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ABSTRACT
We give here a brief overview of the use of machine learning (ML) in our field, for chemists and materials scientists with no experience with
these techniques. We illustrate the workflow of ML for computational studies of materials, with a specific interest in the prediction of materials
properties. We present concisely the fundamental ideas of ML, and for each stage of the workflow, we give examples of the possibilities and
questions to be considered in implementing ML-based modeling.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0018384., s

I. INTRODUCTION

The pace of systematic materials discovery has quickened in the
last decade. The number of studies systematically exploring various
families of materials, with the goal of discovering existing materi-
als with unsuspected properties, or designing novel materials with
targeted properties, is growing at an astounding rate. Databases
of experimental structures—in particular, crystalline structures—
continue to grow at a steady pace and are complemented with larger
and larger databases of physical and chemical properties. High-
throughput experiments and combinatorial materials synthesis are
aided by robotics and artificial intelligence, performing reactions
and analysis faster. On the computational side of things, molecu-
lar simulations have expanded in scale, allowing scientists to pre-
dict the structure and properties of complex materials even before
they are synthesized. The prediction of compound properties with
high accuracy can be coupled with high-throughput screening tech-
niques to help search for new materials. Yet, despite the advances
in the computational power, computational methods—whether at
the quantum or classical level—are still relatively time consum-
ing and can hardly explore the properties of all possible chemical
compositions and crystal structures. In order to reach this goal of
systematic exploration of chemical space and to help leverage the
large-scale databases of structures and properties that are nowadays
available, computational chemistry and materials science are turn-
ing more and more often to machine learning (ML), a subset of

artificial intelligence (AI) that has seen tremendous developments
in recent years and widespread application across all fields of
research.

The main idea of artificial intelligence emerged in the 1950s
when Turing wondered if a machine could “think.”1 The term “arti-
ficial intelligence” (AI) was first coined by John McCarthy in 1955
and is defined as the set of theories and techniques implemented in
order to create machines capable of simulating intelligence. In other
words, AI is the endeavor to replicate the human intelligence in
computers. In 1959, Samuel produced computer programs that were
playing checkers (drafts) better than the average human and that
could learn to improve from past games.2 Since then, AI and data-
intensive algorithms have seen such an important development that
they are sometimes called the “fourth paradigm of science”3 or the
“fourth industrial revolution.” AI is now routinely used in different
fields: face recognition, image classification, information engineer-
ing, linguistics, psychology, and medicine, and it has impact in the
fields of philosophy and ethics.

AI-powered machines are usually classified under two broad
categories: general and narrow. The artificial general intelligence
(AGI) is a machine that can learn to solve any problem that the
human intellect can solve. Also referred to as “strong AI” or “full
AI,” it is currently hypothetical, the kind of artificial intelligence
that we see in science fiction movies. The creation of AGI is an
important goal for some AI researchers, but is an extremely diffi-
cult quest and generally considered too complex to be achieved in
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FIG. 1. Simplified overview of a machine
learning workflow. The machine learn-
ing model is trained on input data gath-
ered from multiple databases. Once it
is trained, it can be applied to make
predictions for other input data.

the near future.4 In contrast, narrow AI (or “weak AI”) is a kind of
artificial intelligence focused on performing specific tasks, defined in
advance. Narrow AI has seen a very large number of successful real-
izations of artificial intelligence to date, sometimes in applications
where the machine seems intelligent (in the human way) and some-
times hidden under the hood. Much of these successes of narrow AI
have been made possible by advances in machine learning (ML), in
general, and in deep learning (DL), more specifically in the past few
years.

Machine learning aims at developing algorithms that can learn
and create statistical models for data analysis and prediction. The
ML algorithms should be able to learn by themselves—based on
data provided—and make accurate predictions, without having been
specifically programmed for a given task. Beyond theoretical devel-
opments, recent years have seen rapid advances in the application
of machine learning, not only by computer scientists and experts
in the development of AI algorithms but also by other researchers
in different fields who adopt these techniques for their own pur-
poses. Among many other fields of research, chemical and materials
sciences have been impacted by the application of machine learn-
ing to accelerate certain computational tasks or to solve problems
for which traditional modeling methods were ill-suited. Deep learn-
ing, a subset of machine learning based on artificial neural networks
(ANNs), promises to escalate the advances of AI even further.

