i
A

, using (4.13), we get∥∥∥∥∥ 1

4Ai,0A
3/2
i

∂Ai
∂x

∂Qi
∂x

∥∥∥∥∥
L2(IT )

6 C
1

γ5/2

∥∥∥∥∂Ai∂x

∥∥∥∥
L∞(0,T ;L2(I))

∥∥∥∥∂Qi∂x

∥∥∥∥
L2(0,T ;Hs(I))

6 Cµ2T (1−s)/4 1

γ5/2
,

for all 1
2 < s < 1.

Step 2. Proof of (4.18). The Lipschitz estimate can be obtained as in Step 1. For clarity let us explain how we
can prove it for the fifth term of F i

A
:

∂

∂x

[(
ν

2Ai,0
√
Ai
− ν

2Ai,0
√
Ai

)
∂Qi
∂x

]
.
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We have

∂

∂x

[(
ν

2Ai,0
√
A1
i

− ν

2Ai,0
√
Ai

)
∂Q1

i

∂x

]
− ∂

∂x

[(
ν

2Ai,0
√
A2
i

− ν

2Ai,0
√
Ai

)
∂Q2

i

∂x

]

=
∂

∂x

[(
ν

2Ai,0
√
A1
i

− ν

2Ai,0
√
A2
i

)
∂Q1

i

∂x

]
+

∂

∂x

[(
ν

2Ai,0
√
A2
i

− ν

2Ai,0
√
Ai

)(
∂Q1

i

∂x
− ∂Q2

i

∂x

)]
.

The first term can be estimated as in Step 1:∥∥∥∥∥ ∂∂x
[(

ν

2Ai,0
√
A1
i

− ν

2Ai,0
√
A2
i

)
∂Q1

i

∂x

]∥∥∥∥∥
L2(IT )

6 C

∥∥∥∥∥ 1√
A1
i

− 1√
A2
i

∥∥∥∥∥
L∞(0,T ;H1(I))

∥∥∥∥∂Q1
i

∂x

∥∥∥∥
L2(0,T ;H1(I))

6 C
1

γ2

∥∥∥∥√A1
i −

√
A2
i

∥∥∥∥
L∞(0,T ;H1(I))

∥∥∥∥∂Q1
i

∂x

∥∥∥∥
L2(0,T ;H1(I))

6 Cµ

√
T

γ2
∣∣∣∣∣∣(A1

i , Q
1
i )− (A2

i , Q
2
i )
∣∣∣∣∣∣
ET
.

For the second term, as (A2, Q2) ∈ BA(0, T ; γ, µ), we have
(√

A2
i −

√
Ai

)
|t=0 = 0. Thus, we can write∥∥∥∥∥ ∂∂x

[(
ν

2Ai,0
√
A2
i

− ν

2Ai,0
√
Ai

)(
∂Q1

i

∂x
− ∂Q2

i

∂x

)]∥∥∥∥∥
L2(IT )

6 C
1

γ2

∥∥∥∥√A2
i −

√
Ai

∥∥∥∥
L∞(0,T ;H1(I))

∥∥∥∥∂Q1
i

∂x
− ∂Q2

i

∂x

∥∥∥∥
L2(0,T ;H1(I))

6 Cµ

√
T

γ5/2

∣∣∣∣∣∣(A1
i , Q

1
i )− (A2

i , Q
2
i )
∣∣∣∣∣∣
ET
.

Estimate of Gi
A

.

Proposition 4.7. For all µ > 1 and γ ∈ (0, 1), there exists a positive constant CG(µ, γ), depending on µ and
γ, but independent of T ∈ (0, 1), such that, for all (A,Q) ∈ BA(0, T ; γ, µ), all (A1, Q1) ∈ BA(0, T ; γ, µ), and all
(A2, Q2) ∈ BA(0, T ; γ, µ), we have ∥∥∥GiA(Ai, Qi)

∥∥∥
H1/4(0,T )

6 CG(µ, γ)Tα, (4.19)∥∥∥GiA(A1
i , Q

1
i )−GiA(A2

i , Q
2
i )
∥∥∥
H1/4(0,T )

6 CG(µ, γ)Tα
∣∣∣∣∣∣(A1

i , Q
1
i )− (A2

i , Q
2
i )
∣∣∣∣∣∣
ET
, (4.20)

for some α > 0, independent of T ∈ (0, 1), of µ > 1, and of γ ∈ (0, 1).

Proof. Step 1. Proof of (4.19). We only give estimate for G1
A

. Let us recall

G1
A

(A1, Q1) =
β

A1,0

(√
A1(1, t)−

√
A1(1)

)
+

ν

2A1,0

∂Q1

∂x
(1, t)

(
1√
A1(1)

− 1√
A1(1, t)

)

+
1

2
ρ

(Q1)2(1, t)

(A1)2(1, t)
.

• Estimate of first term of G1
A

. We apply Lemma 4.2 (i) with s1 = 1/4, s2 = 1 and g =
√
A1(1, ·) −

√
A1(1)

and relation (4.15), and we obtain∥∥∥∥√A1(1, ·)−
√
A1(1)

∥∥∥∥
H1/4(0,T )

6 CT 3/8

∥∥∥∥√A1(1, ·)−
√
A1(1)

∥∥∥∥
H1(0,T )

6 CT 3/8

∥∥∥∥√A1 −
√
A1

∥∥∥∥
H1(0,T ;H1(I))

6 CµT 7/8.
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• Estimate of the second term of G1
A

. We apply Lemma 4.2 (iii) with s = 1/4, s1 = 1/4, s2 = 1, f = ∂Q1

∂x (1, ·),
g =
√
A1(1, ·)−

√
A1(1) and Lemma 4.4, and we have∥∥∥∥∥∂Q1

∂x
(1, ·)

(
1√
A1(1)

− 1√
A1(1, ·)

)∥∥∥∥∥
H1/4(0,T )

6 C

∥∥∥∥∂Q1

∂x
(1, ·)

(√
A1(1)−

√
A1(1, ·)

)∥∥∥∥
H1/4(0,T )

6 CTα
(∣∣∣∣∂Q1

∂x
(1, 0)

∣∣∣∣+

∥∥∥∥∂Q1

∂x
(1, ·)

∥∥∥∥)
H1/4(0,T )

∥∥∥∥√A1(1)−
√
A1(1, ·)

∥∥∥∥
H1(0,T )

6 Cµ2Tα.

• Estimate of the last term in G1
A

. We rewrite the last term of G1
A

as follows

1

2
ρ

(Q1)2

(A1)2
(1, t) =

ρ

2

(
(Q1)2

(
1

(A1)2
− 1

(A1)2

)
(1, t) +

(
(Q1)2(1, t)− |Q0

1|2(1)
)

(A1)2(1)
+
|Q0

1|2(1)

(A1)2(1)

)
. (4.21)

