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Abstract:
The content-based publish/subscribe paradigm enables a loosely-coupled and expressive form of
communication. However, privacy preservation remains a challenge for distributed event-based
middleware especially since encrypted matching incurs significant computing overhead. This paper
adapts an existing attribute-based encryption scheme and combines it with data splitting, a non-
cryptographic method called for alleviating the cost of encrypted matching. Data splitting enables
to form groups of attributes that are sent apart over several independent broker networks so that it
prevents the identification of an end-user; and, only identifying attributes are encrypted to prevent
data leakage. The goal is to achieve an acceptable privacy level at an affordable computing price by
encrypting only the necessary attributes, whose selection is determined through a Privacy Impact

Assessment.

1 Introduction

Publish/subscribe (pub/sub) or Distributed
Event-Based System (DEBS) is a communica-
tion paradigm that allows flexible and dynamic
communication between a large number of enti-
ties, like in the Internet of Things (IoT). Pub-
lish/subscribe communicating parties are loosely-
coupled—i.e. time, space, and synchronisation
decoupling of subscribers and publishers [Eugster
et al., 2003]. Subscribers express their interest in
a set of publications through constraints specified
in the subscription. In broker-based DEBS mid-
dleware, the publications are routed to the inter-
ested consumers by a third-party entity composed
of brokers.

The most popular models to determine which
publications consumers are interested in are
topic-based and content-based filtering [Eugster
et al., 2003]. In topic-based filtering, e.g.
in AMQP [AMQP Consortium, 2008] and in
MQTT [OASIS, 2019], filtering is achieved by
complementing publication data with metadata
tags named topics, and subscription filters are

routing keys expressed as regular expressions on
topics. Topics are shared by consumers and pub-
lishers, and the content of the publication is left
opaque since it is not used for routing. In content-
based filtering, filters are conjunctions of ele-
mentary filters that parse parts of the content
data, including attribute values. Consequently,
content-based filtering is expensive, but more ex-
pressive. While content-based filtering prevents
the use of common encryption schemes requiring
to disclose the whole publication content for rout-
ing, it is much more suitable for IoT because of
its expressiveness.

Since the European General Data Protec-
tion Regulation (GDPR) became enforceable in
2018, privacy has been turning into a burning
issue. Besides, the European regulation is the
most widely adopted standard worldwide [Sulli-
van, 2019]. When privacy is at risk, companies
have to conduct a Privacy Impact Assessment
(PTA). The PIA is as “a methodology for assess-
ing the impacts on privacy of a project, policy,
programme, Service, product or other initiative
and, in consultation with stakeholders, to iden-



tify solutions” [Wright, 2012]. Among the main
purposes of PIA is the identification of privacy
controls to mitigate unacceptable risks. One of
the main security concerns in pub/sub systems is
confidentiality. This is particularly true under the
semi-trusted broker assumption where brokers are
considered honest-but-curious, which means that
they will route the publications to the interested
consumers, but can make use of the data for their
own interest [Onica, E. et al., 2016]. More pre-
cisely, “confidentiality is the property that an in-
formation is not made available or revealed to
unauthorised persons, entities or processes” [ISO,
1989]. In the context of pub/sub middleware,
confidentiality concerns encompass (1) part or all
of the constraints of the subscriptions, (2) part or
all the information in the publication that is used
for routing against subscriptions, and (3) the pay-
load of the publications [Onica, E. et al., 2016].

Through encryption, a full degree of confiden-
tiality can be achieved but with a significant over-
head. The will of the user as well as the desired
degree of confidentiality must be considered. De-
pending on the nature of the data sent by the
users of a pub/sub system, parts of the publica-
tions might be sent in clear text under some as-
sumptions. Particularly, the main concern of the
users may be to prevent the brokers from iden-
tifying them. Following the work of [Domingo-
Ferrer, J. et al., 2019], we distinguish three cat-
egories of attributes: (1) identifying attributes
that individually disclose the identity of a sub-
ject, (2) quasi-identifying attributes that do not
identify subjects when considered separately, but
their combination may, and (3) confidential at-
tributes that convey sensitive features of an in-
dividual (income, religion, health condition, etc.)
and may be sent in clear text as long as they can
not be associated with an identity. Any attribute
that does not fit any of these categories is consi-
dered as non-confidential and be outsourced as it
is.