In this paper, we set out to illustrate the workflow of machine
learning in the computational materials context (schematized in
Fig. 1) and give examples at each stage of the possibilities and ques-
tions to be considered in implementing ML-based modeling. In this
very active and rapidly expanding field of research, we will try to
highlight some—but not all—of the machine learning techniques
that have been successfully applied in real applications for com-
putational chemistry of materials, either as they are representative
of what is done in the field or because they represent recent and
exciting developments. We will also discuss the specific contribu-
tions made to our field by deep learning studies, although they are
currently more limited. The goal of this paper is to provide a brief

overview to chemists and materials scientists, but we do not try to be
exhaustive in our discussion of the state of the art. For a full review
on machine learning for molecular and materials science, we refer
the reader to the excellent introductory yet thorough review of Butler
et al.5

II. IMPLEMENTING A MACHINE LEARNING
METHODOLOGY
A. Gathering data

As stated in the Introduction, machine learning algorithms
are trained on existing datasets to learn and improve. In order to
create accurate models, the size and quality of the datasets used
for training play a crucial role. This identification, gathering, or
creating (in some cases) of the training dataset is the first step of
the machine learning workflow and will, of course, heavily depend
on the goal of the model you want to train. For generic pur-
poses, in order to “learn by doing” the various steps in implement-
ing a ML workflow, one can find free datasets through platforms
such as Kaggle (https://www.kaggle.com), the UC Irvine Machine
Learning Repository (https://archive.ics.uci.edu/ml), or on govern-
mental or agency websites that gather and promote open data
(https://www.data.gouv.fr in France, https://www.data.gov/ in the
USA).

When it comes to materials sciences, there are a number of
available datasets that have been published and validated in the sci-
entific literature. Many of them are open and publicly available to
any potential user, but others have stricter licensing terms or require
a paid subscription for access to some or all features. On practical
terms, they mainly differ in the data featured within the dataset,
with two main categories: databases that focus (exclusively or pre-
dominantly) on structural information and databases that focus on
physical or chemical properties of materials. Table I presents a short
list of selected databases in materials sciences.

The first category, i.e., databases of structures of materi-
als, is probably the most well-known and historically the most
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TABLE I. Some of the largest and most used databases in materials sciences, classified into two categories: databases restricted to crystalline structures only and databases
focused on both the structures and materials properties.

Database Structures Properties

Structural databases

Cambridge Structural Database (CSD) 1 031 632
Inorganic Crystal Structure Database (ICSD) 218 839
Crystallography Open Database (COD) 457 771
International Centre for Diffraction Data (ICDD) 1 004 568

Databases of structures and properties

AFLOW 3 249 264 Formation energy, band structures, and Bader charges
Elastic and thermal properties

Binary, ternary, and quaternary systems
Materials project 654 758 Band structures

Elastic and piezoelectric tensors
Porous volume and surface

Open Quantum Materials Database (OQMD) 637 644 Formation energy and band structures

developed. They include the ubiquitous Cambridge Structural
Database (CSD, https://www.ccdc.cam.ac.uk), featuring more than
one million experimental crystal structures, which is considered a
standard repository for the publication of new crystal structures
ranging from organic, metal–organic, and organometallic molecules
and compounds. Other such databases include the Inorganic Crys-
tal Structure Database (ICSD, https://icsd.fiz-karlsruhe.de) for inor-
ganic crystals, the freely accessible Crystallography Open Database6

(COD, http://crystallography.net), the International Centre for
Diffraction Data (ICDD, http://www.icdd.com/), and many oth-
ers. Similar databases exist for other chemical systems, such as
GDB7 (http://gdb.unibe.ch/downloads/) for small organic molecules
and ZINC8 (https://zinc15.docking.org/) for commercially available
compounds for virtual screening.

As should be apparent when reading the above list, it is impor-
tant to be aware of an important bias on how these databases cover
the field of materials science: they are all limited to crystallographic
structures. While this is obviously linked to the nature of the deter-
mination of the structure and its representation, it is important to
be aware of such a bias. This is only one example—and there are
many others—of how databases exhibit, by the very own choice of
their scope and the representations chosen, a biased representation
of the wide scope of the field of materials sciences. It is, therefore,
necessary to be aware of the biases in the datasets one is using, both
implicit and explicit.

