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An Average Allowable Transmission Interval Condi-
tion for the Stability of Networked Control Systems
Stefan H.J. Heijmans, Romain Postoyan, Dragan Nešić, Fellow, IEEE and W.P. Maurice H. Heemels, Fellow, IEEE

Abstract—A popular design framework for networked control
systems (NCSs) is the emulation-based approach combined with
Lyapunov-based analysis techniques for hybrid systems. In vir-
tually all papers that use this framework, bounds in terms of the
maximal allowable transmission interval (MATI) are provided
to guarantee stability and performance properties of the NCS.
However, having only such a MATI condition is rather restrictive
and unrealistic in practice due to various network effects such as
packet losses, leading to conservative bounds. In this paper, we
therefore consider an alternative condition on the communication
instants to better capture the time-varying properties of the trans-
mission intervals. In particular, we propose, in addition to the
existence of a MATI, to also impose a bound on the average allow-
able transmission interval, expressed in terms of a reverse average
dwell-time (RADT) condition on the transmission intervals. We
demonstrate by means of a novel Lyapunov-based analysis that
stability of the NCS can still be guaranteed under this different
condition on the transmission intervals, which can, in addition,
lead to a significant improvement of the MATI. The strengths
of these new results will be illustrated on a numerical example.

Index Terms—Networked control systems, stability of hybrid
systems, Lyapunov methods, dwell-time conditions

I. INTRODUCTION

NETWORKED control systems (NCSs) are systems in
which the sensors, controllers, and/or actuators of the

plant are physically distributed and communicate via (packet-
based) digital channels. These systems have received consider-
able attention in recent years, motivated by the many benefits
they offer with respect to conventional control systems, in-
cluding greater flexibility, ease of maintenance, and low cost,
weight and volume [1]–[6]. However, exploiting packet-based
communication also comes with inevitable imperfections such
as varying transmission intervals due to, for instance, packet
losses, varying delays, and communication constraints that can
all degrade the overall performance of the system and even
lead to instability, see, e.g., [7] for an illustrative example.
Moreover, as the communication network is often shared by
multiple sensor and actuator nodes, there is a need for so-
called scheduling protocols that govern the access of these
nodes to the network.

To deal with these network-induced phenomena, several
frameworks were developed in recent years to determine
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conditions on the network while still guaranteeing stability and
performance properties. A popular two-step design approach
herein is the so-called emulation-based method as advocated
in [8] and [9] combined with Lyapunov-based analysis tools
for hybrid systems, reflected in the works [10]–[23]. The idea
is to first design the (stabilizing) controller for the plant while
ignoring the communication constraints. Note that in this first
step any (nonlinear) controller design method can be used. In
the second step, conditions on the communication rate, e.g.,
formalized through bounds on the transmission intervals using
properties of the plant, controller, and scheduling protocol, are
provided to guarantee closed-loop stability and performance of
the overall NCS. In fact, a considerable amount of research has
been focusing on determining the so-called maximal allowable
transmission interval (MATI) for which the closed-loop NCS
with the emulated controller is still stable, see, e.g., [8]–[23].
Hence, the problem of characterizing the MATI is instrumental
in the analysis of NCSs.

However, a clear limitation of an analysis based only on a
MATI condition as in, e.g., [8]–[23], is that the situation in
which the length of each transmission interval is equal to this
‘worst case’ value (being the MATI bound) is allowed to occur
and, therefore, needs to be covered in the analysis. Conse-
quently, as this ‘worst case’ scenario is typically unrealistic to
occur in practice since we have in general varying transmission
intervals due to various network effects and large transmission
intervals close to the MATI bound are rare, analyses from
literature often lead to conservative bounds on the MATI.
Indeed, it is, for instance, more likely to expect that situations
occur at which the length of some transmission intervals is
significantly larger than that of most transmission intervals
(perhaps to cope with packet losses, which is particularly
likely for wireless networks), provided that these ‘longer’
transmission intervals are somehow compensated for by a
number of shorter inter-transmission times to maintain stability
of the NCS. Such a scenario is, for instance, motivated by
task executions on general purpose multiprocessor platforms
that exhibit variations in their execution times, see [24]. As
this feature cannot be addressed by only using the concept of
a MATI, there is a need for a greater modeling flexibility to
include more specific information on the transmission intervals
in the NCS model.

We therefore propose in this work an alternative condition
on the transmission intervals that better suits the above ra-
tionale and, thereby, connects better to the behavior of the
communication networks in NCSs. That is, in addition to the
existence of a MATI, we also propose to impose a bound
on the average allowable transmission interval. In this way,
stability of the NCS no longer only depends on the value
for the (worst case) MATI, but also on the average value
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for the transmission intervals, allowing us to include more
specific information regarding the possible varying length of
the transmission intervals. Interestingly, this concept is directly
related to exploiting a reverse average dwell-time (RADT)
condition, as introduced in [25], [26] for hybrid systems, on
the transmission instants, which translates to requiring that
there is on average at least one transmission in the time
interval of a length equal to the RADT. As such, we investigate
in this work if imposing an additional RADT constraint on the
transmission instants (cf. a bound on the average allowable
transmission interval) leads to a significant improvement of
the MATI for some transmission intervals with respect to the
works of [12], [22], and [23], while maintaining the stability
guarantees for the NCS.

In order to do so, we need to be able to not only integrate the
MATI and the so-called minimal allowable transmission inter-
val (MIATI), which always exists due to hardware limitations
in terms of the smallest achievable sampling period for digital
communication networks, but also the RADT into the hybrid
model for NCSs as advocated in [11] and described in [12]. We
therefore introduce in this work a new ‘hybrid clock’ to capture
the MIATI, the MATI, and the RADT constraints in a hybrid
model, allowing us to provide a new and extended hybrid
model of the NCS itself. In addition, following [12], [23],
we construct a novel, genuine (hybrid) Lyapunov function in
the sense that it decreases during flows and does not increase
during jumps of the hybrid system to show stability. Having
such a genuine Lyapunov function is in contrast to earlier
works on RADT conditions for hybrid systems as in [25],
[26] since they used a Lyapunov function that is allowed to
increase during flows, see also Remark 3 below. Moreover, the
Lyapunov construction generalizes prior constructions from
[12] and [22]. In summary, we provide for the first time a full
Lyapunov-based proof for NCSs including a RADT condition.
This novel result does, however, also introduce various new
technical difficulties in the analysis. For instance, contrary
to the previous works [10]–[12], [22] and [23], the newly
introduced timer in the ‘hybrid clock’ to model the RADT
constraint is no longer reset to zero at each transmission
instant (see (6) below), which implies that the conditions
under which the hybrid-timer dependent Lyapunov function
decreases change significantly. This requires new analysis
techniques as we will see below, among others, Lemma 1,
which is instrumental in this aspect. Finally, the analysis shows
that there exist certain trade-offs between the RADT and the
MATI, which will also be evident in the considered numerical
example. In particular, it will follow that when we transmit
faster on average (i.e., a lower value for the RADT), we can
obtain a significant improvement of the MATI. These novel
results significantly extend our preliminary work [27] as, in
this paper, we explicitly introduce the new ‘hybrid clock’ to
capture the MIATI, MATI, and RADT constraints and provide
full derivations and proofs. In addition, we show in this work
how a bound on the maximal attainable improvement of the
MATI can be computed a priori, which provides a direct
indication of the improvements we can attain using these novel
results and a detailed link to the so-called sampled-data (SD)
case, see Section IV-E below.

The remainder of this paper is organized as follows. After
presenting the necessary preliminaries and definitions in Sec-
tion II, the considered class of systems is described in Section
III, including a suitable hybrid model for the NCS. Here we
also introduce the RADT condition and the new hybrid clock
to include it in the hybrid model. In Section IV, we provide the
sufficient Lyapunov conditions to guarantee uniformly globally
exponential stability (UGES) of the NCS, after which we show
how they can be applied to obtain a bound on the RADT and
on the MATI (depending on the RADT). Here we also state
our main result and give a detailed intuitive interpretation of
the RADT constraint in the sampled-data (SD) case. Finally,
in Section V we illustrate our results by means of a numerical
example, showing that the MATI can indeed be significantly
increased when having an additional RADT constraint, and in
Section VI some concluding remarks are given.

II. PRELIMINARIES

The sets of real and natural numbers are denoted by R and
N, respectively, and the sets of non-negative real numbers and
integers by R≥0 and N0(∶= N∪ {0}), respectively. For vectors
v1, v2, . . . , vn ∈ Rn, we denote by (v1, v2, . . . , vn) the vector
[v⊺1 v⊺2 ⋯ v⊺n]

⊺
, and by ∣ ⋅ ∣ and ⟨⋅, ⋅⟩ the Euclidean norm

and the usual inner product, respectively. Moreover, we define
the distance of a vector x ∈ Rn to a closed set A ⊂ Rn as
∣x∣A ∶= miny∈A ∣x − y∣. The n by n identity and zero matrices
are denoted by In and 0n, respectively. When the dimensions
are clear from the context, these notations are simplified to I
and 0.

Consider the nonlinear hybrid system given by

H ∶ {
ξ̇ = F (ξ), when ξ ∈ C

ξ+ = G(ξ), when ξ ∈D
(1)

where ξ ∈ X ⊆ Rmξ is the state vector, F the flow map, G the
jump map, C ⊆ X the flow set, D ⊆ X is the jump set, and
the set of initial conditions is defined as X0 ⊆ C ∪D ⊆ X (i.e.,
ξ(0,0) ∈ X0). We assume that the sets C and D are closed
sets and that F and G are continuous.

A solution to a hybrid system of the form (1) is defined
on a hybrid time domain, which is a subset of R≥0 × N0. In
particular, consider the following definitions from [28].

Definition 1a. A subset E ⊂ R≥0 × N0 is a compact hybrid
time domain if E = ⋃

J−1
j=0 ([tj , tj+1] × {j}) for some finite

sequence of times 0 = t0 ≤ t1 ≤ t2 ≤ . . . ≤ tJ .
Definition 1b. A hybrid time domain is any set E ⊂ R≥0×N0

such that for all (T, J) ∈ E, E ∩ ([0, T ] × {0,1, . . . , J}) is a
compact hybrid domain.
Definition 1c. A hybrid arc is a function ξ defined on its
hybrid time domain dom ξ that is locally absolutely continuous
in t on the interval (dom ξ) ∩ (R≥0 × {j}) for each j ∈ N0.
Definition 1d. A time instant t ∈ R≥0 is called a jump time
for a hybrid arc ξ if there is a j ∈ N such that (t, j) ∈ dom ξ
and (t, j − 1) ∈ dom ξ.

We will often not mention dom ξ explicitly, with the under-
standing that each hybrid arc ξ is defined on its corresponding
hybrid time domain dom ξ. Moreover, observe that the se-
quence of times 0 ≤ t1 ≤ t2 ≤ . . . tJ as specified in Definition
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1a for the hybrid time domain in Definition 1b (with t0 thus
excluded) are jump times. Using these definitions, similar to
[28]–[30], we say now that a hybrid arc ξ ∈ X is a solution to
(1) with initial state set X0 if ξ(0,0) ∈ X0 and

● for all j ∈ N0 and almost all t such that (t, j) ∈ dom ξ,
ξ(t, j) ∈ C and ξ̇(t, j) = F (ξ(t, j));

● for all (t, j) ∈ dom ξ such that (t, j+1) ∈ dom ξ, ξ(t, j) ∈
D and ξ(t, j + 1) = G(ξ(t, j)).

