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Abstract
The Inverse Kinematics (IK) problem is concerned with finding robot control parameters to

bring the robot into a desired position under the kinematics and collision constraints. We present
a global solution to the optimal IK problem for a general serial 7DOF manipulator with revolute
joints and a quadratic polynomial objective function. We show that the kinematic constraints due
to rotations can be all generated by the second-degree polynomials. This is an important result since
it significantly simplifies the further step where we find the optimal solution by Lasserre relaxations
of nonconvex polynomial systems. We demonstrate that the second relaxation is sufficient to solve
a general 7DOF IK problem. Our approach is certifiably globally optimal. We demonstrate the
method on the 7DOF KUKA LBR IIWA manipulator and show that we are in practice able to
compute the optimal IK or certify infeasibility in 99.9 % tested poses. We also demonstrate that
by the same approach, we are able to solve the IK problem for a random generic manipulator with
seven revolute joints.

1 Introduction

The Inverse Kinematics (IK) problem is one of the most important problems in robotics [33]. The
solution to the IK problem finds robot control parameters to bring the robot into a desired position
under the kinematics and collision constraints [14].

The IK problem has been extensively studied in robotics and control [30, 31]. The classical formu-
lation [30] of the problem for 6 degrees of freedom (6DOF) serial manipulators leads to solving a system
of polynomial equations [6, 34]. This is, in general, a hard (“EXPSPACE complete” [26]) algebraic
computational problem, but practical solving methods have been developed for 6DOF manipulators
[30, 24, 9].

An important generalization of the IK problem aims at finding the optimal control parameters
for an underconstrained mechanism, i.e., when the number of controlled joints in a manipulator is
larger than six. Then, an algebraic computation problem turns into an optimization problem over
an algebraic variety [6] of possible IK solutions. It is particularly convenient to choose a polynomial
objective function to arrive at a semialgebraic optimization problem.

Semi-algebraic optimization problems are in general nonconvex, but they can be solved with certi-
fied global optimality [21] using the Lasserre hierarchy of convex optimization problems [20]. Compu-
tationally, however, semialgebraic optimization problems are in general extremely hard and were often
considered too expensive to be used in practice. In this paper, we show that using “algebraic prepro-
cessing”, semialgebraic optimization methods become practical in solving the IK problem of general
7DOF serial manipulators with a polynomial objective function.

1.1 Contribution

Our main contributions are as follows.
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Figure 1: (left) 7DOF serial manipulator (KUKA LBR IIWA), and (middle) its kinematic model [17].
(right) We can optimally solve its inverse kinematics (green) or find it infeasible (blue) in 99.9 % of
10 000 tested poses.

1. We prove that the variety of IK solutions of all generic 7DOF revolute serial manipulators can
be generated by the second-degree polynomials only (Theorem 1). This considerably reduces the
complexity of semialgebraic optimization and makes it computationally feasible.

2. We provide a method for computing a globally optimal solution to the IK problem for a general
7DOF serial manipulator with a polynomial objective function.

3. We employ techniques from algebraic geometry [6] and polynomial optimization [21] to solve the
7DOF IK problem exactly (within the numerical accuracy of computation). Our approach is also
able to certify the in-feasibility of solving when it happens.

4. We demonstrate that our approach works on a practical 7DOF KUKA LBR IIWA manipulator
and allows us to solve 99.9 % configurations (Fig. 1) while the straightforward semi-algebraic
optimization fails in approx. 28 % of cases.

5. We show that we can solve the IK problem for a randomly generated generic serial manipulator
with seven revolute joints by the same approach.

2 Previous work

The first breakthrough in solving IK problems was the global solution to IK for a general 6DOF serial
manipulator, which was given in [32, 24]. It leads to solving a polynomial system with 16 solutions.
Another important result was the solution to the forward kinematics problem of the Stewart-Gough
parallel manipulator platform [22], leading to a polynomial system with 40 solutions. See recent work
[7] for the review of local and other approximate techniques for solving IK problems. We next review
only the most relevant work.

2.1 The most relevant previous work

The closest previous works are related to solving IK for mechanisms, which are under constrained
when considering positions of the final actuator only. The standard approach is to employ additional
dynamics, time optimality, and collision constraints.

In [8], a technique for planning a dynamic whole-body motion of a humanoid robot has been
developed. It solves IK as a part of motion planning by local optimization methods taking into account
kinematics, dynamics, and collision models. The planning method requires a good initialization to
converge, and, depending on the quality of the initialization, it may take from minutes to hours of
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running time. Our approach provides a globally optimal solution for 7DOF kinematics subchains of
more complex mechanisms and could be used to initialize the kinematic part of motion planning.

Work [17] presented an IK solution for 7DOF manipulators with zero link offsets, e.g., the KUKA
LBR IIWA manipulators. The solution uses special kinematics of its class of manipulators to decompose
the general IK problem into two simpler IK problems that can be solved in a closed form. The one-
dimensional variety of self-motions becomes circular, and hence the paper proposes to parameterize it by
the angle of a point of the circle. Our approach generalizes this solution to a general 7DOF manipulator
and shows that it is feasible to solve the IK problem for completely general 7DOF manipulators and
optimize over their self-motion varieties.

Paper [7] presents a global (but only approximate) solution to the IK for 7DOF manipulators. It
formulates the IK problem as a mixed-integer convex optimization program. The key idea of the paper
is to approximate the nonconvex space of rotations by piecewise linear functions on several intervals
that partition the original space. This turns the original nonconvex problem into an approximate
convex problem when a correct interval is chosen. Selecting the values of auxiliary binary variables
to pick the actual interval of approximation leads to the integer part of the optimization. This was
the first practical globally optimal approach, but it is only approximate and delivers solutions with
errors in units of centimeters and units of degrees. It also fails to detect about 5 % of infeasible poses.
Our approach solves the original problem with sub-10−6 mm and sub-10−3 degree error, and we can
solve/decide the feasibility in all but 0.1 % of the tested cases. The computation times of [7] and our
approach are roughly similar in units of seconds.