Beyond structural databases, the past few years have seen the
development of another category, with a rapid growth in the num-
ber of structure–property databases available—often, again, with a
specific focus on a particular class of materials or specific proper-
ties. The existence of such databases with a large amount of data,
most of which are open access and collaborative, presents a signif-
icant opportunity to train and to validate new machine learning
models. We list some here, whose characteristics are summarized
in Table I; the choice made is not to try and be exhaustive (which

would necessarily fail, given the large and ever-growing number of
existing databases) but to highlight those that appear commonly
used and have easy access and are well-documented for newcom-
ers to the materials discovery field. Among the largest databases,
we can cite the Materials Project9 (https://materialsproject.org/)
for inorganic materials, the AFLOWLIB10 “Automatic Flow for
Materials Discovery” (http://aflowlib.org/), and the Open Quan-
tum Materials Database11 (http://oqmd.org). In addition to these
generic sources, there are also specific databases of computed prop-
erties for specific classes of materials, such as the Harvard Clean
Energy Project12 (previously at https://cepdb.molecularspace.org,
currently being migrated) for organic solar materials, TE Design
Lab13 (http://tedesignlab.org) for thermoelectric materials, and
NREL Materials Database14 (https://materials.nrel.gov) for renew-
able energy materials. Finally, other online portals allow the sharing
and exchange of computational data on materials from different ori-
gins, resulting in a more heterogeneous dataset, such as the Materials
Cloud15 (https://www.materialscloud.org/).

Most of these databases are accessible through both a web
front-end, for simple exploration and visualization purposes, and an
Application Programming Interface (API). An API is a web inter-
face with well-documented behavior, whose queries and results are
machine-readable in an agreed-upon format, making them well-
suited for automated exploitation. These API are typically accom-
panied with a software layer to facilitate integration into projects,
such as the Python Materials Genomics (pymatgen)16 Python pack-
age that integrates with the Materials Project RESTful API, or the
Automated Interactive Infrastructure and Database (AiiDA).17

Finally, we would be remiss if we did not note that it is also
possible to generate data to form a machine learning training set “on
the fly,” by performing high-throughput calculations on materials
of interest. When this is done, it is then expected that the dataset
produced is published alongside the work as supplementary material
or submitted to an online data repository.
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B. Cleaning and preprocessing data
We have described above how to use existing datasets of mate-

rials structures and properties (or generate one’s own), yet these data
cannot be used directly in the original format and loaded “as is” in
a machine learning workflow. When it comes to large datasets, four
points are considered crucial in big data workflows, called the “four
V’s,” and they are also relevant in machine learning methodologies:
(i) volume, the amount of data available; (ii) variety, the heterogene-
ity of the data in both form and meaning; (iii) veracity, the knowl-
edge of the uncertainties associated with each data point; and (iv)
velocity, how fast the data are generated and have to be treated—not
usually an issue in our workflows, which do not have to work in real
time.

Therefore, data have to be homogenized and cleaned before it
can be used. This means identifying possible erroneous, missing, or
inconsistent data points (outliers), using criteria based on physical
or chemical knowledge. This cleaning and homogenization of the
data is a key step in order to build more accurate predictors through
machine learning. The need for this may depend on the workflow
followed: for example, some ML algorithms are more robust than
others in the presence of outliers. Some algorithms (such as the Ran-
dom Forest family) do not support null values in their input, while
others can handle those.

To give one example of the necessity of this curation of the
training dataset, we recently performed a large-scale exploration of
the elastic properties of inorganic crystalline materials available on
the Materials Project database. By analyzing the elastic data present,
we quantified that out of 13 621 crystals, only 11 764 structures were
mechanically stable, while 1857 (around 14% of materials in the
database) had elastic tensors that indicated mechanical instability
(and were, therefore, unusable for further analysis).18 Other mate-
rials had elastic moduli that were mathematically acceptable but
unphysically large and those needed to be removed as well before
using the dataset.

C. Representing data
Once data have been cleaned up and homogenized, the next

step in the machine learning workflow is the encoding of these data
into a set of specific variables, which will be manipulated directly by
the ML algorithm. The data collected are often in a raw format and
will need to be converted into a format suitable for learning proce-
dure, usually as a series of scalar or vector variables for each entry of
the dataset. This step can include the transformation of existing data
(such as physical properties) by rescaling, normalization, or bina-
rization to bring it to such a state that the algorithm can easily parse
it. Some basic preprocessing techniques are widely available in ML
software, such as the MinMaxScaler or StandardScaler meth-
ods in scikit-learn.19 In all cases, the effect of this preprocessing of
the data needs to be studied carefully: it is important to mention
that sometimes algorithms can deliver better results without prepro-
cessing, and with excessive preprocessing, it may not be possible to
identify the crucial features that will give the best performance for
the target variable.