Hence, ξ(t, j + 1) is denoted ξ+ in (1) and dom ξ denotes the
hybrid time domain of ξ. In addition, we say in this work
that a solution ξ is maximal, if there does not exist another
solution ξ̃ such that dom ξ ⊂ dom ξ̃ and ξ(t, j) = ξ̃(t, j) for
all (t, j) ∈ dom ξ, and that a solution ξ is called t-complete
if sup{t ∈ R≥0 ∣ ∃j ∈ N0 such that (t, j) ∈ dom ξ} =∞. For a
detailed description and interpretation of these concepts, the
interested reader is referred to [28].

We are interested in the stability of the hybrid model (1).

Definition 2. Consider the hybrid system H on X given by
(1) and consider a closed set E ⊆ X0. Then the set E is said
to be uniformly globally exponentially stable (UGES) if there
exist constants K,c > 0 such that for any initial condition
ξ(0,0) ∈ X0, all corresponding maximal solutions ξ are t-
complete and satisfy for all (t, j) ∈ dom ξ

∣ξ(t, j)∣
E
≤K ∣ξ(0,0)∣

E
e−c(t+j).

III. SYSTEM SETUP

In this section, we introduce the NCS setup, the RADT
condition, and a hybrid model describing the overall dynamics
including a new hybrid clock, which captures the RADT
constraint on the transmission instants.

A. Networked Control Configuration

We consider the NCS setup as shown in Fig. 1, where the
continuous-time plant P communicates with the controller C
via the network N . We assume here that the controller is
designed while ignoring the network, which is characteristic
for the emulation-based design approach, as already mentioned
in the introduction.

C N P

u

ŷ

û

y

Controller Plant

Fig. 1. The NCS setup as described in [8]–[23].

The plant and controller dynamics are given by

P ∶ {
ẋp = fp(xp, û)

y = gp(xp)
and C ∶ {

ẋc = fc(xc, ŷ)

u = gc(xc),
(2)

where xp ∈ Rmxp and xc ∈ Rmxc denote the plant and
controller state, respectively, u ∈ Rmu the control input,
û ∈ Rmu the most recently received control input by the plant,
y ∈ Rmy the output, and ŷ ∈ Rmy the most recently received
output of the plant. We assume that fp and fc are continuous,
and gp and gc continuously differentiable.

To complete the NCS setup, we also need to describe the
network N in more detail. As such, we assume that it has

a collection of sampling/transmission times tj , j ∈ N, which
satisfy 0 ≤ t1 < t2 < . . .. At such a time tj , (parts of) the
output y and the input u are sampled and transmitted to the
controller C and the plant P , respectively, which results in an
update of (a part of) the networked values according to

ŷ (t+j ) = y (tj) + hy (j, e (tj))

û (t+j ) = u (tj) + hu (j, e (tj)) ,
(3)

where the function h ∶= (hy, hu) with h ∶ N0 × Rme → Rme
models the scheduling protocol that determines which (sensor
and/or actuator) node is granted access to the network at time
tj , see, e.g., [11]–[15], and where e denotes the network-
induced error defined by e ∶= (ey, eu) = (ŷ−y, û−u). We also
assume that ŷ and û are constant in between two successive
transmissions (i.e., the network nodes operate in a similar
manner to a zero-order-hold (ZOH)). However, this can easily
be modified, if desired, see [11].

Finally, as mentioned in the introduction and shown by the
works of, e.g., [8]–[18], [20]–[23], it is common to assume
that (all of) the transmission intervals are bounded by

τmiati ≤ tj+1 − tj ≤ τmati, j ∈ N, (4)

where τmati denotes the maximal allowable transmission in-
terval (MATI) and τmiati the minimal allowable transmission
interval (MIATI), such that 0 < τmiati ≤ τmati. The upper
bound τmati is used in many papers to guarantee stability
properties of the NCS designed using the emulation-based
approach, see, e.g., [12]–[23], while the lower bound on the
transmission intervals τmiati > 0 is often taken arbitrarily
small, see, e.g., [8]–[21], since it is only imposed to prevent
Zeno behavior. However, note that in practice this lower bound
always exists due to limitations in digital communication
hardware in terms of a smallest achievable transmission period.
In fact, knowledge of the MIATI (instead of assuming it to be
arbitrarily small) can be exploited to improve the MATI as
was recently shown in [22] and [23] and as will also follow
from our analysis (see Remark 7).

Combining all of the above, the NCS setup described by (2)-
(4) can be written in a hybrid system formalism as advocated
in [11] and described in [12], which is of the form of (1) where
each ‘jump’ of the hybrid system corresponds to an update of
the networked values, i.e., the sequence of transmission times
of the NCS is equal to the sequence of jump times of the
hybrid model. Using this hybrid modeling framework, stability
and performance of the NCS were analyzed in [12]–[16], [20],
[22], [23] using a Lyapunov-based theorem for hybrid systems,
resulting in values for the MATI such that, for instance, UGES
for the NCS is guaranteed. Condition (4), however, allows for
all of the transmission intervals to have a length equal to the
MATI (‘worst case’), which, as mentioned in the introduction,
is often unrealistic in practice and conservative in the analysis.
As such, our objective in this work is to include more specific
information concerning the transmission intervals in the NCS
model in terms of an average allowable transmission interval
(‘average case’) to allow for significantly larger values for
some specific transmission intervals equal to the MATI, while
still ensuring stability. To do so, we rely on the concept of a
RADT condition, which we will first introduce.
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B. A Reverse Average Dwell-Time (RADT) Condition

Introduced in [25] and [26] for a hybrid system given by (1),
the RADT condition captures the situation in which continuous
flow can potentially destroy the UGES property and must
therefore be persistently interrupted by jumps of the hybrid
system. In particular, it enforces a lower bound on the amount
of jump times for any solution ξ to (1) with its corresponding
hybrid time domain1 dom ξ by means of

j − i ≥
t̄ − t

τ∗r-dt
−N0,

for all (t, i), (t̄, j) ∈ dom ξ
with t̄ + j ≥ t + i

(5)

for some N0 ≥ 1 and the appropriately chosen constant τ∗r-dt >
0 called the RADT (see Section IV). Here, the quantity j − i
is, loosely speaking, related to the number of ‘jumps’ of the
solution to the hybrid system between t and t̄.

The RADT condition (5) imposes that, on average, at least
one jump of the hybrid system (1) occurs in an interval of
length τ∗r-dt time units and that for a fixed value of N0 ≥ 1
there exists at most N0τ

∗
r-dt time units between two consec-

utive jumps, see [25], [26]. Moreover, in the special case of
N0 = 1, (5) actually recovers MATI-like bound as imposed by
(the right hand-side of) the ‘classical’ condition (4), i.e., in the
case of N0 = 1, the RADT condition (5) requires that two con-
secutive transmission times must be separated by at most τ∗r-dt
time units, see also Remark 1 below. Hence, with imposing (5)
on the jump (cf. transmission) times we do not only have an as-
sumption on the RADT, but also on the MATI. In other words,
having an analysis based on the concept of a RADT via (5)
rather than having (only) a MATI bound for all transmission
intervals as in condition (4) allows us to include more informa-
tion regarding the varying lengths of the transmission intervals
in the NCS model and forthcoming analysis. It is this extra
condition on the RADT that will allow us to obtain higher
bounds for the MATI than what can be obtained based on the
analysis in [12] or [22]. We will therefore embed the RADT
condition (5) (in addition to the, due to hardware limitations,
always present, MIATI bound) in our NCS setup instead of
using (4). To this end, we first introduce a ‘hybrid clock’ that
allows us to include the RADT and the MIATI/MATI bounds
in the hybrid model for the NCS as described in [10]–[12].

Remark 1. Observe that the RADT constraint of (5) thus
also directly provides a bound on the maximal allowed time
in between jumps of the hybrid system (cf. the MATI) in the
form of the value N0τ

∗
r-dt for some N0 ≥ 1. Indeed, in the case

of NCSs we can take N0 ≥
τmati
τ∗
r-dt

with τ∗r-dt ≤ τmati such that
the RADT constraint (5) guarantees that there exists an upper
bound smaller or equal to τmati on the transmission intervals
tj+1−tj , j ∈ N, of the NCS, similar to condition (4). Moreover,
in the case of N0 = 1, τ∗r-dt actually represents a MATI for
the NCS in the sense of condition (4), i.e., all transmission
intervals may be at most of length τmati = τ

∗
r-dt time units.

Note now that in [25], [26] the presence of such an upper
bound N0τ

∗
r-dt on the transmission intervals is not exploited

in the analysis as their stability results are independent of

1For each hybrid time domain there exists a natural (lexicographical) way
of ordering the hybrid times, meaning that the condition t̄ + j ≥ t + i in (5)
implies that either t̄ > t or t = t̄ and j ≥ i, see [28, Section 2.2].

N0 ≥ 1. Here, however, we do need the explicit upper bound
τmati ≤ N0τ

∗
r-dt for the Lyapunov function construction, as we

will see in Section IV below. Obviously, (5) with N0 ≥
τmati
τ∗
r-dt

also relates the values for τ∗r-dt and τmati to each other,
i.e., when we on average transmit slightly faster/slower (take
τ∗r-dt lower/higher), then τmati can be larger/smaller (as N0 is
allowed to be larger/smaller).

C. A RADT Augmented Hybrid Model for the NCS

Unfortunately, the existing hybrid clocks from literature
do not incorporate the MIATI, the MATI and the RADT
constraint simultaneously on the transmission instants. Indeed,
existing hybrid clocks for NCSs as in [11] and [12] only
model the constraint (4), while the hybrid clocks as in [29,
Remark 17], [30, Proposition 3.2], or [31, Proposition 1.2]
only model the RADT constraint (5). Therefore, we introduce
in this paper a novel hybrid clock T , consisting of the timer
variable τ ∈ R≥0 and the memory variable s ∈ R initialized at
a value s(0,0) ≤ τmati − τmiati, and which is given by the
hybrid system

T ∶

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

τ̇ = 1

ṡ = 0
} when τ ∈ [0, τmati]

τ+ = max{0, τ − τ∗r-dt}

s+ = max{0, τ − τ∗r-dt}
}

when
τ ∈ [s + τmiati, τmati]

(6)

for 0 < τmiati ≤ τ∗r-dt ≤ τmati. The variable s is used to
‘remember’ to which value τ was reset after a jump has
occurred, which is needed to incorporate the MIATI bound,
and is therefore reset to the same value as τ at a jump
of the hybrid system but kept constant in between jump
times. Moreover, the value for τ − s keeps track of the time
elapsed since the last jump of the hybrid system (cf. the
last transmission instant of the NCS), which is in contrast
to the existing hybrid clocks in the NCS literature, see, e.g.,
[11], [12], where the timer τ itself already provided a direct
indication of the elapsed time. This is a result of the value for
τ in this case not (always) being reset to zero after a jump (cf.
transmission) has occurred, but rather to the value max{0, τ −
τ∗r-dt}, while in [11], [12] the clock τ is always reset to zero.