First of all, using [12, Proposition B1], for any s0 ∈ (1/8, 1/4), we have

‖(Q1)2(1, ·)‖H1/4(0,T ) 6 C‖Q1(1, ·)‖2H1/4+s0 (0,T ) 6 C‖Q1(1, ·)‖2H3/4(0,T ),

where the constant C can be chosen independent of T. Indeed, as 1/4 + s0 < 1/2, we can extend the function
Q1(1, t) by zero to (T,∞) and the estimate follows easily. Using Lemma 4.4 in the above estimate, we obtain

‖(Q1)2(1, ·)‖H1/4(0,T ) 6 Cµ2,

with the constant C is independent of T. Therefore, using Lemma 4.2 and relation (4.16) of Proposition 4.5, we
have ∥∥∥∥(Q1)2

(
1

(A1)2
− 1

(A1)2

)
(1, ·)

∥∥∥∥
H1/4(0,T )

6 C‖(Q1)2(1, ·)‖H1/4(0,T )

∥∥∥∥ 1

(A1)2(1, ·)
− 1

(A1)2(1)

∥∥∥∥
H1(0,T )

6 CTαµ2
∥∥(Ai)

2 − (A1)2
∥∥
H1(0,T ;H1(I))

6 CTαµ4.

To estimate second term of (4.21), we note that, by using Lemma 4.2, for any s0 ∈ (1/8, 1/4), we have∥∥∥∥ (Q1)2(1, ·)− |Q0
1|2(1)

(A1)2(1)

∥∥∥∥
H1/4(0,T )

6 C‖Q1(1, ·) +Q0
1(1))‖H1/4+s0 (0,T )

∥∥Q1(1, t)−Q0
1(1)

∥∥
H1/4+s0 (0,T )

6 CµTα,

for some C independent of T and α > 0.
The last term of (4.21) can be estimated as follows∥∥∥∥ |Q0

1|2(1)

(A1)2(1)

∥∥∥∥
H1/4(0,T )

6
|Q0

1(1)|2

γ2

√
T 6 C

√
T .

Step 2. The Lipschitz estimate (4.20) can be obtained as in Step 1.
In Section 6, we are going to consider nonlinear Robin boundary conditions of the form

− ν

2A1,0

√
A1

∂Q1

∂x
(0, t) +Q1(0, t) = H1(Q1, A1)− h1(t),

and for i = 1, 2,

ν

2Ai,0
√
A1

∂Qi
∂x

(0, t) +Qi(0, t) = Hi(Qi, Ai)− hi(t),

(4.22)
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with

H1
A

(Q1, A1) =

[
− β

A1,0

(√
A1 −

√
A1

)
+

ν

2A1,0

∂Q1

∂x

(
1√
A1

− 1√
A1

)
− 1

2
ρ
Q2

1

A2
1

] ∣∣∣
x=1

,

and for i = 1, 2,

Hi
A

(Qi, Ai) =

[
β

Ai,0

(√
Ai −

√
Ai

)
− ν

2Ai,0

∂Qi
∂x

(
1√
Ai
− 1√

Ai

)
+

1

2
ρ
Q2
i

A2
i

] ∣∣∣
x=0

.

(4.23)

Estimate of Hi
A
. To study (1.8) in which the Dirichlet boundary condition (1.8)5 are replaced by the nonlinear

Robin boundary conditions stated in (4.22), we have to estimate the nonlinear terms defined in (4.23).

Proposition 4.8. For all µ > 1 and γ ∈ (0, 1), there exists a positive constant CH(µ, γ), depending on µ and
γ, but independent of T ∈ (0, 1), such that, for all (A,Q) ∈ BA(0, T ; γ, µ), all (A1, Q1) ∈ BA(0, T ; γ, µ), and all
(A2, Q2) ∈ BA(0, T ; γ, µ), we have ∥∥∥Hi

A
(Ai, Qi)

∥∥∥
H1/4(0,T )

6 CH(µ, γ)Tα, (4.24)∥∥∥Hi
A

(A1
i , Q

1
i )−Hi

A
(A2

i , Q
2
i )
∥∥∥
H1/4(0,T )

6 CH(µ, γ)Tα
∣∣∣∣∣∣(A1

i , Q
1
i )− (A2

i , Q
2
i )
∣∣∣∣∣∣
ET
, (4.25)

for some α > 0, independent of T ∈ (0, 1), of µ > 1, and of γ ∈ (0, 1).

Proof. Step 1. Proof of (4.24). We only give estimate for H1
A

. Let us recall that

H1
A

(Q1, A1) =

[
− β

A1,0

(√
A1 −

√
A1

)
+

ν

2A1,0

∂Q1

∂x

(
1√
A1

− 1√
A1

)
− 1

2
ρ
Q2

1

A2
1

] ∣∣∣
x=1

.

Using the relation (4.12) of Proposition 4.5, we obtain∥∥∥√A1(1, ·)−
√
A1(1)

∥∥∥
H1/4(0,T )

6
∥∥∥√A1(1, ·)−

√
A1(1)

∥∥∥
H1(0,T )

6
Cµ
√
γ
T 1/2

The term

[
∂Q1

∂x

(
1√
A1
− 1√

A1

)] ∣∣∣
x=1

can be estimated as follows∥∥∥∥∥∂Q1

∂x
(1, ·)

(
1√

A1(1, ·)
− 1√

A1(1)

)∥∥∥∥∥
H1/4(0,T )

6
∥∥∥∂Q1

∂x
(1, ·)

∥∥∥
H1/4(0,T )

∥∥∥∥∥ 1√
A1(1, ·)

− 1√
A1(1)

∥∥∥∥∥
H1(0,T )

6 C
µ

γ3/2

√
T .

The estimate of the other term can be obtained similarly.

Step 2. The Lipschitz estimate (4.25) can be obtained as in Step 1.

5. Existence and uniqueness of maximal solution

5.1. Proof of Theorem 1.2. Proof. Step 1. Existence of a local-in-time strong solution. We choose M > 0
and µ > 0 such that

3∑
i=1

(
‖A0

i ‖H1(I) + ‖Q0
i ‖H1(I) + |giA0 |+ ‖hi‖H3/4(0,1)

)
6M and µ = 2CA0M, (5.1)

where CA0 is the continuity constant appearing in (3.14) corresponds to A = A0. Let us set

γ =
1

2
γA0 with γA0 = min

{
A0

1(x), A0
2(x), A0

3(x) | x ∈ I
}
> 0.
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Let (ψi,Φi)
3
i=1 belong to BA0(0, T ; γ, µ) (see (4.10)). We consider the following system:

For i ∈ {1, 2, 3}, (Ai, Qi) satisfies

∂Ai
∂t

+
∂Qi
∂x

= 0, t ∈ (0, T ), x ∈ I,

LiA0

∂Qi
∂t
− ∂

∂x

(
N i
A0

∂Qi
∂x

)
= F iA0(ψi,Φi), t ∈ (0, T ), x ∈ I,

Q1(1, t) = Q2(0, t) +Q3(0, t), t ∈ (0, T ),

Q1(0, t) = h1(t), Q2(1, t) = h2(t), Q3(1, t) = h3(t), t ∈ (0, T ),

−N1
A0

∂Q1

∂x
(1, t) + g1A0 +G1

A0(ψ1,Φ1) = −N2
A0

∂Q2

∂x
(0, t) + g2A0 +G2

A0(ψ2,Φ2)

= −N3
A0

∂Q3

∂x
(0, t) + g3A0 +G3

A0(ψ3,Φ3), t ∈ (0, T ),

Ai(x, 0) = A0
i (x), Qi(x, 0) = Q0

i (x), x ∈ I.