When the input data consist of chemical structures, the choice
of representation of the data is not always obvious: chemical com-
pounds and materials are complex three-dimensional objects, whose
direct representation as vectors of coordinates may not be efficient

as input for the ML workflow. This question of the best representa-
tion of the data for the learning algorithm is called featurization or
feature engineering. It is a very active area of research, in particular,
when it comes to describing chemical structures. The two main goals
of feature engineering are (i) preparing the input data in a form that
the ML algorithms will work well with (and that can depend on the
specific characteristics of the algorithm chosen); (ii) improving the
performance of ML models, by using our knowledge of the materials
and their important features (chemical intuition) in the building of
the input data.

The chemical information about a given system can then be
transformed into a series of the so-called descriptors, which encode
the chemical information, creating a new input that should describe
the key features of the dataset in a way that allows for the ML algo-
rithm to train efficiently. Many different mathematical representa-
tions are used as descriptors for chemical and materials structures
(and their properties). We will cite here examples for molecular
structures such as Coulomb matrix,20 SMILES,21 bag of bonds,22

molecular graphs,23 and BAML (bonds, angles, machine learning;
using bonds, angles, and higher order terms).24 Among the repre-
sentations used for crystals, we find representations such as trans-
lation vectors, fractional coordinates of the atoms, radial distribu-
tion functions,25 Voronoi tessellations of the atomic positions,26 and
property-labeled materials fragments.27

D. Machine learning models
1. Supervised learning

Let us now move to fourth step of the machine learning work-
flow: the “learning” part itself, i.e., the training of the ML algo-
rithm. Using the curated and pre-processed dataset as input, there
are, then, three main categories of ML models: supervised, unsuper-
vised, and semi-supervised (see Fig. 2). In supervised learning, the

FIG. 2. Different categories of machine learning models.
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dataset is considered as a training set and must contain both input
variables and their corresponding output variable: think of chemical
structures and their properties for a common example in chemistry.
Then, the goal of the ML algorithm is to learn, from these train-
ing data, the mapping function from the input (the structures) to
the output (the properties). The main goal of the machine learned
algorithm in a supervised learning approach is to be able to make a
prediction for new data, with an acceptable level of accuracy, once it
has been trained.

It is useful to know that supervised learning problems can be
broadly categorized into two main types: regression and classifi-
cation techniques. Both of them have as a goal the construction
of a model that can predict values from the available variables.
The only difference between the two is the type of the out-
put variable: in a regression-type prediction problem, the variable
that is to be predicted is continuous, taking real values: melting
point, bandgap, elastic modulus, etc. Regression learning algorithms
include linear regression, lasso linear regression, ridge regression,
elastic net regression, Gaussian process regression, and classifica-
tion and regression trees. The simplest of these algorithms is the
linear regression (LR), which—similar to the common linear regres-
sion in 2D graphs—tries to create the best linear model based on
the descriptors given. If the model is complex, a lasso linear regres-
sion algorithm can be used instead, which is a modification of LR
where the loss function is modified to minimize the complexity of
the model.

On the other hand, for classification problems, the algorithm
has to predict a categorical variable, i.e., attribute a label to the
input data. In the simplest case, these categories are reduced to two
in a binary variable, such as: is the material conducting or isolat-
ing? and is it porous or not? (or in another context: is this email
a spam or not?). A large number of different classification algo-
rithms can be used: logistic regression, linear discriminant analy-
sis, k-nearest neighbor, naïve Bayes, classification and regression
tress, support vector machine, and kernel ridge regression (KRR).
To given an example, Ghiringhelli et al. used KRR with descriptors
derived from the energy levels and radii of valence orbitals to pre-
dict crystalline arrangements between zinc blende and wurtzite-type
crystal structures.28