The proposition of this paper is to use a mask-
ing method, namely data splitting, with a crypto-
graphic scheme to balance performance and secu-
rity. This allows to avoid the use of encrypted
matching when possible, regarding security re-
quirements. In order to assess the feasibility of
our proposal, we implemented our solution before
proceeding to performance tests.

The paper is structured as follows. In Sec-
tion 2, we describe then illustrate the security
concerns through a motivating scenario. After-
wards, we discuss related works in Section 3. In

Section 4, we detail our contribution. In Sec-
tions 5 and 6, we analyse the security of our sys-
tem and provide the results of some performance
tests. Finally, we conclude the paper in Section 7.

2 DMotivation

In Section 2.1, we illustrate the security needs
through a security-oriented lifeguard scenario.
Then, in Section 2.2, we highlight the security
concerns caused by data splitting.

2.1 Scenario

In our motivating scenario, we consider bathers
on beaches and lifeguards whose mission is to pro-
tect bathers from drowning. All bathers and life-
guards are equipped with RFID wristbands that
include geolocation sensors. The lifeguards need
to collect the geolocation information of bathers
and personal data to fulfill their role. To com-
ply with the GDPR regulation, the collected data
type must be determined in advance and exposed
clearly to the bathers to get their consent.
Moreover, different physical or logical over-
lays of brokers are present around the beach.
They collect information from the bathers and
relay it to the lifeguards. To avoid the auto-
matic use of encryption that would result in per-
formance issues, the data are rather split into
non-sensitive chunks sent to different overlays.
For instance, let us consider the case where the
bather has to publish the following attributes:
{name, location, age, gender, occupation}. — The
name is an identifying attribute. As a conse-
quence, it has to be encrypted to prevent an
immediate identification. The location, without
being combined with any identifying informa-
tion, is not considered as sensitive information.
While gender, age, and occupation are not confi-
dential or identifying attributes when left alone,
they might identify someone when grouped to-
gether. They are quasi-identifiers and need spe-
cific processing. Therefore, we split them into
two groups: {age, gender}, {occupation}. Note
that many combinations are possible. For exam-
ple, we could split them as {age}, {gender}, and
{occupation}, which is the most basic way to split
the data, but also the one that needs the highest
number of distinct overlays of brokers. So, these
two groups of quasi-identifiers are sent to two dif-
ferent overlays of brokers in order to avoid re-
identification attacks. An additional overlay of



brokers may be used to publish the encrypted at-
tributes and the non-confidential ones together,
which is not troublesome anymore.

This scenario stresses the need to process the
data properly, firstly to avoid sending groups of
attributes that would allow re-identification, but
to limit the number of overlays as well. However,
the second issue is more a matter of performance
rather than security and we do not address it in
this paper.

2.2 Security threats and
requirements

We consider the semi-trusted model where the
confidentiality of subscriptions, publications, and
payloads (see Section 1) is at risk, as well as
their privacy, if any of these three items contains
identifying or confidential attributes. Under that
model, our threat model includes the two follo-
wing attackers:
(I) The standalone broker: One broker belonging
to one overlay network gets knowledge only from
the flows it has directly access to;
(II) The colluding brokers: k — 1 brokers belon-
ging to different overlays (see Section 2.1) collude
to gather all their knowledge, i.e. quasi-identifiers
that were originally split apart thanks to the data
splitting method. Note that k corresponds to the
number of overlays used by a publisher to send
one of their quasi-identifiying attributes as part
of their publication.

The objective of both attackers is to:
1. Reidentify the publisher or the subscriber
thanks to the identity disclosure attack well
known in the statistical disclosure control do-
main. [Domingo-Ferrer, J. et al., 2015];
2. Get confidential information about the pub-
lisher or the subscriber thanks to the following
possible attribute disclosure attacks:
e Inference attack: “This category covers attacks
where the attacker has used existing knowledge
to aid the attack” [Henriksen-Bulmer, J. et al.,
2016], e.g. deducing the working place of a per-
son by knowing their movements with recurrent
GPS positioning;
e Homogeneity attack: “Re-identification by ho-
mogeneity consists of showing a subject’s belon-
ging to a homogeneous group in order to deduce
all, or part of his/her identity” [Aimeur, E. et
al., 2012]. Let us consider a correlation attack
in the lifeguard scenario. A malicious user may
use the auxiliary Table 1(a) to learn from the
pseudonymised table 1(b) that Alice is either a

student or a lifeguard, as only two people in the
lifeguard pseudonymised table are aged 18.