A global and precise solution to the IK problem for redundant serial manipulators is presented in
[25]. It models the kinematic constraints as a distance geometry problem. Alongside a novel formulation
of the joint limit constraints, it delivers quadratic constraints only. The final configuration is found as
the nearest configuration to the given one while satisfying the quadratic constraints. This approach
leads to a QCQP problem, which is solved by an SDP relaxation with a global optimality certificate
and infeasibility detection. Their implementation is fast (2.5 ms per pose) and accurate (sub-10−2 mm
position error) with the failure rate of less than 0.4 %. This formulation is restricted only to revolute
joints for planar manipulators and spherical joints for three-dimensional ones. It does not take into
account the full rotation of each link and can thus solve only for simplified situations. In contrast,
our method is general and applicable to any serial manipulator with revolute joints. Moreover, any
spherical joint can be modeled as three revolute joints with the advantage of finer control of the joint
angle limits.

3 Problem formulation

Here we formulate the IK problem for 7DOF serial manipulators as a semialgebraic optimization
problem with a polynomial objective function.

The task is to find the joint coordinates of the manipulator in a way that the end-effector reaches
the desired pose in space. The IK problem is called underconstrained for manipulators, which have
more DOF than they require to execute the given task. In our case, to reach the desired pose in space,
the manipulators require to have six DOFs, and therefore the IK problem for a 7DOF manipulator
is underconstrained. The consequence is that the IK problem has an infinite number of solutions for
reachable generic end-effector poses for such manipulators. This results in the self-motion property
of these manipulators. A self-motion is a motion of a manipulator, which is not observed in the task
space, i.e., the end-effector pose of the manipulator is constant while the links of the manipulator are
moving. Therefore, moving the manipulator along a path consisting of joint configurations of different
solutions of the IK problem for the same pose in space, will result in a self-motion of the manipulator.

The self-motion property provides the manipulator more adaptability since it allows, e.g., to avoid
more obstacles in the path and to avoid singularities, which leads to a more versatile mechanism. On
the other hand, increasing the number of degrees of freedom increases the difficulty of the IK problem
computation dramatically. The IK problem has no longer a finite number of solutions, and thus, it is
meaningful to formulate it as a constrained optimization problem choosing the optimal solution from
the set of all feasible solutions.
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3.1 The goal of our work

In this work, we present a general method for solving the IK problem for 7DOF serial manipulators.
We aim at a method that solves the IK problem and that selects the globally optimal solution w.r.t.
the given objective function from the infinite number of all feasible solutions. It is naturally more time-
consuming to find the global solution than to find any solution, and therefore we do not expect our
method to be an online method. For online methods, such as used in the control units of manipulators,
the local methods are more suitable as they are fast and sufficiently accurate.

We see the application of our method in the design and exploration of the capabilities of the
manipulators. The offline method suits these tasks well as we are not typically limited by computation
time. Our method can be, e.g., used when designing new 7DOF serial manipulators and optimizing their
parameters, such as the manipulability in regions of interest of the Cartesian space. We develop our
method for 7DOF serial manipulators, which are currently the most common redundant manipulators
in the industry.

We next show how the IK problem for 7DOF serial manipulators can be modeled as a polynomial
optimization problem (POP).

3.2 Forward kinematics

We describe manipulators by the Denavit-Hartenberg (D-H) convention [12] to construct D-H trans-
formation matrices Mi(θi) ∈ R4×4 from link i to i− 1. D-H matrices are parameterized by joint angles
θi. The product of the D-H matrices for i from 1 to 7 gives us the transformation matrix M , which
represents the transformation from the end-effector coordinate system to the base coordinate system

7∏
i=1

Mi(θi) = M. (1)

The matrix M consists of the position vector t ∈ R3 and the rotation matrix R ∈ SO(3), which
together represent the end-effector pose w.r.t. the base coordinate system. When knowing the joint
angles θi, a straightforward evaluation of Eqn. (1) gives the end-effector pose in the base coordinate
system.

Due to kinematic constraints, manipulators come with joint limits, i.e., with restrictions on the
joint angles θi. Typically, the maximal θHighi and minimal θLowi values of joint angles are given as

θLowi ≤ θi ≤ θHighi , i = 1, . . . , 7. (2)

3.3 Inverse kinematics problem

The forward kinematics problem is very easy to solve for serial manipulators. On the other hand, the
IK problem is much more difficult for serial manipulators since it leads to solving systems of polynomial
equations. To solve the IK problem, we set up our desired pose of the end-effector in the form of matrix
M and then solve matrix Eqn. (1) for the joint coordinates θi.

For redundant manipulators, there is an infinite number of solutions, and therefore we introduce
an objective function to select a solution for which the value of the objective function is minimal. In
our case, we prefer the solutions that minimize the weighted sum of the distances of the joint angles
θ = [θ1, . . . , θ7]

> from their preferred values θ̂ = [θ̂1, . . . , θ̂7]
>

min
θ∈〈−π,π)7

7∑
i=1

wi

∣∣∣angdiff(θi, θ̂i)
∣∣∣ , (3)

where wi ≥ 0,
∑7

i=1wi = 1 and the function angdiff(α, β) calculates the difference α − β and wraps
it on the interval 〈−π, π)1. This objective function is widely used in the literature, e.g., in [28]. In
practice, the preferred values θ̂ can be set to the previous configuration of the manipulator, to minimize
the total movement of the manipulator to reach the desired pose.

1The output of the function angdiff(α, β) can be computed as
(
(α− β + π) mod 2π

)
− π.
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Next, we add the joint limits to obtain the following optimization problem

min
θ∈〈−π,π)7

7∑
i=1

wi

∣∣∣angdiff(θi, θ̂i)
∣∣∣

s.t.
∏7
i=1Mi(θi) = M

θLowi ≤ θi ≤ θHighi (i = 1, . . . , 7)

(4)

To be able to use the techniques of polynomial optimization, we need to remove the trigonometric
functions that appear in Eqn. (1). We do that by introducing new variables c = [c1, . . . , c7]

> and
s = [s1, . . . , s7]

>, which represent the cosines and sines of the joint angles θ = [θ1, . . . , θ7]
>, respectively.