Combining the above properties, we can state the following.

Proposition 1. Let 0 < τmiati ≤ τ∗r-dt ≤ τmati be given. A
hybrid time domain E with its sequence of jump times {tj}j∈N,
satisfies

tj+1 − tj ≥ τmiati for all j ∈ N (7a)

j − i ≥
(t̄ − t) − τmati

τ∗r-dt
for all (t, i), (t̄, j) ∈ E (7b)
with t̄ + j ≥ t + i

if and only if E = dom(τ, s) for some solution (τ, s) to (6)
with initial state set X0 = [0, τmati] × (−∞, τmati − τmiati].

The proof is given in Appendix A. Note that condition
(7a) corresponds to ensuring that two consecutive jumps of
the hybrid clock are separated by at least τmiati time units,
while condition (7b) is equivalent to (5) with N0 =

τmati
τ∗
r-dt

(and
therefore models the RADT and the MATI constraints, see
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Remark 1). Hence, this new hybrid clock takes care of the
MIATI, the MATI, and the constraint on the average allowable
transmission interval expressed by means of the RADT.

Combining now the continuous-time properties of the plant
and the controller as given by (2), the network protocol (3),
and the timing properties of the network modeled using the
hybrid clock T in (6), the NCS setup can be expressed as a
hybrid model of the form (1), where each jump of the hybrid
system corresponds to an update of the networked values and
that satisfies both (4) and (5) (cf. (7)). To do so, for the
modeling of certain scheduling protocols, we also need to
introduce a counter κ ∈ N0, which keeps track of the number
of transmissions, see [11], [12]. In particular, following from
(3), we consider the class of scheduling protocol functions
h ∶ N0 × Rme → Rme for which the error dynamics at jumps
of the hybrid system are given by

e+ = h(κ, e). (8)

Examples of such scheduling protocols are, among others,
the sampled-data (SD), round-robin (RR), and try-once-discard
(TOD) protocols [11].

Based on the above and following [11] and [12], we thus
obtain that the NCS described by (2)-(5) can be expressed as
the hybrid system Hncs given by

Hncs ∶ {
ξ̇ = F (ξ) when τ ∈ [0, τmati]
ξ+ = G(ξ) when τ ∈ [s + τmiati, τmati]

(9)

with its full state ξ ∶= ((xp, xc), e, (τ, s), κ) ∈ X ∶= Rmx ×
Rme × [0, τmati] × R × N0 and set of initial conditions
X0 ∶= Rmx × Rme × [0, τmati] × (−∞, τmati − τmiati] × N0,
and where F (ξ) ∶= (f(x, e), g(x, e),1,0,0) and G(ξ) ∶=

(x,h(κ, e),max{0, τ − τ∗r-dt},max{0, τ − τ∗r-dt}, κ + 1) with
x ∶= (xp, xc) ∈ Rmx , mx =mxp +mxc , and

f(x, e) ∶= [
fp (xp, gc(xc) + eu)
fc (xc, gp(xp) + ey)

]

g(x, e) ∶=

⎡
⎢
⎢
⎢
⎢
⎣

−
∂gp
∂xp

fp (xp, gc(xc) + eu)

−
∂gc
∂xc

fc (xc, gp(xp) + ey)

⎤
⎥
⎥
⎥
⎥
⎦

.

Using this augmented hybrid system (9), we will now analyze
for which pairs of (τ∗r-dt , τmati) the set

E ∶= {ξ ∈ X ∣ x = 0 and e = 0} (10)

is guaranteed to be UGES for the NCS.

IV. A LYAPUNOV-BASED STABILITY ANALYSIS

A fundamental tool in the stability analysis for hybrid sys-
tems (and in particular NCSs) is the use of Lyapunov theorems
and its corresponding Lyapunov function [12], [28]. Therefore,
in this section, we analyze the stability of the hybrid model
(9) for the NCS by means of constructing a genuine Lyapunov
function in the sense that it strictly decreases during flows (i.e.,
in between transmission times) and does not increase during
jumps (i.e., when an update of the networked values occurs),
see also (11) below. This will directly lead to conditions on
the RADT and the MATI such that UGES of the set E is
guaranteed.

A. The Lyapunov Function and Conditions

Following [12], [28] and in line with the works [13]–[15],
[21] and [22], we say that a function U ∶ X → R≥0 is a
(hybrid) Lyapunov function for the hybrid system (9) if U
is locally Lipschitz, positive definite, and radially unbounded
with respect to the set E in the sense that there exist constants
αU , αU > 0 such that for all ξ ∈ X

αU ∣ξ∣
2

E
≤ U(ξ) ≤ αU ∣ξ∣

2

E
, (11a)

and if U satisfies for some constant δ > 0 for (almost) all ξ ∈ X

⟨∇U(ξ), F (ξ)⟩ ≤ −δU(ξ), when τ ∈ [0, τmati] (11b)
U(G(ξ)) −U(ξ) ≤ 0, when τ ∈ [s + τmiati, τmati] (11c)

with F (ξ) and G(ξ) as in (9). Based on (11) and the fact that
there is always at least τmiati > 0 time units between jumps
(as a result of Proposition 1), we have the following result,
commonly known in the hybrid literature.

Theorem 1. Consider the hybrid system Hncs on X given by
(9). If there exists a Lyapunov function U ∶ X→ R≥0 for Hncs,
then the set E given by (10) is UGES.

The proof directly follows from the proof of [12, Theorem
1]. To obtain now bounds on the values for the RADT and
the MATI (which will depend on the value for the RADT as
we will see below) for which the NCS is UGES, we aim to
construct a Lyapunov function U for the hybrid system (9),
which satisfies (11). To do so, in line with [11]–[13], we first
make the following assumption.

Assumption 1. Consider the hybrid system Hncs as in (9).
There exist a function W ∶ N0 × Rme → R≥0 that is locally
Lipschitz in its second argument, a locally Lipschitz function
V ∶ Rmx → R≥0, a continuous function H ∶ Rmx → R, and
constants λ ∈ (0,1), L ≥ 0, αW , αW , αV , αV , ε, γ > 0 such
that the following hold:

1) For all κ ∈ N0 and e ∈ Rme

αW ∣e∣ ≤W (κ, e) ≤ αW ∣e∣ (12a)

W (κ + 1, h(κ, e)) ≤ λW (κ, e). (12b)

2) For all κ ∈ N0, x ∈ Rmx , and almost all e ∈ Rme

⟨
∂W (κ, e)

∂e
, g(x, e)⟩ ≤ LW (κ, e) +H(x). (13)

3) For all x ∈ Rmx

αV ∣x∣
2
≤ V (x) ≤ αV ∣x∣

2
. (14)

4) For all κ ∈ N0, e ∈ Rme , and almost all x ∈ Rmx

⟨∇V (x), f(x, e)⟩ ≤ −ε2V (x)−H2
(x)+γ2W 2

(κ, e). (15)

This assumption is essentially the same as the main assump-
tion [12, Assumption 1]. Moreover, these conditions (12)-(15)
have been proven to be systematically checkable for various
classes of NCSs, see, e.g., [15]–[22]. In particular, we can
divide the assumption in a part that is related to stability
of the error dynamics of the NCS and a part that is related
to stability of the closed-loop dynamics of the NCS, which
is characteristic for the emulation-based approach for NCSs
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as exploited in this paper. To be more precise, condition
(12) means that the scheduling protocol is UGES, a notion
introduced in [11], and is therefore directly related to the
‘discrete’ error dynamics (8) of the NCS. The SD, RR, and
TOD protocols are, among others, UGES scheduling protocols,
for which the functions W are provided in [11]. On the
other hand, conditions (14) and (15) are related to finding a
Lyapunov function for the closed-loop dynamics ẋ = f(x, e)
that establishes an L2-gain γ from W to H . The remaining
part is then to connect condition (12) on the one hand and
conditions (14) and (15) on the other hand, which is done via
condition (13), which is an exponential growth condition on
W along the solutions of the error system ė = g(x, e) between
two consecutive transmission instants. For more information
concerning this type of analysis we refer to [11], [12].

In view of Assumption 1 and inspired by [12], [22], we
propose for the hybrid system (9) to take, for any ξ ∈ X,

U(ξ) = φV (τ)V (x) + γφW (τ)W 2
(κ, e) (16)

as a candidate Lyapunov function where φV , φW ∶ [0, τmati]→
R≥0 are some functions to be designed. Certainly, these func-
tions need to have strictly positive lower and upper bounds,
i.e., there exist constants φc

V
, φ
c

V , φ
c

W
, φ
c

W ∈ R>0 such that

φc
V
≤ φV (τ) ≤ φ

c

V (17a)

φc
W

≤ φW (τ) ≤ φ
c

W (17b)

for all τ ∈ [0, τmati]. Note that (17) in combination with (12a)
and (14) will guarantee that U satisfies (11a).

The objective is now to construct the functions φV and φW
to ensure (11b)-(11c) and (17). A reader, who is not interested
in the proof techniques, may directly go to Section IV-D to
find the statement of the main result.

Remark 2. The construction of the Lyapunov function as
given by (16) generalizes prior constructions from [12], [22]
for NCSs by means of the functions φV and φW , see also
[23]. Indeed, by choosing φV (τ) = 1 for all τ ∈ R≥0 and φW
as in [12, Claim 1], we recover the Lyapunov function as used
in [12], [22] as a special case. It is this flexibility with respect
to φV and φW that allows us to exploit the RADT condition
in a Lyapunov-based analysis for NCSs, as we will see below.

Remark 3. The Lyapunov conditions as in (11) can be directly
linked to the ‘non-monotonic’ Lyapunov conditions2 that are
typically used for verifying stability of hybrid systems that
exploit a RADT condition like (5), as stated in, e.g., [25],
[26]. That is, based on the result from [26, Corollary 1], it
follows that UGES for the hybrid system Hncs given by (9)
is guaranteed when, for some τ∗r-dt <

d
∣c∣

with d > 0 and c < 0,
there exists a ‘non-monotonic’ Lyapunov function U satisfying
for some constants αU , αU > 0 for (almost) all ξ ∈ X

αU ∣ξ∣
2

E
≤ U(ξ) ≤ αU ∣ξ∣

2

E
(18a)

⟨∇U(ξ), F (ξ)⟩ ≤ −c U(ξ), when τ ∈ [0, τmati] (18b)

U(G(ξ)) ≤ e−d U(ξ), when τ ∈ [s + τmiati, τmati]. (18c)

2A Lyapunov function is called ‘non-monotonic’ when it is allowed to
increase along the continuous or discrete dynamics, see [32]–[34].