Names Age Occupation
Alice 18 Student
(a) Auxiliary table
Names Age Occupation
Ae25ade | 18 Student
Jths1s3 18 Lifeguard
Pdkfd23 | 24 Policeman

(b) Pseudonymised table used by lifeguards
Table 1: Lifeguards table

3 Related work

Current systems for privacy-preserving
pub/sub are mostly based on encrypted match-
ing for preserving the subscription and publi-
cation privacy. [lon, M. et al., 2012] designed
an encrypted matching scheme based upon
attribute-based encryption (ABE) and multi-
user searchable data encryption (SDE). The
scheme applies to any numerical operator as well
as string equalities. Attribute-based encryption
is used to enforce the confidentiality of pub-
lication payload. Subscription constraints are
encoded into an access tree. The non-leaf nodes
of the tree are threshold gates that specify the
number of sub-trees to be satisfied. In order to
handle inequality constraints, the tree uses “bag
of bits” representation [Bethencourt, J. et al.,
2007]. The encrypted matching scheme is based
on a premapped equality comparison. It means
that publication attributes and subscription
constraints are premapped to a set of values.
This mapping enables a matching strictly based
on equality comparisons. The preservation of
the publication payload privacy is achieved by
extending the ElGamal scheme [El Gamal, 1985]
to a proxy re-encryption context, the proxy being
the access broker of the publisher.

[Duan, L. et al., 2019] proposed a comprehen-
sive access control framework (CACN) by provid-
ing: (1) a privacy-preserving bi-directional pol-
icy matching scheme, and (2) a fully homomor-
phic encryption scheme for encrypting the publi-
cation payload. The bi-directional policy match-
ing allows subscribers and publishers to con-
trol the publication data to balance security re-
quirements and capabilities of the service. Ser-
vice privacy is provided through attribute en-
coding and anonymous-set-based principle. Fur-



thermore, Bloom filters are used as proposed
by [Barazzutti, R. et al., 2017] and sent as part of
access credentials with the publications. Bloom
filters enable to pre-filter publications—i.e. to fil-
ter out some publications before using the expen-
sive encrypted matching function.

To avoid the significant overhead of the en-
crypted matching function, there is another di-
rection related to the statistical disclosure control
domain, not yet applied to pub/sub systems, but
cited as a solution in a survey about the privacy-
aware outsourcing technologies in Cloud comput-
ing [Domingo-Ferrer, J. et al., 2019]. The authors
review masking methods based on data splitting
and anonymization. These different methods are
compared in terms of overhead, accuracy preser-
vation, and impact on data management. Ho-
momorphic encryption includes an overhead that
is linear with the data size; it involves expensive
primitives; and it provides high-level privacy of
data. Conversely, in data splitting, the overhead
is constant for all operations that are transpar-
ent for the Cloud service providers, but the data
privacy might be broken due to collusions or com-
promised metadata during the process.

To support the confidentiality of the pub-
lication payload, the Attribute-Based Encryp-
tion designed for encrypted data sharing can
be applied. The Key-Policy Attribute-Based
Encryption (KP-ABE) crypto system, designed
in [Goyal, V. et al., 2006] to enforce fine-
grained access control, relies on labelling cipher-
texts with sets of attributes while private keys
are associated with access structures to deter-
mine which cipher-texts a user might decrypt.
Ciphertext-Policy ABE (CP-ABE) is another
form of attribute-based encryption system in
which the private keys are labelled with at-
tributes, while the cipher-text is embedded with
access policy [Bethencourt, J. et al., 2007]. In
CP-ABE, the publisher can decide which archi-
tectural entity is allowed to decrypt, while in KP-
ABE, this role belongs to the authority that gen-
erated the keys.

Since the encryption scheme proposed by [lon,
M. et al., 2012] fits our data model and the
content-based pub/sub requirements, our work
extends the data splitting principles to the
pub/sub paradigm, and combines data splitting
to [Ion, M. et al., 2012] encryption scheme in
order to enforce privacy and confidentiality in
pub/sub systems.

