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Abstract The AbcRanger library provides methodologies for model choice and parameter
estimation based on fast and scalable Random Forests, tuned to handle large and/or high
dimensional datasets. The library, initially intended for the population genetics ABC
framework DIYABC, has been generalized to any ABC reference table generator.
At first, computational issues were encountered with the reference ABC-Random Forest.
Those issues have been diagnosed by us as friction between ”strict” Machine Learning
setup and ABC context, and this incited us to modify the C++ implementation of state-
of-the-art random forests, ranger, to tailor it for ABC needs: potentially ”deep” decision
trees are not stored in memory anymore, but are processed by batches in parallel.
We focused on memory and thread scalability, ease of use (minimal hyperparameter set).
R and python interfaces are provided. A toy example and a population genetics example
are presented.

Keywords Approximate Bayesian Computation, Random Forests, Model Choice, Param-
eter Estimation, C++, Python, R

1 Introduction : challenges for ABC from Population Genetics
In the context of recent advances in population genetics, the number of simulated data in a ABC

context could reach over the hundred of thousands (105) mark. Similarly, with the advent of multi-
population summary statistics in this domain (see [1]) the number of summary statistics computed by
ABC (as covariables) could range from several hundreds to tens of thousands (scenario with several
populations and combinatorial “explosion” of multi-population statistics). Moreover, not all summary
statistics are relevant, and traditional variable selection methods still have to be tuned for each case
in an ad hoc manner. From both row and column inflations point of view, classical methods for ABC
(k-nn and local methods) don’t cope very well with this situation.

[2] and [3] proposed a novel approach, coined as ABC-random forest or ABC-RF, which relies on
Random Forests to provide tractable and efficient methodologies, for both model choice and parameter
estimation.

2 First building block : ABC simulations to generate the Random Forest
training database
In a Bayesian context, when the likelihood function is too complex or untractable, several likelihood-

free methods are available to approximate it, including Approximate Bayesian Computation (ABC)
[4]. Given observed data, the basic idea of ABC is to approximate the likelihood of a parameterized
model with selected simulations, by comparing the observed data and simulated ones via computed
summary statistics. The table of summary statistics for simulated data is called the reference table
(see 1). It corresponds to the so called “training dataset” in Machine Learning terminology.

2.1 ABC posterior methodologies

2.1.1 Model Choice Given an observed data, and several (parameterized) models, the purpose
is to estimate the best model to fit our data. A reference table combining summary statistics of
simulated samples (particles) is generated from each model (models are sampled according to a prior
distribution, e.g. by penalizing the model complexity). A Model Choice methodology is an inference
method which takes this reference table, the observed data and infers the best fitted model for this

https://github.com/diyabc/abcranger
https://github.com/diyabc/diyabc
https://github.com/imbs-hl/ranger
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Fig. 1. ABC simulations to generate the Random Forest training database

data, along with an estimated posterior probability (the probability of the model knowing the observed
data), which assesses the fitness of the predicted model.

2.1.2 Parameter Estimation Given an observed data and one parameterized model, the purpose
is to infer one or several parameters for this model given the observed data. An ABC reference table
is generated from the model. The Parameter estimation methodology is an inference method which
takes this reference table, the observed data and infers one or several parameters, along with the usual
Bayesian decorum : posterior distribution, quantiles and so on.

2.1.3 General workflow A sensible workflow is to first choose a model and then infer its parameters
(see 2).

3 Second building block : Random Forests
Enter the Supervised Machine Learning (SML) realm [5]: at the beginning lies a list of pairs of

input data/output data {xi, yi} from (X,Y ) domain, called a training dataset (the output is also
called the target). The objective is to learn the best function fθ(x) parameterized by θ ∈ Θ 5 so that
a scalar loss function L : Y × Y 7→ R is minimized on the Θ domain :

fθ = argmin
θ

L(f(xi), yi)

A specific class of learning function fθ are Random Forests (RF), which we are going to expose.
RF are based on CART, Classification and Regression Trees, an algorithm developed by [6].