The Lyapunov conditions of (18) translate to the ‘non-
monotonic’ Lyapunov function U being allowed to increase
during flows of the hybrid system Hncs, but decreases during
jumps. As such, the Lyapunov conditions (18) imply that,
when there is a sufficient amount of jumps (i.e., updates of the
networked values) expressed by means of a bound on τ∗r-dt , the
overall ‘non-monotonic’ Lyapunov function U will decrease
over time and stability of the NCS is guaranteed, which is
consistent with the concept of RADT as discussed in Section
III-B. Indeed, from U with τ∗r-dt <

d
∣c∣

we can directly construct
a genuine Lyapunov function U satisfying (11). In particular,
consider for some c̃ > ∣c∣ the function, ξ ∈ X,

U(ξ) = e−c̃τU(ξ) (19)

and recall that τ ∈ R≥0 models part of the timer with τ̇ = 1 and
τ+ = max{0, τ − τ∗r-dt}. We observe that (18b) implies during
flows, for almost all ξ ∈ X with τ ∈ [0, τmati], that

⟨∇U(ξ), F (ξ)⟩ = −c̃τ̇ e−c̃τU(ξ) + e−c̃τ ⟨∇U(ξ), F (ξ)⟩
(18b)
≤ (−c̃ − c)e−c̃τU(ξ) = (−c̃ − c)U,

and, hence, we indeed have that the function U is strictly de-
creasing since c̃ > ∣c∣. Moreover, at a jump of the hybrid system
Hncs, (18c) implies that for ξ ∈ X with τ ∈ [s+ τmiati, τmati]

U(G(ξ)) = e−c̃max{0,τ−τ∗r-dt}U(G(ξ))
(18c)
≤ e−c̃max{0,τ−τ∗r-dt}e−dU(ξ)

(19)
= e−c̃max{0,τ−τ∗r-dt}e−dec̃τU(ξ)

= ec̃min{τ,τ∗r-dt}e−dU(ξ).

Hence, by observing now that, for τ∗r-dt ≤
d
c̃

, we have that

min{τ, τ∗r-dt} ≤
d

c̃
⇒ c̃min{τ, τ∗r-dt} − d ≤ 0

⇒ ec̃min{τ,τ∗r-dt}e−d ≤ 1

and that the value for c̃ can be chosen arbitrarily close to the
value ∣c∣, also (11c) is satisfied for U since τ∗r-dt < d

∣c∣
. As

such, if the standard RADT-like ‘non-monotonic’ Lyapunov
function construction based on (18) guarantees UGES for the
NCS, we can also work with a genuine hybrid Lyapunov
function satisfying (11). Moreover, since our model Hncs
already embeds the RADT constraint via the hybrid clock (6),
it is more elegant to work with the Lyapunov conditions of
(11) rather than (18) (otherwise we would have to invoke the
RADT constraint twice as it is included in our model and
needs to be used in combination with (18), which is unnatural
in our view). Hence, to obtain a cleaner analysis and ‘simpler’
conditions on the RADT/MATI, we prefer to directly construct
a Lyapunov function satisfying (11).

B. Designing the Functions φV and φW
Firstly, consider condition (11b). We obtain for almost all

(x, e) ∈ Rmx ×Rme and all (κ, τ) ∈ N0 × [0, τmati] that

⟨∇U(ξ), F (ξ)⟩ = φV (τ) ⟨∇V (x), f(x, e)⟩

+ γ (
d

dτ
φW (τ))W 2

(κ, e) + (
d

dτ
φV (τ))V (x)

+ 2γφW (τ)W (κ, e) ⟨
∂W (κ, e)

∂e
, g(x, e)⟩ ,
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which implies that

⟨∇U(ξ), F (ξ)⟩
(13),(15)
≤ (

d

dτ
φV (τ))V (x) + γ (

d

dτ
φW (τ))W 2

(κ, e)

+ φV (τ) (−ε2V (x) −H2
(x) + γ2W 2

(κ, e))

+ 2γφW (τ)W (κ, e) (LW (κ, e) +H(x))

= (
d

dτ
φV (τ) − ε2φV (τ))V (x) − φV (τ)H2

(x)

+ γ2φV (τ)W 2
(κ, e) + γ (

d

dτ
φW (τ))W 2

(κ, e)

+ 2γφW (τ)LW 2
(κ, e) + 2γφW (τ)H(x)W (κ, e).

Although there are at this point multiple possibilities in
choosing the functions φV and φW , it follows from the above
inequality that a natural choice for φV is to take it as the
positive nondecreasing exponential function given for some
small enough constant δ > 0 (i.e., δ ≤ ε2) by

d

dτ
φV (τ) = (ε2−δ)φV (τ) ⇔ φV (τ) = e(ε

2
−δ)τφV (0) (20)

with φV (0) = φc
V
> 0, satisfying (17a). Moreover, when we

observe that

2γφW (τ)H(x)W (κ, e)

= 2γφW (τ)
√
φV (τ)

1
√
φV (τ)

H(x)W (κ, e)

≤ γ2
φ2W (τ)

φV (τ)
W 2

(κ, e) + φV (τ)H2
(x),

we obtain, in combination with (20), that

⟨∇U(ξ), F (ξ)⟩

≤ −δφV (τ)V (x) + γ (
d

dτ
φW (τ))W 2

(κ, e)

+ (2γLφW (τ) + γ2 (
φ2W (τ)

φV (τ)
+ φV (τ)))W 2

(κ, e).

As such, it also follows that a convenient choice for φW ∶

[0, τmati] → R≥0 is to take it according to the (nonlinear)
differential equation

d

dτ
φW (τ) = −2LφW (τ) − γ (

φ2W (τ)

φV (τ)
+ φV (τ))

− δφW (τ),

(21)

because, when choosing so, we obtain that

⟨∇U(ξ), F (ξ)⟩ ≤ −δφV (τ)V (x) − δγφW (τ)W 2
(κ, e)

= −δU(ξ),
(22)

which implies that (11b) is satisfied.

Remark 4. Note that the choice of (21) for the function φW
follows from the analysis in a similar fashion as was the case in
the analysis of [12, Theorem 1], although we obtain a different
differential equation here.

It is interesting and important to observe that (21) is a so-
called Chini equation [35], [36], which is of the general form

d

dτ
y(τ) = f(τ)yn(τ) − g(τ)y(τ) + h(τ)

with n = 2, f(τ) = −
γ

φV (τ)
, g(τ) = 2L + δ, and h(τ) =

−γφV (τ). Moreover, as the condition number, see [37, p. 303],

f(τ)−n−1h(τ)−2n+1(f(τ) (
d

dτ
h(τ)) − (

d

dτ
f(τ))h(τ)

− ng(τ)f(τ)h(τ))

n

=
4

γ2
(2L + 2δ − ε2)

2

is independent of τ , it follows that we can express the function
φW by means of a separation of variables given by

φW (τ) = (
h(τ)

f(τ)
)

1/n

φ̃W (τ) = φV (τ)φ̃W (τ) (23)

where the function φ̃W ∶ [0, τmati] → R≥0 is given by the
(nonlinear) differential equation

d

dτ
φ̃W (τ) = −(2L + ε2)φ̃W (τ) − γ (φ̃2W (τ) + 1) , (24)

which is the same as the function φ in [12, Claim 1] for ε = 0.
Indeed, from (23) if follows that
d

dτ
φW (τ) = (

d

dτ
φV (τ)) φ̃W (τ) + φV (τ) (

d

dτ
φ̃W (τ))

(20),(24)
= (ε2 − δ)φV (τ)φ̃W (τ)

+ φV (τ) (−(2L + ε2)φ̃W (τ) − γ (φ̃2W (τ) + 1))

= (ε2 − δ)φV (τ)
φW (τ)

φV (τ)

+ φV (τ)(−(2L + ε2)
φW (τ)

φV (τ)
− γ (

φ2W (τ)

φ2V (τ)
+ 1))

= −(2L + δ)φW (τ) − γ (
φ2W (τ)

φV (τ)
+ φV (τ)) ,

which is indeed (21). Hence, for the Lyapunov function U of
(16) with the choices of φV and φW as given by (20) and
(21), respectively, we actually have that

U(ξ) = φV (τ) (V (x) + γφ̃W (τ)W 2
(κ, e)) . (25)

Using this result, we now shift our attention to condition
(11c) by considering the situation in which an update of the
networked values is performed, i.e., a jump occurs in the
hybrid system (9) with τ ∈ [s + τmiati, τmati]. This gives for
ξ ∈ X

U(G(ξ)) = φV (max{0, τ − τ∗r-dt})(V (x)

+ γφ̃W (max{0, τ − τ∗r-dt})W
2
(κ + 1, h(κ, e)))

≤ e−(ε
2
−δ)τmiatiφV (τ)(V (x)

+ γφ̃W (max{0, τ − τ∗r-dt})λ
2W 2

(κ, e)).

(26)
The first term in (26), i.e., e−(ε

2
−δ)τmiatiφV (τ), follows from

the fact that φV is a nondecreasing function according to (20)
and, as such, it decreases in value when τ decreases in value
(which is the case during a jump of the system). In particular,
for any τ1, τ2 ∈ R≥0, we have that

φV (τ2) = e
(ε2−δ)(τ2−τ1)φV (τ1).
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As such, when τ1 = τ and τ2 = max{0, τ − τ∗r-dt} (and, hence,
τ1 > τ2), we obtain that

φV (max{0, τ − τ∗r-dt}) = e
(ε2−δ)max{−τ,−τ∗r-dt}φV (τ)

= e−(ε
2
−δ)min{τ,τ∗r-dt}φV (τ)

≤ e−(ε
2
−δ)τmiatiφV (τ)

since τ ≥ τmiati (due to the fact that a jump of the system
can only take place when τ ≥ s + τmiati with s ≥ 0, see also
Proposition 1) and τmiati ≤ τ∗r-dt . Observe now that

e−(ε
2
−δ)τmiatiφV (τ) ≤ φV (τ) (27)

since δ ≤ ε2, which is required for (11c) to be satisfied.
For the second term in (26), it follows that, in order for

(11c) to hold, we should also have that

e−(ε
2
−δ)τmiatiλ2φ̃W (max{0, τ − τ∗r-dt}) ≤ φ̃W (τ). (28)

In other words, we need to make sure that the decrease in
value of the function φW over any time interval of length
smaller or equal to τ∗r-dt time units is never larger than a
factor e−(ε

2
−δ)τmiatiλ2, i.e., it should hold that

φ̃W (τ1)

φ̃W (τ2)
≤ e(ε

2
−δ)τmiati 1

λ2
(29)

for any τ1, τ2 ∈ [0, τmati] with 0 ≤ τ2 − τ1 ≤ τ∗r-dt . Un-
fortunately, this condition cannot be directly verified for the
function φ̃W as it involves a numerical check for an infinite
amount of points. Therefore, to verify (29) we aim to bound
the derivative of the function φ̃W from below by considering
the following lemma, whose proof is given in Appendix A.

Lemma 1. When the function φ̃W ∶ [0, τmati] → R≥0 is such
that for all τ ∈ [0, τmati] it holds that

d

dτ
φ̃W (τ) ≥ λW φ̃W (τ) (30)

with

λW ∶=
ln(λ2) − (ε2 − δ)τmiati

τ∗r-dt
, (31)

then φ̃W satisfies (29) (and therefore also (28)).

