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Adaptive nonparametric estimation of a component density in a
two-class mixture model

Gaélle Chagny? Antoine Channarond! Van Ha Hoang? Angelina Roche®
February 5, 2021

Abstract

A two-class mixture model, where the density of one of the components is known, is considered.
We address the issue of the nonparametric adaptive estimation of the unknown probability density
of the second component. We propose a randomly weighted kernel estimator with a fully data-driven
bandwidth selection method, in the spirit of the Goldenshluger and Lepski method. An oracle-
type inequality for the pointwise quadratic risk is derived as well as convergence rates over Holder
smoothness classes. The theoretical results are illustrated by numerical simulations.

1 Introduction
The following mixture model with two components:
g(x) =0+ (1-0)f(x), Vael0,1], (1)

where the mixing proportion € € (0,1) and the probability density function f on [0, 1] are unknown,
is considered in this article. It is assumed that n independent and identically distributed (i.i.d. in the
sequel) random variables X7, ..., X,, drawn from density g are observed. The main goal is to construct
an adaptive estimator of the nonparametric component f and to provide non-asymptotic upper bounds
of the pointwise risk : the resulting estimator should automatically adapt to the unknown smoothness of
the target function. The challenge arises from the fact that there is no direct observation coming from
f. As an intermediate step, the estimation of the parametric component 6 is addressed as well.

Model (1) appears in some statistical settings: robust estimation and multiple testing among oth-
ers. The one chosen in the present article, as described above, comes from the multiple testing frame-
work, where a large number n of independent hypotheses tests are performed simultaneously. p-values
X1,..., X, generated by these tests can be modeled by (1). Indeed these are uniformly distributed on
[0, 1] under null hypotheses while their distribution under alternative hypotheses, corresponding to f, is
unknown. The unknown parameter 6 is the asymptotic proportion of true null hypotheses. It can be
needed to estimate f, especially to evaluate and control different types of expected errors of the testing
procedure, which is a major issue in this context. See for instance Genovese and Wassermann [15], Storey
[28], Langaas et al. [20], Robin et al. [26], Strimmer [29], Nguyen and Matias [23], and more fundamentally,
Benjamini et al. [1] and Efron et al. [14].

In the setting of robust estimation, different from the multiple testing one, model (1) can be thought of
as a contamination model, where the unknown distribution of interest f is contaminated by the uniform
distribution on [0, 1], with the proportion 8. This is a very specific case of the Huber contamination model
[18]. The statistical task considered consists in robustly estimating f from contaminated observations
X1,...,X,. But unlike our setting, the contamination distribution is not necessarily known while the
contamination proportion 6 is assumed to be known, and the theoretical investigations aim at providing
minimax rates as functions of both n and 6. See for instance the preprint of Liu and Gao [22], which
addresses pointwise estimation in this framework.
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Back to the setting of multiple testing, the estimation of f in model (1) has been addressed in several
works. Langaas et al. [20] proposed a Grenander density estimator for f, based on a nonparametric
maximum likelihood approach, under the assumption that f belongs to the set of decreasing densities
on [0,1]. Following a similar approach, Strimmer [29] also proposed a modified Grenander strategy
to estimate f. However, the two aforementioned papers do not investigate theoretical features of the
proposed estimators. Robin et al. [26] and Nguyen and Matias [23] proposed a randomly weighted kernel
estimator of f, where the weights are estimators of the posterior probabilities of the mixture model, that
is, the probabilities of each individual i being in the nonparametric component given the observation X;.
[26] proposes an EM-like algorithm, and proves the convergence to an unique solution of the iterative
procedure, but they do not provide any asymptotic property of the estimator. Note that their model
g(x) = 0é(x) + (1 — 0) f(x), where ¢ is a known density, is slightly more general, but our procedure is
also suitable for this model under some assumptions on ¢. Besides, [23] achieves a nonparametric rate
of convergence n~2#/(28+1) for their estimator, where § is the smoothness of the unknown density f.
However, their estimation procedure is not adaptive since the choice of their optimal bandwidth still
depends on (.

In the present work, a complete inference strategy for both f and 6 is proposed. For the nonparametric
component f, a new randomly weighted kernel estimator is provided with a data-driven bandwidth
selection rule. Theoretical results on the whole estimation procedure, especially adaptivity of the selection
rule to unknown smoothness of f, are proved under a given identifiability class of the model, which is an
original contribution in this framework. Major results derived in this paper are the oracle-type inequality
in Theorem 1, and the rates of convergence over Holder classes, which are adapted to the control of
pointwise risk of kernel estimators, in Corollary 1.

Unlike the usual approach in mixture models, the weights of the proposed estimator are not estimates
of the posterior probabilities. The proposed alternative principle is simple and consists in using weights
based on a density change, from the target distribution f, which is not directly reachable, to the dis-
tribution of observed variables g. A function w is thus derived such that f(z) = w(, g(x))g(z), for all
0,z € [0,1]. This type of link between one of the conditional distribution given hidden variables, f, to
the distribution of observed variables g, is quite remarkable in the framework of mixture models. It is a
key idea of our approach, since it implies a crucial equation for controlling the bias term of the risk, see
Subsection 2.1 for more details. This is necessary to investigate adaptivity using the Goldenshluger and
Lespki (GL) approach [17], which is known in other various contexts, see for instance, Comte et al. [10],
Comte and Lacour [11], Doumic et al. [13], Reynaud-Bouret et al. [25] who apply GL method in kernel
density estimation, and Bertin et al. [3], Chagny [6], Chichignoud et al. [7] or Comte and Rebatka [12].

Thus oracle weights are defined by w(6, g(X;)), i = 1,...,n, but g and 6 are unknown. These oracle
weights are estimated by plug-in, using preliminary estimators of g and 6, based on an additional sample
Xn+1,- .-, X2, Some assumptions on these estimators are needed to prove the results on the estimator of
f; this paper also provides estimators of g and 6 which satisfy these assumptions. Note that procedures
of [23] and [26] actually require preliminary estimates of g and € as well, but they do not deal with
additional uncertainty caused by the multiple use of the same observations in the estimates of 6, g and
f.

Identifiability issues are reviewed in Section 1.1 in Nguyen and Matias [24]. In the present work, f
is assumed to be vanishing at a neighbourhood of 1 to ensure identifiability. Under this assumption, 6
can be recovered as the infimum of g. Moreover, as shown above by the equation linking f to g and
0, f is actually uniquely determined by giving ¢ and 6, even though the latter is not the infimum of g.
Note that the theoretical results on the estimator of the nonparametric component f do not depend on
the chosen identifiability class, and can be transposed to other cases. For that reason, the discussion on
identifiability is postponed to Section 4.2, after results on the estimator of f.