Then, we can rewrite Problem (4) in the new variables. To preserve the structure of the problem, we
need to add the trigonometric identities

qi(c, s) = c2i + s2i − 1 = 0, i = 1, . . . , 7. (5)

Matrix Eqn. (1) contains 12 trigonometric equations and can be directly rewritten as 12 polynomial
equations of degrees up to seven in the newly introduced variables. To lower the maximal degree of the
equations, we use fact that the inverse of a rotation matrix is its transpose, i.e., it is a linear function
of the original rotation matrix, and rewrite Eqn. (1) as

5∏
i=3

Mi(θi)−M−12 (θ2)M
−1
1 (θ1)MM−17 (θ7)M

−1
6 (θ6) = 0. (6)

It reduces the maximal degree of the polynomials in unknowns c and s to four. We denote these
polynomials in Eqn. (6) as

pj(c, s) = 0, j = 1, . . . , 12. (7)

The next step is to change the objective function (3) to a polynomial in the new variables c, s.
Instead of evaluating the distance between the joint angles and their preferred values, we can do the
same in the space of their cosines and sines to reach the same goal, i.e., to get θ as close as possible to
θ̂. Choosing the proper `p norm for the problem at hand may lead to a more straightforward solution
to the problem (e.g., the `∞ norm is often used in multiple view geometry problems [15] to obtain a
convex relaxation of the original problem). We have decided to use the squared `2 norm on the cosines
and sines since it leads to an objective function, which is linear in the new variables c and s:

min
c∈〈−1,1〉7, s∈〈−1,1〉7

7∑
i=1

wi

(
(ci − cos θ̂i)

2 + (si − sin θ̂i)
2
)

(8)

= min
c∈〈−1,1〉7, s∈〈−1,1〉7

7∑
i=1

2wi(1− ci cos θ̂i − si sin θ̂i). (9)

After rewriting the joint limit inequalities into a polynomial form, we obtain the following final
polynomial optimization problem

min
c∈〈−1,1〉7, s∈〈−1,1〉7

7∑
i=1

2wi(1− ci cos θ̂i − si sin θ̂i)

s.t. pj(c, s) = 0 (j = 1, . . . , 12)
qi(c, s) = 0 (i = 1, . . . , 7)

−(ci + 1) tan
θLow
i
2 + si ≥ 0 (i = 1, . . . , 7)

(ci + 1) tan
θHigh
i
2 − si ≥ 0 (i = 1, . . . , 7)

(10)

We next show how to solve this polynomial optimization problem in a general way such that any
objective function can be chosen as long as it can be expressed as a low degree polynomial in sines and
cosines of the joint angles. Despite different objective functions will be chosen for different tasks, we
demonstrate the presented approach with a classical objective function (9).

After solving Problem (10), we recover θ from c and s by function atan2, which takes into account
signs of the arguments.
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4 Polynomial optimization

Here we describe the polynomial optimization methods we use to solve Problem (10).
Polynomial optimization problems (POPs) are generally nonconvex, but they can be solved with

global optimality certificates with the help of convex optimization, as surveyed in [21]. The idea consists
of building a hierarchy of convex optimization problems of increasing size whose values converge to the
value of the POP. The convergence proof is based on the results of real algebraic geometry, namely,
on the representation of positive polynomials, or Positivstellensatz (PSatz for short). One of the
most popular PSatz is due to Putinar [29], and it expresses a polynomial positive on a compact basic
semialgebraic set as a weighted sum of squares (SOS).

Finding this SOS representation amounts to solving a semidefinite programming (SDP) problem,
a particular convex optimization problem that can be solved efficiently numerically with interior point
algorithms. By increasing the degree of the SOS representation, we increase the size of the SDP
problem, thereby constructing a hierarchy of SDP problems. Dual to this polynomial positivity problem
is the problem of characterizing the moments of measures supported on a compact basic semialgebraic
set. This also admits an SDP formulation, called moment relaxations, yielding a dual hierarchy indexed
by the so-called relaxation order.

The primal-dual hierarchy is called the moment-SOS hierarchy, or the Lasserre hierarchy since it
was first proposed in [20] in the context of POP with convergence and duality proofs. As the relaxation
order increases, the Lasserre hierarchy generates a monotone sequence of superoptimal bounds on the
global optimum of a given POP. Eventually, the result on the moment problem can be used to certify
the exactness of the bound for the current relaxation order. This solves the original nonconvex POP at
the price of solving a relaxed convex SDP problem of typically (quite) bigger size than was the original
problem. A Matlab package GloptiPoly [13] has been designed to construct the SDP problems in the
hierarchy and solve them with a general-purpose SDP solver.

As observed in many applications, the main limitation of the Lasserre hierarchy (in its original
form) is its poor scalability as a function of the number of variables and the degree of the POP. This
is balanced by the practical observation that, very often, global optimality is certified by the second
or third-order relaxation. As our experiments reveal, for the degree 4 POP studied in our paper,
the third-order relaxation is out of reach of state-of-the-art SDP solvers. It becomes hence critical to
investigate reformulation techniques to reduce the degree as much as possible. This is the topic of the
next section.

5 Symbolic reduction of the POP

Here we provide the description of the algebraic geometry technique we use to reduce the degree of
our POP problem to obtain a practical solving method. See [6] for algebraic-geometric notation and
concepts.

Let us assume that our POP is constrained by polynomial equations

f1 = · · · = fs = 0 (11)

of degree 4 in Q[x1, . . . , xn]. Observe that one can replace these polynomial equations in the POP
formulation with any other set of polynomial equations

g1 = · · · = gt = 0 (12)

as long as both systems of equations have the same solution set. Natural candidates for gi’s are
polynomials in the ideal generated by f1, . . . , fs, i.e., in the set of algebraic combinations I = {

∑
i qifi |

qi ∈ Q[x1, . . . , xn]}, which we denote as I = 〈f1, . . . , fs〉. It is clear that if all fi’s vanish simultaneously
at a point, any polynomial g in this set I will vanish at that point.