2. Unsupervised learning
Unsupervised learning works in a completely different way, try-

ing to draw inferences about the input data without any correspond-
ing output variables: it is used to look for previously undetected
patterns in data with minimal human supervision or guidance. It
can, for example, act on unlabeled data to discover the inherent
groupings. The ML algorithm tries to identify trends that could
be of interest to rationalize the dataset and present the available
data in a novel way. One family of the unsupervised learning algo-
rithm is the clustering or cluster analysis: there, the ML workflow
will split the data into several groups (or clusters) of records pre-
senting similar features, with no prior assumption on the nature of
these groups (unlike, for example, in supervised learning classifica-
tion tasks). Classical methods used for clustering include Gaussian
mixtures, k-means clustering, hierarchical clustering, and spectral
clustering. Other types of unsupervised learning method are asso-
ciation rule learning and principal component algorithms that aim
to establish relationships between multiple features in a large dataset,

something that is difficult to do by hand. Popular algorithms for gen-
erating association rules have been proposed, such as A priori, Eclat,
and FP-Growth (Frequent-Pattern).

When it comes to applications in chemistry and materials sci-
ence, supervised machine learning is a lot more common, but there
are some examples of unsupervised learning, nonetheless; for a
recent perspective on this specific topic, see Ref. 29. Saad et al.
applied both the supervised and unsupervised ML techniques to pre-
dict the structure and properties of crystals (such as the melting
point) for binary compounds.30 Supervised ML models have been
trained to reproduce the LUMO and HOMO for organic solar cells31

and to predict key thermodynamic parameters such as adsorption
energy,32 activation energy,33 and active site34 in catalytic processes.
Isayev et al. developed predictive Quantitative Materials Structure–
Property Relationship (QMSPR) models through machine learning,
in order to predict the critical temperatures of known supercon-
ductors,35 and Woo and co-workers established the QMSPR model
to achieve high-throughput screening of metal–organic frameworks
(MOFs) to capture CO2 by adsorption, relying on machine learn-
ing to explore the large dimensionality spanned by their exceptional
structural tunability.

One disadvantage of supervised ML algorithms lies in the
acquisition of labeled data, an expensive process requiring especially
when dealing with large amounts of data. Unlabeled data, on the
other hand, are relatively inexpensive and easy to collect and store—
but applications of unsupervised ML in materials sciences have been
relatively limited. An alternative exists in the form of a third train-
ing ML model named semi-supervised, which is halfway between
supervised and unsupervised learning, as its name implies. In such a
workflow, we have a large amount of input data and only a limited
amount of corresponding output data. Semi-supervised ML aims
at learning from the labeled part of the dataset, training an accu-
rate model. First, the workflow will use the unsupervised learning
algorithm to identify and cluster similar data. Then, it will use super-
vised learning techniques to train and make prediction for the rest of
the unlabeled data. Semi-supervised learning algorithms make three
assumptions about the data, which somewhat restrict their applica-
bility: (i) continuity assumption: the close points are more likely to
share a label; (ii) cluster assumption: data can form discrete clusters
and points in the same cluster are more likely to share an output
label; and (iii) manifold assumption: the data lie approximately on
a manifold of much lower dimension than the input space. Semi-
supervised algorithms are widely used in text and speech analysis,
internet content classification, and protein sequence classification
applications.

Semi-supervised learning was used by Court et al. to create a
materials database of Curie and Néel temperatures for 39 822 by
text mining a corpus of 68 078 chemistry and physics articles, apply-
ing natural language processing and a semi-supervised relationship
extraction algorithm to obtain the values (and units) of the prop-
erties from the texts.36 Similarly, Huo et al. demonstrated the effi-
ciency and accuracy of semi-supervised machine learning to clas-
sify inorganic materials synthesis procedures from written natural
language.37 Recently, Kunselman et al. used semi-supervised learn-
ing methods to analyze and classify microstructure images, training
their model on a dataset where only a fraction of the microstructures
was labeled initially.38
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3. Applications
Most of the applications of ML in chemical and materials sci-

ences, as we have said, feature supervised learning algorithms. The
goal there is to supplement or replace traditional modeling meth-
ods, at the quantum chemical or classical level, in order to predict
the properties of molecules or materials directly from their struc-
ture or their chemical composition. To give some recent examples
in an area our group has worked in, ML has been used in providing
a better understanding and prediction of the mechanical properties
of crystalline materials. In 2016, de Jong et al. using supervised ML
with gradient boosting regression have developed a model to predict
the elastic properties (such as the bulk modulus K and shear modu-
lus G) for a large set of inorganic compounds.39 These authors used
187 descriptors for the materials, including a diverse set of compo-
sition and structural descriptors, and training data from quantum
chemistry calculations at the Density Functional Theory (DFT) level.
The trained predictor was then used to provide predictions of K and
G for a large range of inorganic materials outside of the training
dataset, and these predicted values are now available (as estimates)
for materials in the Material Project,9 both through the API and on
the website.