The paper is organized as follows. Our randomly weighted estimator of f is constructed in Section
2.1. Assumptions on f and on preliminary estimators of g and 6 required for proving the theoretical
results are in this section too. In Section 2, a bias-variance decomposition for the pointwise risk of the
estimator of f is given as well as the convergence rate of the kernel estimator with a fixed bandwidth. In
Section 3, an oracle inequality is given, which justifies our adaptive estimation procedure. Construction
of the preliminary estimators of g and 6 are to be found in Section 4. Numerical results illustrate the
theoretical results in Section 5. Proofs of theorems, propositions and technical lemmas are postponed to
Section 6.



2 Collection of kernel estimators for the target density

of i.i.d. variables with distribution g is defined. It is assumed that preliminary estimators of both the
mixing proportion ¢ and the mixture density g are available, and respectively denoted by 0,, and g.
They are defined from an additional sample (X;);—p+1,....2, of independent variables also drawn from
g but independent of the first sample (X;);—1,...,. Definitions, results and results on these preliminary
estimates are the subject of Section 4.

In this section, a family of kernel estimators for the density function f based on a sample (X;)i=1,..n

2.1 Construction of the estimators

To define estimators for f, the challenge is that observations X1, ..., X, are not drawn from f but from
the mixture density g. Hence the density f cannot be estimated directly by a classical kernel density
estimator. Thus we will build weighted kernel estimates This idea has been used in other contexts, see
for example [12]. The starting point is the following lemma whose proof is straightforward.

Lemma 1. Let X be a random variable from the mizture density g defined by (1) and Y be an (un-
observable) random variable from the component density f. Then for any measurable bounded function

%2k

E[¢(Y)] = E[w(8, 9(X))p(X)], (2)
where
w(f,g(x)) = ﬁ (1 - g:;)) , x€[0,1].

This result will be used as follows. Let K : R — R be a kernel function, that is an integrable function
such that §, K(z)dz = 1 and {; K?(z)dz < +00. For any h > 0, let Kp,(-) = K(-/h)/h. Then the choice
©(-) = Kp(z —-) in Lemma 1 gives:

E[Kn(z —Y)] = E[w(8, (X)) Kn(z — X)],
This leads to define the following randomly weighted kernel estimator of f:

ful@) = 3wl g(X0) Knle — X0), w e [0,1], 3)

i=1

S

where:

~ 1 0 )
w(On, §(X;)) - (1 ﬁ(X1)> , i=1,...,n. (4)
Therefore, fh is a randomly weighted kernel estimator of f. Note that the total sum of the weights
may not equal 1, in comparison with the estimators proposed in Nguyen and Matias [23] and Robin et
al. [26]. The main advantage of such weights, is that, if we replace § and 0, by their theoretical unknown
counterparts ¢ and 6 in (3), we obtain, E[f),(z)] = K, * f(z), where » stands for the convolution product.
This relation, classical in nonparametric kernel estimation, is crucial to study the bias term in the risk
of the estimator, and hence to reach adaptivity.

2.2 Risk bounds of the estimator

Here, upper bounds are derived for the pointwise mean-squared error of the estimator fh, defined in (3),
with a fixed bandwidth A > 0. Our objective is to study the pointwise risk for the estimation of the
density f at a point xg € [0,1]. Throughout the paper, the kernel K is chosen compactly supported on
an interval [—A, A] with A a positive real number, and such that sup,e;_4 a1 [K(2)] < 0. We denote by
Vi (20) the neighbourhood of xg used in the sequel and defined by

2A 2A
Vn(z0) = [mo - —,T0+ ] )
n On
where (o), is a positive sequence of numbers larger than 1, only depending on n such that «,, — 400 as
n — 400, chosen by the user. For any function u on R, and any interval I < R, let |ul|, ; = sup,c; |u(t)|.



We also denote by v = ;n(f )|g(t)|. Thanks to (1), we have g(t) = 6 > 0 for any ¢ € [0, 1], and thus,
teV, (xo

v > 0.

In the sequel, we consider the following assumptions. Note that all assumptions are not simultaneously
necessary for the results.

(A1) The density f is uniformly bounded on V,(zo) for some n: [ f] 0y < %

(A2) The preliminary estimator ¢ is bounded away from 0 on V,(zo) a.s. :

4:= inf |§(t)| > 0. (5)

teEVn (a?())

(A3) The preliminary estimate § of g satisfies, for all v > 0

t
Pl sup |2 g9(t)
teVy (-LO)

9(t) —
g(t)
with Cy,, a constant only depending on g and v.

‘ > V) < Cy,exp {—(log n)3/2} ) (6)

(A4) The preliminary estimator ,, is constructed such that 6, € [6/2,1 — §/2] a.s., for a fixed 6 € (0, 1).

(A5) For any bandwidth h > 0, we assume that a.s.

1 1 o 1
ap, < — and — < min 737”,7 .
h h log®(m) ' 7
(A6) f belongs to the Holder class of smoothness § and radius £ on [0, 1], defined by

(B, L) = {(b : ¢ has ¢ = || derivatives and Y,y € [0,1], |69 (z) — ¢ (y)| < L]z — y\ﬁ_e} ,

where |z] denotes a smallest integer which is strictly smaller than the real number x.
(A7) K is a kernel of order ¢ : {; 27K (x)dz =0 for 1 < j < { and {, [2|*|K (2)|dz < 0.

Since g = 6+ (1 —0) f, Assumption (A1) implies that |g], , (,,) < o0. This assumption is needed to
control the variance term, among others, of the bias-variance decomposition of the risk. Let us notice that
the density g is automatically bounded from below by a positive constant in our model (1). Assumption
(A2) is required to bound the term 1/§(-) that appears in the weight w(f,, j(-)), see (4). Assumption
(A3) means that the preliminary § has to be rather accurate. Assumptions (A2) and (A3) are also
introduced by Bertin et al. [3] for conditional density estimation purpose : see (3.2) and (3.3) p.946. The
methodology used in our proofs is close to their work : the role played by g here corresponds to the role
played by the marginal density of their paper. They have also shown that an estimator of g satisfying
these properties can be built, see Theorem 4, p. 14 of [2] and some details at Section 4.1. We also build
an estimator 6, that satisfies Assumption (A4) in Section 4.2. Assumption (A5) deals with the order of
magnitude of the bandwidths and is also borrowed from [3] (see Assumption (CK) p.947). An example of
bandwidth collection satisfying Assumption (A5) is given in the statement of Corollary 1. Assumptions
(A6) and (AT) are classical for kernel density estimation, see [30] or [8]. The index 8 in Assumption
(A6) is a measure of the smoothness of the target function. Such assumptions permit to control the
bias term of the bias-variance decomposition of the risk, and thus to derive convergence rates. We will
classically choose ¢ = || for Assumption (A7) in Corollary 1 below.

We first state an upper bound for the pointwise risk of the estimator fh. The proof can be found in
Section 6.1.



