
https://hal.archives-ouvertes.fr/hal-02908531
https://hal.archives-ouvertes.fr


Identifying and Mapping Implemented Variabilities in Java and
C++ Systems using symfinder

Johann Mortara
johann.mortara@univ-cotedazur.fr
UniversitØ Côte d’Azur, CNRS, I3S,

Sophia Antipolis, France

Philippe Collet
philippe.collet@univ-cotedazur.fr
UniversitØ Côte d’Azur, CNRS, I3S,

Sophia Antipolis, France

Xhevahire Tºrnava
t.xheva@gmail.com

Paris, France

ABSTRACT
Variability is present in most modern object-oriented software-
intensive systems, despite that they commonly do not follow a
product line approach. In these systems, variability is implicit and
hardly documented as it is implemented by di�erent traditional
mechanisms, namely inheritance, overloading, or design patterns.
This hampers variability management as automatic identi�cation
of variation points (vp-s) with variants is very di�cult. sym�nder
is a symmetry-based tooled approach that enables automatic iden-
ti�cation of potential vp-s with variants in such systems. Then, it
visualizes them relying on their density in code assets. From the
Java-only version presented at SPLC’2019, we present here sev-
eral notable improvements. They concern an added support for
C++ systems, the identi�cation of vp-s implemented by Decorator
and Template pattern instances, an enhanced visualization (e.g., to
display all variants, and package coloring), as well as automation
of the mapping of potential vp-s to domain features.

CCS CONCEPTS
� Software and its engineering ! Software product lines; Ob-
ject oriented development; Reusability.

KEYWORDS
Identifying software variability, visualizing software variability,
object-oriented variability-rich systems, tool support for under-
standing software variability, software product line engineering

1 INTRODUCTION
Most modern software-intensive systems, ranging from small-scale
embedded systems to large-scale enterprise ones, are variability-
intensive [7]. Our work focuses on systems where the variability
among its software products is implemented in a single code-base
using traditional object-oriented techniques, such as inheritance,
overloading, or design patterns [4, 13]. Contrary to software prod-
uct lines [4], where variability can be at least partially managed
in relation with domain features [3], in these systems, neither the
domain variability nor the implemented variability is explicit or
systematically documented, hindering the overall comprehension
of the implemented variability, and even more the possibility to
map it to domain features. Existing tools aiming at identifying
features rely on annotations [2] or use a set of clone-and-own sys-
tems [10]. However, few systems have their features annotated and
they mostly manage their variability internally.

Facing this problem, the aim of the sym�nder toolchain is to fa-
cilitate the identi�cation of potential variation points and variants
when diverse object-oriented implementations are used together to

realize variability in code. sym�nder relies on an automatic identi�-
cation of local symmetries (Section 2) common to all object-oriented
variability mechanisms. It also provides a visualization in which
classes being potential vp-s or variants are represented as nodes
in a graph that are linked through their inheritance relationships,
while the properties of these nodes are used to represent metrics
on the number of symmetries (e.g., number of overloaded methods).
We have presented sym�nder at SPLC’2019 in its �rst version dedi-
cated to single code bases implemented with the Java language [11],
and in this paper we introduce some new features of sym�nder1.

The toolchain now supports code bases in C++, with a speci�c
parser that takes into account the whole source code without pass-
ing through preprocessor directives. Independently of the language,
the automatic identi�cation part now supports two additional de-
sign patterns, i.e., Decorator and Template, covering all the main
patterns used for variability implementation. In a re-engineering
context, annotation-based techniques may be used to map the do-
main features to the corresponding code assets and extract a product
line [6]. Using these feature traces in the source code, sym�nder can
now automatically map the identi�ed potential vp-s with variants
that are relevant to some given domain features. On the visualiza-
tion side, sym�nder also allows to color nodes depending on their
package in the code assets, and software developers can show or
hide variants to facilitate browsing in the graph.

2 BACKGROUND
The di�erent mechanisms used to implement variability in a variability-
rich object-oriented system, namely inheritance, overloading, and
design patterns, are mainly used to provide a better, and ideally
more reusable, design. All elements of such a design have a common
property, parts of it change while another part remains unchanged,
corresponding to the general de�nition of symmetry. Symmetry
or more particularly local symmetry is encountered everywhere
in nature and, according to Alexander’s theory of centers, is used
to make order in human-made artifacts [1]. In software, whenever
object-oriented mechanisms are used to implement some variability,
they also exhibit the property of symmetry [5, 14, 15]. This arises
since the commonality and variability addressed by such a mecha-
nism also represent the unchangeable and changeable parts in code
assets, respectively. For instance, inheritance allows us to factorize
common parts of multiple classes into a superclass. The superclass
accommodates the commonality, that is, the unchangeable part, of
its subclasses, which are the changeable parts and hence accommo-
date the variability. These variability mechanisms also exist at the
method level, such as when overloading methods or constructors
1sym�nder’s artifacts (visualizations, source code, guidelines, demonstration video)
are available online at https://deathstar3.github.io/sym�nder-demo/splc2020.html.