The difficulty is how to understand the structure of this set and find a nice finite representation
of it that would allow many algebraic operations (such as deciding whether a given polynomial lies in
this set). Solutions have been brought by symbolic computation, aka computer algebra, through the
development of algorithms computing Gröbner bases, which were introduced by Buchberger, see [6].
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These are finite sets, depending on a monomial ordering [6], which generate I as input equations do,
but from which the whole structure of I can be read off.

Modern algorithms for computing Gröbner bases (F4 and F5 algorithms), which significantly
improved by several orders of magnitude the state-of-the-art, were introduced next by J. C. Faugère
[10, 11]. These latter algorithms bring a linear algebra approach to Gröbner bases computations. In
particular, noticing that the intersection of I with the subset of polynomials in Q[x1, . . . , xn] of degree
≤ d is a vector space of finite dimension is the key to reduce Gröbner bases computations to exact
linear algebra operations.

Hence, Gröbner bases provide bases of such vector spaces when one uses monomial orderings which
filter monomials w.r.t. degree first. Finally, going back to our problem, a Gröbner basis computation
allows us to discover if I contains degree 2 polynomials (and is generated by such quadrics).

While this is never the case when starting with a generic POP of degree 4, observe that there are
many relations between the coefficients of the degree 4 equations of our POP. Hence, we are not facing
a generic situation here, and we will see further that a Gröbner basis computation provides a set of
quadrics that can replace our initial set of constraints. Note also that since Gröbner basis algorithms
rely on exact linear algebra, such a property holds for every generic instance of our POP if it holds for a
randomly chosen one (the trace of the computation will always be the same, giving rise to polynomials
of degree ≤ 2).

6 Solving the IK problem

To solve the IK problem, we need to solve the optimization problem (10). First, we apply the imple-
mentation GloptiPoly [13] of the method described in Section 4 directly on the Problem (10).

6.1 Direct application of polynomial solver

Since the original Problem (10) contains polynomials of degree four, we start with the first relaxation
of order two. It means we substitute each monomial in the original 14 variables up to degree four by
a new variable, and therefore the resulting SDP program will have 3060 variables.

Solving the first relaxation typically does not yield the solution for this parameterization of the
problem, and therefore it is required to go higher in the relaxation hierarchy. Unfortunately, the
relaxation order three for a polynomial problem in 14 variables leads to an SDP problem in 38 760
variables. Such a huge problem is still often solvable on contemporary computers, but it often takes
hours to finish.

An example of using the GloptiPoly package [13] to solve a polynomial problem is shown in Listing 1.
In the first part (lines 1–5), we create the unknowns c and s and load the kinematic parameters of
the manipulator from a file. In the second part (lines 7–15), based on the kinematic parameters,
function FKT generates the polynomials from the forward kinematics (Eqn. (7)), and we add to them
the trigonometric identities (Eqn. (5)). Then, function jointLimits, also based on the kinematic
parameters of the manipulator, generates the inequalities coming from the joint limits. We define the
objective function f, which depends on the weights w and preferred values of the joint angles thHat.
In the third part (lines 17–21), we configure GloptiPoly. We use the YALMIP toolbox [23] to define
the SDP problems and the MOSEK solver [2] to solve them. In the fourth part (lines 23–27), we use
GloptiPoly to create the SDP problem from the POP for the given relaxation order relaxOrder and
solve it. In the last part (lines 29–34), we extract the solutions if we have succeeded in solving. The
variable status is set to −1 if the POP is infeasible, to 0 if GloptiPoly can not certify the globality of
the found solution, or to 1 if the found optimum was certified as global. If it is set to 1, then in the
variable obj is the value of the objective function evaluated on the solution, and we can recover the
joint angles from their sines and cosines by the function atan2.

6.2 Symbolic reduction

In the view of the previous paragraph, we aim at simplifying the original polynomial problem to be
able to obtain solutions even for the relaxation of order two, which takes seconds to solve.
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Listing 1: Demonstration of the usage of the GloptiPoly [13] package in Matlab to solve a polynomial
optimization problem arising from an IKT.

1 % initialize the GloptiPoly unknowns
2 mpol(’c’, 7);
3 mpol(’s’, 7);
4 % load the kinematic parameters of the manipulator
5 manipulator = load(’manipulator.mat’);
6
7 %% PREPARE THE POLYNOMIALS
8 % polynomials from the forward kinematics problem (Eqn. (7))
9 eq = FKT(manipulator, c, s);

10 % add the trigonometric identites (Eqn. (5))
11 eq = [eq; c.^2 + s.^2 - 1];
12 % polynomials representing the joint limits inequalities
13 ineq = jointLimits(manipulator, c, s);
14 % polynomial objective function
15 f = sum(w.*2*(-c.*cos(thHat) - s.*sin(thHat) + 1));
16
17 %% CONFIGURE GLOPTIPOLY
18 % use YALMIP [23] toolbox for the definition of the SDP problem
19 mset(’yalmip’, true);
20 % set MOSEK [2] solver as the external SDP problem solver
21 mset(sdpsettings(’solver’, ’mosek’));
22
23 %% SOLVE THE POLYNOMIAL PROBLEM
24 % create the SDP problem from the POP
25 SDP = msdp(min(f), eq == 0, ineq >= 0, relaxOrder);
26 % solve it
27 [status, obj] = msol(SDP);
28
29 %% EXTRACT THE SOLUTIONS
30 % check that the POP is feasible
31 if status == 1
32 % recover the angles from their sines and cosines
33 theta = atan2(double(s), double(c));
34 end

Here is our main result that allows us to do it. We claim that polynomials pj and qi of degrees up
to four in Problem (10) can be reduced to polynomials of degree two.

Theorem 1. The ideal generated by the kinematics constraints (7) for a generic serial manipulator
with seven revolute joints and for generic pose M with the addition of the trigonometric identities (5)
can be generated by a set of degree two polynomials.

