M. Z. Ibrahim, A. A. Sarhan, F. Yusuf, and M. Hamdi, Biomedical materials and techniques to improve the tribological, mechanical and biomedical properties of orthopedic implants-A review article, J. Alloys Compd, vol.714, pp.636-667, 2017.

C. Oldani and A. Dominguez, Titanium as a biomaterial for implants, Recent Adv. Arthroplast, vol.2012, pp.149-162

M. Kaur and K. Singh, Review on titanium and titanium based alloys as biomaterials for orthopedic applications, Mater. Sci. Eng. C, vol.102, pp.844-862, 2019.

J. M. Cordeiro, T. Beline, A. L. Ribeiro, E. C. Rangel, N. C. Da-cruz et al., Development of binary and ternary titanium alloys for dental implants, Dent. Mater, vol.33, pp.1244-1257, 2017.

S. Prasad, M. Ehrensberger, M. Prasad-gibson, H. Kim, E. A. Monaco et al., Biomaterial properties of titanium in dentistry, J. Oral Biosci, vol.57, pp.192-199, 2015.

A. Revathi, A. D. Borrás, A. I. Muñoz, C. Richard, and G. Manivasagam, Degradation mechanisms and future challenges of titanium and its alloys for dental implant applications in oral environment, Mater. Sci. Eng. C, vol.76, pp.1354-1368, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01857034

H. Koizumi, Y. Takeuchi, H. Imaie, T. Kawai, and T. Yoneyama, Application of titanium and titanium alloys to fixed dental prostheses, J. Prosthodont. Res, vol.63, p.707, 2019.

H. A. Acciari, D. P. Palma, E. N. Codaro, Q. Zhou, J. Wang et al., Surface modifications by both anodic oxidation and ion beam implantation on electropolished titanium substrates, Appl. Surf. Sci, vol.487, pp.1111-1120, 2019.

T. Akatsu, Y. Yamada, Y. Hoshikawa, T. Onoki, Y. Shinoda et al., Multifunctional porous titanium oxide coating with apatite forming ability and photocatalytic activity on a titanium substrate formed by plasma, Mater. Sci. Eng. C, vol.33, pp.4871-4875, 2013.

X. Chen, Y. Chen, J. Shen, J. Xu, L. Zhu et al., Positive modulation of osteogenesis on a titanium oxide surface incorporating strontium oxide: An in vitro and in vivo study, Mater. Sci. Eng. C, vol.99, pp.710-718, 2019.

Z. G. Karaji, R. Hedayati, B. Pouran, I. Apachitei, and A. A. Zadpoor, Effects of plasma electrolytic oxidation process on the mechanical properties of additively manufactured porous biomaterials, Mater. Sci. Eng. C, vol.76, pp.406-416, 2017.

H. Moravec, M. Vandrovcova, K. Chotova, J. Fojt, E. Pruchova et al., Cell interaction with modified nanotubes formed on titanium alloy Ti-6Al-4V, Mater. Sci. Eng. C, vol.65, pp.313-322, 2016.

C. E. Tanase, M. Golozar, S. M. Best, and R. A. Brooks, Cell response to plasma electrolytic oxidation surface-modified low-modulus ?-type titanium alloys, Colloids Surf. B Biointerfaces, vol.176, pp.176-184, 2019.

H. Li, D. Zhou, Q. Zhang, C. Feng, W. Zheng et al., Vanadium exposure-induced neurobehavioral alterations among Chinese workers, Neurotoxicology, vol.36, pp.49-54, 2013.

C. A. Show and L. Tomljenovic, Aluminum in the central nervous system (CNS): Toxicity in humans and animals, vaccine adjuvants, and autoimmunity, Immunol. Res, vol.56, pp.304-316, 2013.

R. I. Asri, W. S. Harun, M. Samykano, N. A. Lah, S. A. Ghani et al., Corrosion and surface modification on biocompatible metals: A review, Mater. Sci. Eng. C, vol.77, pp.1261-1274, 2017.

J. Park, S. Bauer, K. Von-der-mark, and P. Schmuki, Nanosize and Vitality: TiO2Nanotube Diameter Directs Cell Fate, Nano Lett, vol.7, pp.1686-1691, 2007.