(5.2)

We are going to show that, there exists 0 < T 6 1 such that the mapping

N : (ψi,Φi)
3
i=1 7→ (Ai, Qi)

3
i=1,

where (Ai, Qi)
3
i=1 is the solution to system (5.2), is a strict contraction in BA0(0, T ; γ, µ).

Applying Theorem 3.7 to system (5.2), we obtain

∣∣∣∣∣∣(Ai, Qi)3i=1

∣∣∣∣∣∣
E(0,T )

6 CA0

3∑
i=1

(
‖F iA0(ψi,Φi)‖L2(0,T ;L2(I)) + ‖GiA0(ψi,Φi)‖H1/4(0,T ) + |giA0 |

+ ‖hi‖H3/4(0,T ) + ‖A0
i ‖H1(I) + ‖Q0

i ‖H1(I)

)
. (5.3)

Since (ψi,Φi) ∈ BA0(0, T ; γ, µ), applying Proposition 4.6, Proposition 4.7 and relation (5.1), estimate (5.3)
becomes ∣∣∣∣∣∣(Ai, Qi)3i=1

∣∣∣∣∣∣
E(0,T )

6 CA0M + CA0(CF + CG)Tα for all 0 < T 6 1.

Therefore, with the choice of µ in relation (5.1), there exists T > 0 small enough such that∣∣∣∣∣∣N ((ψi,Φi)
3
i=1)

∣∣∣∣∣∣
E(0,T )

6 µ.

Using the continuous embedding L∞(0, T ;H1(I)) ↪→ L∞(IT ), from (4.11) we obtain∥∥Ai −A0
i

∥∥
L∞(IT )

6 C
√
T ,

with C independent of T since Ai(0) = A0
i . By choosing T small enough, we get Ai(x, t) > γ for all (x, t) ∈ IT

because γ = γA0/2. Therefore, N maps BA0(0, T ; γ, µ) into itself.
Now we will show that N is a contraction. Let (ψ1

i ,Φ
1
i )

3
i=1 and (ψ2

i ,Φ
2
i )

3
i=1 belong to BA0(0, T ; γ, µ). Using

Theorem 3.7, Propositions 4.6 and 4.7, we obtain∣∣∣∣∣∣N ((ψ1
i ,Φ

1
i )

3
i=1)−N ((ψ2

i ,Φ
2
i )

3
i=1)

∣∣∣∣∣∣
E(0,T )

6 CA0(CF + CG)Tα
∣∣∣∣∣∣(ψ1

i ,Φ
1
i )

3
i=1 − (ψ2

i ,Φ
2
i )

3
i=1

∣∣∣∣∣∣
E(0,T )

.

Thus N is a contraction in BA0(0, T ; γ, µ) for T small enough. The proof of the existence of T ∈ (0, 1], for
which the system (1.8) admits at least one strong solution over [0, T ], is complete.

Step 2. Existence of a maximal solution. Let us prove that any local-in-time strong solution may be extended
to a maximal strong solution. Let (A,Q) be a local-in-time solution to (1.8) over [0, T1]. We want to show that

(A,Q) can be extended as a maximal strong solution over [0, Tm), with Tm > T1. We look for (Â, Q̂, T ), with

T > T1 and (Â, Q̂) ∈ E(0, T ), such that

(Â, Q̂)(t) = (A,Q)(t) for all t ∈ [0, T1],

(Â, Q̂) is solution to (1.8) over [0, T ].
(5.4)



18 DEBAYAN MAITY, JEAN-PIERRE RAYMOND, AND ARNAB ROY

The set of triplets (Â, Q̂, T ) satisfying (5.4) is nonempty since (A,Q, T1) satisfies (5.4). For a given triplet

(Â, Q̂, T ) satisfying (5.4), we set

T̂ = sup{T > T1 | (Â, Q̂, T ) satisfies (5.4)}.

If T̂ =∞, then the proof is complete.

Let us assume that T̂ <∞, and that (Â, Q̂, T ) satisfies (5.4) for all T < T̂ <∞. We have to show that (1.15)

holds for (A,Q) = (Â, Q̂) and Tm = T̂ . We argue by contradiction. We assume that

lim
T→T̂

(∣∣∣∣∣∣∣∣∣(Â, Q̂)
∣∣∣∣∣∣∣∣∣
E(0,T )

+ max
{
|Âi(x, T )|−1 | 1 6 i 6 3, x ∈ I

})
<∞. (5.5)

Let us set ∣∣∣∣∣∣∣∣∣(Â, Q̂)
∣∣∣∣∣∣∣∣∣
E(0,T̂ )

= µT̂ and sup
{
|Âi(x, T )| | 1 6 i 6 3, x ∈ I, T ∈ [0, T̂ )

}
= γT̂ > 0.

We are going to show that the solution (Â, Q̂) can be extended to [T̂ , T̂ + ε], for some ε > 0, so that (Â, Q̂) is

solution to system (1.8) over the time interval [0, T̂ + ε].

We set A = A(x, T̂ ), x ∈ I. We consider the system over the time interval (T̂ , τ) with τ > T̂ :

For i ∈ {1, 2, 3}, (Âi, Q̂i) satisfies

∂Âi
∂t

+
∂Q̂i
∂x

= 0, t ∈ (T̂ , τ), x ∈ I,

Li
A

∂Q̂i
∂t
− ∂

∂x

(
N i
A

∂Q̂i
∂x

)
= F i

A
(Âi, Q̂i), t ∈ (T̂ , τ), x ∈ I,

Q̂1(1, t) = Q̂2(0, t) + Q̂3(0, t), t ∈ (T̂ , τ),

Q̂1(0, t) = h1(t), Q̂2(1, t) = h2(t), Q̂3(1, t) = h3(t), t ∈ (T̂ , τ),

−N1
A

∂Q̂1

∂x
(1, t) + g1

A
+G1

A
(Â1, Q̂1) = −N2

A

∂Q̂2

∂x
(0, t) + g2

A
+G2

A
(Â2, Q̂2)