Broker overlay

P access broker C access broker
® ®

Trusted Authority

Figure 1: Architectural entities of our DEBS system

4 Owur contribution

In Section 4.1, we provide an overview of our
proposal. We introduce the architectural entities
in Section 4.2, and then the data model of the
publications and the filter model of the subscrip-
tions in Section 4.3. Next, we explain how we
perform data splitting over different overlays of
brokers in Section 4.4. Finally, in Sections 4.5,
4.6, and 4.7, we present the algorithms of the
cryptographic system, respectively for handling
subscriptions and publications.

4.1 Overview

Our main contribution is the implementation of
a system using both data splitting and crypto-
graphic techniques to achieve the following prop-
erties:

e Publication payload confidentiality: our solu-
tion fully relies on [Ton, M. et al., 2012], which is
based on KP-ABE encryption;

e Publication privacy: our solution is based on
both the encrypted matching solution of [lon,
M. et al., 2012] and data splitting principles,
according to how much confidential are the at-
tributes (see Section 2.1). That is, for confidential
and identifying attributes, an encrypted match-
ing is performed by the brokers, and for quasi-
identifying attributes, data splitting is performed
prior to sending the quasi-identifying attributes
onto several separated overlays of brokers;

e Subscription filter privacy: thanks to the prox-
ies of both producer and consumer, the consumer
and the producer can benefit from the same level
of privacy.



4.2 Architectural entities

Figure 1 depicts the architectural entities of our
DEBS system:

e Producer P: the entity sending a publication p
to the DEBS system;

e Consumer C': the entity willing to receive pub-
lications satisfying subscription filter F;

e Trusted authority (TA): the entity that is res-
ponsible for generating and distributing the keys
to the different parties of the system;

e Access broker Bp of producer P: the broker
which P is connected to, and that first receives
the publications from P;

e Access Broker B¢ of consumer C': the broker
which C is connected to, and that first receives
the filter from C

e Brokers B: Brokers are organised into several
overlays (as displayed in Figure 2) in order to
split the data into the required amount and pre-
serve privacy;

e Prp and Pz are respectively the producer-
side proxy and the consumer-side proxy. Pzrp is
responsible for splitting the data according to the
PIA. Publication messages are self-describing so
that Pz can reassemble the original publication
from the different parts.

4.3 Publication data model and
subscription filter model

We base our model on content-based DEBS with
structured records:

e A publication p is a non-empty set of attributes
{0'17 ceey a’n}v

e An attribute a; is a (name;, val;) pair;

e Attribute names are unique: i # j = name; #
name;.

The corresponding filter model is :

e A filter F' is a conjunction of attribute filters:
F=A; A...\A;. A publication p matches filter
F if and only if it satisfies all the attributes filters
of I

e An attribute filter is a triple A; =
(name;, op,, valueOfRef ;), with name; being the
attribute name, op, being the test operator, and,
value OfRef ; being the reference value for the test.

Attributes can be optional in the publication,
and new attributes added without affecting exist-
ing filters.

4.4 Data splitting over different
overlays of brokers

Our DEBS system combines data splitting with
cryptography to achieve required security require-
ments. To the best of our knowledge, after
masking methods were suggested by [Domingo-
Ferrer, J. et al., 2019], no solutions using both
methods at the same time were developed for
the pub/sub paradigm. Our solution discrimi-
nates the attributes in the publication and split
the attributes according to their type. The iden-
tifying attributes are systematically encrypted,
while quasi-identifiers are sent apart to avoid re-
identification.

The purpose of our solution is to provide an al-
ternative to fully-encrypted publications and sub-
scriptions when confidentiality requirements are
not utmost. To illustrate our approach, let us
consider a publication p. The PIA has sorted
the publication as follows: p = idaur + ¢ gy, +
M Attr + M, where id 44 is the set of identifying
attributes, ¢i 4, is the set of quasi-identifiers,
rmaw- the remaining attributes, and m may
be unstructured content to be delivered to sub-
scribers. Afterwards, the proxy has to split the
quasi-identifiers into subgroups. Each subgroup
has a limited number of quasi-identifiers that to-
gether are not able to identify a user. Conse-
quently, we can further detail the composition
of our publication: p = idawur + {qiayr, tijes +
TM Ater, Where qigy,. is a subgroup of quasi-
identifiers attributes and J = {1,...,N} is the
set of subgroups of cardinality N.