X. Chen, H. Fan, X. Deng, L. Wu, T. Yi et al.,

V. Dumas, A. Guignandon, L. Vico, C. Mauclair, X. Zapata et al., Femtosecond laser nano/micro patterning of titanium influences mesenchymal stem cell adhesion and commitment, Biomed. Mater, vol.10, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01414931

B. Majkowska, M. Jazdzewska, E. Wo?owiec, W. Piekoszewski, L. Klimek et al., The possibility of use of laser-modified Ti6Al4V alloy in friction pairs in endoprostheses, Arch. Met. Mater, vol.60, pp.755-758, 2015.

P. Maurel, L. Weiss, P. Bocher, E. Fleury, and T. Grosdidier, Oxide dependent wear mechanisms of titanium against a steel counterface: Influence of SMAT nanostructured surface, Wear, pp.245-255, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02455058

R. Huang, L. Zhang, L. Huang, and J. Zhu, Enhanced in-vitro osteoblastic functions on ?-type titanium alloy using surface mechanical attrition treatment, Mater. Sci. Eng. C, vol.97, pp.688-697, 2019.

P. Ghensi, E. Bressan, C. Gardin, L. Ferroni, L. Ruffato et al., Osteogrowth induction titanium surface treatment reduces ROS production of mesenchymal stem cells increasing their osteogenic commitment, Mater. Sci. Eng. C, vol.74, pp.389-398, 2017.

M. Parchanska-kowalik, E. Wo?owiec-korecka, and L. Klimek, Effect of chemical surface treatment of titanium on its bond with dental ceramics, J. Prosthet. Dent, vol.120, pp.470-475, 2018.

R. I. Asri, W. S. Harun, M. A. Hassan, S. A. Ghani, and Z. Buyong, A review of hydroxyapatite-based coating techniques: Sol-gel and electrochemical depositions on biocompatible metals, J. Mech. Behav. Biomed. Mater, vol.57, pp.95-108, 2016.

W. S. Harun, R. I. Asri, J. Alias, F. H. Zulkifli, K. Kadirgama et al., A comprehensive review of hydroxyapatite-based coatings adhesion on metallic biomaterials, Ceram. Int, vol.44, pp.1250-1268, 2018.

A. Bral and M. Y. Mommaerts, In vivo biofunctionalization of titanium patient-specific implants with nano hydroxyapatite and other nano calcium phosphate coatings: A systematic review, J. Cranio-Maxillofac. Surg, vol.44, pp.400-412, 2016.

M. Supernak-marczewska, A. Ossowska, P. Str?kowska, and A. Zieli?ski, Nanotubular oxide layers and hydroxyapatite coatings on porous titanium alloy Ti13Nb13Zr, Adv. Mater. Sci, vol.18, pp.17-23, 2018.

M. Bartmanski, B. Cieslik, J. Glodowska, P. Kalka, L. Pawlowski et al., Electrophoretic deposition (EPD) of nanohydroxyapatite-Nanosilver coatings on Ti13Zr13Nb alloy, Ceram. Int, vol.43, pp.11820-11829, 2017.

D. Li, K. Li, and H. Shan, Improving biocompatibility of titanium alloy scaffolds by calcium incorporated silicalite-1 coatings, Inorg. Chem. Commun, vol.102, pp.61-65, 2019.

N. Karimi, M. Kharaziha, and K. Raeissi, Electrophoretic deposition of chitosan reinforced graphene oxide-hydroxyapatite on the anodized titanium to improve biological and electrochemical characteristics, Mater. Sci. Eng. C, vol.98, pp.140-152, 2019.

L. Fathyunes, J. Khalil-allafi, and M. Moosavifar, Development of graphene oxide/calcium phosphate coating by pulse electrodeposition on anodized titanium: Biocorrosion and mechanical behavior, J. Mech. Behav. Biomed. Mater, vol.90, pp.575-586, 2019.

M. Szklarska, G. Dercz, W. Simka, and B. ?osiewicz, Ac impedance study on the interfacial properties of passivated Ti13Zr13Nb alloy in physiological saline solution, Surf. Interface Anal, vol.46, pp.698-701, 2014.

D. Pradhan, A. W. Wren, S. T. Misture, and N. P. Mellott, Investigating the structure and biocompatibility of niobium and titanium oxides as coatings for orthopedic metallic implants, Mater. Sci. Eng. C, vol.58, pp.918-926, 2016.

A. Gao, R. Hang, L. Bai, B. Tang, and P. K. Chu, Electrochemical surface engineering of titanium-based alloys for biomedical application, Electrochim. Acta, vol.271, pp.699-718, 2018.