Proposition 1. Assume that Assumptions (A1) to (A5) are satisfied. Then, for any xo € [0,1] and
0 € (0,1), the estimator f;, defined by (3) satisfies

R 1
E [(fh(xo) - f(l‘o))z] <Cf {”Kh S ] R 5272%}

Ci
ﬁa

C* - Cx .
I & R R PR e

where CF, £ =1,...,4 are positive constants such that : CY depends on |K|2 and |g|l,, v, (x,
on Hg|\oo7vn(z0) and |K|,, C¥ depends on |K|, and C§ depends on HfHOO,VT,,(TEQ)’ g, 0,7, and |K|,.

)» €3 depends

Proposition 1 is a bias-variance decomposition of the risk. The first term in the right-hand-side (7.h.s.
in the sequel) of (7) is a bias term which decreases when the bandwidth h vanishes whereas the second
one corresponds to the variance term and increases when h vanishes.

There are two additional terms E[||g — g||§o,vn(mo)] and E[|0,, — 0]?] in the r.h.s. of (7). They are

unavoidable since the estimator fh depends on the plug-in estimators ¢ and 6,,. However, as proved in
Corollary 1, these two terms does not deteriorate the convergence rate provided that g and 6 are estimated
accurately. We define in Section 4 such estimators of g and 6. The term C}/(6?n?) is a remaining term
and is also negligible.

3 Adaptive pointwise estimation

Let H,, be a finite family of possible bandwidths h > 0, whose cardinality is bounded by the sample size
n. The best estimator in the collection (f;)nez, defined in (3) at the point g is the one that have the
smallest risk, or similarly, the smallest bias-variance decomposition. But since f is unknown, in practice
it is impossible to minimize over H,, the r.h.s. of inequality (7) in order to select the best estimate. Thus,
we propose a data-driven selection, with a rule in the spirit of Goldenshluger and Lepski (GL in the
sequel) [17]. The idea is to mimic the bias-variance trade-off for the risk, with empirical counterparts for
the unknown quantities. We first estimate the variance term of the trade-off by setting, for any h € H,,

2 2
£ KL KNS 19]0, v, (20)

V(zo,h) = A2k log(n), (8)

with kK > 0 a tuning parameter. The principle of the GL method is then to estimate the bias term
2 2 .
10 > f = fl5% v, (@o) ©f fr(zo) for any h € H,, with

Afao,h) = s { (Fua(@0) = fur(@0)” = V@, ) |, ©)

where, for any h,h' € H,,

w (B, §(X3)) (K * Ki)(z0 — X3) = (Kp * fn)(@0).

NgE

A 1

fp(20) = =

n A
i=1

Heuristically, since fh is an estimator of f then fh,hf = Kp * fh can be considered as an estimator of
Ky f. The proof of Theorem 1 below in Section 6.2 then justifies that A(zg, h) is a good approximation
for the bias term of the pointwise risk. Finally, our estimate at the point x is

f(xo) = fﬁ(zo)@co)v (10)
where the bandwidth h(z() minimizes the empirical bias-variance decomposition :

h(xo) := argmin {A(zo,h) + V(x0,h)} .
heHn

The constants that appear in the estimated variance V (zg, k) are known, except &, which is a numerical

constant calibrated by simulation (see practical tuning in Section 5), and except [g| (z0)> Which is



replaced by an empirical counterpart in practice (see also Section 5). It is also possible to justify the
substitution from a theoretical point of view, but it adds cumbersome technicalities. Moreover, the
replacement does not change the result of Theorem 1 below. We thus refer to Section 3.3 p.1178 in [9] for
example, for the details of a similar substitution. The risk of this estimator is controlled in the following
result.

Theorem 1. Assume that Assumptions (A1) to (A4) are fulfilled, and that all h € H,, satisfies (A5).
Suppose in addition that the sample size n is larger than a constant that only depends on the kernel K.
For any ¢ € (0,1), the estimator f(xzo) defined in (10) satisfies

f 1
5[(F) ~ seo)’] < i {160k~ e + oo

Jng su E |:|0~ — 9‘2] + C;‘ E[ HA _ ”2 ] n j (11)
§° 96[6,1p—6] " 02~2 9= 9llo, v (o) n2’

where Cf, £ =5,...,8 are positive constants such that : C5 depends on |gl, y, 1oy, |1 K|; and |K],, CF
depends on |K|,, CF depends on |g, v, (1) and [K|;, and CF depends on &, v, | flo v, z0): 95 K2
and | K|,

(zo

Theorem 1 is an oracle-type inequality. It holds whatever the sample size, larger than a fixed con-
stant. It shows that the optimal bias variance trade-off is automatically achieved: the selection rule
permits to select in a data-driven way the best estimator in the collection of estimators ( fh)heHn7 up
to a multiplicative constant C¥. The last three remainder terms in the r.h.s. of (11) are the same as
the ones in Proposition 1, and are unavoidable, as aforementioned. We have an additional logarithmic
term in the second term of the r.h.s., compared to the analogous term in (7). It is classical in adaptive
pointwise estimation (see for example [12] or [4]). In our framework, it does not deteriorate the adaptive
convergence rate, see Section 4.3 below. To compute this rate, we now have to define estimators for the
mixing density g and proportion 6, in such a way that the convergence rate which would be obtained by
the minimisation of the first term in the r.h.s of (11) can be preserved.

4 Estimation of the mixture density ¢ and the mixing propor-
tion 0

This section is devoted to the construction of the preliminary estimators ¢ and én, required to build
(3). To define them, we assume that we observe an additional sample (X;)i=p+1,... 20 distributed with
density function g, but independent of the sample (X;);—1,...,. We explain how estimators § and én can
be defined to satisfy the assumptions described at the beginning of Section 2.2, and also how we compute
them in practice. The reader should bear in mind that other constructions are possible, but our main
objective is the adaptive estimation of the density f. Thus, further theoretical studies are beyond the
scope of this paper.

4.1 Preliminary estimator for the mixture density g

As already noticed, the role played by g to estimate f in our framework finds an analogue in the work of
Bertin et al. [3] : the authors propose a conditional density estimation method that involves a preliminary
estimator of the marginal density of a couple of real random variables. The assumptions (A2) and (A3)
are borrowed from their paper. From a theoretical point of view, we thus also draw inspiration from
them to build g.