Once the splitting is performed at proxy Pzp,
the outcome is given to publisher P, which en-
crypts the identifiers and gives them back to Pz p.
Then, Pzp distributes the publication to the N
overlays of brokers. Each overlay of brokers is
responsible for one subgroup of quasi-identifiers;
the encrypted attributes, and the remaining at-
tributes can be distributed on any of these over-
lays. The overlays of brokers route the different
parts of the publication. Proxy Pzc of consumer
C reassembles the different parts to reconstruct
the publication, which is provided to consumer

C.
4.5 Algorithms of the
cryptographic system

The cryptographic system of our DEBS system
puts into action the following algorithms:
e [nit(1%): at the beginning, the Trusted
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Figure 2: Data splitting workflow for privacy-
preserving pub/sub

Authority initiates the crypto system with
PublicParameters and a master key mk by run-
ning Init(1%), where k is a security parameter;

e KeyGen(mk, E): the Trusted Authority uses its
master key mk to compute a key for entity F, e.g.
the user-side key kup for publisher P or kuc for
consumer C, or the server-side keys—i.e broker-
side keys—for brokers Bp or B¢;

e RequestDecryptionKey(C,vyr): the Trusted Au-
thority returns the decryption key Dp to a re-
questing consumer C' owning the set of attributes
VF;

e Trapdoors(a): publisher P computes a trap-
door for an attribute as in multi-user SDE [Dong,
C. et al., 2008]. By extension, Trapdoors(vy,)
computes a trapdoor for each attribute in the set
of attributes v, and outputs T'(v,);

o Encr-Trapdrs(ksp,T(V,)): broker Bp encrypts
a trapdoor T'(v,) using its key ksp and outputs
Ct;

e Encr(kuc, F,yr): consumer C encrypts a filter
F using the user-side key kuc and the set of at-
tributes appearing in F', yr, to output cg;

e Re-Enc-Filt(ksc,cp): Broker Be re-encrypts
an encrypted filter c¢p using the server-side key
ksc and outputs cy;

e Match(ct, cs): a broker checks whether each en-
crypted attribute of c; matches any of the at-
tributes encrypted into the trapdoors c;

o KP-ABE-Encr(p,vp): publisher P encrypts a
publication p using KP-ABE under the set of at-
tributes 7y,, and outputs c,;

e Pre-Decr(ksc, ¢, ): broker Be pre-decrypts the
content ¢, using its server-side key ks, for next
the consumer C' to be able to decrypt the publi-
cation. B¢ outputs ¢),’;

e KP-ABE-Decr(Dp,c,,): consumer C finalises
the decryption of the publication using its de-

cryption key Dp over the pre-decrypted content
¢!, sent by its access broker Be.

4.6 Subscription handling

We now describe subscription handling in this
section and publication handling in the next sec-
tion. Figure 3 displays the corresponding inter-
action diagram, where message numbers of the fi-
gure correspond to item numbers in the sections.

A consumer C that subscribes to filter F' =
(A1 A ...) performs the following actions:

1. C builds the set of attribute names vp =
{namea,,...};

2. C sends a request to the Trusted Authority to
get its user-side key kuc;

3. C sends a request with ~p to the
Trusted Authority for the decryption key Dpg
(RequestDecryptionKey(C, vr));

4. C encrypts the filter F' by using algorithm
Encr(kuc, F,vr) = {Encr(kuc, (namea,, op 4,
valueOfRef 4, ), {namea,}),...};

5. C sends to its access broker B¢o a sub call with
the content of Encr(kuc, F,~vr), which we note
crp = {cr,, ..} in the following.

When an access broker Be receives the
subscription from C, B¢ performs the following
actions:

6. B¢ sends a request with the identity of C to
the Trusted Authority to get C’s server-side key
ksc;

7. Be  re-encrypts  the  encrypted
subscription filter by executing al-
gorithm Re-Enc-Filt(ksc, cp) =
{Re-Enc-Filt(ksc, cry, )s )3

8. B¢ broadcasts the encrypted filter to all
its neighbouring brokers, which forward it to
all their neighbouring brokers, etc., so that the
encrypted filter is installed on all the brokers of
the overlay.