Proof. The proof is computational. We generate generic instances of serial manipulators and generic
poses. Then a Gröbner basis G [5] of polynomials pj and qi is computed for each instance of the
manipulator and pose. We select a subset S of degree two polynomials from the basis G and, by
computing a new Gröbner basis G′ from S, we verify that S generates the same ideal as the original
set of polynomials. The structure of the computational proof is shown in Fig. 2. See Maple code in
Listing 2. The polynomials pj and qi are put into the variable eq. The last command of the code will
be evaluated to True if the bases G and G′ are equal, and therefore generate the same ideal.

We want to point out that a simple selection of the second-degree polynomials from the original
polynomials pj and qi is not enough. They do not generate the same ideal as all polynomials pj and qi.
First, the Gröbner basis G of all polynomials pj and qi has to be computed. Then, the second-degree
polynomials can then be extracted from G and used as a replacement for polynomials pj and qi.
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Listing 2: Maple code for the proof of Theorem 1.
1 # compute the reduced Groebner basis from polynomials pj and qi (stored in the variable

eq)
2 G := Basis(eq, tdeg(op(indets(eq)))):
3 # select degree two polynomials from the basis and compute a new reduced Groebner basis
4 idxDegTwo := SearchAll(2, map(degree, G)):
5 eqPrime := G[[idxDegTwo]]:
6 GPrime := Basis(eqPrime, tdeg(op(indets(eq)))):
7 # compare the two bases
8 evalb(G = GPrime);
9 True

Generic manipulator
Generic pose M

Polynomial constraints pj , qi

G← Gröbner basis of 〈pj , qi〉

S = {f ∈ G | deg(f) = 2}

G′ ← Gröbner basis of 〈S〉

G = G′

m
〈pj , qi〉 = 〈S〉

Figure 2: Diagram describing the procedure of the proof of Theorem 1.

6.3 Solving the reduced polynomial optimization problem

We exploit Theorem 1 in our approach to solve the IK problem. First, we compute a Gröbner basis G
of the kinematics constraints (7) and (5), and we select only the subset S of polynomials of degree two
in G. Then, we construct the Problem (10) but with the degree two polynomial constraints S only.
We solve the problem by using the hierarchy of semidefinite programs as described above.

Reducing the degree of polynomials from four to two allows us to start with SDP relaxation of
order one. The size of this SDP problem, in terms of the number of variables, is now 120. Practical
experiments have shown that the first relaxation is not tight enough to yield the solution. On the
other hand, the second relaxation gives a solution for almost all poses, see Tab. 3.

6.4 Overcoming numerical issues

It may happen that the POP solver is not able to certify that the optimum found is indeed global.
The certification is based on the computation of the rank of a matrix of floats returned by the SDP
solver, and it may fail because of two reasons.

First, it may happen that the relaxation order was not high enough, and we have to go higher in
the hierarchy. Secondly, the relaxation is actually tight, but the numerical rank of the matrix returned
by the SDP is hard to compute correctly. This is because of the numerical issues of the SDP solver
caused by the significant number of variables and constraints that typically have SDPs originated from
the Lasserre hierarchies. Currently, we do not distinguish these two cases and whenever we are unable
to certify the optimum, we say that the method has failed for the given end-effector pose.
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Naturally, we want to minimize the number of end-effector poses that our method fails to compute.
For a given relaxation order, we can thus only reduce the number of failing poses by addressing the
numerical issues of the SDP solver used.

From our experience and as we show in Section 7, SDPs with sharper objective function at the
global minimum have a lower failure rate. By a sharper function at a point we mean that it has a
greater absolute value of its second derivative at that point. Therefore, we find a new objective function
that attains the global minimum at the same point as Eqn. (9), but it is sharper at the global minimum.
If the original objective function is nonnegative, its higher powers do not change the argument of the
minimum but typically make them sharper. In particular, the second derivative at any critical point
x0 of a function ξn(x) is multiplied by factor nξn−1(x0) w.r.t. the second derivative of function ξ(x)
at the same critical point for n ∈ N:

(ξn)′′(x0) = n ξn−1(x0)ξ
′′(x0). (13)

As long as the multiplication factor n ξn−1(x0) ≥ 1, the function ξn is sharper at the point x0. This is
fulfilled for any n ∈ N when ξ(x0) ≥ 1 for the critical point x0.

In our case, the objective function (9), here denoted as L, is a weighted sum of cosine functions
shifted in phase and along the vertical axis:

L(c, s, θ̂,w) =
7∑
i=1

2wi`(ci, si, θ̂i), (14)

where

`(ci, si, θ̂i) = 1− ci cos θ̂i − si sin θ̂i. (15)

The range of ` is 〈0, 2〉 and has only one minimum with value 0 at point θ̂i. To fulfill the condition
above, we shift ` vertically by +1:

¯̀(ci, si, θ̂i) = `(ci, si, θ̂i) + 1. (16)

Then, we can take higher powers of ¯̀ to get sharper objective functions without a change of the
argument of the minimum.

Our new sharper objective function replacing of Eqn. (9) becomes

min
c∈〈−1,1〉7, s∈〈−1,1〉7

7∑
i=1

2wi(2− ci cos θ̂i − si sin θ̂i)
n (17)

for any n ∈ N. Even though the argument of the minimum of ` and ¯̀n is the same, it is not true for
their weighted sums. Therefore, Eqn. (17) has a different argument of the minimum than Eqn. (9),
but still Eqn. (17) keeps the idea of the original non-polynomial objective function (3).

Since we use the second relaxation order in the Lasserre hierarchies, we can use an objective function
of up to degree four without the need for enlargement of the relaxation order. Because ¯̀ has degree
one, we can use n up to four.

We show that taking higher power of the objective function improves the failure rate of our method
in Section 7.