Since we focus on kernel methods to recover f, we also use kernels for the estimation of g. Let
L :R — R be a function such that §, L(z)dz = 1 and {; L?(z)dz < . Let Ly(-) = b*L(-/b), for any
b > 0. The function L is a kernel, but can be chosen differently from the kernel K used to estimate the
density f. The classical kernel density estimate for g is

e = = 3 Lo Xo), (12

i=n+1



Theorem 4 p.14 of [2] proves that it is possible to select an adaptive bandwidth b of g in such a way that
Assumptions (A2) and (A3) are fulfilled, and that the resulting estimate g; satisfies
log n) 26+1

R 2
E[ 9 —9||oo,vn(xo)] < C( n

if g€ X(B, L"), where C, L' > 0 are some constants, and if the kernel L has an order ¢ = |3]. The idea of
the result of Theorem 4 in [2] is to select the bandwidth b with a classical Lepski method, and to apply
results from Giné and Nickl [16]. Notice that, in our model, Assumption (A6) permits to obtain directly
the required smoothness assumption, g € X(8, £'). This guarantees that both the assumptions (A2) and
(A3) on § can be satisfied and that the additional term E[|g — gHiO’Vn(mo)] can be bounded as required
in the statement of Corollary 1.

For the simulation study below now, we start from the kernel estimators (gp)p~o defined in (12) and
rather use a procedure in the spirit of the pointwise GL method to automatically select a bandwidth
b. First, this choice permits to be coherent with the selection method chosen for the main estimators
( fh)heyn, see Section 3. Then, the construction also provides an accurate estimate of g, see for example
[8]. Let B be a finite family of bandwidths. For any b,b’ € B, we introduce the auxiliary functions
Gop (z0) =n~t Z?Zn+1([’b * Ly )(xo — X;). Next, for any b € B, we set

28

(13)

A9(b, o) = Ig}eaé({(gb,b’(xo) - !?b'(xo))2 - Fl(b/)}+ ,

where I'1 (b) = ¢ HL\E ||LH§ lgll, log(n)/(nb), with € > 0 a constant to be tuned. Then, the final estimator
of g is given by g(z0) := g;_(,,)(%0), With by(z0) 1= argmin yez{A9(b,z0) + T1(b)}. The tuning of the
constant ¢ is presented in Section 5.

4.2 Estimation of the mixing proportion ¢

A huge variety of methods have been investigated for the estimation of the mixing proportion 6 of model
(1) : see, for instance, [28], [20], [26], [5], [24] and references therein. A common and performant estimator
is the one proposed by Storey [28]: 6 is estimated by 0,,, = #{X; > ;i =n+1,...,2n}/(n(1 — 7)) with
7 a threshold to be chosen. The optimal value of 7 is calculated with a boostrap algorithm. However, it
seems difficult to obtain theoretical guarantees on éT,n.

For a detailed discussion about possible identifiability conditions of model (1), we refer to Celisse and
Robin [5] or Nguyen and Matias [24]. In the sequel we focus on a particular case of model (1), which
ensures the identifiability of the parameters (6, f) (see for example Assumption A in [5], or Section 1.1
in [24]). The density f is assumed to belong to the family

Fs = {f :[0,1] = Ry, f is a density such that fi1_51] = 0}, (14)

where 0 € (0,1). Under this assumption, the main idea to recover  is that it is the lower bound of the
density g in model (1) : 6 = inf,¢017g9(z) = g(1). Celisse and Robin [5] or Nguyen and Matias [24] then
define a histogram-based estimator g for g, and estimate § with the lower bound of g, or with g(1). The
procedure we choose is still based on the same assumption, but, to be consistent with the other estimates,
we use kernels to recover g instead of histograms.

Nevertheless, since it is well-known that kernel density estimation methods suffer from boundary
effects, which cause inaccurate estimate of g(1), we cannot directly use the kernel estimates of g defined
in (12). To deal with this issue, we apply a simple reflection method (see for example Schuster [27]).
From the random sample X, 1, ..., X5, from density g, we introduce, for i = 1,...,n,

Xitn if g, = 1,
v, ={o" i (15)
Q_Xi+n if Eq —1

)

where €1, ...,&, are n i.i.d. random variables drawn from Rademacher distribution with parameter 1/2,
and independent of the X;’s. The random variables Y7,...,Y,, can be regarded as randomly symmetrized



version of the X;’s; with support [0, 2] (see the first point of Lemma 2 below). Now, suppose that L is a
symmetric kernel. For any b > 0, define

V™ (z) = % S (e -Yi), zel0,2] (16)
k=1

Instead of evaluating g™ at the single point = 1, we evaluate twice the average of all the values of

the estimator g;¥" on the interval [1 — §,1 + ], relying on the fact that 0 = g(x), for all x € [1 — §,1]
(under the assumption f € Fs), to increase the accuracy of the resulting estimate. Thus, we set

R 1 146
bus =5 | G @ (1)
1-6
Finally, for the estimation of f, we use a truncated estimator 6,, defined as
én)b ‘= max (min(én)b, 1-46/2), 5/2). (18)
The definition of 6, ; permits to ensure that 6,, , € [/2,1—4/2] : this is Assumption (A4). This permits

to avoid possible difficulties in the estimation of f when émb is close to zero, see (3). The following lemma
establishes some properties of all these estimates. Its proof can be found in Section 6.3.

Lemma 2.
e The random variables Y, k € {1,...,n}, are i.i.d., with density
o g [ S@2 e 0]
g(2—x)/2 ifx e [1,2].
o We have R
‘en,b - 9| <2 gliym - gsym||oc,[176,1+6] : (19)
e Moreover,
~ ~ 4 ~
P (emb #* en,b) < 572E [|9n7b - 9|2] ) (20)
and there exists a constant C' > 0, which only depends on &, such that

E [|én,b - 0|2] <CE [

.5 sym |12
9" - ggymHoo,[lfzS,Hé]] : (21)

The first property of Lemma 2 permits to deal with g;"" as with a classical kernel density estimate

defined from an 4.i.d sample. Thus we have E[§;¥" (x)] = Ly x ¢*¥™(z). This permits to obtain an upper-
bound for the risk of §;*"™ as an estimator of g*¥™, and also to define an automatic bandwidth selection
rule like for classical kernel density estimates (see paragraph just below). The second property (19) allows
us to control the estimation risk of én,b, while the third one, (20), justifies that the introduction of én)b
is reasonable.

To obtain a fully data-driven estimate én,b, it remains to define a bandwidth selection rule for the
(classical) kernel estimator g;¥". In view of (19), we introduce a data-driven procedure under sup-norm
loss, inspired from Lepski [21]. For any z € [0,2] and any bandwidth b, in a collection B’, we set
Gl (@) = (Ly * ;7™)(x), and To(b) = N| L[, log(n)/(nb), with X a tuning parameter. As for the other
bandwidth selection device, we now define

ASYm ASYm 2
A(b) = max sup (G (x) — g™ (2))” = Ta2(b) ¢,
VeB' | ge[1—6,1+6] N

Finally, we choose b = argmin .z {A(D) + 'a(b)}, which leads to §5¥™ := g;ym and 0, := én,é' The results
of [21] prove that E[||g;¥" — gsymHiO s 1+5]] < C(logn/n)?P/B+Y) if g e B(B, L"), where C, L' > 0 are

some constants, and if the kernel L has an order ¢ = |3|. Combined with Lemma 2, this ensures that 6,

satisfies us
~ logn\ 2°+T

E |6, —0)?| < . 22

(6. o8] < ¢ (“£2) 22)

Numerical simulations in Section 5 justify that our estimator has a good performance from the practical
point of view, in comparison with those proposed in [24] and [28].