Our research group was applying the same idea on a narrower
range of materials, trying to confirm that for a given chemical com-
position, geometrical descriptors of a material’s structure could lead
to accurate predictions of its mechanical features: we used local,
structural, and porosity-related descriptors. Evans and Coudert40

trained a gradient boosting regressor algorithm on data for 121 pure
silica zeolites41 (SiO2 polymorphs) and also used it to predict K and
G elastic moduli of 590 448 hypothetical frameworks. The results
highlighted several important correlations and trends in terms of
stability for zeolitic structures. Later, in Gaillac et al., we expanded
this ML study to look into anisotropic mechanical properties, which
are typically more difficult to model. We obtained an algorithm for
the prediction of auxeticity and Poisson’s ratio of more than 1000
zeolites.42

Beyond the applications described above for prediction of
molecules or materials properties, machine learning has been used at
another level, in order to improve existing computational methods.
One of the areas where it has been done is in order to improve the
exchange-correlation functional in density functional theory (DFT)
calculations, for example, in order to provide a better description
of weak chemical interactions and highly correlated systems. In this
area, much effort has been spent trying to leverage machine learning
to produce a universal density functional,43,44 to solve the Kohn–
Sham equations,45 to optimize DFT exchange-correlation function-
als,46,47 and to create adaptive basis sets.48 In the realm of classical
molecular simulation, machine learning can be used to optimize
interatomic potentials (a.k.a. force fields) with the predetermined
analytical form49,50 or to create de novo force fields,51–53 for both
molecules and materials.

We should note here that machine learning can also be applied
to discover and design entirely new compounds, creating novel
opportunities for computationally assisted discovery of materials.
Designing materials with targeted physical and chemical proper-
ties is recognized as an outstanding challenge in materials research.
Using kernel regression, Calfa and Kitchin predicted the electronic
properties of 746 binary metal oxides and elastic properties of 1173

crystals.54 Then, they used the special features to design a new
crystal with an exhaustive enumeration (EE) algorithm that eval-
uated all the possible combinations of crystals from the dataset.
Based on the electronic properties of binary metal oxides, the
authors obtained 1 153 504 combinations that should be iterated.
Faber and co-workers identified 128 novel structures through the
development of a ML model that trained to reproduce the for-
mation energies of two million combinations of elements pre-
senting the ABC2D6 formula. The 128 new structures are added
later to the Materials Project database.55 Other applications in the
material exploration include the design of novel catalysts56 and
novel cathode materials to improve the performance of lithium ion
batteries.57

E. Learners
In this section, we discuss in a bit more detail an important (but

more technical) part of the machine learning workflow: the choice of
learning algorithms or learners. We have already mentioned in pass-
ing above the names of a few of these, which can be applied depend-
ing on the type of the data and the underlying problem to be solved.
This choice is a crucial step in any ML workflow as the selection of
algorithm plays a key role in the accuracy of the prediction.58 Many
algorithms are readily accessible for non-expert users, with pack-
ages written in Python (scikit-learn, Keras, PyTorch), C++ (mlpack,
Tensorflow), R (caret), and others. We highlight here some of the
possible choices of learners, in an overview which is not remotely
exhaustive, but wants to give the reader a glance of the diversity of
the methods available.

The family of k-nearest neighbor (k-NN) algorithms can be
used for classification and regression tasks in supervised ML. The
k-NN algorithm assumes that similar objects in the data are near
each other. For a given observation X that we want to predict, the k-
NN algorithm will look for the k points closest in the dataset; then, it
will use the output variable associated with these nearest neighbors
to predict the value of X. The upsides of k-NN are that the model is
simple and easy to implement and that it is non-parametric, with no
need for tuning several hyperparameters. On the downside, it gets
significantly slower as the volume of the data increases.