https://deathstar3.github.io/symfinder-demo/splc2020.html


Johann Mortara, Philippe Collet, and Xhevahire Tºrnava

Table 1: Seven mechanisms, their symmetries, and their respective visualization as nodes with their relationships

Mechanism Visual Commonality Variability Mechanism Visual Commonality Variability

Class as type Class Objects Constructor overloading Structure Signatures
Template (in C++) Template class Instances & Factory Pattern F Abstract Creator Concrete creators

specializations & product & products
Class subtyping Superclass Subclasses Strategy Pattern S Strategy interface Algorithms
Interface Type Implementation Decorator Pattern D Components & Concrete components

classes decorator interfaces & decorators
Method overloading Structure Signatures Template Pattern T Method template Method steps

Inheritance

are used. Then, design patterns rely on both class and method level
mechanisms to create more complex designs involving reuse.

The unchanged and changed parts in design are commonly ab-
stracted in terms of variation points (vp-s) with variants [13], and
thus represent places in code assets with a local symmetry (see
[14] for more details). Based on this approach, we built sym�nder
to automatically identify and visualize the variability places of a
Java, and now also C++, variability-rich system. It can identify and
visualize symmetry in seven common variability mechanisms, sum-
marized in Table 1, including their unchangeable and changeable
parts and how they are visualized in our graph-based representa-
tion, which is also used in other approaches [8]. Figure 1 depicts
the main elements of the toolchain, from source fetching on several
git repositories, symmetry identi�cation in a Neo4j graph database,
and to the generation of a D3.js based visualization. The whole
toolchain is itself dockerized to facilitate its usage.

3 EXTENDED IDENTIFICATION SUPPORT
In order to broaden the scope of variability-rich systems that can
be analysed by sym�nder , we extended the analysis front-end to
support C++ (cf. Figure 1) and to detect more design patterns.

We �rst developed a second parser using the ANTLR parser
generator and a grammar supporting C++14. Software written in
C++ is known to make use of CPP macros, which are likely to
implement variability as well. As a �rst step, we decided to handle
these macros to be able to identify symmetries in all C++ code
assets, but without representing the variants potentially created by
the preprocessor directives. While this is obviously an interesting
feature, and part of our future work, we decided to focus �rst on
the symmetry based approach. Speci�cally, during a �rst analysis
of the C++ code assets in fi’, macro de�nitions are extracted in a �le
and used to precompile the system using the C preprocessor and to
expand macros. Similar to the Java version, a second analysis in fi
generates an AST, which is used to build a graph representation of
the source code, stored in a graph database. It is then queried to
identify symmetries in OO variability implementation mechanisms.

The identi�cation approach is also similar to the Java one with
few adaptations for the mechanisms, such as between the interfaces
in Java and virtual pure methods in C++. We added the identi�cation
of vp-s implemented by the template mechanism in C++, with both
their instantiation and specialization identi�ed as variants. We also
included the identi�cation of vp-s with variants implemented by

two more design patterns, namely Decorator and Template patterns,
in both Java and C++ systems (cf. Table 1).

4 AUTOMATED MAPPING OF VARIABILITIES
With variability implementations identi�ed in code assets, one valu-
able scenario is to �nd correspondences between domain features
and the vp-s with variants. In a previous work, we reported on
an experiment with the application of sym�nder to the ArgoUML-
SPL [6]. This system contains a ground truth for domain features
with their traces in code assets [9]. By using this ground truth,
we manually mapped the potential vp-s with variants to domain
features in ArgoUML, found out those that are actual vp-s with
variants, and then calculated precision and recall for the sym�nder
identi�cation [12] (de�nitions are given below). In complement
to the mapping experiment manually made in [12], the presented
version of sym�nder now automates this mapping process and
provides an enhanced visualization.

The automated mapper is a set of Python scripts deployed in a
separate Docker container. In the sym�nder con�guration �le, one
can simply provide a traces property that speci�es the directory
where features traces are located, following a well-de�ned format
speci�cation available on sym�nder’s website 2. After sym�nder’s
execution, these traces are used together with the JSON �le con-
taining the potential vp-s and variants output by the sym�nder
engine to build the mapping 3. Two measures are also calculated:
precision (i.e., the proportion of potential vp-s and variants that have
a mapping to features) and recall (i.e., the proportion of features
traces used for the mapping). As output, a new JSON �le containing
potential vp-s with variants and their traces to domain features is
produced. This �le is used to obtain a visual representation of the
mapping, as shown in Figure 2.