4.3 Convergence rate of the component density estimator

We have now everything we need to compute the convergence rate of our estimator f (x0) at the point xg,
with selected bandwidth, and defined with the preliminary estimates § and 6,, introduced above (sections
4.2 and 4.1 respectively). Starting from the results of Theorem 1, we obtain the following rate of decrease
for the pointwise risk of our estimate, over Holder smoothness classes.

Corollary 1. Assume that (A1), (A6) and (A7) are satisfied, for 8 >0 and L > 0, and for an index
€ >0 such that £ = |B]. We choose e.g. ay, = log(n) and the bandwidth collection

1 ~
Mo = { ke (e Ll o fon 30 o001
Then, sz is defined with the preliminary estimates § and 0,, introduced in sections 4.2 and /.1

respectively, it satisfies
23

logn \ 27+1
n )

B [(ftan) - an))’] < 03 (23)

where C§ is a constant depending on 9|, v, (oys [Kll1s 1Ko £ and [[fllo v, ) -

The estimator f , with data-driven bandwidth, now achieves the convergence rate (log n/n)Q'B/ (26+1)
over the class (3, £) as soon as 3 < £. The risk decreases at the optimal minimax rate of convergence (up
to a logarithmic term) : the upper bound of Corollary 1 matches with the lower-bound for the minimax
risk established by Ibragimov and Hasminskii [19]. Our procedure automatically adapts to the unknown
smoothness of the function to estimate : the bandwidth il(l‘o) is computed in a fully data-driven way,
without using the knowledge of the regularity index [, contrary to the estimator f;“’k of Nguyen and
Matias [23] (corollary 3.4).

Remark 1. In the present work, we focus on Model (1). However, the estimation procedure we develop
can easily be extended to the model

9(x) = 0p(z) + (1 = 0)f(z), zeR, (24)

where the function ¢ is a known density, but not necessarily equal to the uniform one. In this case, a

family of kernel estimates can be defined like in (3) replacing the weights w(60,,§(+)) by

w0, §(-), d(x0)) = . —1§ (1 _ eng)((f())) .

If the density function ¢ is uniformly bounded on R, it is then possible to obtain analogous results (bias-
variance trade-off for the pointwise risk, adaptive bandwidth selection rule leading to oracle-type inequality
and optimal convergence rate) as we established for model (1).

5 Numerical study

5.1 Simulated data

We briefly illustrate the performance of the estimation method over simulated data, according the
following framework. We simulate observations with density ¢ defined by model (1) for sample size
n € {500, 1000,2000}. Three different cases of (6, f) are considered:

L f1(x) = 4(1 - l')gﬂ[(]’l] (x), 91 = 0.65.

s—1
S X .
o o) = 7 (1 - 5) jo1_s (2) with (8,5) = (0.3,1.4), 6 = 0.45.

o f3(z) =Ae ? (1— e’)‘b)fl 10,51 () the density of truncated exponential distribution on [0, b] with
(A, b) = (10,0.9), 63 = 0.35.

The density f; is borrowed from [23] while the shape of f5 is used both by [5] and [24]. Figure 1 represents
those three cases with respect to each design density and associated proportion 6.



Figure 1: Representation of f; and the corresponding g; in model (1) for (61 = 0.65, f1) (left), (62 =
0.45, f2) (middle) and (03 = 0.35, f3) (right).

5.2 Implementation of the method

To compute our estimates, we choose K(x) = L(z) = (1 — |z|)1{4 <1y the triangular kernel. In the
variance term (8) of the GL method used to select the bandwidth of the kernel estimator of f, we replace
I9llo0, v, (z) by the 95" percentile of { MaXsey, (zq) In(t), h € ’Hn}. Similarly, in the variance term I'; used
to select the bandwidth of the kernel estimate of g, we use the 95" percentile of { maxyefo,1] Jn(t), h € Hn}
instead of |[g]«. The collection of bandwidths H,, B, B’ are equal to {1/k, k= 1,...,|y/n]}.

0.020

— %02
92(0.2)

= :(0.6)
—=- g(0.4)
= 8:0.9)

A
— T2
- Loa
1506

o | == 1309

— MAE of §,, 6,=0.65
“ - MAE of B, 6,045
- MAE of 85, 0,-0.35

0015

g u g
R g
S s o

0.005

0025 0030 0035 0040 0045 0050  0.055

0
I
0.000

Figure 2: values of the mean-squared error for (a) f(xg) with respect to s, (b) g(xo) with respect to €.
(c) : Values of the mean-absolute error for 6, with respect to A. The sample size is n = 2000 for all
computations. The vertical line corresponds to the chosen value of k (figure (a)), ¢ (figure (b)) and A

(figure (c)).

We shall settle the values of the constants x, € and A involved in the penalty terms V' (xg, h),I'1 (k) and
I3 (b) respectively, to compute the selected bandwidths. Since the calibrations of these tuning parameters
are carried out in the same fashion, we only describe the calibration for k. Denote by fN the estimator
of f depending on the constant x to be calibrated. We approximate the mean-squared error for the
estimator f,, defined by MSE(f,(z0)) = E[(fx(z0) — f(0))2], over 100 Monte-Carlo runs, for different
possible values {k1, ..., kK } of K, for the three densities f1, fa, f3 calculated at several test points zo. We
choose a value for x that leads to small risks in all investigated cases. Figure 2(a) shows that x = 0.78 is
an acceptable choice even if other values can be also convenient. Similarly, we set € = 0.52 and A\ = 4.25
(see Figure 2(b) and 2(c) for the calibrations of € and .
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5.3 Simulation results
5.3.1 Estimation of the mixing proportion 6

We compare our estimator 0,, with the histogram-based estimator 9§g‘M proposed in [24] and the estimator
é;": introduced in [28]. Boxplots in Figure 3 represent the absolute errors of O, é,lfg'M and éTSL , labeled
respectively by ”Sym-Ker”, ”Histogram” and ”Bootstrap”. The estimators 6,, and éyg‘M have comparable
performances, and outperform éf .

015
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0.10
I
006 008 010

—E

S

0.05

005
I
0.04
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000 002

3 |
g8
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T
Histogram Boostrap
8;=0.35

T T
Histogram Boostrap Sym-Ker
0,=0.45

T T T
Sym-Ker Histogram Boostiap Sym-Ker
8,=0.65

Figure 3: errors for the estimation of € in the three simulated settings (with sample size n = 2000).