= −N3
A

∂Q̂3

∂x
(0, t) + g3

A
+G3

A
(Â3, Q̂3), t ∈ (T̂ , τ),

Âi(x, T̂ ) = Ai(x, T̂ ), Q̂i(x, T̂ ) = Qi(x, T̂ ), x ∈ I,

(5.6)

where the coefficients Li
A

, N i
A

and the nonlinear terms F i
A

, Gi
A
, gi

A
are defined by (2.1)-(2.3). We consider the

system

∂Âi
∂t

+
∂Q̂i
∂x

= 0, t ∈ (T̂ , τ), x ∈ I, i ∈ {1, 2, 3},

Li
A

∂Q̂i
∂t
− ∂

∂x

(
N i
A

∂Q̂i
∂x

)
= F i

A
(ψi,Φi), t ∈ (T̂ , τ), x ∈ I, i ∈ {1, 2, 3},

Q̂1(1, t) = Q̂2(0, t) + Q̂3(0, t), t ∈ (T̂ , τ),

Q̂1(0, t) = h1(t), Q̂2(1, t) = h2(t), Q̂3(1, t) = h3(t), t ∈ (T̂ , τ),

−N1
A

∂Q̂1

∂x
(1, t) + g1

A
+G1

A
(ψ1,Φ1) = −N2

A

∂Q̂2

∂x
(0, t) + g2

A
+G2

A
(ψ2,Φ2)

= −N3
A

∂Q̂3

∂x
(0, t) + g3

A
+G3

A
(ψ3,Φ3), t ∈ (T̂ , τ),

Âi(x, T̂ ) = Ai(x, T̂ ), Q̂i(x, T̂ ) = Qi(x, T̂ ), x ∈ I, i ∈ {1, 2, 3}.

(5.7)

We set

γ̃ = γT̂ /2 and µ̃ = ĈAµT̂ + µT̂ .
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For τ > T̂ , we define the mapping Ñτ in the ball BA(T̂ , τ ; γ̃, µ̃) by

Ñτ : (ψi,Φi)
3
i=1 7→ (Âi, Q̂i)

3
i=1,

where (Âi, Q̂i)
3
i=1 is the solution to system (5.7) over [T̂ , τ ], and BA(T̂ , τ ; γ̃, µ̃) is defined in (4.10).

Applying Theorem 3.7 to system (5.7), as in Step 1, we can show that Ñτ is a contraction in BA(T̂ , τ ; γ̃, µ̃)

for τ − T̂ > 0 small enough. Thus the system (5.6) admits a solution over the time interval [T̂ , τ ] and the system

(1.8) admits a solution over the time interval [0, τ ]. We have a contradiction with the definition of T̂ . Thus (5.5)
is false and (1.15) is proved. Hence, we have proved that any local-in-time strong solution may be extended to
a maximal strong solution.

Step 3. Uniqueness of maximal solution. Let us prove that system (1.8) admits a unique maximal solution.

Let (A,Q) be a maximal solution to system (1.8) over [0, Tm), and let (Ã, Q̃) be another maximal solution to

system (1.8) over [0, T̃m). Let us assume that Tm 6 T̃m. Let us set

T̂m = sup
{
t ∈ [0, Tm) | (A,Q)(τ) = (Ã, Q̃)(τ) for all τ ∈ [0, t]

}
.

If T̂m = Tm = T̃m, then the two maximal solutions are identical and the proof is complete.

If T̂m = Tm < T̃m, then

lim
T→Tm

(
|||(A,Q)|||E(0,T ) + max

{
|Ai(x, T )|−1 | 1 6 i 6 3, x ∈ [0, 1]

})
=

(∣∣∣∣∣∣∣∣∣(Ã, Q̃)
∣∣∣∣∣∣∣∣∣
E(0,Tm)

+ max
{
|Ai(x, Tm)|−1 | 1 6 i 6 3, x ∈ [0, 1]

})
<∞,

which is in contradiction with the fact that (A,Q) is a maximal solution to system (1.8) over [0, Tm). Thus the
proof is complete in that case too.

Let us examine the last case T̂m < Tm. We have to treat separately the cases when T̂m > 0 and the case

when T̂m = 0. The case when T̂m = 0 can be treated with the same arguments as in Step 1. Let us treat the

case when T̂m > 0. We set

µ = |||(A,Q)|||E(0,T̂m) , γ = min{Ai(x, t) | 1 6 i 6 3, x ∈ I, t ∈ [0, T̂m]},

µ̃ =
∣∣∣∣∣∣∣∣∣(Ã, Q̃)

∣∣∣∣∣∣∣∣∣
E(0,T̂m)

, γ̃ = min{Ãi(x, t) | 1 6 i 6 3, x ∈ I, t ∈ [0, T̂m]},

µ̂ = 2µ+ 2µ̃, and γ̂ = min(γ/2, γ̃/2).

Now we set A = A(T̂m). For T̂m < τ < Tm, we notice that the function (Â, Q̂) = (A,Q) − (Ã, Q̃) satisfies the

linear system (3.1) over [T̂m, τ ], with

fi = F i
A

(Ai, Qi)− F iA(Ãi, Q̃i),

gi = Gi
A

(Ai, Qi)−GiA(Ãi, Q̃i),

hi = 0, Âi(x, T̂m) = 0, Q̂i(x, T̂m) = 0.

Using Theorem 3.7, Proposition 4.6 and Proposition 4.7, we obtain∣∣∣∣∣∣∣∣∣(Â, Q̂)
∣∣∣∣∣∣∣∣∣
E(T̂m,τ)

6 CA(CF + CG)(τ − T̂m)α
∣∣∣∣∣∣∣∣∣(Â, Q̂)

∣∣∣∣∣∣∣∣∣
E(T̂m,τ)

.

We choose T̂m < τ < Tm such that τ − T̂m is small enough to have CA(CF + CG)(τ − T̂m)α 6 1/2. From the

above estimate we deduce that
∣∣∣∣∣∣∣∣∣(Â, Q̂)

∣∣∣∣∣∣∣∣∣
E(T̂m,τ)

= 0. Thus (A,Q)(t) = (Ã, Q̃)(t) for all t ∈ [0, τ ]. We have a

contradiction with the definition of T̂m, and the proof is complete.
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5.2. Maximal solution for the (A, u)-system. We end this section by reformulating the system (1.4) – (1.7)

in terms of the independent variables A(x, t), the cross sectional area, and u(x, t) :=
Q(x, t)

A(x, t)
, the average fluid

velocity. Moreover, we prove an existence and uniqueness result for the system written in variables A and u.
The velocity ui(x, t) on the i-th vessel is

ui(x, t) =
Qi(x, t)

Ai(x, t)
, x ∈ I, t ∈ (0, T ). (5.8)

Then the system (1.4) – (1.7) can be written as:

For i ∈ {1, 2, 3}, (Ai, ui) satisfies

∂Ai
∂t

+
∂

∂x
(Aiui) = 0, t ∈ (0, T ), x ∈ I,

∂

∂t
(Aiui) +

∂

∂x
(Aiu

2
i ) +

Ai
ρ

∂Pi
∂x

+ kfui = 0, t ∈ (0, T ), x ∈ I,

Pi = Pext +
β

Ai,0

(√
Ai −

√
Ai,0

)
+

ν

Ai,0

∂

∂t
(
√
Ai),

Ai(x, 0) = A0
i (x), ui(x, 0) = u0i (x), x ∈ I,

(5.9)

with the following nonlinear boundary conditions at the branching pointsA1u1(1, t) = A2u2(0, t) +A3u3(0, t), t ∈ (0, T ),