Hence, from Lemma 1 it follows that, when (30) holds with
(31), we obtain, in view of (26) and (27), that

U(G(ξ)) ≤ φV (τ)V (x) + γ
1

λ2
φW (τ)λ2W 2

(κ, e)

≤ U(ξ),
(32)

and, hence, (11c) is also satisfied.
Based on (22) and (32), we thus conclude by application of

Theorem 1 that, for the choice of Lyapunov function U given
by (16) with (20) and (21) (cf. (25) with (20) and (24)), the
set E is UGES for the NCS, under the condition that (17b)
and (30) hold. We therefore now need to identify conditions
on the RADT τ∗r-dt and the MATI τmati such that (17b) and
(30) are satisfied.

Remark 5. There exists quite some similarity in the Lyapunov
function constructions of (25) and (19) as both of them satisfy
the Lyapunov conditions (11) and consist of a nondecreasing

exponential function multiplied with a nonlinear function.
However, while the function U as in (19) satisfies the ‘non-
monotonic’ Lyapunov conditions (18), the function Ũ(ξ) ∶=
V (x) + γφ̃W (τ)W 2(κ, e) as in (25) satisfies the Lyapunov
conditions (11) (when (17b) and (30) hold). Note here also
that the function Ũ is essentially the same as the Lyapunov
function as used in [12, Proof of Theorem 1]. This implies
that the inclusion of the RADT condition does not inherently
change the behavior of the Lyapunov function with respect to
[12], making it indeed more natural to consider the Lyapunov
construction from (25) in the analysis for NCSs.

Remark 6. We would like to have that the value for ∣λW ∣ in
(30) is as large as possible, which again underlines the trade-
off between the values for τ∗r-dt and τmati as discussed in
Remark 1. In particular, from (30) it follows that when the
value for τ∗r-dt is taken larger, ∣λW ∣ becomes smaller (i.e.,
closer to zero), and, hence, (30) imposes a stricter condition
on the function φ̃W , making it more difficult to be satisfied for
‘large’ values of τmati. Fortunately, as d

dτ
φ̃W (τ) will always

have a finite value for all τ ∈ [0, τmati] as a result of (17),
we have that for a small enough value for τ∗r-dt > τmiati (and,
therefore, also for τmiati > 0), it can be realized that λW < 0
is small enough and, therefore, that there always exists some
finite τmati ≥ τ∗r-dt ≥ τmiati for which (30) holds.

Remark 7. Having τmiati = 0 (i.e., essentially zero) in the
value for λW (and, hence, in (28) and (29)) is already sufficient
for (32) (cf. (11c)) to be satisfied. As such, similar to [22], it
directly follows that exploiting knowledge on the existence of
a positive MIATI leads to higher values for the MATI (when
δ < ε2) as in this case ∣λW ∣ is larger, see also Remark 6.

C. Ensuring (17b) and (30)

Combining (24) and (30), it follows that (30) can be
rewritten for all τ ∈ [0, τmati] as

−γ (φ̃2W (τ) + 1) − (2L + ε2) φ̃W (τ) ≥ λW φ̃W (τ)

or, equivalently, as

γφ̃2W (τ) + (2L + ε2 + λW ) φ̃W (τ) + γ ≤ 0, (33)

which is a polynomial inequality of degree 2 in φ̃W for which
we can consider the following well-known lemma.

Lemma 2. For a, b, c ∈ R with a > 0, we have that ax2+bx+c ≤
0 if and only if c < b2

4a
, and

−
1

2

⎛

⎝

√
b2 − 4ac

a2
+
b

a

⎞

⎠
≤ x ≤

1

2

⎛

⎝

√
b2 − 4ac

a2
−
b

a

⎞

⎠
. (34)

Hence, finding the (maximal) value for τmati such that
(33) (cf. (30)) holds is now equivalent to verifying for which
(maximal) value for τmati the conditions of Lemma 2 are
satisfied for a given τmiati > 0 and τ∗r-dt > τmiati, where we
define

a = γ, b = 2L + ε2 + λW , and c = γ. (35)
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As such, using Lemma 2, we have that the following condition
(cf. c < b2

4a
) should hold

γ <
(2L + ε2 + λW )

2

4γ
⇔ 4γ2 < (2L + ε2 + λW )

2

⇔ ∣2L + ε2 + λW ∣ > 2γ. (36)

In addition to this result, the bounds in (34) should also be
verified for the given values in (35). To this end, we compute
using (35)

√
b2 − 4ac

a2
=

1

γ

√

(2L + ε2 + λW )
2
− 4γ2 (37a)

(which is always positive as a result of (36)) and
b

a
=

1

γ
(2L + ε2 + λW ) . (37b)

Hence, we can now explicitly compute the lower and upper
bounds for the function φ̃W based on (34) such that (33) (cf.
(30)) holds. In particular, based on (34) and (37), we have that
for all τ ∈ [0, τmati] it should hold that

φ̃
W

≤ φ̃W (τ) ≤ φ̃W (38)

with

φ̃
W
∶= −

1

2γ
(

√

(2L + ε2 + λW )
2
− 4γ2 + (2L + ε2 + λW ))

φ̃W ∶=
1

2γ
(

√

(2L + ε2 + λW )
2
− 4γ2 − (2L + ε2 + λW )) .

However, in order to have a strictly positive upper bound φ̃W
following from (17b), it must, in addition to (36), hold that

2L + ε2 + λW < 0. (39)

Fortunately, we can now obtain that both conditions (36) and
(39) are satisfied when

2L + ε2 +
ln(λ2) − (ε2 − δ)τmiati

τ∗r-dt
< −2γ

⇒ τ∗r-dt < ∣
ln(λ2) − (ε2 − δ)τmiati

2γ + 2L + ε2
∣ . (40)

Moreover, as a direct result of (40) (cf. (39)), it now also
follows that the lower bound on φ̃W is strictly positive, i.e.,
φ̃
W

> 0. This implies that when the RADT τ∗r-dt satisfies (40),
then also condition (17b) holds. In addition, when we choose
φ̃W (0) = φ̃W , we can directly compute the value for τmati as
being the point in time at which

φ̃W (τmati) = φ̃W (41)

since φ̃W is a strictly decreasing function, where, in addition,
the MATI τmati has the highest possible value it can attain
while satisfying (33). Moreover, as

(φ̃W )
−1

= 2γ
1

√
(2L + ε2 + λW )2 − 4γ2 − (2L + ε2 + λW )

= 2γ

√
(2L + ε2 + λW )2 − 4γ2 + (2L + ε2 + λW )

(2L + ε2 + λW )2 − 4γ2 − (2L + ε2 + λW )2

= −
1

2γ
(
√

(2L + ε2 + λW )2 − 4γ2 + (2L + ε2 + λW ))

= φ̃
W
,

we can additionally use the result from [12, Claim 1] (see also
Appendix B) to obtain an explicit expression for the MATI.

In summary, we have thus identified conditions (i.e., (36),
(38) and (39)) under which the inequality (30) indeed holds
and (17b) is satisfied, and, in particular, we can now compute
the pairs (τ∗r-dt , τmati) by means of (40) and (41) for which
the NCS is UGES. As such, we can state our main result.

D. Main Result

When we collect the results as found above, we can state
the following theorem.

Theorem 2. Under Assumption 1 and for a given value of
the MIATI τmiati > 0, if the RADT τ∗r-dt ≥ τmiati satisfies for
some constants 0 < δ < ε2 and ψ ∶= 2L + ε2 the bound

τ∗r-dt < ∣
ln(λ2) − (ε2 − δ)τmiati

2γ + ψ
∣ , (42)

and if the MATI τmati ≥ τ∗r-dt satisfies the bound τmati ≤
T (λ, τ∗r-dt) where

T (λ, τ∗r-dt) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
ψr

arctan(
r(1−σ)

2 σ
1+σ (

2γ
ψ −1)+1+σ

) , 2γ > ψ

2
ψ

1−σ
1+σ

, 2γ = ψ

2
ψr

arctanh(
r(1−σ)

2 σ
1+σ (

2γ
ψ −1)+1+σ

) , 2γ < ψ

(43)
with σ ∶= − 1

2γ
(

√

(ψ + λW )
2
− 4γ2 + (ψ + λW )) > 0, λW ∶=

ln(λ2
)−(ε2−δ)τmiati
τ∗
r-dt

, and r ∶=

√

∣(
2γ
ψ
)
2
− 1∣, then the set E

given by (10) is UGES for the hybrid system (9).

Based on the explicit bounds presented in Theorem 2, the
value for the MATI τmati indeed depends on the value for the
RADT τ∗r-dt through λW , as expected based on Remarks 1
and 6. In particular, the value for τmati increases when the
value for ∣λW ∣ increases (as the value for σ decreases in this
case, i.e., becomes closer to 0), which corresponds to having
a smaller value for τ∗r-dt . As such, choosing τ∗r-dt > τmiati
as small as possible (i.e., essentially equal to the value for
the MIATI) will always give the highest possible value for
the MATI, while for increasing values of τ∗r-dt we have that
τmati becomes smaller. This trade-off between the values for
the RADT and the MATI will also be evident in the Section
V, where Theorem 2 will be applied to a numerical example
to illustrate the application of our results by obtaining for each
feasible RADT3 τ∗r-dt its corresponding maximal value for the
MATI τmati ≥ τ∗r-dt .

The above observations and reasoning, however, also have
some consequences for the maximal attainable improvement
of the MATI and for the so-called sampled-data (SD) case, as
we will show first in the next subsection.

Remark 8. To obtain the highest possible values for the pair
(τ∗r-dt , τmati), we will take, in practice, δ > 0 as small as
possible (i.e., essentially zero) since this results in the highest

3By a feasible τ∗r-dt , we mean a RADT for which there exists a MATI
τmati > τ∗r-dt such that UGES for the NCS is guaranteed.
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time t !

τmiati

0

τmati τmati

t1 t2 t3 t5 t9

τmiati

Fig. 2. Illustration of a periodic sequence of transmission times tj ∈ R≥0,
j ∈ N, consisting of one transmission after τmati time units, immediately suc-
ceeded by a number of consecutive transmissions each after τmiati time units.

possible value for ∣λW ∣ as desired, see Remark 6. Moreover,
it follows from both the bounds (42) and (43) for τ∗r-dt and
τmati, respectively, that they are maximal when γ is taken
as small as possible (while satisfying (15)). Similarly, it also
follows that having ε large would in general lead to higher
values of the RADT and the MATI, especially when the value
for the MIATI is large, see also Remark 7. However, this would
also lead to the value of γ being larger due to constraint (15),
which results in lower values for the RADT and the MATI.
Therefore, we will in general take ε small, however, it is this
balancing effect that might give in some specific cases better
results for larger values of ε.

Remark 9. Throughout the section, several design choices
are made, e.g., constructing a Lyapunov function satisfying
(11) instead of (18) or verifying (29) by means of Lemma 1.
Although these choices were educated and helped in trimming
the number of free parameters, they still might introduce
some conservatism in the results. Nevertheless, the numerical
example in Section V shows that we can obtain a significant
improvement for the MATI with respect to the results in [12]
and [22]. Moreover, we made these choices to obtain a much
cleaner and natural analysis, and more transparent conditions.

E. Upper Bounding the MATI and the Sampled-Data Case
Based on the results from Theorem 2 and [12], it is possible

to obtain an upper bound on the value of T (λ, τ∗r-dt) for
some λ > 0, depending on the RADT τ∗r-dt . This provides
valuable insights with respect to the maximal improvement
of the MATI we can achieve using Theorem 2, which are
especially interesting for the so-called sampled-data (SD) case
(see Remark 14). To substantiate this, we will first make use
of the following reasoning.