5.3.2 Estimation of the target density f

We present in Tables 1, 2 and 3 the mean-squared error (MSE) for the estimation of f according to
the three different models and the different sample sizes introduced in Section 5.1. The MSEs’ are
approximated over 100 Monte-Carlo replications. We shall choose the estimation points (to compute the
pointwise risk): we propose zg € {0.1,0.4,0.6,0.9}. The choices of 2y = 0.4 and zy = 0.6 are standard.
The choices of g = 0.1 and xg = 0.9 allows to test the performance of f close to the boundaries of the
domain of definition of f and g. We compare our estimator f with the randomly weighted estimator
proposed in Nguyen and Matias [23]. In the sequel, the label "AWKE” (Adaptive Weighted Kernel
Estimator) refers to our estimator f , whose bandwidth is selected by the Goldenshluger-Lepski method
and ”Ng-M” refers to the one proposed by [23]. Resulting boxplots are displayed in Figure 4 for n = 2000.

Sample size Estimator x9=0.1 x0=04 z9=0.6 x9=0.9
n = 500 AWKE 0.1683 0.0119 0.0256 0.0059
Ng-M 0.2869 0.0450 0.1046 0.0433
n = 1000 AWKE 0.0632 0.0087 0.0118 0.0063
Ng-M 0.1643 0.0469 0.0651 0.0279
n = 2000 AWKE 0.0314 0.0118 0.0098 0.0038
Ng-M 0.0982 0.0246 0.0326 0.0164

Table 1: mean-squared error of the reconstruction of fi, for our estimator f (AWKE), and for the
estimator of Nguyen and Matias [23] (Ng-M).

Tables 1, 2, 3 and boxplots show that our estimator outperforms the one of [23]. Notice that the errors
are relatively large at the point z¢ = 0.1, for both estimators, which was expected (boundary effect).
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Sample size Estimator x9=0.1 z0=04 x9=0.6 z9=0.9

n = 500 AWKE 0.0430 0.0126 0.0311 0.0002
Ng-M 0.0560 0.0540 0.0306 0.0138
n = 1000 AWKE 0.0183 0.0061 0.0240 0.0005
Ng-M 0.0277 0.0209 0.0123 0.0069
n = 2000 AWKE 0.0061 0.0034 0.0076 0.0002
Ng-M 0.0164 0.0159 0.0113 0.0038

Table 2: mean-squared error of the reconstruction of f5, for our estimator f (AWKE), and for the
estimator of Nguyen and Matias [23] (Ng-M).

Sample size Estimator x9=0.1 x20=04 z9=0.6 x9=0.9

n = 500 AWKE 0.0737 0.0090 0.0039 0.0016
Ng-M 0.1308 0.0247 0.0207 0.0096
n = 1000 AWKE 0.0296 0.0051 0.0026 0.0009
Ng-M 0.0566 0.0106 0.0096 0.0060
n = 2000 AWKE 0.0224 0.0022 0.0012 0.0007
Ng-M 0.0342 0.0059 0.0062 0.0021

Table 3: mean-squared error of the reconstruction of f3, for our estimator f (AWKE), and for the
estimator of Nguyen and Matias [23] (Ng-M).

6 Proofs

In the sequel, the notations P, E and Var respectively denote the probability, the expectation and the
variance associated with Xy, ..., X,,, conditionally on the additional random sample X,,1,..., Xop,.

6.1 Proof of Proposition 1
Let p > 1, introduce the event
Q, = {p’lv <9< m}-
such that . . R
fn(@o) = f(xo) = (fu(wo) — f(x0))La, + (fa(xo) — f(20))Las. (25)

We first evaluate the term (fh(:zro) — f(x0))1gq,. Suppose now that we are on ,, then for any
xo € [0,1], we have

(F(@o) = F(20))* < 3((fa(wo) = K » Fl@0))” + (K F(ao) = (o)) + (f(wo) = f(@0)"),  (26)

where we define
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Figure 4: errors for the estimation of fi, fo and f3 for z¢ € {0.1,0.4,0.6,0.9} and sample size n = 2000.

It follows that

On the other hand, for all i € {1,...,

w(l,

For (27), as we use compactly supported kernel to construct the estimator fh, condition a,, <
(A5) ensures that ’(Q(Xi))

9(Xi)) Kn(vo — X;)| =

1 L 0,,
1-40, 9(Xs)

1
Kp(xo — X5)

éz

no observation in the neighbourhood of z.

13

or (o)) = Var( 5w

Var (w(én,g(Xl))Kh(!Eo - Xl))

) Kp(zo — X3)| < <

_20p+7)

oy

| Kp (20 — X))

Kh(xo — X ))

B | (w0 (a0~ 30) .

n}, thanks to (A4) and (A2), and since 4 = p~ 1y on Q,,,

On
(]. + M) |Kh(1'0 — Xz)|
(27)
(28)

A1l in

is upper bounded by 41| K}, (2o — X;)| even though we have



Thus we obtain, on €,

20 712

=T, 2 = 2 4p+7) = [ o 4o+ V21K 2190001, (o)

— < ==Y — <

B[ (fu(wo) — B[fa(x0)])*] < Sy | K3 (w0 - X1)| < STy .
For the last two terms of (26), we apply the following proposition, which proof can be found in Section

6.5.1.

(29)

Proposition 2. Assume (A1) and (A3). On the set Q,, we have the following results for any x € [0, 1]

N 2 _ _ N a1 2
(f(mo) = f(20))” < C102y2 (G = gl% v, (mg) + C20 |0 — 6], (30)
X % 2 _ _ N _G&lx 2

(Kn* f(x0) = f(20))” < 6|Kn* f = Fl% v wo) + C36 7213 = 9% v, ooy + Cad~C|0n — 6], (31)

where Cy and Cy respectively depend on p and |g|, v, 4,y C3 depends on p and |K|, and Cy depends
on |9l v, (zg) and | K];-

Combining (29), (30) and (31), we obtain

E [ (Fa(w0) = £(x0)) Lo, | S 18[Knx £ = FIE, v, (o) +3(Cr + C2)5 >y E[ 13 = 91, 1,0y |

12(p + )2 | K] | g]
02v2nh

w7vn(w0)

+3(Cy + Ca)5 B[, — 0°] +

It remains to study the risk bound on ©f. To do so, we successively apply the following lemmas whose
proofs are postponed to Section 6.5.

Lemma 3. Suppose that Assumption (A3) is satisfied. Then we have for p > 1

P (Qg) < Cy,pexp {—(log n)?’/Q} ,
with Cy , a positive constant depending on g and p.
Lemma 4. Assume (A1) to (A5). For any h € H,,, we have

*
Ci
n2’

2 2
E[(fulwo) = f(20)) 10y | <
with Cf a positive constant depending on | f|, v, (1) [K]s 9, 6 and p.