This visual representation aims at facilitating manual feature
location activities, as feature traces, when available, are important
information that bring domain knowledge in the code assets, but
imply manual code inspection and �le browsing. Hence we added
in the visualization of potential vp-s with variants the option to
display the feature traces that are mapped. For example, in the
visualization of the ArgoUML experiment, one can access informa-
tion for both domain and implementation variabilities (cf. Figure 2).
Nodes on the visualization represent classes and interfaces linked

2https://deathstar3.github.io/sym�nder-demo/splc2020.html
3For the sake of simplicity, this part of the toolchain is not shown in Figure 1.

https://deathstar3.github.io/symfinder-demo/splc2020.html


Identifying and Mapping Implemented Variabilities in Java and C++ Systems

Figure 1: The dockerized sym�nder toolchain for Java and C++ systems

through inheritance relationships. A node with a blue border indi-
cates that a mapping to domain features exists, hence that the class
or interface is an actual vp or variant.

5 VISUALIZATION IMPROVEMENTS
In addition to the visualization of used mechanisms to implement
potential vp-s with variants and their total number, we added two
more options in the visualization: (i) to color potential vp-s with
variants within a speci�c package, and (ii) to visualize all variants.

During the application of sym�nder in real systems [14], we ob-
served that usually those potential vp-s with variants that originate
from the same package are also part of the same visualized tree.
Therefore, to further support the comprehension of implemented
variability in a system, we added the option for coloring potential
vp-s with variants within a speci�ed package. Hence, the ’Color
packages’ button on the top bar of the visualization opens a menu
where the user can input a package name, namespace (in C++), or
class name, whose potential vp-s with variants will be colored. The
user can color multiple packages and/or classes, and for each one

Figure 2: An excerpt from ArgoUML. Nodes with a blue border are
mapped to features, their feature traces are displayed when hovering the node.

Figure 3: Some colored packages from JFreeChart. org.jfree.
chart.plot in yellow and org.jfree.chart.renderer in green.

sym�nder will automatically generate a new color. An example of
visualization with colored packages is given in Figure 3, showing a
good separation of concerns between packages in that case.

The �rst visualization by sym�nder displayed all potential vp-
s with class granularity and only their variants that have vp-s
with a method granularity. However, during the measurement of
sym�nder’s precision and recall [12], we noticed that a considerable
number of feature traces were mapped to class level variants, which
were hidden in the visualization. Because of their importance, we
added the option to visualize at once all class level variants, includ-
ing those that are without method level vp-s. Still, we left available
the option to also hide them, as on large systems visualizing all
variants considerably overloads the visualization, although nodes



Johann Mortara, Philippe Collet, and Xhevahire Tºrnava

Figure 4: vp-s without (top) and with variants (bottom).

can be moved to isolate trees. For example, ArgoUML’s visualiza-
tion exhibits 539 nodes when visualizing potential vp-s without
variants and up to 1 233 nodes when all their variants are visualized.
Taken from ArgoUML’s visualization, Figure 4 illustrates the case
when vp-s with class granularity are visualized without variants
(top) and with variants (bottom.) For this reason, we provided a
toggle button on the visualization from where all class level variants
can be visualized or not. By default, only potential vp-s with their
variants that have method level vp-s are visualized.

6 CONCLUSION
sym�nder is a symmetry-based toolchain that enables automatic
identi�cation and visualization of potential variation points with
variants in object-oriented variability-rich systems organized in a
single code base. The toolchain has been improved on its identi�ca-
tion engine part, which is now able to analyse Java and C++ systems,
to identify potential vp-s with variants implemented with more
design patterns, and on its visualization to facilitate variability com-
prehension. Automated mapping of variabilities is also supported to
relate domain features to potential implemented vp-s and variants
using pre-existing feature traces.

In the future, we intend to improve the toolchain by providing
a direct access to the visualized code assets to further assist the
user. We also aim to further validate the approach, with its new
additions, in other real and large Java and C++ systems. We also
plan to report on an experiment of using sym�nder by the software
architect of a real variability-rich system. In this way, we expect to
discover the need for other improvements and enhancements.

ACKNOWLEDGMENTS
We thank ThØo Foray, GrØgoire Peltier and Nathan Strobbe for their
contribution in the development of the C++ support in sym�nder .

REFERENCES
[1] Christopher Alexander. 2002. The Nature of Order: An Essay on the Art of Building

and the Nature of the Universe. Book 1: The Phenomenon of Life. Center for
Environmental Structure.

[2] Berima Andam, Andreas Burger, Thorsten Berger, and Michel RV Chaudron.
2017. FLOrIDA: Feature Location Dashboard for Extracting and Visualizing
Feature Traces. In Proceedings of the Eleventh International Workshop on Variability
Modelling of Software-Intensive Systems (VAMOS ’17). ACM, 100�107. https:
//doi.org/10.1145/3023956.3023967

[3] Sven Apel, Don Batory, Christian Kästner, and Gunter Saake. 2016. Feature-
Oriented Software Product Lines. Springer.