3.1 CART

A CART is a supervised machine learning algorithm which essentially performs a partitioning of
the predictor space into disjoint subspaces recursively. A prediction value is obtained and assigned

5. the θ parameter for the learning (fitting) function should not be confused with a prior θ parameter of a model in
bayesian context.



¶ Compute simulations with several models, and the reference table
with model-indexed lines using a simulator (DIYAC, PyABC etc.)

· Apply Model Choice
Methodology with AbcRanger

¸ Apply Parameter Estimation
Methodology with AbcRanger

Fig. 2. Workflow with AbcRanger
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ŷ1 ŷ2

X1 ≤ s3
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Fig. 3. An example of CART and the associated partition of the two dimensional predictor space. Each splitting
condition takes the form Xj ≤ s and the prediction at a leaf is denoted ŷ`.



to each of those subspaces (or Leaves), computed from the target (output) values of the samples
contained in the corresponding leaves. Once the partitioning is done, the result is a binary tree which
could predict outcomes from an input data, either classes or continuous values, by routing the data to
a leaf, whose assigned value will be used then as prediction (see 3).

3.2 Random Forests

Bootstrapping

Training Trees

For each node
Choose the best split
over a random subset
of features

Predictor obtained
by majority vote
(for classification)
or mean
(for regression)

Fig. 4. Random Forest

Random Forests [7] are a three pronged extension of CART (see 4). First, it is an Ensemble
method which trains a set of CART (not just one) and predict the outcome with the majority
vote (resp. mean) of this set of trained trees for classification (resp. regression) target (or output
data). Second, bootstrapping is applied before each tree training, i.e. training data is randomly
sampled (with replacement). And last but not least, in a growing tree, at each node, the best split
is computed on a random subset of the features. Those three extensions have multiple benefits;
the main ones are lower variance compared to a single CART tree, due to the ensemble method, and
unbiasedness, because of the de-correlation of the trees induced by both bootstrapping and random
sampling of features. Other advantages are: robustness to noise, variable importance for (almost)
free, integrated cross-validation procedure (out-of-bag samples, no need to get a validation dataset),
easy parallelization, very good scaling properties (both in rows and columns axes), and availability
for both classification and regression targets.

3.3 ABC Random Forest

A reference implementation of the ABC-Random Forest setup is given by abcrf [8]. Here, we
provide a brief description of ABC Random Forest methodologies for model choice and parameter
estimation. The input in both case is the reference table of summary statistics obtained by ABC, the
predictor space is the models (discrete) in case of model choice or a specific model parameter for

3.3.1 Model Choice Model Choice methodology in ABC-RF is two staged. First a classification
random forest is trained with the models (classes) as target. The trained random forest model is evalu-
ated on the observed data, getting votes and the best model to fit. Second, using the obtained random
forest from the first stage, each sample from the training dataset is labeled classified/misclassified
with the out-of-bag prediction and finally as numerical 0 or 1 for a new target. Then, a new regression



random forest is trained on the training dataset, but this time with this new target (as continuous,
non-categorical one for regression). And finally a prediction on the observed data is evaluated with
the obtained random forest, and this predicted value (between 0 and 1) is a viable estimator for the
posterior probability of the chosen model.

3.3.2 Parameter Estimation In ABC Random Forest setup, parameter estimation is limited to
one parameter at a time. Choosing a parameter θ to estimate, a regression RF is trained on a reference
table generated only with the corresponding model and with the θ parameter values as target, forming
the training dataset. Once trained, the regression RF is evaluated on the observed data and several
outcomes are obtained, like an estimation of θ, variance, and quantiles with the help of quantile
regression forests [9]. It is worth noting that Quantile Forests are not new forests per se but an –
integrated – method to compute weights distribution of the samples, knowing an observed (or out-of-
bag) data. This distribution is then used to compute quantiles, for example. Finally a set of both prior
and posterior estimators is inferred from the RF predictions, for example a prior (resp. posterior) pdf,
obtainable via standard kernel density estimation (resp. standard weighted density estimation).