6.5 Rational approximation

The end-effector pose M consists of translation vector t ∈ R3 and rotation matrix R ∈ SO(3), which
are, as well as the D-H parameters of the manipulator, in practice given in their floating-point rep-
resentation. This is a common approach as these values are typically an outcome of some planning
algorithm (the end-effector pose) or measured and calibrated (the parameters of the manipulator).
Moreover, the identities that must hold for rotation matrices are often violated not only because of the
floating-point representation but also because the algorithms producing them neglect the importance
of the identities.
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Table 1: Kinematic parameters of the KUKA LBR IIWA manipulator.

i di [mm] θi ai [mm] αi [rad] θLowi [°] θHighi [°]

1 340 par. 0 −π
2 −170 170

2 0 par. 0 π
2 −120 120

3 400 par. 0 −π
2 −170 170

4 0 par. 0 π
2 −120 120

5 400 par. 0 −π
2 −170 170

6 0 par. 0 π
2 −120 120

7 126 par. 0 0 −175 175

When a numerical method (such as GloptiPoly) is used to find the solution of the IK task, everything
works smoothly as long as the problem is well-conditioned. For us, this is the case when we directly
apply the polynomial solver, as described in Section 6.1.

On the other hand, symbolic methods require to compute exactly. Therefore, if we want to use a
symbolic method, e.g., as in Section 6.3, we need to pass from floating-point numbers to exact rational
numbers and ensure that all the identities, following from sines, cosines and rotations that have to hold,
are valid. Otherwise, the feasible set of our equations and inequalities for such data will be empty,
even if it is nonempty on exact data.

The input for the symbolic reduction method (Section 6.3) is the D-H parameters of the manipulator
and the end-effector pose M , which are floating points and need to be approximated by rational
numbers. The D-H parameters are a) the lengths ai and di, which we approximate by rounding them
to 2κ digits to the right of the decimal point, where κ ∈ N and treat them as rational numbers, and b)
the angles αi. In Eqn. (6), we only need rational values of sinαi and cosαi such that the trigonometric
identities sin2 αi + cos2 αi = 1 hold. How to obtain such rational representation in an optimal way
w.r.t. its bit size has been proposed, e.g., by [4]. For simplicity, we have used a nonoptimal approach
in this paper. To provide the rational representation, we round tan α

2 to κ digits to the right of the
decimal point, which we denote as τi and treat as rational. Then, the sines and cosines of αi are
replaced by their approximation followingly:

cosαi =
1− τ2i
1 + τ2i

, (18)

sinαi =
2τ

1 + τ2i
, (19)

which are rational functions of τi, and therefore also rational.
We approximate the rotational part R and the translational part t of the end-effector pose M

independently. The translation vector t is approximated element-wise by rounding to 2κ digits to the
right of the decimal point. As for the rotation matrix R, we need to find its approximation in the form
of a rational orthonormal matrix to ensure that R> = R−1 and detR = 1. [27] have introduced several
algorithms for finding an optimal approximation of R w.r.t. the bit size of its elements. We use a more
straightforward and easier-to-implement method in this paper. To find a rational approximation of R,
we convert it to a quaternion q, which we round element-wise to κ digits to the right of the decimal
point and denote it as q̄. The rounding, of course, violates the condition ‖q̄‖ = 1, and we can not divide
q̄ by non-rational ‖q̄‖ to get a rational quaternion. We overcome the issue simply by constructing a
rotation matrix from non-unit rational q̄, which we then divide by ‖q̄‖2, which is rational. The result
is a rational rotation matrix, which we use as a replacement for R.

The output of the symbolic reduction method is the degree two polynomials. They have rational
coefficients, so we evaluate them using floating-point arithmetic to convert them to floating-point
numbers. Then, we can use them in the numerical method (GloptiPoly) to find the solution of the IK
task.
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Figure 3: Kinematic model of the KUKA LBR IIWA manipulator.

Table 2: Overview of the execution times and accuracy of the presented methods. Results for both
methods are for the relaxation order r = 2 and the power of the objective function (17) n = 4. Methods
have been evaluated on the KUKA LBR IIWA manipulator.

Method Average execution time Median error % of failed
Reduction step GloptiPoly Translation Rotation poses

Naïve (Section 7.1.2) — 12.9 s 1.69 · 10−5 mm 2.41 · 10−6 deg 28.4 %
With symbolic reduction (Section 7.1.3) 2.6 s 3.6 s 1.22 · 10−6 mm 5.56 · 10−3 deg 0.07 %

7 Experiments

We demonstrate our method on the IK problem for the KUKA LBR IIWA arm with seven revolute
joints, which is simple to solve. Then, we modify the KUKA LBR IIWA manipulator to obtain a more
general manipulator, which is much harder to solve. We show that we are able to solve the IK problem
successfully for this modified, but still not fully generic, manipulator. Finally, we randomly generate
a completely generic serial manipulator with seven revolute joints and solve the IK problem for it.

7.1 The KUKA LBR IIWA manipulator

The manipulator structure is designed in a special way such that the IK problem is simple to compute.
There are three sequences of three consecutive revolute joints whose axes of motion intersect in a
single point. Namely, they are the joints (1, 2, 3), (3, 4, 5), and (5, 6, 7), see the kinematic model of the
manipulator in Fig. 3 based on the kinematic parameters from Tab. 1. Each of these triplets can be
substituted by a single spherical joint. Such property makes the manipulator a very nongeneric serial
manipulator.

Moreover, it is designed in such a special way that the joint angle θ4 is constant within the self-
motion for a fixed end-effector pose. This allows for a geometrical derivation of a closed-form solution
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Figure 4: Generated poses for the KUKA LBR IIWA manipulator. Green dots are poses marked as
feasible by direct solving with GloptiPoly, blue as infeasible, and for the red ones, the computation
failed (29.2 %). The illustration is for the relaxation order r = 2 and the power of the objective
function (17) n = 4.

Table 3: Comparison of failure rates and average execution times (end-to-end) of our proposed methods
for different relaxation orders and powers of the objective function. Methods have been evaluated on
the KUKA LBR IIWA manipulator.

Method Relaxation Power of the objective function (17)
order n = 1 n = 2 n = 3 n = 4

Naïve (Section 7.1.2) r = 2 34.1 % 14.1 s 30.6 % 13.6 s 29.2 % 14.4 s 28.4 % 13.6 s
With symbolic reduction (Section 7.1.3) r = 1 38.3 % 3.6 s 34.7 % 3.6 s — —
With symbolic reduction (Section 7.1.3) r = 2 1.3 % 7.5 s 0.5 % 7.1 s 0.09 % 7.1 s 0.07 % 7.2 s

to the IK problem, such as [17]. The authors introduce a new angle parameter δ that fixes the left
DOF of the IK problem.