Consider for a given τmiati, τ∗r-dt , and τmati = T (λ, τ∗r-dt),
satisfying Theorem 2, the possible periodic sequence of trans-
mission times as depicted in Fig. 2, consisting of one transmis-
sion after τmati time units, immediately succeeded by N − 1
consecutive transmissions each after τmiati time units with

N ∶= ⌈
τmati − τmiati
τ∗r-dt − τmiati

⌉ ,

and repeated with period τmati+(N−1)τmiati afterwards. This
sequence of transmission times satisfies (7) with an average
transmission interval of

1 ⋅ τmati + (N − 1) ⋅ τmiati
N

≤ τ∗r-dt .

When we now take τmiati = 0, the sequence of transmission
times from Fig. 2 reduces to having

N = ⌈
τmati
τ∗r-dt

⌉

τ0 T (λ; τ∗
r-dt

)

τ
∗

r-dt

~φW (T (λ; τ∗
r-dt

)) ≥ λ2 ~φW (T (λ; τ∗
r-dt

)− τ∗
r-dt

)

τ
∗

r-dt
τ
∗

r-dt
τ
∗

r-dt
τ
∗

r-dt

~φ
W

~φW

N jumps with decay rate λ2

~φW (τ)

(a) Illustration of the evoluation of the function φ̃W from (24) in the situation
that each time N transmissions (cf. jumps) occur after MATI time units with
τ+ = max{0, τ − τ∗r-dt}. The MATI is determined by the point in time at
which (41) holds.

τ
T

[12](λN )

λN

(

λN
)

−1

0

φ(τ)

φ
(

T
[12](λN )

)

=
(

λN
)2

φ(0)

1 jump with decay rate
(

λN
)2

(b) Illustration of the evolution of the function φ from [12, Claim 1] in the
situation that one transmission (cf. jump) occurs after each MATI time units
with τ+ = 0. Hence, the MATI T [12](λN ) is determined by the point in time
at which (46) holds with φ(0) = (λN)−1.

Fig. 3. Illustrations of the evolutions of the functions φ as in [12, Claim 1]
and φ̃W from (24) for the transmission sequence of Fig. 2 with τmiati = 0.

transmissions after τmati time units, i.e., the error update (8)
based on the scheduling protocol is applied N times at one
time instant. The consequences of this scenario for the function
φ̃W are illustrated in Fig. 3(a).

Remark 10. In the (hypothetical) case that τmiati = 0,
Theorem 2 can still be applied to conclude stability when non-
Zenoness is assumed, i.e., when for the transmission times
tj , j ∈ N, it holds that tj → ∞ when j → ∞. As for the
transmission sequence of Fig. 2 there always exists a finite
number of transmissions after τmati time units, this property
is indeed guaranteed.

As depicted in Fig. 3(a) and discussed in Section IV-C, the
value for τmati = T (λ, τ∗r-dt) is determined by the point in
time at which (41) holds. Moreover, in the situation of the
periodic transmission sequence of Fig. 2 with τmiati = 0, we
have at this value of the MATI N consecutive transmissions,
where for each transmission (cf. jump of the hybrid system)
(29) holds with τmiati = 0. As a result of this latter observation,
it follows that

φ̃W (T (λ, τ∗r-dt)) ≥ (λ2)
N
φ̃W (0), (44)

see also Fig. 3(a), where φ̃W is the solution to the differential
equation (24) for the given λ and τ∗r-dt with τmiati = 0.
Observe also that

φ̃W (0) = φ̃W = (φ̃
W

)
−1

= (φ̃W (T (λ, τ∗r-dt)))
−1
,
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implying in combination with (41) and (44) that, for the value
of T (λ, τ∗r-dt), we always have that

φ̃W (T (λ, τ∗r-dt)) ≥ λ
N . (45)

Using now that φ̃W is the solution to (24), it follows that
we can upper bound the value T (λ, τ∗r-dt) by using the results
from [12]. In particular, as illustrated in Fig. 3(b) and discussed
in [12], the value for the MATI for an UGES scheduling
protocol with decay rate λN (see also (47) below), which we
denote by T [12] (λN), is determined by the point in time for
which it holds that

φ (T [12] (λN)) = (λN)
2
φ(0), (46)

where the function φ satisfies the differential equation (24) for
ε = 0 with4 φ(0) = (λN)

−1
, see the proof of [12, Theorem 1].

Indeed, for the transmission sequence as described above, we
have that (12b) is applied N times, resulting in

W (hN(e, κ), κ +N) ≤ λNW (e, κ), (47)

where hN is determined by the recurring sequence

hl(e, κ) = h(hl−1(e, κ), κ + l − 1), l ∈ {2,3, . . . ,N}

where for l = 1 we have that h1(e, κ) = h(e, κ). In other
words, the above described scenario (with τmiati = 0) is
equivalent to the situation in which we have one transmission
after τmati time units with an UGES scheduling protocol for
which (12b) is satisfied with λN , which corresponds to the
setting of [12, Theorem 1]. Using, in addition, the result from
[12, Claim 1], it follows that

φ (T [12] (λN)) = λN . (48)

Since now for any ε > 0 we have that the function φ̃W
decreases faster than the function φ, it directly follows from
comparing (45) and (48) that

T (λ, τ∗r-dt) ≤ T
[12]

(λN).

Based on this reasoning, we have the following result.

Proposition 2. Consider the hybrid system (9) with the MIATI
τmiati = 0 and suppose Assumption 1 holds with 0 < λ < 1. For
a given RADT τ∗r-dt and MATI τmati ≤ T (λ, τr-dt) computed
by (43) for which the set E is UGES according to Theorem 2,
we have that

T (λ, τ∗r-dt) ≤ T
[12]

(λN) with N = ⌈
T (λ, τ∗r-dt)

τ∗r-dt
⌉ (49)

where T [12](λN) denotes the MATI as computed by [12,
Theorem 1] with an UGES scheduling protocol for which (12b)
is satisfied for decay rate λN (cf. (47)).

Proposition 2 provides an upper bound on the value that
the MATI can attain as a function of the RADT (in the case
that τmiati = 0). This allows us to make several important

4Although it was not shown or mentioned in [12], choosing the initial
condition as φ(0) = (λN)−1 is actual the ‘optimal’ choice since it results in
the largest value for T [12] (λN) for which (46) is satisfied. To substantiate
this, we provide in Appendix B a note on the ‘optimality’ of the result from
[12].

observations. Firstly, when τ∗r-dt = T (λ, τ∗r-dt) (= τmati) in
Theorem 2 (i.e., N = 1 in Proposition 2), we have that the
upper bound T [12](λN) on the MATI in (49) is actually equal
to the value of the MATI as computed in [12] for the NCS
setup of (2) and (3) with (4). Secondly, it follows that, since
λ < 1 and in view of Remark 11, the upper bound on the
MATI converges to the value limλ↓0 T

[12](λ) when N →∞ as
λN → 0 in this case, see also Remark 12. Hence, the maximal
value for the MATI we can obtain using Theorem 2 is bounded
by the value for the MATI as computed using [12, Theorem
1] in the SD case with λ→ 0 in view of Remark 14, see also
the result of [13] where the value for the MATI is computed
along the lines of [12] with λ = 0. This also implies our final
conclusion, given by the following result.

Corollary 1. Consider the hybrid system (9) and suppose
Assumption 1 holds with 0 < λ < 1. For any given MIATI
τmiati > 0, RADT τ∗r-dt , and MATI τmati ≤ T (λ, τr-dt) for
which the set E is UGES according to Theorem 2, we have that

T (λ, τ∗r-dt) ≤ lim
τ∗
r-dt
↓0
T (λ, τ∗r-dt) = lim

λ↓0
T (λ, τ∗r-dt) ≤ T

[13]
(0)

where T [13](0) denotes the MATI as computed by [13, The-
orem 2] for the SD protocol with λ = 0.

Corollary 1 implies that in the SD case actually no im-
provement of the MATI can be obtained using Theorem 2 with
respect to the results of [13]. Moreover, in this case the value
for the MATI will be the same for any value for the RADT.
This can also directly be linked to condition (28), which is in
the SD case always satisfied as λ = 0. In particular, computing
the MATI reduces in this case to determining the point in time
at which the Lyapunov function U is no longer guaranteed to
be strictly positive, which coincides with the point in time at
which the function φ̃W is no longer strictly positive (cf. (17b)
fails to hold). As such, in order to obtain an improvement of
the MATI when exploiting a RADT condition in the SD case,
we must either exclude the situation in which the MIATI is
allowed to be essentially zero (as mentioned above) or have
some indication regarding the spread of the transmissions over
time. However, this is left for future work.

Remark 11. Using the results from [12], it follows that

T [12]
(λ1) > T

[12]
(λ2) (50)

when λ1 < λ2 < 1. As such, since λ < 1 we have that (49)
actually holds for any

N ≥ ⌈
T (λ, τ∗r-dt)

τ∗r-dt
⌉ .

Note also that, similarly, from (43) it follows that

T (λ1, τ
∗
r-dt,1) > T (λ2, τ

∗
r-dt,2) (51)

when λ1 < λ2 < 1 and/or τ∗r-dt,1 < τ∗r-dt,2. Indeed, a lower
value for λ/τ∗r-dt results in a higher value for λW , and, hence,
for a lower value of σ, which gives a higher value T (λ, τ∗r-dt).

Remark 12. Following from Remark 11, observe that the limit

lim
λ↓0

T [12]
(λ) = T [12]

(0) (∶= T [13]
(0))
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exists due to T [12](λ) being continuous in λ = 0 as a result
of the monotonicity property (50) (see also the proof of [13,
Theorem 1]). Similarly, the limits in Corollary 1 also exist as
T (λ, τ∗r-dt) is continuous in both λ and τ∗r-dt as a result of the
monotonicity property (51).

Remark 13. Note that the upper bound T [12](λN) in Propo-
sition 2 can only be computed a posteriori, i.e., we first need
to compute the value T (λ, τ∗r-dt) in order to determine the
value for N in (49). However, the existence of such an upper
bound provides us with valuable information concerning the
limit cases N = 1 and N → ∞. Indeed, the bounds T [12](λ)
in Proposition 2 and T [13](0) in Corollary 1 can be computed
a priori, indicating which improvements we can attain.

Remark 14. Sampled-data (SD) NCSs are systems for which
all the nodes in the network are updated simultaneously at a
transmission time. That is, the scheduling protocol function
h ∶ N0 × Rme → Rme in (3) is in this case simply given by
h(κ, e) = 0, implying that an update of the networked values
results in the network-induced error being set to zero, i.e.,
e+ = 0 in (8), see also [11] or [13]. As a result of this property,
we can take W (κ, e) = ∣e∣ in Assumption 1, implying that
(12b) is satisfied for any λ, including λ = 0 (since W (κ +
1, h(κ, e)) = ∣h(κ, e)∣ = 0).