3.4 Linear augmentations

As stated in [2] (resp. [3]), for Model choice (resp. parameter estimation), there is the option –
enabled by default – to add linear combinations covariables to the existing summary statistics in the
reference table via Linear Discriminant Analysis (resp. Partial Least Squares) [5]. By refining the
partitioning of the trees 6, this sensibly improves the prediction accuracy of Random Forests outcomes.

3.5 Computational limitations with ABC Random Forests reference implementation

Faced with training dataset including 100 000 lines and more than 10 000 summary statistics, abcrf
has been found growing trees over one gigabyte of memory size each. So, as typical random forests
are made of 500 or 1000 trees for prediction performance, even with state of the art RF packages like
[10], memory constraints are preventing completion of the training.

At first, limiting tree depth has been investigated but quickly dismissed because accuracy took an
unacceptable hit.

This issue has a longer reach than an simple implementation issue and exhibits a fundamental
mismatch of objectives between “classical” supervised machine learning setup and ABC posterior
methodologies. Indeed, within “pure” SML, a model (like a Random Forest) is first trained, and then
used to make predictions on a potentially endless source of new data; the whole model is stored by
training and loaded in memory each time for prediction purpose. However, within the ABC inference
context, the SML model is only needed for specific predictions directly on one or several observed data
sample(s) and out-of-bag samples. Moreover, the corresponding trained Random Forest is coupled to
the generated reference table (aka the training dataset), and is by no mean meant to generalize to new
data (other reference tables), let alone other model and relevant observed data: in fact storing the
forest is useless 7. Those remarks established the need of an adaptation of random forest algorithm
for ABC.

4 New implementation of Random Forest and ABC Random Forest
Based on our own version of the core RF (written in C++) from the ranger package [10], our

new implementation of Random Forest for ABC, AbcRanger, solves the memory constraint issue
related to the deep trees. Leveraging the cumulative nature of the ensemble method, Random Forest
computations are now done in a joint grow/predict phase for each tree, and then optimized in order to
grow a limited batch of trees in memory. As illustrated by fig. 5), this means that the computation of
the growing and prediction steps for each tree is executed in a sequential –- i.e. batch-wise – order: as
now tree growing and predictions are computed in a single pass, predictions and posteriors are then

6. In our previous bi-dimensional example 3, it is similar to add a linear combination of X1 and X2 to our input space,
and the resulting partitioning may no longer be horizontally or vertically aligned partitions in the (X1, X2) predictor
space.

7. the R package randomForest has indeed an option to discard the forest as soon the test predictions are done
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Fig. 5. Window of growing trees

stored/accumulated and each tree is finally discarded, freeing the system memory for next growing
trees. The trees of the currently processed batch are still computed in parallel to leverage nowadays
ubiquitous multicore architectures.

Although this doesn’t precludes the in-memory storage of the entire training dataset at once,
this way of processing avoids the in-memory storage of the whole forest at no performance cost. In
a very constrained memory environment, one should just have to lower the number of computing
threads to keep the memory of a training batch in check. A special care has also been taken to the
Meinshausen’s quantiles computations, completely parallelized and typically unnoticeable on multicore
systems. Another advantage over abcrf package: methodologies are now pure C++. So, it is relatively
easy to provide wrappers/interfaces to other languages than R, like Python, with the added guarantee
that no copy of the reference table happens between the core C++ layer handling the methodology,
and the interfaced language providing the reference table.

4.1 A toy example application with the ELFI python package

The ELFI python package [11] provides a popular and flexible ABC framework, meant to integrate
complex ABC and inferences pipelines. Inspired by the Ma(2) toy example used by original ABC
authors in [4], we used a more general Ma(q) example for model choice and parameter estimation,
fixing q = 10 in the following.