K. Anio?ek, M. Kupka, and A. Barylski, Sliding wear resistance of oxide layers formed on a titanium surface during thermal oxidation, Wear, pp.23-29, 2016.

M. Khodaei and S. H. Kelishadi, The effect of different oxidizing ions on hydrogen peroxide treatment of titanium dental implant, Surf. Coat. Technol, vol.353, pp.158-162, 2018.

K. M. ??cka, J. G?siorek, A. Mazur-nowacka, B. Szczygie?, and A. J. Anto?czak, Adhesion and corrosion resistance of laser-oxidized titanium in potential biomedical application, Surf. Coat. Technol, vol.366, pp.179-189, 2019.

D. J. Lin, L. J. Fuh, C. Y. Chen, W. C. Chen, J. H. Lin et al., Rapid nano-scale surface modification on micro-arc oxidation coated titanium by microwave-assisted hydrothermal process, Mater. Sci. Eng. C, vol.95, pp.236-247, 2019.

X. He, X. Zhang, X. Wang, and L. Qin, Review of Antibacterial Activity of Titanium-Based Implants' Surfaces Fabricated by Micro-Arc Oxidation, vol.7, p.45, 2017.

S. Lim and H. Choe, Bioactive apatite formation on PEO-treated Ti-6Al-4V alloy after 3rd anodic titanium oxidation, Appl. Surf. Sci, vol.484, pp.365-373, 2019.

J. M. Cordeiro, B. E. Nagay, A. L. Ribeiro, N. C. Da-cruz, E. C. Rangel et al., Functionalization of an experimental Ti-Nb-Zr-Ta alloy with a biomimetic coating produced by plasma electrolytic oxidation, J. Alloys Compd, vol.770, pp.1038-1048, 2019.

Y. Li, W. Wang, H. Liu, J. Lei, J. Zhang et al., Formation and in vitro/in vivo performance of "cortex-like" micro/nanostructured TiO 2 coatings on titanium by micro-arc oxidation, Mater. Sci. Eng. C, vol.87, pp.90-103, 2018.

B. Wu, S. Xiong, Y. Guo, Y. Chen, P. Huang et al., Tooth-colored bioactive titanium alloy prepared with anodic oxidation method for dental implant application, Mater. Lett, vol.248, pp.134-137, 2019.

A. Ossowska, S. Sobieszczyk, M. Supernak, and A. Zielinski, Morphology and properties of nanotubular oxide layer on the "Ti-13Zr-13Nb" alloy, Surf. Coat. Technol, vol.258, pp.1239-1248, 2014.

T. Li, K. Gulati, N. Wang, Z. Zhang, and S. Ivanovski, Understanding and augmenting the stability of therapeutic nanotubes on anodized titanium implants, Mater. Sci. Eng. C, vol.88, pp.182-195, 2018.

A. Ossowska, R. Beutner, D. Scharnweber, and A. Zieli?ski, Properties of composite oxide layers on the Ti13Nb13Zr alloy, Surf. Eng, vol.33, pp.841-848, 2017.

G. Wang, Y. Wan, B. Ren, and Z. Liu, Bioactivity of micropatterned TiO 2 nanotubes fabricated by micro-milling and anodic oxidation, Mater. Sci. Eng. C, vol.95, pp.114-121, 2019.

P. Roy, S. Berger, and P. Schmuki, TiO 2 Nanotubes: Synthesis and applications, Angew. Chem. Int. Ed, vol.50, pp.2904-2939, 2011.

R. Beranek, H. Hildebrand, and P. Schmuki, Self-organized porous titanium oxide prepared in H 2 SO 4 / HF electrolytes, Electrochem. Solid State Lett, vol.6, pp.12-14, 2003.

A. T. Valota, D. J. Leclere, P. Skeldon, M. Curioni, T. Hashimoto et al., Influence of water content on nanotubular anodic titania formed in fluoride/glycerolelectrolytes, Electrochim. Acta, vol.54, pp.4321-4327, 2009.

S. P. Albu, A. Ghicov, S. Aldabergenova, P. Drechsel, D. Le-clere et al., Formation of double-walled TiO 2 nanotubes and robust anatase membranes, Adv. Mater, vol.20, pp.4135-4139, 2008.

H. Habazaki, K. Fushimi, K. Shimizu, P. Skeldon, and G. E. Thompson, Fast migration of fluoride ions in growing anodic titanium oxide, Electrochem. Commun, vol.9, pp.1222-1227, 2007.