Another approach is to solve the problem by local nonlinear optimization techniques [3]. However,
such methods do not provide global optima, and the found solution is highly dependent on the initial
guess.

Solving the IK problem globally is more computationally challenging. To be able to tackle the
problem in a matter of seconds, relaxations of the problem were developed in the past. Dai et al.
in [7] proposed mix-integer convex relaxation of the nonconvex rotational constraints. Their method
finds all classes of solutions that are in correspondence with a different set of active binary variables.
However, they are unable to select a global optima w.r.t. an objective function.

7.1.1 Polynomial optimization problem for KUKA LBR IIWA

We directly parameterize Problem (10) by the D-H parameters of the KUKA LBR IIWA manipulator
(Tab. 1). We set the weights equally to wi = 1

7 , and we set the preferred values of θ̂i to zero, which is
in the middle of the joint allowed interval. This leads to POP in 14 variables and with polynomials pj
of degrees up to four.
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Figure 5: Generated poses for the KUKA LBR IIWA manipulator. Green dots are poses marked
as feasible by GloptiPoly after symbolic simplification, blue as infeasible, and for the red ones, the
computation failed (0.09 %). The illustration is for the relaxation order r = 2 and the power of the
objective function (17) n = 4.

Table 4: Comparison of mean translation error of our proposed methods for different relaxation orders
and powers of the objective function. Methods have been evaluated on the KUKA LBR IIWA manip-
ulator.

Method Relaxation Power of the objective function (17)
order n = 1 n = 2 n = 3 n = 4

Naïve (Section 7.1.2) r = 2 3.14 · 10−4 mm 8.91 · 10−5 mm 3.07 · 10−5 mm 1.69 · 10−5 mm
With symbolic reduction (Section 7.1.3) r = 1 1.57 · 10−4 mm 4.95 · 10−5 mm — —
With symbolic reduction (Section 7.1.3) r = 2 4.77 · 10−5 mm 9.26 · 10−6 mm 3.10 · 10−6 mm 1.22 · 10−6 mm

7.1.2 Direct application of the polynomial solver

First, we solve Problem (10) with objective function (17) with powers n from one to four directly by
polynomial optimization toolbox GloptiPoly [13] for relaxation order two with the use of MOSEK [2]
as the semidefinite problem solver.

Our dataset consists of 10 000 randomly chosen poses within and outside of the working space of
the manipulator, as shown in Fig. 4. For poses marked by red color, GloptiPoly failed to compute the
solution or report infeasibility. That is mainly due to the small relaxation order of the semidefinite
relaxation of the POP. For the best choice of the power of the objective function n = 4 (see Tab. 3),
there is 28.4 % of such poses, which makes this approach quite impractical. Computations for the next
relaxation of order three are still often feasible on contemporary computers but take hours to finish.

7.1.3 POP with symbolic reduction

Since the performance of GloptiPoly highly depends on the number of variables of the POP and the
relaxation degree, which grows with the degrees of the polynomials contained in the POP, we first
symbolically reduce polynomials pj and qi and then solve the resulting POP by GloptiPoly. To be
able to use symbolic computation, we first have to approximate the inputs, which are given in the
floating-point representation. We do that according to Section 6.5 with the precision set to κ = 4.

Firstly, we use the advantage of the simple structure of the KUKA LBR IIWA manipulator, i.e.,
that the joint angle θ4 is constant within the self-motion. Therefore, it plays no role in the objective
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Table 5: Comparison of mean rotation error of our proposed methods for different relaxation orders and
powers of the objective function. Methods have been evaluated on the KUKA LBR IIWA manipulator.

Method Relaxation Power of the objective function (17)
order n = 1 n = 2 n = 3 n = 4

Naïve (Section 7.1.2) r = 2 4.98 · 10−5 deg 1.38 · 10−5 deg 4.68 · 10−6 deg 2.41 · 10−6 deg
With symbolic reduction (Section 7.1.3) r = 1 5.62 · 10−3 deg 5.59 · 10−3 deg — —
With symbolic reduction (Section 7.1.3) r = 2 5.60 · 10−3 deg 5.57 · 10−3 deg 5.56 · 10−3 deg 5.56 · 10−3 deg
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Figure 6: Histogram of translation and rotation error of the poses computed from the forward kinemat-
ics on found solutions w.r.t. the desired poses. Showed results are evaluated on the KUKA LBR IIWA
manipulator by the method with the symbolic reduction step (Section 7.1.3) and for the relaxation
order r = 2 and the power of the objective function n = 4. There are 4 zero translation errors and 0
zero rotation errors.

function (3). That allows us to eliminate the variables c4 and s4 from the equations. Secondly, we
reduce the polynomials pj and qj symbolically with the use of Theorem 1.

In this way, we have reduced the number of variables from 14 to 12, and we have reduced the
degrees of the polynomials to two, which significantly speeds up the SDP solver. Practical experiments
showed that GloptiPoly is now able to compute IK for more poses with the same relaxation order two
than by the naïve approach used before, see Fig. 5. Again, this approach performs best for the highest
possible power of the objective function, i.e., n = 4 (see Tab. 3). Now only 0.07 % of poses failed to
be solved on the same dataset as in Section 7.1.2.

7.1.4 Results

To verify the numerical stability of the solver, we have computed the forward kinematics problem based
on the found joint angles from the IK problem. Then, we have computed the translation error and
rotation error of this pose w.r.t. the desired pose. The comparison of the errors between the proposed
approaches for various values of the relaxation order r and the power of the objective function n can
be found in Tab. 4 for the translation error and in Tab. 5 for the rotation error. The drop of precision
between the naïve approach and the approach with the symbolic reduction step, which can be noted
especially in the rotational part, is mainly due to the “rational approximation” of the end-effector pose
and the parameters of the manipulator as described in Section 6.5. The histogram of the translation
and rotation error using the best value r = 2 and n = 4 can be seen in Fig. 6.