MA(q) is a time series called moving average model of order q defined by :

xt = µ+ εt −
q∑

i=1

ϑiεt−i

where µ is the mean of the series, the ϑ1...ϑq the parameters of the model, and εt, εt−1, ...εt−q the white
noise error terms. For identifiability purposes the parameters should verify the following condition,
roots of

Q(u) = 1−
q∑

i=1

ϑiu
i

should be strictly outside the (complex) unit disc, and this is our main prior constraint. We choose
another prior for the highest order parameter, θq, sampled from an uniform distribution (constraint
domain).

From the generated examples of Ma(10) on a 200-length signal, sampling the prior θq uniformly
in the [1, 2] interval, the usual row of (partial) autocorrelation features seems to be nonconclusive (see
6) to discriminate between, for example Ma(8), Ma(10) or Ma(12).

4.1.1 Model choice: Ma(10) vs “all” (6 ≤ q ≤ 16) An ABC pipeline has been configured
with elfi, choosing the default sampler, without rejection (option quantile fixed to 1). For 100 trials,
starting with uniform distribution for θq, all other are constrained by the unity disc root exclusion

https://github.com/diyabc/abcranger/blob/master/testpy/Toy%20example%20MA(q).ipynb


Fig. 6. Example of an MA(10) model. From the left to the right, a MA(10) signal, autocorrelations (correlation
of the signal with its own delayed copy), and partial autocorrelations (the dependance of shorter delay removed).

Fig. 7. Model Choice weighted histogram of inferred models: 100 Ma(10) models are tried with ABC simula-
tions followed by RF model choice inference (choosing from 10 different MA(q) models where 6 ≤ q ≤ 16, with
signal length of 200 points and reftables of 2000 particles each).

described before, priors for Ma(10) are sampled and an observation generated. Summary statistics
are the autocorrelations, partial autocorrelations with 0.05, and 0.95 corresponding quantiles, for lags
from 1 to 20. Models to choose are from Ma(q) with 6 ≤ q ≤ 16. On fig. 7, the performance of the
ABC-RF setup is illustrated (python notebook).

Also, features coming from LDA linear augmentation are often discriminative, see fig. 8 for one
inference example.

4.1.2 Parameter Estimation For parameter estimation one Ma(10) is sampled and observed, and
then all parameters are inferred individually with ABC-RF methodology (whith the help of AbcRanger
python wrapper). Results are illustrated in fig. 9. All parameters of the model are nicely estimated,
and the posterior/prior distributions clearly discriminated, except for the last θ10 parameter: this is,
by essence, the most difficult parameter to infer, but it is expected as it is the highest order coefficient
of a 10-polynomial.

4.2 A population genetics example

Reftables are generated by DIYABC simulator. DIYABC simulator with RF methodologies, as
long than population genetics interpretations are presented in [12]. In this example, several evolution-
ary models with divergence and/or admixtures events are considered. Prior parameters are population
sizes, times of events and the admixture rate (respective proportions of genes from admixed popula-
tions). Observed data is generated from the third model (see fig. 10).

The reftable contains a range of summary statistics (130, note that is a relatively low number, our
experiments can achieve more than 20000), related to population genetics various measures. Abcranger
selected the right model with a posterior probability around 70% (See fig. 11).

For parameter estimation of the admixture rate in model 3, we use another generated reftable,
see fig. 12 and 13, for posterior inferences. The real value of the parameter is within its inferred

https://github.com/diyabc/abcranger/blob/master/testpy/Model%20Choice%20Loop.ipynb


Fig. 8. 10 most ranked summary statistics, sorted by permutation importance. acfi, (resp. pacfi, pacf1i,
pacf2i) are i-lagged autocorrelations (resp. partial autocorrelations, 0.05 and 0.95 corresponding quantiles).