Decision trees (DTs) are another family of learners that can
handle both classification and regression supervised ML (forming
classification trees and regression trees, respectively). The use of
decision trees in machine learning represents an option that is sim-
ple to understand and interpret, as the trees can be explicitly visu-
alized. In the tree structure, the root of the tree is the input data,
and each branch represents a possible decision. The input data are
broken down into smaller and smaller subsets in the tree, with split-
ting rules implemented in each internal node of the tree based on
the data. The leaves of the tree represent the output of the algorithm.
The choice of the DT model is important to avoid overfitting (with
unnecessarily complex trees)—this can be achieved by mechanisms
such as setting the maximum depth of the tree and the minimum
number of samples required at a leaf node. Different types of deci-
sion tree-based learners exist, such as Random Forest (RF) and Gra-
dient Boosting Decision Tree (GBDT). RF uses averaging to reduce
the overfitting and improve the predictive accuracy, while GBDT
tries to correct the error of previous trees by merging several trees
on smaller depths.
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Another family is that of the naïve Bayes classifiers, super-
vised ML algorithms for classification. They are based, as their name
indicates, on Bayes’ theorem with an assumption of independence
between the features. They have been studied and developed for a
long time, are easy to employ, and are extremely scalable. Different
kinds exist, depending on the nature of the data. Their main down-
side is the assumption of independence of the predictors, which
rarely holds in complex use cases.

As the last family we will cite here, kernel methods are a class
of algorithms for pattern analysis. At their core, they rely on the use
of kernel functions, which are applied to the input data to map the
original nonlinear observations into a higher-dimensional space in
which they become separable. That feature space is implicit because
the coordinates of the data in this space are never directly computed,
but only the inner product between pairs of data, which is compu-
tationally less expensive. Perhaps the best known and most widely
used algorithm in this family is the support vector machine kernel
ridge regression.

F. Model evaluation
As we explained above, the main goal of machine learning is to

train and generate an efficient computational model, whose predic-
tions will be accurate. This accuracy should be confirmed, in order
to check that the model captures correctly the underlying patterns
in the data, but cannot be validated solely on the results obtained
from the training dataset. The best way to check the accuracy is to
assess the performance of the trained ML model on data that was not
included in its training dataset. However, starting from a dataset of
a given size, there are statistical techniques that are better than sim-
ply splitting the data into two sets (training and validation), called
cross-validation techniques. One of the most used cross-validation
methods is the k-fold cross-validation. In this method, the dataset is
divided into a number of subsets. Then, during the ML training, the
model is trained using all the subsets as the training sets but leaves
one subset for later testing. The process of training and evaluation
is repeated several times, and each time a different subset of data is
used for validation.

Among the problems that have to be checked in the evaluation
of the ML model is the agreement between the level of complexity

of the model and that of the data. In the case where the data are not
sufficiently detailed or the model is too simple, the resulting model
can have a bias, a situation named underfitting. On the contrary, if
the model is too complex, with a large number of parameters, over-
fitting can occur. To produce an optimal model, a balance to avoid
both underfitting and overfitting by adjustment of the hyperparam-
eters is crucial. This necessary step of tuning the machine learning
hyperparameters to select the optimal values is not always easy as it
requires systematic searches and patience.

III. DEEP LEARNING
As stated before, machine learning techniques are a form of

weak AI and, therefore, not fully autonomous and require some
guidance, e.g., in the adjustment of hyperparameters. To go beyond
the traditional ML approaches, deep learning (DL) methods were
developed that try to mimic more closely some aspects of human
cognition. This allows them to outperform other ML algorithms in
accuracy and speed, without need for manual intervention from the
programmer. DL is a subtype of ML that runs its inputs through
a biologically inspired artificial neural network (NN) architecture.
Over time, it has been established that NN outperform many other
algorithms in accuracy and speed by their strong ability to capture
the relevant information from a large amount of data. Deep learning
is, in particular, capable of modeling and processing very complex
nonlinear relationships.

There are many variants of deep learning methods avail-
able, including convolutional neural networks (CNNs), recurrent
neural networks (RNNs), artificial neural networks (ANNs), and
deep neural networks (DNNs). The neural networks they rely on
contain artificial neurons arranged in multiple layers such that each
layer communicates only with the layers immediately preceding and
following (see Fig. 3). Information travels in the NN from the first
layer, or input layer (which receives the external data), to the last
layer, or output layer (which produces the final result), through sev-
eral hidden layers in between. The number of hidden layers depends
on the complexity of the problem to be solved.