This concludes the proof of Proposition 1.

6.2 Proof of Theorem 1
Suppose that we are on Q,. Let f be the adaptive estimator defined in (10), we have for any g € [0,1],
(F@o) = F(20))” <2 ((f(w0) = F(20)* + (F(w0) = f(x0))”)

The second term is controlled by (30) of Proposition 2. Hence it remains to handle with the first
term. For any h € H,,, we have

+V (w0, h(z0)) + V (w0, 1) + (falwo) — f(20))”)
< 3 (Ao, h(wo)) + A(wo, h) + V (o, hi@o)) + Vo, h) + (falwo) = f@0))”)  (32)
< 6A(z0, h) + 6V (20, h) + 3(faulwo) — Kn » f(20))” + 3(Kn  flxo) — f(z0))>.  (33)
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To obtain (32), we use the definition of A(zg,h), h € H,, see (9), and also that fAh7h/ = fh/’h, for any
h,h' € H,,. Then, (33) is a consequence of the definition of (), see (10). Next, we have

Ao h) = max | (Fun (@0) = fur(w0))” = V(wo, W)}

<3 maxc { (e (20) = Ko x (K * F)(@0))” + (fur(wo) = K * f(a0)’

(B = (i f)(o) = K« fan))” = 2500

<3(B(h)+ Dy + Dy),

where
. y 2
B(h) = }{/%%_l)i (Kh' * (Kh * f)(l‘o) — Ky * f(q;o)>
Dy, = Jmax {(fh/(mo) — Ky * f(xo))Q _ V(ch,h’)}
! +
D,y = jax {(fh,h’(fo) — Ky > (K * f)(:co))2 — V(‘TZ’h/)} )
n .
Since

B) = g (K (Ko f) (o) = K fao)) - = e (Ko w (Kw f = (o))

EHn
2 3 b 2
<|K[|7 sup |Knx f(t) = F)],
tevn(x())

then we can rewrite (33) as

(F(20) — F(20))” < 18D1 + 18D + 6V (20, ) + 3(fu(o) — K » f(x0))’

+ (18| K2 +3)t iu(p )!Kh*f(t) —fw]. (34

The last two terms of (34) are controlled by (29) and (31) of Proposition 2. Hence it remains to deal
with terms Dy and Ds.

For Dy, we recall that K}, x f(xo) = E[fh(mo)] and

E[D:] —E[max {(fh(l‘o) _Kh*f(xo))2_ VM} 1

heHn, 6

< 3 E|{(hon 2100 -2} |

6
< ) f C <{(fh<xo> — B[ f(20))” - V(h)} g ) "

6
JrOO~
< )] J P
heHn 0

Now let us introduce the sequence of 4.i.d. random variables Z7,

Fn(@o) = E[fn(xo)| > W + u) du. (35)

..., Zp wWhere we set

Zi = w(a’rug(Xi))Kh(xO - Xz)

Then we have

Fu(@o) = E[fulwo)] = = >} (2 —E[Zi]).

i=1

SRS
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Moreover, we have by (27) and recall that we are on Q, = {p*IW <A< pfy},
~ 20+ 1) K|, _ 2(py+ 1) |K
12 = (B g XD Koo — )] < 2L e < 2O oy,

2
AWy + D2 1K M9l v, @0y ;

and
E[22] = B |w(fn, 9(X:))* K (z0 - X3)| < ho?3?

Applying the Bernstein inequality (cf. Lemma 2 of Comte and Lacour [11]), we have for any u > 0,
~ 1% h
> y[h) u)

P <}fh<mo> ~ Blji(eo)| > ) +u> - (\; > (z - Biz))| | 1

On the other hand, by the definition of V(xq, h) we have
k|| K 2 K 2 g
” Hl H HQ H Hoo,Vn(mo) log(n)

nhi?62
42nh

n
7‘/(1‘07 h) = 9 2
96(py + 1)? [K13 9l 0,0, (o)

24v
82| K|’ 52
L log(n) > ——2_log(n).
96(py +1)2 96(py +1)2

2

If we choose k such that ——— > 2, we get
96(py + 1) ¢

n
%V(Zo, h) = 2log(n).

Moreover, using the assumption that 4nh > log® (n) and that 4 < py on Q,, we have

[y [ Kl \/ﬂ 19l (20) 108 (1)

n [V(xe,h) nhyd 5
8 6 16v6(py + 1) | K|, Vnh
1/2

SIK T, 1K1 1912, )
= 22 0) L Jknhlog(n)
16v6(py + 1) [ K|,
SR IEL, a0 S otogm,

>
16vV/6(py + 1)p/22 | K],

if
S K], K,
klog(n) = 2
16v/6(py + 1)pt/2y1/2 HKHoof ()
which automatically holds for well-chosen value of k, and n large enough. Then we have by using the
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conditions p~ly <4 and h > 1/n,

eXp , exXp (—%) du

'y [ N (o) |
< 2n~ max —n u|,exp | —n U U
P} )

s 16(07 + 12 K2 9l oy, o) 16(o7 + D K],

nh 0y’ u|,exp | —nh il Vu | pdu
_ exp [ —
16(py + 1202 K15 190 0., () 16(p7 + D)p [ K,

1 2
<2n72 J max{e*’”" ””‘f} du < 2n~? Z max{ —,— .
heHn heHn T T3
52~2 1)
with 7 = i 5 and my 1= v .
16(py + 1)202 | K5 9l 06,1, (20) 16(py + 1)p | K|l

Since card(H,,) < n, we finally obtain

E[Dl] < 05572’}/727171, (36)

where Cj is a positive constant depending on [|g]l,, y,, (4> [ K[ 0: [|K]5 and p.
Similarly, we introduce U; = w(én,g(Xi))Kh» * Kp(xg — X;) fori=1,...,n. Then,

Frw (@0) = K+ (K * f)(x0) = fan (w0) — E[ fa (20)] % Z )

and 2 2
4K, Ky, _ 5 16 K07 1502 900, v o) _
h/é’? T h’52’?2

Following the same lines as for obtaining (36), we get by using Bernstein inequality

|Us| <

and IE[U%] <

fE[DQ] < 06(5_2’}/_271_17 (37)

with Cg a positive constant depends on [g,y, (40) 1Ko, K], [ K], and p.

Finally, combining (34), (36), (37) and buccebblvely applying Lemma 3 and Lemma 4 allow us to
conclude the result stated in Theorem 1.