Fig. 9. Inferred posterior distributions of all prior parameters of the MA(10) model. The θm is a dependant
prior, computed mean of all θk priors (1 ≤ k ≤ 10).



Fig. 10. Six evolutionary models considered for model choice, observed data comes from the third one. All
scenarios get three times parameters (t1, t2 and t3) and four population size parameters (N1, N2, N3 and N4).
Scenerios 1, 2 and 3 have an additional ra admixture rate parameter for an admixture event. (illustration taken
from [12]).

///////////////////////////////////////// First forest (training on ABC output)
Growing trees ..

���������������������������������������� � 100.0% [ 500/ 500 | 136.2 Hz | 4s<0s]
Computing prediction error ..
///////////////////////////////////////// Second forest (training on error)
Growing trees ..

���������������������������������������� � 100.0% [ 500/ 500 | 555.1 Hz | 1s<0s]
Computing prediction error ..
votes model1 votes model2 votes model3 votes model4 votes model5 votes model6 selected model post proba

2 46 410 9 25 8 3 0.741
Predicted model : 3
votes : [2, 46, 410, 9, 25, 8]
Posterior probability : 0.7414333333333332

Fig. 11. Output of abcranger model choice on a pre-generated reftable (as explained before, this is a two stage setup with two
forests). The reftable is sampled with the six models, uniformly chosen.



Selecting only 9 pls components.
Growing trees ..

���������������������������������������� � 100.0% [ 500/ 500 | 125.1 Hz | 4s<0s]
Computing prediction error ..

Parameter estimation (point estimates)
Expectation Median Quantile_0.05 Quantile_0.95 Variance

0.387622 0.385098 0.259602 0.534545 0.006349

Global (prior) errors
Computed from the mean taken as point estimate

NMAE : 0.17127635307824707
MSE : 0.006463761580914472

NMSE : 0.02107403354559447
Computed from the median taken as point estimate

NMAE : 0.15490037296879525
MSE : 0.006874722512837821

NMSE : 0.02049269588370233
Confidence interval measures

90% coverage : 0.9575
Mean 90% CI : 0.2758619237413165

Mean relative 90% CI : 0.8453453298782697
Median 90% CI : 0.23266885779478091

Median relative 90% CI : 0.5639567421092406

Local (posterior) errors
Computed from the mean taken as point estimate

NMAE : 0.1564821612838361
MSE : 0.006348615077573065

NMSE : 0.015846355369397838
Computed from the median taken as point estimate

NMAE : 0.14142338836017088
MSE : 0.005765797978743337

NMSE : 0.012525174537546181

Fig. 12. Output of abcranger parameter estimation for ra (admixture rate) parameter on DIYABC reftable (12000 samples from
the model 3).

Fig. 13. Inferred posterior distribution of ra on model 3



confidence interval. Note that inferring the admixture rate is considered as very difficult problem in
population genetics, so the deviation from the real value is expected.

5 Conclusions and perspectives
ABC-RF posterior methodologies are a clean and efficient integration of SML techniques in a

model-based approach, although the main objective is not the raw predictive power per se like in a
pure machine learning perspective, but easy to get, accurate and interpretable posteriors.

Many ideas emphasized in both posterior methodologies from [2] and [3] have strong connections
with Generalized Random Forests framework [13]. We would like to explore them in order to extend
our developments to other fields than population genetics.

Moreover, we intend to pursue the algorithm adaptation of Random Forests for ABC even further,
at the tree level: for a growing tree, only encountered leaves should be stored for point estimates and
final moments. Thus, the memory footprint of the trees becomes negligible, and their growing could
finally be parallelized at full scale.

Finally, by nature of Breiman’s CART, the computational bottleneck for random forests lies in the
greedy, local split procedure at each node. To alleviate this, they are promising optimizations coming
from the Gradient Boosted Trees community [14] and also some inspired by the Deep Learning one
like [15].
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