4.7 Publication handling

A publication p = {aq,...} is published by the
producer P by performing the following actions:
9. P builds the set of attribute names v, =
{nameq,,...};

10. P sends a request with its identity to the
Trusted Authority to get its user-side key kup;
11. P sends a request with 7, to the Trusted Au-
thority to get the public parameters to compute
the Lagrange coefficients as in [Bethencourt, J. et
al., 2007] L(v,) = {L(nameg, ), ...};

12. P encrypts the publication by executing al-



7. Re-Encrypt-Filter (ksc, cp) = { Re-Encrypt-Filter (ksc, cry, ), -}
19. ¢, = Pre-Decrypt(ksc, KP-ABE-Encrypt(p,~p)) + L(v,) + Encrypt- Trapdoors(kup, T(v,))

18. forward(KP-ABE-Encrypt(, p,v,) + L(v,) + Encrypt- Trapdoors(ksp, T(v,)))
w, forward(Re- Encrypt-Filter(ksc, cp))

9. 7, = {name,,, ...}
12. KP-ABE-Encrypt(p,v,)
13. T(yp) = {T(name,, ), ...}

1. vr = {namey,, ...}
4. cp,, = Encrypt(kuc. (...), {namea, })
P = {CF4\ s}

21. p = KP-ABE-Decrypt(Dp, c,,)
5. subscribe(cp)
<

Ve, € { Encrypt- Trapdoors(E
Match(cy, cr)

10. kup = getUserSideKey(PN

11. getPublicParams()

.T'(namey)), ...},

Be

—
20. notify(c},)

2. kuc = getUserSideKey(C')
3. Dp = RequestDecryptionKey(C, vr)

Figure 3: Interaction diagram of subscription handling and publication handling with encryption

gorithm KP-ABE-Encr(p,vp);

13. P builds the set of trapdoors Trapdrs(y,) =
T(3) = {T(name,, ), ..}

14. P sends to its access broker Bp a pub call with
the content KP-ABE-Encr(p,vp)+L{(vp)+T (7).

When an access broker Bp receives the publi-
cation from P, Bp performs the following actions:
15. Bp sends a request with the identity of P to
the Trusted Authority to get P’s server-side key
ksp;

16. Bp encrypts the trapdoors by executing algo-
rithm Encr-Trapdrs(ksp,T(7,)), which outputs
the set { Encr-Trapdrs(ksp, T (namey)), ...};

17. Bp performs the encryption matching as fol-
lows: Vey € {Re-Enc-Filt(ksp,cr, ), -},

Vey € {Encr-Trapdrs(ksp, T'(namey)), ...},
Match(cy, cy);

18. When the publication matches a filter, that
is the previous formula is satisfied, B, forwards
the publication to the brokers along the paths to
the access brokers of the corresponding consumer,
the content being KP-ABE-Encr(p,~yp)+L(vp) +
Encr-Trapdrs(ksp, T (7vp)).

When an access broker Bo of consumer C'
receives a publication, B¢ performs the following
actions:

19. B¢ predecrypts the publication by executing
Pre-Decr(ksc, KP-ABE-Encr(p,vp))-

20. Be  notifies  consumer C  with
the  content ¢/, that is equal to

Pre-Decr(ksc, KP-ABE-Encr(p, 7))

+L(vp)
+Encr-Trapdrs(ksp, T (vp)).
When a consumer C' receives a publication, C

performs the following actions:

21. C decrypts the publication by executing algo-
rithm KP-ABE-Decr(Dp,c,,), which outputs the
publication p = {aq, ...}

5 Security analysis

Since our encrypted matching solution is
based upon the scheme of [Ion, M. et al., 2012],
our security analysis focuses on how data splitting
might alter this solution. Note that the encrypted
matching scheme from [Ion, M. et al., 2012] sup-
ports both publication and subscription confiden-
tiality, but also payload confidentiality. Conse-
quently, when the security requirements require
strong confidentiality, our model can provide it
by fully relying on this scheme. Brokers are then
able to match the filters against the publications
and to deliver the publications to the interested
consumers with no ability to learn the content of
the publication.

Let us now consider the broker attackers (I)
and (IT) described in Section 2.2, and the type of
information that goes through different overlays
(see Section 4.4):

(a) Encrypted and non confidential attributes—
over one unique overlay: This is a special case
in which attributes are sent over one specific
overlay;

(b) Each subgroup of quasi-identifier
attributes—over N overlays: If a quasi-
identifier is made of N subgroups of at-



tributes, then these sets of quasi-attributes
are sent over N overlays;

(¢) Remaining attributes—over one unique over-
lay: This is a special case in which the re-
maining attributes are sent over one specific
overlay;

(d.) Encrypted, non confidential, and remaining
attributes—over N overlays: The encrypted,
non confidential and remaining attributes are
sent over the IV overlays corresponding each
to a set of quasi-identifiers.