P1(1, t) +
ρ

2
u21(1, t) = P2(0, t) +

ρ

2
u22(0, t) = P3(0, t) +

ρ

2
u230, t), t > 0,

(5.10)

and with the following Dirichlet boundary conditions

u1(0, t) = h1(t), u2(1, t) = h2(t), u3(1, t) = h3(t), t ∈ (0, T ). (5.11)

We look for solution to the system (5.9)–(5.11) in the space of functions (Ai, ui)
3
i=1 satisfying

(Ai)
3
i=1 ∈ H1(0, T ;H1(I))3, (ui)

3
i=1 ∈ L2(0, T ;H1(I))3 ∩ L∞(0, T ;H1(I))3,

(Aiui)
3
i=1 ∈ L2(0, T ;H2(I))3 ∩H1(0, T ;L2(I))3, (5.12)

equipped with the distance

d
(
(A1, u1), (A2, u2)

)
=

3∑
i=1

(∥∥A1
i −A2

i

∥∥
H1(0,T ;H1(I))∩L∞(0,T ;H1(I))

+
∥∥u1i − u2i∥∥L2(0,T ;H1(I))∩L∞(0,T ;H1(I))

+
∥∥A1

iu
1
i −A2

iu
2
i

∥∥
L2(0,T ;H2(I))∩H1(0,T ;L2(I))∩L∞(0,T ;H1(I))

)
, (5.13)

where Aj = (Aj1, A
j
2, A

j
3) and uj = (uj1, u

j
2, u

j
3), j = 1, 2. As before, let us set

A = (Ai)
3
i=1, u = (ui)

3
i=1.

Let us recall that the constant γA(0, T ) is defined in (1.12).

Definition 5.1. We say that a pair (A, u) is a strong solution to system (5.9) - (5.11) over the time interval
[0, T ] when (A, u) satisfies the regularity assumptions in (5.12), γA(0, T ) > 0, and when (A, u) satisfies (5.9) in
the sense of distributions in I × (0, T ) and (5.10)–(5.11) in the sense of traces.

We say that (A,Q) is a maximal strong solution to system (5.9)–(5.10) over the time interval [0, Tm) when
either Tm =∞, or Tm <∞ and, for all 0 < T < Tm, (A, u) is a strong solution to system (5.9)–(5.10) over the
time interval [0, T ], and when

lim
T→Tm

(
d ((A, u), (0, 0)) + max

{
|Ai(x, T )|−1 | 1 6 i 6 3, x ∈ [0, 1]

})
=∞. (5.14)
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With the above definition it is quite easy to have an equivalence for the existence of strong solutions between
the (A,Q) system ((1.4)–(1.7)) and the (A, u) system ((5.9) - (5.11)). More precisely, we have the following
result:

Proposition 5.2. Let (A,Q) be a maximal solution to the system (1.4)–(1.7) over [0, Tm) with boundary con-
ditions on the velocity

u1(0, t) =
Q1

A1
(0, t) = h1(t), u2(1, t) =

Q2

A2
(1, t) = h2(t), u3(1, t) =

Q3

A3
(1, t) = h3(t), (5.15)

(respectively with boundary conditions on the flow rate

Q1(0, t) = h1(t), Q2(1, t) = h2(t), Q3(1, t) = h3(t), ) (5.16)

if and only if, (A, u) is a maximal strong solution to the system (5.9)–(5.10), with Dirichlet boundary conditions
on the velocity

u1(0, t) = h1(t), u2(1, t) = h2(t), u3(1, t) = h3(t) (5.17)

(respectively with boundary conditions on the flow rate

u1(0, t) =
h1(t)

A1(0, t)
, u2(1, t) =

h2(t)

A2(1, t)
, u3(1, t) =

h3(t)

A3(1, t)

)
. (5.18)

Let us remark that, in Theorem 1.2, we have proved the existence of a unique maximal solution for the
(A,Q)-system (1.4)–(1.6) with the classical Dirichlet boundary conditions (5.16). Similarly, we can show the
existence of a unique maximal solution for the (A,Q)-system (1.4)–(1.6) with the nonlinear Dirichlet boundary
conditions (5.15). More precisely, we have the following result.

Theorem 5.3. Let us assume that, for i = 1, 2, 3, A0
i > 0, A0 ∈ [H1(I)]3, Q0 ∈ [H1(I)]3, hi ∈ H3/4

loc ([0,∞))
satisfying the compatibility conditions

Q0
1(1) = Q0

2(0) +Q0
3(0),

Q0
1(0) = A0

1(0)h1(0), Q0
2(1) = A0

2(1)h2(0), Q0
3(1) = A0

3(1)h3(0).
(5.19)

Then, the system (1.4)–(1.6) together with the nonlinear Dirichlet conditions (5.15) admits a unique maximal
strong solution over [0, Tm), for some Tm > 0. Both the solution and the maximal time of existence Tm are
unique.

Proof. The proof is similar to that of Theorem 1.2.
We are now in a position to state the existence and uniqueness result for the (A, u) system (5.9) - (5.10). It

is an immediate consequence of Theorems 1.2 and 5.3, and of Proposition 5.2.

Theorem 5.4. Let us assume that, for i = 1, 2, 3, A0
i > 0, A0 ∈ [H1(I)]3, u0 ∈ [H1(I)]3, hi ∈ H3/4

loc ([0,∞))
satisfying the compatibility conditions

A0
1u

0
1(1) = A0

2u
0
2(0) +A0

3u
0
3(0),

u01(0) = h1(0), u02(1) = h2(0), u03(1) = h3(0)
(5.20)

(respectively the compatibility conditions

A0
1u

0
1(1) = A0

2u
0
2(0) +A0

3u
0
3(0),

u01(0) =
h1(0)

A0
1(0)

, u02(1) =
h2(0)

A0
2(1)

, u03(1) =
h3(0)

A0
3(1)

)
.

(5.21)

Then, the system (5.9) - (5.10) with the classical Dirichlet boundary conditions (5.17) (respectively the nonlinear
Dirichlet boundary conditions (5.18)) admits a unique maximal strong solution over [0, Tm), for some Tm > 0.
Both the solution and the maximal time of existence Tm are unique.
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6. Energy estimate for system (1.8)

We are going to prove an energy identity for the maximal solution to system (1.8) over [0, Tm). But this
energy identity is also valid for solutions which do not satisfy the Dirichlet boundary conditions

Q1(0, t) = h1(t), Q2(1, t) = h2(t), Q3(1, t) = h3(t), t ∈ (0, T ),

of system (1.8). This is why we consider a system corresponding to system 1.8, but in which the Dirichlet
boundary conditions are not specified:

For i ∈ {1, 2, 3}, (Ai, Qi) satisfies

∂Ai
∂t

+
∂Qi
∂x

= 0, t ∈ (0, Tm), x ∈ I,

ρ

Ai

∂Qi
∂t

+
ρ

Ai

(
2Qi
Ai

∂Qi
∂x
− Q2

i

A2
i

∂Ai
∂x

)
+

β

2Ai,0
√
Ai

∂Ai
∂x

+
ν

4Ai,0A
3/2
i

∂Ai
∂x

∂Qi
∂x
− ν

2Ai,0
√
Ai

∂2Qi
∂x2

= −kfρ
Qi
A2
i

, t ∈ (0, Tm), x ∈ I,

Q1(1, t) = Q2(0, t) +Q3(0, t), t ∈ (0, Tm),

− ν

2A1,0

√
A1

∂Q1

∂x
(1, t) +

β

A1,0

(√
A1(1, t)−

√
A1,0

)
+

1

2
ρ
Q2

1(1, t)

A2
1(1, t)

= − ν

2A2,0

√
A2

∂Q2

∂x
(0, t) +

β

A2,0

(√
A2(0, t)−

√
A2,0

)
+

1

2
ρ
Q2

2(0, t)

A2
2(0, t)

= − ν

2A3,0

√
A3

∂Q3

∂x
(0, t) +

β

A3,0

(√
A3(0, t)−

√
A3,0

)
+

1

2
ρ
Q2

3(0, t)

A2
3(0, t)

, t ∈ (0, Tm),

Ai(x, 0) = A0
i (x), Qi(x, 0) = Q0

i (x), x ∈ I.

(6.1)

We set

E(t) =

3∑
i=1

1

2

1∫
0

Q2
i

Ai
(x, t) dx+

1∫
0

2β

3ρAi,0

(√
Ai −

√
Ai,0

)3
(x, t) dx+

1∫
0

β

ρ
√
Ai,0

(√
Ai −

√
Ai,0

)2
(x, t) dx.

In this section, at first we want to derive an energy estimate for the system (1.8). Let us notice that E(t) > 0
because

2β

3ρAi,0

(√
Ai −

√
Ai,0

)3
+

β

ρ
√
Ai,0

(√
Ai −

√
Ai,0

)2
=

2β

3ρAi,0

(√
Ai −

√
Ai,0

)2(√
Ai +

1

2

√
Ai,0

)
. (6.2)

Lemma 6.1. If (Ai, Qi)
3
i=1 is a maximal solution to system (6.1) over [0, Tm), then we have

E(t) +

t∫
0

1∫
0

ν

2Ai,0ρ
√
Ai

(
∂Ai
∂t

)2

(x, τ) dxdτ + kf

t∫
0

1∫
0

Q2
i

A2
i

dxdτ

+
1

ρ

t∫
0

(
Q2(P2(1, τ)− Pext +

1

2
ρu22(1, τ)

)
dτ +

1

ρ

t∫
0

(
Q3(P3(1, τ)− Pext +

1

2
ρu23(1, τ)

)
dτ

− 1

ρ

t∫
0

(
Q1(P1(0, τ)− Pext +

1

2
ρu21(0, τ)

)
dτ = E(0), (6.3)

for all t ∈ [0, Tm), where, for i = 1, 2, 3, Pi is defined by (1.4)4.

Proof. We multiply equation (6.1)3 by ui := Qi

Ai
, we replace Qi by Aiui, and we integrate over I. We end

up with four terms. Let us analyse the four terms separately.



1D BLOOD FLOW IN A NETWORK OF VESSELS 23

First term.

1∫
0

∂

∂t
(Aiui) · u =

1∫
0

(
∂Ai
∂t
· u2i +

Ai
2

∂

∂t
(u2i )

)
=

1

2

1∫
0

∂Ai
∂t
· u2i +

1

2

 1∫
0

∂Ai
∂t
· u2i +A · ∂

∂t
(u2i )

 .

Thus,

1∫
0

∂

∂t
(Aiui) · ui =

1

2

1∫
0

∂Ai
∂t
· u2i +

1

2

1∫
0

∂

∂t
(Aiu

2
i ). (6.4)

Second term.

1∫
0

∂

∂x
(Aiu

2
i ) · ui =

1∫
0

(
∂

∂x
(Aiui) · u2i +Au2 · ∂u

∂x

)
=

1∫
0

(
1

2

∂

∂x
(Au) · u2 +

1

2

∂Ai
∂x

u3i +
3

2
Aiu

2
i ·
∂ui
∂x

)

It can be written as

1∫
0

∂

∂x
(Aiu

2
i ) ·u =

1

2

1∫
0

(
∂Qi
∂x
· u2i +

∂

∂x
(Aiu

3
i )

)
= −1

2

1∫
0

∂Ai
∂t
·u2i +

1

2

(
Qi(1, t)u

2
i (1, t)−Qi(0, t)u2i (0, t)

)
. (6.5)

Third term.

1

ρ

1∫
0

Ai
∂Pi
∂x

ui =
1

ρ

− 1∫
0

∂Qi
∂x

(Pi − Pext) +Qi(1, t)(Pi(1, t)− Pext)−Qi(0, t)(Pi(0, t)− Pext)


=

ν

2Ai,0ρ

1∫
0

1√
Ai

(
∂Ai
∂t

)2

+
β

Ai,0ρ

1∫
0

∂Ai
∂t

(
√
Ai −

√
Ai,0)

+
1

ρ
Qi(1, t)(Pi(1, t)− Pext)−

1

ρ
Qi(0, t)(Pi(0, t)− Pext) (6.6)

We have

1∫
0

∂Ai
∂t

(
√
Ai −

√
Ai,0) =

1∫
0

∂
√
Ai
∂t

(
√
Ai −

√
Ai,0)2

√
Ai =

1∫
0

∂(
√
Ai −

√
Ai,0)

∂t
(
√
Ai −

√
Ai,0)2

√
Ai

=
2

3

1∫
0

∂

∂t
(
√
Ai −

√
Ai,0)3 +

1∫
0

√
Ai,0

∂

∂t
(
√
Ai −

√
Ai,0)2 (6.7)

This helps us to rewrite the third term.

Fourth term.

Kf

1∫
0

u2i dx. (6.8)
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Thus, by adding (6.4), (6.5), (6.6) and (6.8), we obtain

3∑
i=1

(
1

2

d

dt

1∫
0

Aiu
2
i dx+

1∫
0

ν

2Ai,0ρ
√
Ai

(
∂Ai
∂t

)2

dx+
β

ρ
√
Ai,0

d

dt

1∫
0

(
√
Ai −

√
Ai,0)2 dx

+
2β

3ρAi,0

d

dt

1∫
0

(
√
Ai −

√
Ai,0)3 dx+ kf

1∫
0

u2i dx

)

+
1

ρ

3∑
i=1

(
Qi(Pi − Pext +

1

2
u2i )(1, t)−Qi(Pi − Pext +

1

2
u2i )(0, t)

)
= 0. (6.9)

As Q1(1, t) = Q2(0, t) +Q3(0, t) and

(P1 − Pext +
1

2
u21)(1, t) = (P2 − Pext +

1

2
u22)(0, t) = (P3 − Pext +

1

2
u23)(0, t),

we have
3∑
i=1

(
Qi(Pi − Pext + 1

2u
2
i )(1, t)−Qi(Pi − Pext + 1

2u
2
i )(0, t)

)
= Q2(P2 − Pext + 1

2ρu
2
2)(1, t) +Q3(P3 − Pext + 1

2ρu
2
3)(1, t)−Q1(P1 − Pext + 1

2ρu
2
1)(0, t).