S. Berger, J. Kunze, P. Schmuki, A. T. Valota, D. J. Leclere et al., Influence of water content on the growth of anodic TiO 2 nanotubes in fluoride-containing ethylene glycol electrolytes, J. Electrochem. Soc, p.157, 2010.

A. Majchrowicz, A. Roguska, M. Pisarek, and M. Lewandowska, Tailoring the morphology of nanotubular oxide layers on Ti-24Nb-4Zr-8Sn ?-phase titanium alloy, Thin Solid Films, vol.679, pp.15-21, 2019.

J. Huang, X. Zhang, W. Yan, Z. Chen, X. Shuai et al., Nanotubular topography enhances the bioactivity of titanium implants, Nanomedicine, vol.13, pp.1913-1923, 2017.

E. Pruchova, M. Kosova, J. Fojt, P. Jarolimova, E. Jablonska et al., A two-phase gradual silver release mechanism from a nanostructured TiAlV surface as a possible antibacterial modification in implants, Bioelectrochemistry, vol.127, pp.26-34, 2019.

W. F. Oliveira, I. R. Arruda, G. M. Silva, G. Machado, L. C. Coelho et al., Functionalization of titanium dioxide nanotubes with biomolecules for biomedical applications, Mater. Sci. Eng. C, vol.81, pp.597-606, 2017.

J. Zhou, M. A. Frank, Y. Yang, A. R. Boccaccini, and S. Virtanen, A novel local drug delivery system: Superhydrophobic titanium oxide nanotube arrays serve as the drug reservoir and ultrasonication functions as the drug release trigger, Mater. Sci. Eng. C, vol.82, pp.277-283, 2018.

H. Wu, L. Xie, R. Zhang, Y. Tian, S. Liu et al., A novel method to fabricate organic-free superhydrophobic surface on titanium substrates by removal of surface hydroxyl groups, Appl. Surf. Sci, vol.479, pp.1089-1097, 2019.

A. M. Vilardella, N. Cinca, N. Garcia-giralt, C. Müller, S. Dosta et al., In-vitro study of hierarchical structures: Anodic oxidation and alkaline treatments onto highly rough titanium cold gas spray coatings for biomedical applications, Mater. Sci. Eng. C, vol.91, pp.589-596, 2018.

A. Esmaeilnejad, P. Mahmoudi, A. Zamanian, and M. Mozafari, Synthesis of titanium oxide nanotubes and their decoration by MnO nanoparticles for biomedical applications, Ceram. Int, vol.45, pp.19275-19282, 2019.

F. Veronesi, G. Giavaresi, M. Fini, G. Longo, G. Longo et al., Osseointegration is improved by coating titanium implants with a nanostructured thin film with titanium carbide and titanium oxides clustered around graphitic carbon, Mater. Sci. Eng. C, vol.70, pp.264-271, 2017.

L. O. Berbel, E. P. Bonczek, I. K. Karousis, G. A. Kotsakis, and I. Costa, Determinants of corrosion resistance of Ti-6Al-4V alloy dental implants in an In Vitro model of peri-implant inflammation, PLoS ONE, 2019.

S. Van-gilsa, P. Masta, E. Stijnsb, and H. Terryna, Colour properties of barrier anodic oxide films on aluminium and titanium studied with total reflectance and spectroscopic ellipsometry, Surf. Coat. Technol, vol.185, pp.303-310, 2004.

X. Yan and X. Chen, Titanium dioxide nanomaterials, Encyclopedia of Inorganic and Bioinorganic Chemistry

J. Wiley, &. Sons, and L. , , 2015.

E. J. Ekoi, A. Gowen, R. Dorrepaal, and D. P. Dowling, Characterisation of titanium oxide layers using Raman spectroscopy and optical profilometry: Influence of oxide properties, Results Phys, vol.12, pp.1574-1585, 2019.

A. Gajovi?, I. Fri??i?, M. Plodinec, and D. Ivekovi?, High temperature Raman spectroscopy of titanate nanotubes, J. Mol. Struct, pp.183-191, 2009.

D. V. Bavykin and F. C. Walsh, Titanate and titania nanotubes: Synthesis, properties and applications, RSC Nanosci. Nanotechnol, vol.12, 2010.