6.3 Proof of Lemma 2

First, we prove that g®¥"" is the density of Y;. To this aim, let ¢ be a measurable bounded function
defined on R. We compute

Elp(Y;)] = E[E[p(Xi)|eille,—1)] + E[E[p(2 — Xi)|eil L, = 1y],
_ % (Elp(X0)] +Elp(2 - X)) ,
- ;(L x)g(x L@Q—x)g(xdx>,

p)g@)dz + | o )

- ;( | e@st@as+ | w(x)g(Q—w)dfC),
2

~ | ety @

0

Since the equality holds for any test function ¢, we obtain the first assumption of the lemma.
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We prove now (19). Under the identifiability condition, we have 6 = g(z) for all x € [1 —

thus 6 = 2¢g°¥™(x) for x € [1 — 6,1 + §]. Hence we have

. 1 1+46
s =01 = |5 |
d Jiss
1 1496
<=
1)

1+0
gsum d.’)ﬁ _ f sym
1—

~Asym. _sym

1-68
1 1446

< < g
4 L—a

b

-8

57" @) — g ()| de

dr =2

Hoo,[1—5,1+5] 9" = gsym” [1-6,146]°

which proves (19). Then, thanks to the Markov Inequality

P (én,b ~ émb) - P <én,b ¢ [g 1— g])

which is (20). Finally,

E [lén,b - 9|2]

N

E

<E

: SN A s
< P(|9n,b0| > 2) < 5k [|9n,b*‘9| ],

_ 0 N2
=E |9n,b 0] <1{én.b§n,b} + 1{én,b7£én,b}>‘|
7|07l,b - 0|21{én,b€[6/2715/2]}:| (|07l b| + |0‘) ( n,b ;é 9” b)

S o
00— 07145 i /271_5/2]}] + 4P (0 # )

<(1+4x %)E [|én,b - 9|2] :

<(1+4x

%)sz[

A

9 - 51+5]]

thanks to (20) and then (19). This concludes the proof of Lemma 2.

6.4 Proof of Corollary 1
Since Assumptions (A6) and (A7) are fulfilled. According to Proposition 1.2 of Tsybakov [30], we get

for all ¢ € [0, 1]

|K, * f(z0) — flzo)| < C7LRP,

where C' a constant depending on K and £. We obtain

1 It
i {1 = 1% o + o | < i { o + 50

Taking

v

5292nh 0292nh

heH

1/(28+1
pr = b it et = | ey
k* log(n) ’

there exists n(53,, p) such that, for all n = n(8,~, p),

T_on ( n )1/<2/3+1)  logn) —
plog3(n) - log(n) = 108 n

Implying that for all n > n(8,~, p),

Q, {3 =v/p} < {h* e Hn}.
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o =5 @) - g a)ds
1

d0,1], and



Finally, since we also have (13) and (22), gathering (11) and (38). Since Assumption (A5) is verified
by construction of H,,, using again Lemma 4, we obtain, for all n,

e [(f(xo) - f(:co))z] < Cq (bin) b |

where Cjg is a constant depending on K, | f|, V(o) 95 d, v, p, L and S.

6.5 Proofs of technical intermediate results
6.5.1 Proof of Proposition 2

Let us introduce the function

F@) 1= 0@, g(2))g(x) = — <1 - g@n)> g(x). (39)
Then we have for zg € [0, 1]

(f(%) - f(170))2 <2 ((f(%) - JE(CUO))2 + (f(%) - f($0))2) :

For the first term, on Q, = {p~'y <4 < py} we have, by using (A4),

(F(zo) — F(20))? = (w(f, (0))g(0) — (B, wo))g(ro) )

1 én 1 én : 2
_ (1—@ <1_ g(m0)> - <1— g(x0)>) o)

/N

<4p*5 N9 = 9% v, (e - (40)

Moreover, thanks to (A1),

(Flo) — F@0))? = (w(B. g(0))a(x0) — w(b. g(x0))glz0))

2
1 0,, 1 0
- (1 = (1 - g(aso))g(x“) e (1 - g(x()))g(m“))

_ l9(zo)* G0+ 0 — 0,
(1—6)2(1—6,)> 9(z0)

- 2
Ay (5, 00
< 54 " g($0)

‘ 2

9 .
< 169[% v, (2o) 9 %16, — 0

Thus we obtain by gathering (40) and (41),

% 2 _ _ N _6I5 2
(F(z0) = F(20))” < 8007272 — gl2 1, (we) + 321915 1, 2y 0 C10n — 0]
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Next, the term (Kj, * f(zo) — f (xo))2 can be treated by studying the following decomposition
(Kh * fxo) — f(a:o))z < 3((Kh * f(zo) — Kp, *f(aco))2 + (Kh *f(xo) - K *f(xo))z
(K o) — o)

=: 3(A1 + As + Ag)

For term A;, we have by using (40)
Ay = (K x (F — Do)’ = ( [ Foro =) - f(u»du)
2
< (J (o — )| F(u) — f<u>|du)

2
<4503 = gL, ([ 0~ w0l
< 4026722 K213 - gl o -

By using (41) and following the same lines as for A;, we obtain
Ay = (K + (f = )(@0))” <1612, 1, 10y 5 1K 16 — 0],
For As, using the upper bound obtained as above for (f(zo) — f(x0))?, we have

2 ¥ 2
As < 2(Kp * f(x0) = f(20))” +2(f(20) — f(20))
_9 _ ~ 6l 2
<2 Kn* f = o, @) +160°6 27 213 = 9l v, oy T 641915 v, 2y 8 ¢10n — 0]

Finally, combining all the terms A1, A; and Aj, we obtain (31). This ends the proof of Proposition 2.

6.5.2 Proof of Lemma 3

Lemma 3 is a consequence of (6). Indeed, if condition (A3) is satisfied, we have for all ¢t € V,(zo),
13(t) — g(t)| < v|g(t)| with probability 1 — C,,, exp ( — (logn)3/?).
This implies,
L+ ) Hg®)] < gl < @ —v) Mgl
)

(
Since vy = inf |g(¢t)] and 4 = inf )|g(t |, by using (6) and taking v = p— 1, v =1 — p~!, we obtain
0

teVn (z0) teVy (z
with probability 1 — Cy ., exp ( — (log n)3/2), (1+v) 'y <4 < (1 —v)~'y. This completes the proof of
Lemma 3.

6.5.3 Proof of Lemma 4
We have for any z € [0,1],

E | (fu(@0) = f(20)) "L | < 2E[1fu(w0) P ] + 2112 v, (0 P(2%)-
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E[\fh(ﬂﬁo)\zﬂﬂg] =E

N
=
2~
=

(B
g\ (BEe ()

4K 1\?
< 52h2w]E +§ Log
4|K]Z, , LYV oo (o :
< 52 Ln 1+(logn)3 P(2;,) (using Assumption (AS5)).

Finally, we apply Lemma 3 to establish the following bound

]E[(f( _ 8|K|5, n? 2 _a 3/2
1 (20) = (@0)) Mo | < Cop | =552 oggs * 2 o oy | 50 {~Cog)*?}
C
<

where €' depends on 8, | f{ v, (4g)s [K]: g and p, which ends the proof of Lemma 4.
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