The proof is complete.
If, in the energy identity (6.3), we substitute Q1(0, t), Q2(1, t), and Q3(2, t) by h1(t), h2(t) and h3(t) respec-

tively, we do not obtain a stability estimate unless h1(t) = h2(t) = h3(t) = 0. We are going to show that we
can obtain a stability estimate if we replace the Dirichlet boundary conditions

Q1(0, t) = h1(t), Q2(1, t) = h2(t), and Q3(1, t) = h3(t), (6.10)

by the following nonlinear Robin boundary conditions

−ε ν

2A1,0

√
A0

1

∂Q1

∂x
(0, t) +Q1(0, t) = εH1(Q1, A1) + h1(t), t ∈ (0, Tm),

and for i = 1, 2,

ε
ν

2Ai,0
√
A0
i

∂Qi
∂x

(1, t) +Qi(1, t) = εHi(Qi, Ai) + hi(t), t ∈ (0, Tm),

(6.11)

with

H1(Q1, A1) =

[
− β

A1,0

(√
A1 −

√
A1,0

)
+

ν

2A1,0

∂Q1

∂x

(
1√
A1

− 1√
A0

1

)
− 1

2
ρ
Q2

1

A2
1

] ∣∣∣
x=0

,

and for i = 1, 2,

Hi(Qi, Ai) =

[
β

Ai,0

(√
Ai −

√
Ai,0

)
− ν

2Ai,0

∂Qi
∂x

(
1√
Ai
− 1√

A0
i

)
+

1

2
ρ
Q2
i

A2
i

] ∣∣∣
x=1

.

(6.12)

For the network represented in Figure 1, we consider the system (6.1) with the nonlinear Robin boundary
conditions (6.11)-(6.12).

The notions of strong solution to system (6.1)-(6.11)-(6.12) over the time interval [0, T ], and of maximal
strong solution over the time interval [0, Tm), are similar to those in Definition 1.1.

Theorem 6.2. Let us assume that, for i = 1, 2, 3, A0
i > 0, A0 ∈ [H1(I)]3, Q0 ∈ [H1(I)]3, hi ∈ H3/4

loc ([0,∞))
and

Q0
1(1) = Q0

2(0) +Q0
3(0). (6.13)

Then, the system (6.1)-(6.11)-(6.12) admits a unique maximal strong solution over [0, Tm), for some Tm > 0.
Both the solution and the maximal time of existence Tm are unique.

Proof. The proof is similar to that of Theorem 1.2.
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Proposition 6.3. The maximal solution (Ai, Qi)
3
i=1 to system (6.1)-(6.11)-(6.12) over [0, Tm), whose existence

is stated in Theorem 6.2, satisfies the following stability estimate

E(t) +

3∑
i=1

t∫
0

1∫
0

ν

2Ai,0ρ
√
Ai

(
∂Ai
∂t

)2

(x, τ) dxdτ + kf

3∑
i=1

t∫
0

1∫
0

Q2
i

A2
i

dxdτ

+
1

2ρε

t∫
0

Q2
2(1, τ)dτ +

1

2ρε

t∫
0

Q2
3(1, τ)dτ +

1

2ρε

t∫
0

Q2
1(0, τ)dτ

6 E(0) +
1

2ρε

t∫
0

h22(1, τ)dτ +
1

2ρε

t∫
0

h23(1, τ)dτ +
1

2ρε

t∫
0

h21(0, τ)dτ, for all t ∈ [0, Tm).

(6.14)

Proof. Due to Lemma 6.1, to prove the proposition, it is sufficient to estimate the following boundary terms

t∫
0

(
Q2(1, τ)(P2(1, τ)− Pext +

1

2
ρu22(1, τ)

)
dτ,

t∫
0

(
Q3(1, τ)(P3(1, τ)− Pext +

1

2
ρu23(1, τ)

)
dτ

and

t∫
0

(
Q1(0, τ)(P1(0, τ)− Pext +

1

2
ρu21(0, τ)

)
dτ.

Let us only estimate the last term, the two others can be estimated similarly. The Robin boundary condition
satisfied by Q1 can be written in the form

−Q1(0, τ) + h1(t) = ε

(
β

A1,0

(√
A1 −

√
A1,0

)
− ν

2A1,0

√
A1

∂Q1

∂x
+

1

2
ρ
Q2

1

A2
1

(0, τ)

)
= ε

(
β

A1,0

(√
A1 −

√
A1,0

)
+

ν

2A1,0

√
A1

∂A1

∂t
+

1

2
ρ
Q2

1

A2
1

(0, τ)

)
= ε(P1(0, τ)− Pext +

1

2
ρu21(0, τ)).

Thus, we have

ε(P1(0, τ)− Pext +
1

2
ρu21(0, τ)) = −Q1(0, τ) + h1(t).

and

−
t∫

0

Q1(0, τ)
(
P1(0, τ)− Pext +

1

2
ρu21(0, τ)

)
dτ

=
1

ε

t∫
0

Q1(0, τ)
(
Q1(0, τ)− h1(τ)

)
dτ >

1

2ε

t∫
0

Q2
1(0, τ)dτ − 1

2ε

t∫
0

h21(τ) dτ.

The nonlinear Robin boundary conditions at x = 1 satisfied by Qi with i = 2, 3, correspond to

Pi(1, τ)− Pext +
1

2
ρu2i (0, τ) = Qi(1, τ)− hi(t).

Thus, for i = 2, 3, we have

t∫
0

(
Q2(1, τ)(P2(1, τ)− Pext +

1

2
ρu22(1, τ)

)
dτ >

1

2ε

t∫
0

Q2
i (0, τ)dτ − 1

2ε

t∫
0

h2i (τ)dτ,

and the proof is complete.
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7. A general network

We now consider a network constituted of Ns segments of length 1, numbered from i = 1 to i = Ns and
parametrized by x ∈ I = (0, 1). The origins and extremities of the segments, corresponding to the points where
x = 0 and x = 1 respectively, are the nodes of the network. The origins of segments are either inlet points or
branching points, while the extremities are either outlet points or branching points. The set of branching points
is {B` | 1 6 ` 6 Nb}. At any branching point B`, the subsets of indices J`0 ⊂ {1, · · · , Ns} and J`1 ⊂ {1, · · · , Ns},
corresponding to segments connected to B` by their origin and their extremity respectively, are nonempty. The
subsets of indices Jin ⊂ {1, · · · , Ns} and Jout ⊂ {1, · · · , Ns} are nonempty, and they correspond to origins of
segments which are inlet points and extremities of segments which are outlet points respectively. The boundary
conditions at a branching point B` are