[4] Rafael Capilla, Jan Bosch, Kyo-Chul Kang, et al. 2013. Systems and Software
Variability Management. Concepts Tools and Experiences (2013).

[5] James O. Coplien and Liping Zhao. 2000. Symmetry Breaking in Software Pat-
terns. In International Symposium on Generative and Component-Based Software
Engineering (GCSE 2000). Springer, Springer, 37�54.

[6] Marcus Vinicius Couto, Marco Tulio Valente, and Eduardo Figueiredo. 2011.
Extracting Software Product Lines: A Case Study Using Conditional Compilation.
In 2011 15th European Conference on Software Maintenance and Reengineering.
IEEE, 191�200. https://doi.org/10.1109/CSMR.2011.25

[7] Matthias Galster. 2019. Variability-Intensive Software Systems: Product Lines and
Beyond. In Proceedings of the 13th International Workshop on Variability Modelling
of Software-Intensive Systems (VaMoS ’19). ACM, 1�1. https://doi.org/10.1145/
3302333.3302336

[8] Roberto Erick Lopez-Herrejon, Sheny Illescas, and Alexander Egyed. 2018. A
Systematic Mapping Study of Information Visualization for Software Product
Line Engineering. Journal of Software: Evolution and Process 30, 2 (2018), e1912.
https://doi.org/10.1002/smr.1912

[9] Jabier Martinez, Nicolas Ordoæez, Xhevahire Tºrnava, Tew�k Ziadi, Jairo Aponte,
Eduardo Figueiredo, and Marco Tulio Valente. 2018. Feature Location Benchmark
with ArgoUML SPL. In Proceedings of the 22nd International Systems and Software
Product Line Conference - Volume 1 (SPLC ’18). ACM, 257�263. https://doi.org/10.
1145/3233027.3236402

[10] Jabier Martinez, Tew�k Ziadi, TegawendØ F BissyandØ, Jacques Klein, and
Yves Le Traon. 2017. Bottom-Up Technologies For Reuse: Automated Ex-
tractive Adoption of Software Product Lines. In 2017 IEEE/ACM 39th Interna-
tional Conference on Software Engineering Companion (ICSE-C ’17). IEEE, 67�70.
https://doi.org/10.1109/ICSE-C.2017.15

[11] Johann Mortara, Xhevahire Tºrnava, and Philippe Collet. 2019. sym�nder: A
Toolchain for the Identi�cation and Visualization of Object-Oriented Variability
Implementations. In Proceedings of the 23rd International Systems and Software
Product Line Conference-Volume B (SPLC ’19, Tools and Demonstrations). ACM,
5�8. https://doi.org/10.1145/3307630.3342394

[12] Johann Mortara, Xhevahire Tºrnava, and Philippe Collet. 2020. Mapping Features
to Automatically Identi�ed Object-Oriented Variability Implementations-The
Case of ArgoUML-SPL. In 14th International Working Conference on Variability
Modelling of Software-Intensive Systems (VaMoS ’20). ACM, 1�9. https://doi.org/
10.1145/3377024.3377037

[13] Mikael Svahnberg, Jilles Van Gurp, and Jan Bosch. 2005. A Taxonomy of Variabil-
ity Realization Techniques. Software: Practice and experience 35, 8 (2005), 705�754.
https://doi.org/10.1002/spe.652

[14] Xhevahire Tºrnava, Johann Mortara, and Philippe Collet. 2019. Identifying and
Visualizing Variability in Object-Oriented Variability-Rich Systems. In Proceedings
of the 23rd International Systems and Software Product Line Conference - Volume
A. 231�243. https://doi.org/10.1145/3336294.3336311

[15] Liping Zhao. 2008. Patterns, Symmetry, and Symmetry Breaking. Commun. ACM
51, 3 (2008), 40�46. https://doi.org/10.1145/1325555.1325564

https://doi.org/10.1145/3023956.3023967
https://doi.org/10.1145/3023956.3023967
https://doi.org/10.1109/CSMR.2011.25
https://doi.org/10.1145/3302333.3302336
https://doi.org/10.1145/3302333.3302336
https://doi.org/10.1002/smr.1912
https://doi.org/10.1145/3233027.3236402
https://doi.org/10.1145/3233027.3236402
https://doi.org/10.1109/ICSE-C.2017.15
https://doi.org/10.1145/3307630.3342394
https://doi.org/10.1145/3377024.3377037
https://doi.org/10.1145/3377024.3377037
https://doi.org/10.1002/spe.652
https://doi.org/10.1145/3336294.3336311
https://doi.org/10.1145/1325555.1325564

	Abstract
	1 Introduction
	2 Background