According to the attacker type and the kind of
attributes (a), (b), or (¢) that are made accessible
to brokers, the following security analysis can be
conducted.

Let us start with the attacker targeting the
publication and thus the publisher’s privacy:

(I) with (a): The standalone broker has no fur-
ther knowledge than in [Ion, M. et al., 2012], and
benefits directly from the security level of this lat-
ter scheme because our encrypted matching ap-
proach is based upon this scheme. Note that this
scheme is proved to be indistinguishable under
the chosen plain-text attack (IND-CPA): in case
the attacker has the possibility to get the cipher-
texts corresponding to their message choices se-
veral times, they cannot successfully solve a game
with a non-negligible probability, where the game
asks the attacker to decide among two cleartexts,
of which one corresponds to a given cipher-text.
Since our semi-trusted model considers passive
attackers, the IND-CPA assumption is appropri-
ate;

(1) with (b): The standalone broker gets access to
only one subgroup of quasi-identifiers, which by
definition does not permit to reidentify the pub-
lisher;

(1) with (c): Because the remaining attributes
bring non-sensitive information, the attacker can-
not deduce any identifying or any relevant infor-
mation about the publisher;

(1) with (d): This case is a sub-case of the next
considered attack—i.e.,(IT) with (a), (b), (c), and
(d)—in which N = 1: the standalone broker gets
access to one overlay: encrypted, non confiden-
tial, one subgroup of quasi-identifiers, and the re-
maining attributes;

(I1) with (a), (b), (¢) and (d): The colluding bro-
kers might aggregate several attributes including
encrypted, non confidential, and remaining at-
tributes, with N — 1 subgroups of attributes be-
longing to one quasi-identifier of the publisher. In
that case, N — 1 subgroups of attributes do not
leak any identifying information. Thus, the at-

tackers are not able to reidentify the publisher.
However, they can leak information about some
attributes for an attacker to infer information
about the publisher. Actually, the publisher de-
cides how to implement data splitting to meet the
privacy requirements.

Let us continue with the attacker targeting the
subscriber’s filter, and thus the subscriber’s pri-
vacy. Since the attacker implements the matching
operation between the publication attributes and
the filter attributes, they can only deduce infor-
mation of interest in case of matching, as follows:
(I) with (a): The attackers are not able to infer
information of interest from encrypted attributes.
However, they can infer some information from
non-confidential attributes. This is up to the pub-
lisher to decide which attributes are considered as
non-confidential, i.e. not critical for the privacy
of the publisher and the subscriber;

(I) with (b): The attacker has no further informa-
tion than what is available through the subgroup
of attributes. That is why, it is of importance to
split attributes into adequate subgroups of quasi-
identifiers, so that the privacy of the subscriber
is preserved in case of matching;

(I) with (c): The same remark applies as for
attacker (I) with (a) with non-confidential at-
tributes;

(1I) with (a), (b), and (c): By combining several
data, the attacker can extend their knowledge,
but without being be able to infer information
about the subscriber or the publisher. As such,
the carefulness with which data splitting is per-
formed over attributes is crucial for preserving
privacy of both the publisher and the subscriber.

6 Performance evaluation

In order to assess the performance of our so-
lution, we implemented the prototype PP-DEBS,
for Privacy-Preserving DEBS', with encryption
matching and data splitting in the Java language
(version 8). The prototype was deployed on a ma-
chine with an Intel Xeon E5 v3 3.1GHz and 8GB
of RAM. Our main interest is to illustrate the po-
tential benefit in performance brought by the use
of data splitting. To provide a complete set of
results, we perform four different experiments on
a simple scenario. The scenario consists in publi-
cations that contain an increasing number of at-
tributes (from 1 to 20), by a single publisher, and

1https ://fusionforge.int-evry.fr/scm/7group_id=175



delivered to a single subscriber. We only consider
a single broker to perform the matching opera-
tion on the three types of attributes: identifiers,
quasi-identifiers and non-confidential attributes.
Consequently, the time needed to route all the
packets to the corresponding overlays of brokers is
not considered. The aforementioned tests target
the following phases: the initialisation performed
by the Trusted Authority at the beginning, the
encryption of both attributes and filters by the
clients as well as the re-encryption by the access
brokers, and the matching on encrypted and non-
encrypted data handled by the brokers.