∑
i∈J`

0

Qi(0, t) =
∑
i∈J`

1

Qi(1, t),

Pj`0(0, t) +
1

2
ρu2j`0

(0, t) = Pj(0, t) +
1

2
ρu2j (0, t) for all j ∈ J`0,

Pj`0(0, t) +
1

2
ρu2j`0

(0, t) = Pj(1, t) +
1

2
ρu2j (1, t) for all j ∈ J`1,

(7.1)

where j`0 = min J`0.
For this type of network, we consider the nonlinear system

For i ∈ {1, · · · , Ns}, (Ai, Qi, ui), with ui = Qi

Ai
, satisfies

∂Ai
∂t

+
∂Qi
∂x

= 0, t ∈ (0, T ), x ∈ I,

∂Qi
∂t

+
∂

∂x

(
Q2
i

Ai

)
+
Ai
ρ

∂Pi
∂x

= −kf
Qi
Ai
, t ∈ (0, T ), x ∈ I

Pi = Pext +
β

Ai,0

(√
Ai −

√
Ai,0

)
+

ν

Ai,0

∂

∂t
(
√
Ai),

Ai(x, 0) = A0
i , Qi(x, 0) = Q0

i (x), x ∈ I,

with the following nonlinear boundary conditions at the branching points∑
i∈J`

0

Qi(0, t) =
∑
i∈J`

1

Qi(1, t), for all 1 6 ` 6 Nb

Pj`0(0, t) +
1

2
ρu2j`0

(0, t) = Pj(0, t) +
1

2
ρu2j (0, t) for all 1 6 ` 6 Nb, and all j ∈ J`0,

Pj`0(0, t) +
1

2
ρu2j`0

(0, t) = Pj(1, t) +
1

2
ρu2j (1, t) for all 1 6 ` 6 Nb, and all j ∈ J`1,

(7.2)

with either the following Dirichlet boundary conditions

Qi(0, t) = hi(t), i ∈ Jin, t ∈ (0, T ),

Qi(1, t) = hi(t), i ∈ Jout, t > 0,
(7.3)

or the following nonlinear Robin boundary conditions

−ε ν

2Ai,0
√
A0
i

∂Qi
∂x

(0, t) +Qi(0, t) = εH in
i (Q1, A1) + h1(t), i ∈ Jin, t ∈ (0, T ),

ε
ν

2Ai,0
√
A0
i

∂Qi
∂x

(1, t) +Qi(1, t) = εHout
i (Qi, Ai) + hi(t), i ∈ Jout, t ∈ (0, T ),

(7.4)
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where

H in
i (Ai, Qi) =

[
− β

Ai,0

(√
Ai −

√
Ai,0

)
+

ν

2Ai,0

∂Qi
∂x

(
1√
Ai
− 1√

A0
i

)
− 1

2
ρ
Q2
i

A2
i

] ∣∣∣
x=0

, i ∈ Jin,

and

Hout
i (Ai, Qi) =

[
β

Ai,0

(√
Ai −

√
Ai,0

)
− ν

2Ai,0

∂Qi
∂x

(
1√
Ai
− 1√

A0
i

)
+

1

2
ρ
Q2
i

A2
i

] ∣∣∣
x=1

, i ∈ Jout.

We look for solutions to system (7.2)-(7.3), or system (7.2)-(7.4), in the space

ET =
{

(Ai, Qi)
Ns
i=1 | Ai ∈ H1(0, T ;H1(0, 1)) ∩ L∞(0, T ;H1(0, 1)),

Qi ∈ L2(0, T ;H2(0, 1)) ∩H1(0, T ;L2(0, 1)) ∩ L∞(0, T ;H1(0, 1)), Ai(·, 0) = A0
i in (0, 1)

}
,

(7.5)

equipped with the norm∣∣∣∣∣∣∣∣∣(Ai, Qi)Ns
i=1

∣∣∣∣∣∣∣∣∣
ET

=
∑Ns

i=1

(
‖Ai‖H1(0,T ;H1(0,1)) + ‖Ai‖L∞(0,T ;H1(0,1)) + ‖Qi‖L2(0,T ;H2(0,1))

+‖Qi‖H1(0,T ;L2(0,1)) + ‖Qi‖L∞(0,T ;H1(0,1))

)
.

(7.6)

Definition 7.1. We say that (Ai, Qi)
Ns
i=1 is a strong solution to system (7.2)-(7.3) (or system (7.2)-(7.4)), over

the time interval [0, T ], when (Ai, Qi)
Ns
i=1 ∈ ET ,

Ai(x, t) > 0 for all (x, t) ∈ [0, 1]× [0, T ], (7.7)

and (Ai, Qi)
Ns
i=1 satisfies the equations (7.2)2−3 in the sense of distributions and the boundary and initial condi-

tions in the sense of traces.
We say that (Ai, Qi)

Ns
i=1 is a maximal strong solution to system (7.2)-(7.3) (or system (7.2)-(7.4)), over the

time interval [0, Tm), when either Tm =∞, or Tm <∞ and, for all 0 < T < Tm, (Ai, Qi)
Ns
i=1 is a strong solution

to system (7.2) over the time interval [0, T ], and when

lim
T→Tm

(∣∣∣∣∣∣∣∣∣(Ai, Qi)Ns
i=1

∣∣∣∣∣∣∣∣∣
ET

+ max
{
|Ai(x, T )|−1 | 1 6 i 6 Ns, x ∈ [0, 1]

})
=∞. (7.8)

Theorem 7.2. Let Ai,0 > 0 denote the sectional area of the ith vessel at equilibrium state, and let Qi,0 belong
to H1(I), and let assume that∑

i∈J`
0

Qi(0, t) =
∑
i∈J`

1

Qi(0, t) for all ` ∈ {1, · · · , Nb}. (7.9)

Then, the system (7.2)-(7.3) (or system (7.2)-(7.4)) admits a unique maximal solution over a time interval
[0, Tm).

Proof. The proof is similar to those of Theorems 1.2 and 6.2.
We set

E(t) =

Ns∑
i=1

1

2

1∫
0

Q2
i

Ai
(x, t) dx+

1∫
0

2β

3ρAi,0

(√
Ai −

√
Ai,0

)3
(x, t) dx+

1∫
0

β

ρ
√
Ai,0

(√
Ai −

√
Ai,0

)2
(x, t) dx.

Proposition 7.3. The maximal solution (Ai, Qi, Pi)
Ns
i=1 to system (7.2)-(7.4), over [0, Tm), whose existence is

stated in Theorem 7.2, satisfies the following stability estimate

E(t) +

Ns∑
i=1

t∫
0

1∫
0

ν

2Ai,0ρ
√
Ai

(
∂Ai
∂t

)2

(x, τ) dxdτ + kf

Ns∑
i=1

t∫
0

1∫
0

Q2
i

A2
i

dxdτ

6 E(0) +
1

2ρε

∑
i∈Jin∪Jout

t∫
0

h2i (τ) dτ, for all ∈ [0, Tm).

(7.10)
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Proof. The proof is similar to that of Proposition 6.3.
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