V. NUMERICAL EXAMPLE

In [27], we have already shown the effectiveness of our
results on a linear example leading to an improvement of the
MATI of up to 484% in comparison to the results of [12], [22].
To further substantiate the usefulness of exploiting an RADT
condition for NCSs, we consider in this section the nonlinear
example of a single-link robot arm as described in [18], whose
dynamics are modeled by

P ∶

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

ẋp1 = xp2

ẋp2 = −a sin(xp1) + bû

y = (x1, x2)

(52a)

and which is controlled by the static state feedback controller

C ∶ u = b−1 (sin(x̂p1) − x̂p1 − x̂p2) (52b)

with x̂p1, x̂p2, and û the networked values of xp1, xp2, and u,
respectively. Hence, from this system configuration it follows
that the network-induced error is given by e = (ey, eu) =

(exp1 .exp2 , eu) = (x̂p1 − xp1, x̂p2 − xp2, û − u) The number
of nodes in the network is ` = 3. As a result, we can model
the closed-loop dynamics as a hybrid system of the form (9)
where f(x, e) = (xp2,−a sin(xp1) + beu + a sin(xp1 + exp1) −
xp1 − exp1 − xp2 − exp2) and g(x, e) = −(f(x, e),0).

For this nonlinear example we consider the TOD protocol
with W (κ, e) = ∣e∣, which satisfies (12) and has the property
that ∣∂W (κ,e)

∂e
∣ ≤ M for all κ ∈ N0 with λ =

√
` − 1/̀ = 1

3

√
6

and αW = αW =M = 1, see, e.g., [21], [22]. Combining this
with the fact that ∣g(x, e)∣ = ∣f(x, e)∣ ≤ ∣xp2∣ + (1 + a)∣exp1 ∣ +
b∣eu∣ + ∣xp1 + xp2∣ + ∣exp2 ∣ ≤ ∣xp2∣ + ∣xp1 + xp2∣ +D∣e∣, where
D =

√
3 max{1 + a, b}, we obtain that (13) is satisfied for

L =MD and H(x) =M(∣xp2∣ + ∣xp1 + xp2∣).

To satisfy Assumption 1, we choose V (x) = αx2p1 +
βxp1xp2 + θx

2
p2 where α,β, θ > 0 will be chosen such that

(14) holds. Writing a sin(xp1) − a sin(xp1 + exp1) = āexp1
with varying parameter ā ∈ [−a, a] and applying the fact
that xy ≤

η
2
x2 + 1

2η
y2 for x, y ∈ R≥0 and η > 0, we obtain

that ⟨∇V (x), f(x, e)⟩ ≤ −βx2p1 − (2θ − β)x2p2 + (2α − 2θ −
β)xp1xp2 +

1
2η

(2θxp2 + βxp1)
2 + 1

2
ηD2∣e∣2 for some constant

η > 0, see also [18]. Therefore, if we ensure that (14) holds and
−ε̃∣x∣2−H2(x) ≤ −βx2p1−(2θ−β)x2p2+(2α−2θ−β)xp1xp2+
1
2η

(2θxp2 + βxp1)
2 with ε̃ > 0, then Assumption 1 is satisfied

for γ =
√

1
2
ηD2 and ε = ε̃αV . Observe that this latter condition

can be written as xT (P + ε̃I)x ≤ 0 for all x ∈ R2 with

P =

[
−β +M2 + 1

2η
β2 α − θ − 1/2β + θβη−1 + 2M2

α − θ − 1
2
β + θβη−1 + 2M2 −2θ + β + 2θ2η−1 + 4M2 ] .

Taking a = 9.81 ⋅0.5 and b = 2 in the plant model, we can now
use the Matlab optimization toolbox to minimize the value for
γ subjected to (14) and P + ε̃I ⪯ 0, which yields α = 3.054,
β = 1.055, θ = 5.053, η = 10.115, ε̃ = 10−3, and γ = 23.001.
As such, Theorem 2 can now be used to compute the best
values for the pair (τ∗r-dt , τmati) such that UGES for the NCS
described by (52) is guaranteed. The results for τmiati = 10−6

are given in Fig. 4, along with the obtained value for the MATI
using [12, Theorem 1] and the upper bound on the MATI from
Proposition 2.

1 2 3 4 5 6

10-3

0.01

0.02

0.03

0.04

0.05

0.06

Fig. 4. Computed values for (τ∗r-dt , τmati) using Theorem 2 for τmiati =
10−6 and the TOD protocol. Also the computed value for the MATI from [12]
(see also [18]) is indicated in the figure, along with the upper bound on the
MATI T [12](λN ) from Proposition 2 and the maximal attained improvement
with respect to [12].

As shown by Fig. 4, there indeed is a clear trade-off between
the RADT and the MATI as discussed by Remarks 1 and 6.
That is, higher values of τ∗r-dt indeed lead to lower values
of τmati. Moreover, for τ∗r-dt = τmati (i.e., the case that the
RADT actually represents a MATI bound, see also Remark
1), we obtain a good approximation of the obtained value for
the MATI as in [12] and for τ∗r-dt → 0 the value for the MATI
is indeed bounded by the value for the MATI in the SD case
T [12](0) as computed in [12], see also Proposition 2.

To make now a clearer comparison with the result from
[12], some of the results in Fig. 4 have been singled out in
Table I. Here, τ [12]

mati represents the value obtained using the
results from [12] (see also [18]) and τmati the value computed
using Theorem 2. It can be directly seen that exploiting a
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TABLE I
THE BOUND ON THE MAXIMAL ALLOWABLE TRANSMISSION INTERVAL FOR τmiati = 10−6 WITH L = 10.228, λ = 1

3

√
6, δ = 10−6 , ε = 10−5 .

τ [12]
mati

τmati Maximal attained

τ∗r-dt < 0.00567 τ∗r-dt < 0.00430 τ∗r-dt < 0.00199 τ∗r-dt < 2 ⋅ 10−6
improvement

of τmati w.r.t. τ [12]
mati

0.00607 0.0137 0.0282 0.0434 0.0539 787.11%

RADT condition leads to significantly larger values for the
MATI. That is, when we have, for instance, on average a
slightly smaller value for the transmission intervals than the
MATI from [12] (e.g., τ∗r-dt < 0.00567 < τ [12]

mati), we can obtain
quite a significant improvement of the maximal allowable
transmission interval τmati (e.g., an improvement of 125.6%
in the case of τ∗r-dt < 0.00567 or even an improvement of
787.11% in the case of τ∗r-dt < 2 ⋅ 10−6 with respect to the
results in [12]). As such, when a RADT is exploited, the time
between two transmissions is allowed to be significantly larger
than the computed MATI as in [12].

VI. CONCLUSION

In this paper, we proposed a richer model description of
the transmission instants for NCSs by including, next to the
presence of a minimal and maximal allowable transmission
interval (MIATI/MATI), the specification of a bound on the
average allowable transmission interval given by means of
a reverse average dwell-time (RADT) condition. Doing so
allows for the possibility to model both the worst-case be-
havior regarding the transmission intervals as analyzed in
[8]–[23] and the average case behavior (through the RADT)
simultaneously. This leads to significant improvements of the
MATI bounds with respect to the results of [12] and [22].
To this end, we made use of the emulation/hybrid systems
based approach for NCSs and provided a full Lyapunov-
based analysis from which conditions on the RADT and the
MATI followed such that UGES for the NCS is guaranteed.
Along the way, we also showed that there exists a trade-
off between the RADT and the MATI, which implies that
having a smaller RADT directly leads to larger values for the
MATI. Additionally, we showed how the maximal attainable
improvement of the MATI can be computed a priori, which
could be directly linked to the results for the SD case. Finally,
for a well-known numerical example with the TOD protocol
improvements of the MATI up to 787% where obtained with
respect to the existing results of [12].

The results presented in this paper also have many natural
extensions and applications. In particular, for future work, it
might be of interest to investigate other possibilities for con-
structing the functions φV and φW , which would lead to other,
perhaps simpler, conditions. Moreover, addressing problems
like tracking or state estimation or tailoring the results to the
linear case are of high relevance. Finally, extending the work
to the event-triggered case could be of interest, where the main
difficulty would be to find a hybrid clock that guarantees the
RADT condition for event-triggered transmission instants. In
any case, we foresee that this novel approach in the analysis
of NCSs can possibly inspire even sharper analysis tools.

APPENDIX A
PROOFS

Proof of Proposition 1: The proof consists of two parts,
namely showing that each hybrid time domain of a solution
(τ, s) to (6) with initial state set [0, τmati] × (−∞, τmati −
τmiati] satisfies the conditions (7) and that each hybrid time
domain E satisfying (7) is also a hybrid time domain for
some solution (τ̄ , s̄) to (6) with initial state set [0, τmati] ×
(−∞, τmati − τmiati].

For the first part, suppose that (τ, s) is a solution to (6)
with initial state set [0, τmati] × (−∞, τmati − τmiati]. We
observe that for two consecutive jump times tj and tj+1,
j ∈ N, we have that τ(tj+1, j) ≥ s(tj+1, j) + τmiati with
s(tj+1, j) = s(tj , j) = τ(tj , j), implying that it is ensured that
two consecutive jumps are at least separated by τmiati time
units as τ(tj+1, j)− s(tj+1, j) = tj+1 − tj due to the dynamics
of τ and s. Hence, a solution (τ, s) indeed satisfies (7a).
Moreover, for each (t, i), (t̄, j) ∈ dom(τ, s) with t̄ + j ≥ t + i
we have that, in view of (6),

τmati ≥ τ(t̄, j) − τ(t, i) ≥ (t̄ − t) − (j − i)τ∗r-dt (53)

as τ̇ = 1 during flows and τ is at most decreased by τ∗r-dt time
units during jumps, see also the proof of [31, Proposition 1.2].
Rearranging the inequality (53) directly gives (7b).

For the second part, suppose that a hybrid time domain E
with its sequence of jump times {tj}j∈N satisfies the conditions
given by (7). To construct now a solution (τ̄ , s̄) to (6) with
the hybrid time domain E, we take5 τ̄(0,0) = 0 and s̄(0,0) ≤
−τmiati and define (τ̄ , s̄) to be the hybrid arc on the hybrid
time domain E that satisfies for almost all t ∈ [tj , tj+1], j ∈ N0,
with t0 = 0 (see Definition 1a)

˙̄τ(t, j) = 1, and ˙̄s(t, j) = 0, (54a)

and for all tj+1, j ∈ N0, (with t0 = 0 thus excluded)

τ̄(tj+1, j + 1) = s̄(tj+1, j + 1) = max{0, τ̄(tj+1, j) − τ
∗
r-dt}.