First of all, we conduct initialisation tests with
the following key lengths in bits: 64, 128, 256,
512, and 1024. Given the format of the encryp-
tion scheme, it would be illusory to use the three
first lengths, but it remains relevant to measure
their impact on the initialisation phase to deter-
mine more precisely their evolution following the
key lengths. The tests reveal an exponential in-
crease of time as well as an important rise of the
standard deviation. We observe indeed an ave-
rage of 6.50ms for 64 bits length, with 8.8% of
standard deviation on 10.000 executions, while we
note an average of 23.20s for 1.024 bits length,
with 72.6% of standard deviation on 200 exe-
cutions. The method used to generate the first
prime numbers on which the encryption scheme
is based explains these results. We use one itera-
tive function provided by the Biglnteger class for
generating a prime number g. This function con-
siders two tests, one for testing a first try that ¢
is prime with a probability of 1 —2'% and one for
testing that 2¢ + 1 is prime.

Secondly, we execute performance tests for
measuring the matching time on encrypted and
non-encrypted attributes. We only consider at-
tributes of type Integer with an arbitrary value
of 1000, and filters with the equal operator.
We make the distinction between split and un-
split data for non-encrypted attributes. We test
these operations with 1024 bits key length, on
500 000 executions, and for a number of attributes
varying between 1 and 20. The graph in Figure 4
displays matching time for non-encrypted data,
with confidence level of 95%.

The first noticeable fact lies in the impossi-
bility to discern the confidence intervals from the
curves, which demonstrates the stability of the
matching process. The first experiment reveals
that matching on encrypted data follows a li-
near evolution, consuming 0.158ms per attribute
on average. Regarding this result, it is obvious
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Figure 4: Matching time for non-encrypted data

that matching on encrypted data seriously alters
performances: we can observe two to three or-
ders of magnitude comparing to matching on non-
encrypted data, for a high to a low number of at-
tributes. It is although not surprising to notice
that the curve for split non-encrypted data tends
to be similar to a square function, which can be
explained by the implementation. We chose to
split the group of quasi-identifiers in the maxi-
mum possible packets, e.g. with one attribute per
packet. To perform matching, we consequently
had to check for each attribute all the filters cor-
responding to quasi-identifier attributes.

Encryption and re-encryption of attributes
and filters are still the most time-consuming
phases. We conducted tests for these operations
in the same conditions as previously, for 1500 ex-
ecutions. The graphs in Figure 5 displays encryp-
tion time on publisher’s side, this time including
also the re-encryption by the access broker, with
a confidence interval for 95% of certainty.

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Number of attributes

Figure 5: Encryption on publisher’s side

The experiments demonstrate that the en-
cryption process is very stable. The encryption
on the subscriber’s side follows a linear evolu-
tion, consuming 3ms per attribute, while the en-
cryption on the publisher’s side consumes almost
600ms for 20 attributes. It is crucial to remember



that encryption at the subscriber’s side is only
performed once for a given filter, whilst it has
to be computed for each publication on the pub-
lisher’s side.

As a summary, the experiments illustrate that
data-splitting is highly recommended in pub/sub
systems, given the amount of time spent by ev-
ery broker for each publication in matching over
encrypted-data. In addition, the encryption on
the publisher’s side, followed by a re-encryption
by the access broker, represents a considerable
overhead on performance, given it has to be com-
puted for each publication. Finally, the encryp-
tion process done at the subscriber’s side is fol-
lowed by a re-encryption process which stands for
a more limited impact, yet not negligible on the
global performances of the system.

7 Conclusion

In this paper, we presented a pub/sub system
combining data encryption and data splitting to
reduce the number of encrypted matching func-
tion calls. Our scheme preserves the privacy of
the users by preventing their identification, and
lets the users choose the degree of privacy they
need. Privacy can then be enforced by relying on
encrypted matching.

To demonstrate the relevance of our solution,
we conducted a security analysis based on an orig-
inal attacker model, introducing new threats with
the data splitting procedure, such as the collusion
between overlays for gathering quasi-identifiers.
Besides, we implemented our solution in the Java
language and evaluated the performance of this
implementation. This highlighted the cost of the
encrypted matching function and the efficiency of
our solution in terms of performance.
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