A. Achille and S. Soatto, Emergence of invariance and disentanglement in deep representations, Journal of Machine Learning Research, vol.19, issue.50, pp.1-34, 2018.

I. Ayed, E. De-bézenac, A. Pajot, and P. Gallinari, Learning the spatio-temporal dynamics of physical processes from partial observations, ICASSP 2020 -2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.3232-3236, 2020.

J. Behrmann, W. Grathwohl, R. T. Chen, D. Duvenaud, and J. Jacobsen, Invertible residual networks, Proceedings of the 36th International Conference on Machine Learning, vol.97, pp.573-582, 2019.

S. Benenti, Intrinsic characterization of the variable separation in the Hamilton-Jacobi equation, Journal of Mathematical Physics, vol.38, issue.12, pp.6578-6602, 1997.

Y. Bengio, A. Courville, and P. Vincent, Representation learning: A review and new perspectives, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.35, issue.8, pp.1798-1828, 2013.

S. L. Brunton, J. L. Proctor, and J. N. Kutz, Discovering governing equations from data by sparse identification of nonlinear dynamical systems, Proceedings of the National Academy of Sciences, vol.113, issue.15, pp.3932-3937, 2016.

H. Bungartz and M. Griebel, Sparse grids. Acta Numerica, vol.13, pp.147-269, 2004.

R. T. Chen, Y. Rubanova, J. Bettencourt, D. Duvenaud, S. Bengio et al., Neural ordinary differential equations, Advances in Neural Information Processing Systems, vol.31, pp.6571-6583, 2018.

X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever et al., Infogan: Interpretable representation learning by information maximizing generative adversarial nets, Advances in Neural Information Processing Systems 29: Annual Conference on Neural Information Processing Systems, pp.2172-2180, 2016.

Z. Chen, J. Zhang, M. Arjovsky, and L. Bottou, Symplectic recurrent neural networks, International Conference on Learning Representations, 2020.

D. K. Citron and R. Chesney, Deep fakes: A looming challenge for privacy, democracy, and national security, Public Law Research Paper No, vol.107, issue.692, p.1753, 2018.

F. De-avila-belbute-peres, K. A. Smith, K. R. Allen, J. B. Tenenbaum, and J. Z. Kolter, End-to-end differentiable physics for learning and control, Advances in Neural Information Processing Systems, vol.31, pp.7178-7189, 2018.

E. De-bézenac, A. Pajot, and P. Gallinari, Deep learning for physical processes: Incorporating prior scientific knowledge, International Conference on Learning Representations, 2018.

E. Denton, V. ;. Birodkar, U. Von-luxburg, S. Bengio, H. Wallach et al., Unsupervised learning of disentangled representations from video, Advances in Neural Information Processing Systems, vol.30, pp.4414-4423, 2017.

E. Denton and R. Fergus, Stochastic video generation with a learned prior, Proceedings of the 35th International Conference on Machine Learning, vol.80, pp.1174-1183, 2018.

B. Dolhansky, R. Howes, B. Pflaum, N. Baram, and C. C. Ferrer, The deepfake detection challenge (DFDC) preview dataset, 2019.

A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas et al., Learning optical flow with convolutional networks, The IEEE International Conference on Computer Vision (ICCV), pp.2758-2766, 2015.

C. Finn, I. Goodfellow, and S. Levine, Unsupervised learning for physical interaction through video prediction, Advances in Neural Information Processing Systems, vol.29, pp.64-72, 2016.

J. B. Fourier, Théorie analytique de la chaleur. Didot, Firmin, p.1822

J. Franceschi, E. Delasalles, M. Chen, S. Lamprier, and P. Gallinari, Stochastic latent residual video prediction, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02484182

I. Goodfellow, J. Pouget-abadie, M. Mirza, B. Xu, D. Warde-farley et al., Generative adversarial nets, Advances in Neural Information Processing Systems, vol.27, pp.2672-2680, 2014.

S. Greydanus, M. Dzamba, J. Yosinski, . Hamiltonian-neural-networks.-in, H. Wallach et al., Advances in Neural Information Processing Systems, vol.32, pp.15379-15389, 2019.

D. Güera and E. J. Delp, Deepfake video detection using recurrent neural networks, 15th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp.1-6, 2018.

E. Haber and L. Ruthotto, Stable architectures for deep neural networks, Inverse Problems, vol.34, issue.1, p.14004, 2017.