In each of the hidden layers, the neurons receive the input sig-
nal from others neurons, process it by combining the input with

FIG. 3. Schematic representation of a
deep neural network, a type of artificial
neural network featuring several hidden
layers of neurons between the input and
output layers.
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their internal state, and produce an output signal. The neural net-
work links these neurons through connections, providing the out-
put of one neuron as an input to another neuron. Each neuron can
have multiple input and output connections, to which are assigned
weights, forming the overall layer of the NN. The learning pro-
cess involves the adaptation of the network, i.e., the weights of
the connections, by minimizing the observed errors in the out-
put of the neural network. Because of this very generic and self-
adapting architecture of the NN, deep learning reduces need for
feature engineering and can identify and work around defects that
would be difficult to spot in other techniques. However, the train-
ing of artificial neural networks requires a very large amount of
data to train accurately and is computationally expensive due to the
large number (millions or more) of parameters to optimize during
training.

Several research groups have proposed applications of deep
learning to problems in chemical and materials sciences.59 For
example, Willighagen et al. used supervised self-organizing maps (a
kind of ANN) to explore large numbers of experimental and sim-
ulated crystal structures, in order to visualize structure–property
relationships.60 Using an ANN implemented in the open-source
PyBrain code,61 Ma et al. trained a model with a set of ab initio
adsorption energies and electronic fingerprints of idealized bimetal-
lic surface (spatial extent of metal d-orbitals, atomic radius, ion-
ization potential, electron affinity, and Pauling electronegativity).62

This model was able to capture complex nonlinear adsorbate–
substrate interactions as it is applied to the electrochemical reduc-
tion of carbon dioxide on metal electrodes.

Rule-based expert systems (rules are applied to the reactants to
obtain the product in reaction prediction or to the product for ret-
rosynthesis) cannot predict outside of their knowledge and often fail
because they ignore the molecular context, which leads to reactivity
conflicts. To overcome this problem, deep learning techniques have
been used to predict chemical synthesis routes by combining NN
with rule-based expert systems. Using this combination, Segler and
Waller have ranked the candidate synthetic pathways by the com-
putation of mean reciprocal rank (MRR).63 This model was trained
on 3.5 × 106 reactions with a success rate of 95% in retrosynthesis
and 97% for reaction prediction. In another work, Cole et al. have
determined the probability of the predicted product using more than
800 000 organic and organometallic crystal structures in the CSD.64

Deep learning is also used in the study and discovery of drug-like
molecules, e.g., Gómez-Bombarelli et al. have estimated the chem-
ical properties from the latent continuous vector representation of
the molecule using the RNN method.65 The model they developed
allows us to generate new molecules for efficient exploration and
optimization.

IV. ARTIFICIAL INTELLIGENCE IN THE LAB
While this paper is focused on providing an introductory

description of machine learning approaches for the prediction of
chemical systems, in general, and materials properties, more specifi-
cally, we want to end it by noting that the use of artificial intelligence
techniques in chemistry and materials science is much broader than
machine learning and its computational applications—and it pro-
vides a lot of exciting avenues for research in the near future.66 We
refer the reader to Ref. 67 for an in-depth and very insightful review

of the multiple avenues of research opened by artificial intelligence
in the field of synthetic organic chemistry.

One particular area of recent achievements for artificial intel-
ligence in chemistry is its integration into chemistry labs achieved
through robotics.68 Robotic synthesis based on flow chemistry takes
high-throughput discovery to an entirely new scale—where chemical
syntheses can be described through standardized method descrip-
tions, i.e., “source code for chemistry,” which is then compiled for
the specific hardware of a synthesis robot.69 Furthermore, this allows
high-throughput synthesis and characterization to be tightly cou-
pled with computational screening procedures.70 In this approach,
it is, thus, possible to leverage an artificial intelligence algorithm to
propose synthetic routes, coupled with a robotic microfluidic plat-
form to realize the synthesis and characterize its results.71 To list two
recent examples, Coley et al. proposed a robotic platform for flow
synthesis of organic compounds, paired with computational predic-
tion techniques based on artificial intelligence,72 and Granda et al.
demonstrated an integrated system where machine learning is used
for decision making in real time, during a trial-and-error search for
new reactivity where the analysis results from experiments are fed
back into the ML algorithm.73
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