(54b)
To complete the proof, we need to show that this hybrid
arc (τ̄ , s̄) is a solution to (6). Obviously, the flow and jump
dynamics of (6) are satisfied by the defined hybrid arc. As
such, it is only required to show for all j ∈ N0 that

τ̄(tj+1, j) ≥ s̄(tj+1, j) + τmiati (55a)
τ̄(t, j) ∈ [0, τmati] when t ∈ [tj , tj+1]. (55b)

For (55a), we first observe that, since τ̄(t1,0) ≥ τ̄(0,0) = 0
and s̄(t1,0) = s̄(0,0) + τmiati ≤ 0 as a result of (54a), the

5Note that choosing the initial conditions as such allows for a jump of the
hybrid system (6) at any jump time t1 ≥ 0, which is required based on (7).
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inequality is satisfied for j = 0. For all j ∈ N, we have that
s̄(tj+1, j) = s̄(tj , j) = τ̄(tj , j), as a result of (54b). Moreover,
from (7a) it follows that tj+1 − tj ≥ τmiati, j ∈ N. Recalling
now that ˙̄τ = 1 and ˙̄s = 0, see (54a), the above directly leads
for all j ∈ N to

τ̄(tj+1, j) − s̄(tj+1, j) = τ̄(tj+1, j) − s̄(tj , j)

= τ̄(tj+1, j) − τ̄(tj , j)

= tj+1 − tj ≥ τmiati,

implying that (55a) indeed holds.
Concerning (55b), obviously τ̄(t, j) ≥ 0 for any (t, j) ∈ E

as ˙̄τ = 1 (τ̄ is increasing during flows), τ̄(0,0) ≥ 0, and τ̄
is not reset to any value lower than 0. To guarantee also the
upper bound τ̄(t, j) ≤ τmati, we will proceed by contradiction.
That is, we observe that (55b) holds unless there exist hybrid
times (t, j), (t̄, j) ∈ E with t̄ > t such that τ̄(t, j) = τmati and,
hence, τ̄(t̄, j) > τmati ≥ τ∗r-dt . Suppose that such hybrid times
exist and let (t̃, k) be the largest hybrid time in E smaller than
(t, j) (possibly being (0,0)) at which τ̄(t̃, k) = 0. Hence, we
have that any jump that occurs after the point (t̃, k) always
leads to a full decrease of τ∗r-dt time units for the value of τ .
As such, the above implies that

τmati = τ̄(t, j) = τ̄(t̃, k) + (t − t̃) − (j − k)τ∗r-dt

= (t − t̃) − (j − k)τ∗r-dt

< (t̄ − t̃) − (j − k)τ∗r-dt

⇒ j − k <
(t̄ − t̃) − τmati

τ∗r-dt
,

which contradicts that E satisfies (7b). Hence, also (55b) must
hold. This completes the proof.

Proof of Lemma 1: Consider the function φ∗W ∶

[0, τmati] → R≥0 that is for all τ ∈ [0, τmati] given by the
solution to

d

dτ
φ∗W (τ) = λWφ

∗
W (τ) (56a)

with λW given by (31) such that

φ∗W (τ) = eλW τφ∗W (0)

= e
−(ε2−δ)τmiati

τ
τ∗
r-dt (λ2)

τ
τ∗
r-dt φ∗W (0).

(56b)

Observe that, since ln(λ2) < 0 (as λ < 1) and δ ≤ ε2, φ∗W
is a strictly decreasing function and, hence, it holds for any
τ1, τ2 ∈ [0, τmati] such that τ2 − τ1 ≤ τ∗r-dt that

φ∗W (τ1)

φ∗W (τ2)
= e

−(ε2−δ)τmiati
(τ1−τ2)
τ∗
r-dt (λ2)

(τ1−τ2)
τ∗
r-dt

≤ e
−(ε2−δ)τmiati

−τ∗
r-dt

τ∗
r-dt (λ2)

−τ∗
r-dt

τ∗
r-dt

= e(ε
2
−δ)τmiati 1

λ2
,

(57)

Taking now φ∗W (0) = φ̃W (0), it follows from (30) and the
comparison lemma [38, Lemma 3.4] that

φ̃W (τ) ≥ φ∗W (τ) for all τ ∈ [0, τmati]. (58)

Moreover, we have for any τ1, τ2 ∈ [0, τmati], τ2 ≥ τ1, that
(30) in combination with φ∗W as defined in (56) also implies

φ̃W (τ2) − φ̃W (τ1) = ∫
τ2

τ1

d

ds
φ̃W (s)ds

≥ ∫

τ2

τ1

d

ds
φ∗W (s)ds = φ∗W (τ2) − φ

∗
W (τ1).

(59)

Finally, we can rewrite (57) as

φ∗W (τ2) ≥ e
−(ε2−δ)τmiatiλ2φ∗W (τ1)

or, alternatively, as

φ∗W (τ2) − φ
∗
W (τ1) ≥ (e−(ε

2
−δ)τmiatiλ2 − 1)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
<0 since λ<1 and δ≤ε2, τmiati>0

φ∗W (τ1) (60)

for any τ1, τ2 ∈ [0, τmati] such that τ2 − τ1 ≤ τ∗r-dt .
Combining now all of the above, we obtain for any τ1, τ2 ∈

[0, τmati] such that τ2 − τ1 ≤ τ∗r-dt that

φ̃W (τ2) − φ̃W (τ1)
(59)
≥ φ∗W (τ2) − φ

∗
W (τ1)

(60)
≥ (e−(ε

2
−δ)τmiatiλ2 − 1)φ∗W (τ1)

(58)
≥ (e−(ε

2
−δ)τmiatiλ2 − 1)φ̃W (τ1)

⇒ φ̃W (τ2) ≥ (e−(ε
2
−δ)τmiatiλ2 − 1)φ̃W (τ1) + φ̃W (τ1)

= e−(ε
2
−δ)τmiatiλ2φ̃W (τ1),

which directly gives us condition (29).

APPENDIX B
NOTE ON THE OPTIMALITY OF [12]

As already mentioned in Section IV-E, the value for the
MATI T [12] is computed in [12] as the point in time for
which the function φ ∶ [0, T [12]] → R given by the nonlinear
differential equation

d

dτ
φ(τ) = −2L − γ(φ2(τ) − 1). (61)

reaches the value λ2φ(0) for some λ ∈ (0,1), which follows
from the used scheduling protocol. As such, the value for the
initial condition φ(0) influences the value for the MATI, and,
hence, can be optimized. Therefore, in this note, the value
for the MATI is first computed as a function of the initial
condition. That is, by definition of (61) with φ(0) = φ0 and
φW (T [12]) = λ2φ0, we can write, see also the proof of [12,
Lemma 2],

T [12]
(φ0) = −∫

λ2φ0

φ0

(
1

γφ2 + 2Lφ + γ
)dφ. (62)

The goal is now to obtain the ‘optimal’ value for φ0 such that
the value for the MATI is as high as possible. To this end,

define s ∶= φ + L
γ

and r ∶=
√

∣(
γ
L
)
2
− 1∣ and observe that

s2 − sign (L2
− γ2)(

Lr

γ
)

2

=
1

γ
(γφ2 + 2Lφ + γ) ,
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where sign(⋅) is the sign function with sign(0) = 0. Hence,
we can rewrite (62) using the transformation defined by s as

T [12]
(φ0) = −

1

γ
∫

s

s
(s2 − sign (L2

− γ2)(
Lr

γ
)

2

)

−1
dφ

ds
ds

= −
1

γ
∫

s

s
(s2 − sign (L2

− γ2)(
Lr

γ
)

2

)

−1

ds

with s ∶= λ2φ0 + L
γ

and s ∶= φ0 + L
γ

. The value for the MATI
is now obtained by analyzing the various scenarios:

● In the first scenario where γ > L, we use the fact that

−
1

γ
∫

s

s
(s2 + (

Lr

γ
)

2

)

−1

ds

= −
1

Lr
(arctan(

sγ

Lr
) − arctan(

sγ

Lr
))

and that for all c2 ≥ c1 ≥ 0 we have that

arctan(c2) − arctan(c1) = arctan(
c2 − c1
1 + c1c2

) ,

resulting in

T [12]
(φ0) =

1

Lr
arctan(

Lrγ(s − s)

L2r2 + ssγ2
) .

Using now the upper and lower bounds of the integration
we obtain that

Lrγ(s − s) = Lrγφ0 (1 − λ2) = Lrγφ0(1 − λ)(1 + λ)

and that, by using L2r2 = γ2 −L2,

L2r2 + ssγ2 = L2r2 + γ2 (λ2φ0 +
L

γ
)(φ0 +

L

γ
)

= (γ2 −L2
) + γ2 (λ2φ20 +

L

γ
φ0 (1 + λ2) +

L2

γ2
)

= γ2 + γ2λ2φ20 +Lγφ0(1 + λ
2
),

which directly yields

T [12]
(φ0) =

1

Lr
arctan(

L(1 − λ2)φ0r

L(1 + λ2)φ0 + γλ2φ20 + γ
)

with ∂T [12]
(φ0)

∂φ0
= γ ( 1

(L+γφ0)2+L2r2
− λ2

(L+γλ2φ0)2+L2r2
).

To obtain now the value for φ0, which maximizes the
value for the MATI, we compute the zeros of the above
partial derivative with respect to φ0. This results in

1

γ + 2Lφ0 + γφ20
−

λ2

γ + 2Lλ2φ0 + γλ4φ20
= 0

⇒ λ2γ + γλ2φ20 − γ − γφ
2
0λ

4
= 0

⇒ φ0 =
1

λ
or φ0 = −

1

λ
.

As φ0 should be positive, we disregard the second solu-
tion (implying that there is only a single solution φ0 for
which ∂T [12]

(φ0)

∂φ0
= 0) and by verifying that

∂2T [12](λ−1)

∂φ20
=

2γλ3(λ2 − 1)

(γ + 2Lλ + γλ2)2
< 0,

we can conclude that having φ0 = λ−1 results in the global
maximal value for the MATI T [12].

● In the second scenario where γ = L, it follows that

T [12]
(φ0) = −

1

γ
∫

s

s

1

s2
ds =

1

γ
(

1

s
−

1

s
)

=
1

γ
(

1

λ2φ0 + 1
−

1

φ0 + λ
) .

Computing now again the zeros of the partial derivative
with respect to φ0 by means of

∂T [12](φ0)

∂φ0
=

1

γ2
(

1

(1 + φ0)2
−

λ2

(1 + λ2φ0)2
) = 0

⇒ (1 + λ2φ0)
2
− λ2(1 + φ0)

2
= 0

⇒ λ2(λ2 − 1)φ20 − (λ2 − 1) = 0

⇒ φ0 =
1

λ
or φ0 = −

1

λ
,

and verifying that

∂2T [12](λ−1)

∂φ20
=

2(λ − 1)λ3

γ(1 + λ3)
< 0,

we obtain the same conclusion as in the first item that
φ0 = λ

−1 results in the highest possible value for T [12].
● For the third scenario when γ < L, we directly obtain

(following the same analysis as in the first item, see also
the proof of [12, Lemma 2]) that

T [12]
(φ0) =

1

Lr
arctanh(

L(1 − λ2)φ0r

L(1 + λ2)φ0 + γλ2φ20 + γ
) ,

which has a partial derivative with respect to φ0 equal
to the one from the first item, resulting in the same
conclusion that having φ0 = λ−1 results in the highest
possible value for T [12].
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improved maximum allowable transfer interval for networked control
systems,” IEEE Transactions on Automatic Control, vol. 52, no. 5, pp.
892–897, 2007.
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Teel, “Stability analysis of nonlinear networked control systems with
asynchronous communication: A small-gain approach,” in Proceedings
of the IEEE 52th Conference on Decision and Control, 2013, pp. 4631–
4637.

[18] R. Postoyan, N. Van de Wouw, D. Nešić, and W.P.M.H. Heemels,
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