E. Hairer, S. P. Nørsett, and G. Wanner, Solving Ordinary Differential Equations I: Nonstiff Problems, chapter Runge-Kutta and Extrapolation Methods, pp.129-353, 1993.

W. R. Hamilton, Second essay on a general method in dynamics, Philosophical Transactions of the Royal Society, vol.125, pp.95-144, 1835.

K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition, The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.770-778, 2016.

B. K. Horn and B. G. Schunck, Determining optical flow, Artificial Intelligence, vol.17, issue.1-3, pp.185-203, 1981.

J. Hsieh, B. Liu, D. Huang, L. Fei-fei, and J. C. Niebles, Learning to decompose and disentangle representations for video prediction, Advances in Neural Information Processing Systems, vol.31, pp.517-526, 2018.

W. Hsu, Y. Zhang, J. Glass, I. Guyon, U. Von-luxburg et al., Unsupervised learning of disentangled and interpretable representations from sequential data, Advances in Neural Information Processing Systems, vol.30, pp.1878-1889, 2017.

M. Jaques, M. Burke, and T. Hospedales, Physics-as-inverse-graphics: Unsupervised physical parameter estimation from video, International Conference on Learning Representations, 2020.

H. Jia, W. Xu, X. Zhao, L. , and Z. , Separation of variables and exact solutions to nonlinear diffusion equations with x-dependent convection and absorption, Journal of Mathematical Analysis and Applications, vol.339, issue.2, pp.982-995, 2008.

E. G. Kalnins, W. Miller, and G. C. Williams, Recent advances in the use of separation of variables methods in general relativity, Philosophical Transactions: Physical Sciences and Engineering, vol.340, pp.337-352, 1658.

D. P. Kingma, J. Ba, and . Adam, A method for stochastic optimization, International Conference on Learning Representations, 2015.

D. P. Kingma and M. Welling, Auto-encoding variational Bayes, International Conference on Learning Representations, 2014.

A. R. Kosiorek, H. Kim, Y. W. Teh, and I. Posner, Sequential attend, infer, repeat: Generative modelling of moving objects, Advances in Neural Information Processing Systems, vol.31, pp.8606-8616, 2018.

A. Kraskov, H. Stögbauer, and P. Grassberger, Estimating mutual information, Physical Review E, vol.69, p.66138, 2004.

M. W. Kutta, Beitrag zur näherungweisen Integration totaler Differentialgleichungen. Zeitschrift für Mathematik und Physik, vol.45, pp.435-453, 1901.

L. Dret, H. Lucquin, and B. , Partial Differential Equations: Modeling, Analysis and Numerical Approximation, chapter The Heat Equation, pp.219-251, 2016.

V. Le-guen and N. Thome, Disentangling physical dynamics from unknown factors for unsupervised video prediction, 2020.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document recognition, Proceedings of the IEEE, vol.86, issue.11, pp.2278-2324, 1998.

X. Li, T. L. Wong, R. T. Chen, and D. Duvenaud, Scalable gradients for stochastic differential equations, 2020.

Z. Liu, J. Wu, Z. Xu, C. Sun, K. Murphy et al., Modeling parts, structure, and system dynamics via predictive learning, International Conference on Learning Representations, 2019.

F. Locatello, S. Bauer, M. Lucic, G. Rätsch, S. Gelly et al., Challenging common assumptions in the unsupervised learning of disentangled representations, Proceedings of the 36th International Conference on Machine Learning, vol.97, pp.4114-4124, 2019.

Z. Long, Y. Lu, X. Ma, B. Dong, and . Pde-net, Learning PDEs from data, Proceedings of the 35th International Conference on Machine Learning, vol.80, pp.3208-3216, 2018.

Z. Long, Y. Lu, D. , and B. , PDE-Net 2.0: Learning PDEs from data with a numeric-symbolic hybrid deep network, Journal of Computational Physics, vol.399, p.108925, 2019.

Y. Lu, A. Zhong, Q. Li, D. , and B. , Beyond finite layer neural networks: Bridging deep architectures and numerical differential equations, 2017.

G. Madec and . Nemo-ocean-engine, Note du Pôle de modélisation, 2008.

P. Micikevicius, S. Narang, J. Alben, G. Diamos, E. Elsen et al., Mixed precision training, International Conference on Learning Representations, 2018.

J. Miller and W. , The technique of variable separation for partial differential equations, Nonlinear Phenomena, pp.184-208, 1983.