B. Han, E. Z. Nezhad, F. Musharavati, F. Jaber, and S. Bae, Tribo-Mechanical Properties and Corrosion Behavior Investigation of Anodized Ti-V Alloy, vol.8, p.459, 2018.

A. Kodama, S. Bauer, A. Komatsu, H. Asoh, S. Ono et al., Bioactivation of titanium surfaces using coatings of TiO 2 nanotubes rapidly pre-loaded with synthetic hydroxyapatite, Acta Biomater, vol.5, pp.2322-2330, 2009.

A. Mazare, G. Totea, C. Burnei, P. Schmuki, I. Demetrescu et al., Corrosion, antibacterial activity and haemocompatibility of TiO 2 nanotubes as a function of their annealing temperature, Corros. Sci, vol.103, pp.215-222, 2016.

T. Hryniewicz, K. Rokosz, J. Valí?ek, and R. Rokicki, Effect of magnetoelectropolishing on nanohardness and Young's modulus of titanium biomaterial, Mater. Lett, vol.83, pp.69-72, 2012.

A. C. Ficher-cripps, Critical Review of Analysis and Interpretation of nanoindentation test data, Surf. Coat. Technol, pp.4153-4165, 0200.

J. R. Tuck, A. M. Korsunsky, D. G. Bhat, and S. J. Bull, Indentation hardness evaluation of cathodic arc deposited thin hard coatings, Surf. Coat. Technol, vol.139, pp.63-74, 2001.

E. Jiménez-piquéa, Y. Gaillardb, and M. Anglada, Instrumented indentation of layered ceramic materials, Key Eng. Mater, vol.333, pp.107-116, 2007.

J. K. Hirvonen, Ion Implantation, 1980.

S. Heise, M. Höhlinger, Y. T. Hernandez, J. J. Palacio, J. A. Ortiz et al., Electrophoretic deposition and characterization of chitosan/bioactive glass composite coatings on Mg alloy substrates, Electrochim. Acta, vol.232, pp.456-464, 2017.

R. Ion, A. B. Stoian, C. Dumitriu, S. Grigorescu, A. Mazare et al., Nanochannels formed on TiZr alloy improvebiological response, Acta Biomater, vol.24, pp.370-377, 2015.

Y. Ammar, D. C. Swailes, B. N. Bridgens, and J. Chen, Influence of surface roughness on the initial formation of biofilm, Surf. Coat. Technol, vol.284, pp.410-416, 2015.

V. S. Saji, H. C. Choe, and W. A. Brantley, An electrochemical study on self-ordered nanoporous and nanotubular oxide on Ti-35Nb-5Ta-7Zr alloy for biomedical applications, Acta Biomater, vol.5, pp.2303-2310, 2009.

A. Mazare, M. Dilea, and D. Ionita, Demetrescu, I. Electrochemical behaviour insimulated body fluid of TiO 2 nanotubes on TiAlNb alloy elaborated in variousanodizing electrolyte, Surf. Interface Anal, vol.46, pp.186-192, 2014.

M. Lorenzetti, I. Dogsa, T. Stosicki, D. Stopar, M. Kalin et al., The influence of surface modification on bacterial adhesion to titanium-based substrates, ACS Appl. Mater. Interfaces, vol.7, pp.1644-1651, 2015.

I. Yoda, H. Koseki, M. Tomita, T. Shida, H. Horiuchi et al., Effect of surface roughness of biomaterials on Staphylococcus epidermidis adhesion, BMC Microbiol, vol.14, 2014.

Y. Cao, B. Su, S. Chinnaraj, S. Jana, L. Bowen et al., Nanostructured titanium surfaces exhibit recalcitrance towards Staphylococcus epidermidis biofilm formation, Sci. Rep, 1071.

B. Ercan, K. M. Kummer, K. M. Tarquinio, and T. J. Webster, Decreased Staphylococcus aureus biofilm growth on anodized nanotubular titanium and the effect of electrical stimulation, Acta Biomater, vol.7, pp.3003-3012, 2011.

V. S. Simi and N. Rajendran, Influence of tunable diameter on the electrochemical behavior and antibacterial activity of titania nanotube arrays for biomedical applications, Mater. Charact, vol.129, pp.67-79, 2017.

H. Chouirfa, H. Bouloussa, V. Migonney, and C. Falentin-daudré, Review of titanium surface modification techniques and coatings for antibacterial applications, Acta Biomater, vol.83, pp.37-54, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02397593