J. Miller and W. , Mechanisms for variable separation in partial differential equations and their relationship to group theory, Symmetries and Nonlinear Phenomena: Proceedings of the International School on Applied Mathematics, pp.188-221, 1988.

M. Minderer, C. Sun, R. Villegas, F. Cole, K. Murphy et al., Unsupervised learning of object structure and dynamics from videos, Advances in Neural Information Processing Systems, vol.32, pp.92-102, 2019.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury et al., An imperative style, high-performance deep learning library, Advances in Neural Information Processing Systems, vol.32, pp.8026-8037, 2019.

A. D. Polyanin, Functional separable solutions of nonlinear convection-diffusion equations with variable coefficients, Communications in Nonlinear Science and Numerical Simulation, vol.73, pp.379-390, 2019.

A. D. Polyanin, Functional separation of variables in nonlinear PDEs: General approach, new solutions of diffusion-type equations, Mathematics, vol.8, issue.1, p.90, 2020.

A. D. Polyanin and A. I. Zhurov, Separation of variables in PDEs using nonlinear transformations: Applications to reaction-diffusion type equations, Applied Mathematics Letters, vol.100, p.106055, 2020.

A. Radford, L. Metz, and S. Chintala, Unsupervised representation learning with deep convolutional generative adversarial networks, International Conference on Learning Representations, 2016.

M. Raissi, Deep hidden physics models: Deep learning of nonlinear partial differential equations, Journal of Machine Learning Research, vol.19, issue.25, pp.1-24, 2018.

M. Raissi, A. Yazdani, and G. E. Karniadakis, Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations, Science, vol.367, issue.6481, pp.1026-1030, 2020.

D. J. Rezende, S. Mohamed, and D. Wierstra, Stochastic backpropagation and approximate inference in deep generative models, Proceedings of the 31st International Conference on Machine Learning, vol.32, pp.1278-1286, 2014.

O. Ronneberger, P. Fischer, and T. Brox, U-net: Convolutional networks for biomedical image segmentation, Medical Image Computing and Computer-Assisted Intervention -MICCAI 2015, pp.234-241, 2015.

Y. Rubanova, R. T. Chen, and D. Duvenaud, Latent ordinary differential equations for irregularlysampled time series, Advances in Neural Information Processing Systems, vol.32, pp.5320-5330, 2019.

T. Ryder, A. Golightly, A. S. Mcgough, and D. Prangle, Black-box variational inference for stochastic differential equations, Proceedings of the 35th International Conference on Machine Learning, vol.80, pp.4423-4432, 2018.

P. Saha, S. Dash, S. Mukhopadhyay, and . Phicnet, Physics-incorporated convolutional recurrent neural networks for modeling dynamical systems, 2020.

X. Shi, Z. Chen, H. Wang, D. Yeung, W. Wong et al., Convolutional LSTM network: A machine learning approach for precipitation nowcasting, Advances in Neural Information Processing Systems, vol.28, pp.802-810, 2015.

K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale image recognition, International Conference on Learning Representations, 2015.

J. Sirignano and K. Spiliopoulos, Dgm: A deep learning algorithm for solving partial differential equations, Journal of Computational Physics, vol.375, pp.1339-1364, 2018.

S. Steenkiste, M. Chang, K. Greff, and J. Schmidhuber, Relational neural expectation maximization: Unsupervised discovery of objects and their interactions, International Conference on Learning Representations, 2018.

R. Villegas, J. Yang, S. Hong, X. Lin, and H. Lee, Decomposing motion and content for natural video sequence prediction, International Conference on Learning Representations, 2017.

R. Villegas, J. Yang, Y. Zou, S. Sohn, X. Lin et al., Learning to generate long-term future via hierarchical prediction, Proceedings of the 34th International Conference on Machine Learning, vol.70, pp.3560-3569, 2017.

C. Vondrick, H. Pirsiavash, and A. Torralba, Generating videos with scene dynamics, Advances in Neural Information Processing Systems, vol.29, pp.613-621, 2016.

L. Yingzhen and S. Mandt, Disentangled sequential autoencoder, Proceedings of the 35th International Conference on Machine Learning, vol.80, pp.5670-5679, 2018.

C. Y?ld?z, M. Heinonen, and H. Lahdesmaki, ODE 2 VAE: Deep generative second order odes with Bayesian neural networks, Advances in Neural Information Processing Systems, vol.32, pp.13412-13421, 2019.