From Tab. 3, we can see that it is worth taking higher powers of the objective function as explained
in Section 6.4. We have shown that with the increasing power of the objective function, both the
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Figure 7: Histograms of execution time. Left: execution time of the online phase of GloptiPoly. Right:
execution time of the symbolic reduction and elimination in Maple. Showed results are evaluated on
the KUKA LBR IIWA manipulator by the method with the symbolic reduction step (Section 7.1.3)
and for the relaxation order r = 2 and the power of the objective function n = 4.

failure rate and the execution time of the methods improve. Both methods perform best for values
r = 2 and n = 4. The overall comparison of the methods for these values can be seen in Tab. 2.

For practical applications, the execution time of this method is essential. In Fig. 7, we show
the histograms of the execution time of the online phase of GloptiPoly as well as of the symbolic
reduction of the initial polynomials to degree two polynomials. We observe that our execution times
are comparable to the computation times in [7] when using off-the-shelf POP and GB computation
tools. We next plan to develop optimized solvers leading to considerable speedup, as it was done in
solving polynomial systems in computer vision [18, 19].

7.2 Modified KUKA LBR IIWA manipulator

To take a step towards solving the IK problem of a generic serial manipulator, we have slightly modified
the KUKA LBR IIWA manipulator. In particular, we have set the previously zero parameter a2 = 100
mm. See the modified kinematic model in Fig. 8. This change broke the first spherical joint as the axes
of rotation of joints 1, 2, and 3 no longer all intersect in one point. Now, it does not hold anymore that
the joint angle θ4 is constant for a fixed end-effector pose, and therefore we can not readily eliminate
it from the equations. However, the equations will still be simpler than for a generic manipulator as
many of the kinematic parameters are zero.

Again, we set the weights to wi = 1
7 , the preferred values of the joint angles θ̂i to zero, relaxation

order to r = 2, the power of the objective function to n = 4, and the precision of the rounding to
κ = 4. Our dataset of the end-effector poses consists of 500 randomly chosen poses from inside and
outside of the working space of the manipulator.

We compare two approaches: direct solving of the IK problem by the baseline POP solver and our
symbolically reducing the degree of the polynomials to two and then solving it by the POP solver. The
average execution time, failure rate, and the median translation and rotation error for both approaches
can be found in Tab. 6.

We can see that now the symbolic reduction step requires much more time than the POP solver.
Therefore, the naïve approach is faster as it does not need this reduction step. On the other hand,
the naïve approach fails for 26.4 % of poses, but we were able to solve all 500 poses from the dataset
by the method with the symbolic reduction step. The rotation and translation errors of both methods
are small enough for most practical applications. Again, the drop of precision of the method with the
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Figure 8: Kinematic model of the modified KUKA LBR IIWA manipulator.

Table 6: Overview of the execution times and accuracy of the presented methods. Methods have been
evaluated on the modified KUKA LBR IIWA manipulator.

Method Average execution time Median error % of failed
Reduction step GloptiPoly Translation Rotation poses

Naïve — 12.6 s 2.23 · 10−5 mm 4.18 · 10−6 deg 26.4 %
With symbolic reduction step 33.9 s 9.9 s 1.28 · 10−6 mm 5.34 · 10−3 deg 0 %

symbolic reduction step w.r.t. the naïve approach is mainly due to the “rational approximation” of
the end-effector poses, which is essential for symbolic computation. On the other hand, this error can
be reduced by increasing the κ number of digits used to represent the elements of rational rotation
matrices. Alternatively, a few steps of a local optimization, e.g. Newton’s method, will dramatically
reduce this error too.

7.3 A generic 7DOF serial manipulator

Here we show that we are able to solve the IK problem of a randomly generated fully generic serial
manipulator with seven revolute joints.

We randomly generate the kinematic parameters of the manipulator, see Tab. 7 and the corre-
sponding kinematic model in Fig. 9. The values of di and ai were generated as integers from 10 to
100 mm. We have set the allowance interval for all the joints angles θi to 〈−3, 3〉 rad. From the same
interval, we have generated the angles αi, for which we have found rational representations of their
sines and cosines by the same approach as in Section 6.5 with κ = 1.

The dataset of poses used to verify the IK problem solver consists of 100 poses. The poses were
generated from inside and outside of the working space of the manipulator and were then rounded to
the rational representation as described in Section 6.5 with κ = 1.

Contrary to the previous experiments, we rounded the kinematic parameters of the manipulator
and the end-effector poses to fractions in advance. This is because the rounding with higher values of κ
would lead to very long coefficients in the Gröbner basis computation, which would significantly increase
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Figure 9: Kinematic model of the randomly generated generic manipulator.

Table 7: Kinematic parameters of the randomly generated generic manipulator.

i di [mm] θi ai [mm] αi [rad] cosαi sinαi θLowi [rad] θHighi [rad]

1 74 par. 47 2.078 −189
389

340
389 −3 3

2 26 par. 22 −0.927 3
5 −4

5 −3 3
3 11 par. 82 0.761 21

29
20
29 −3 3

4 86 par. 19 −1.081 8
17 −15

17 −3 3
5 81 par. 85 −0.927 3

5 −4
5 −3 3

6 16 par. 15 −1.830 − 69
269 −260

269 −3 3
7 35 par. 89 1.350 9

41
40
41 −3 3

the execution time. However, doing the rounding in the symbolic method directly with κ = 1 would
mean that we would be computing the IK problem for very different (rounded rational representation)
kinematic parameters and end-effector poses than we are evaluating the errors for (the original floating-
point representation). Therefore, we have decided to use the dataset with rational representations of
the end-effector poses.

We again compare two approaches: direct solving of the IK problem by the POP solver and
symbolically reducing the degree of the polynomials to two and then solving it by the POP solver. We
set all the parameters to the same values as in Section 7.2. The average execution time, failure rate,
and the median translation and rotation error for both approaches can be found in Tab. 8.

From the results, we can see that by the naïve approach, we were unable to solve 51.0 % of the
end-effector poses. The approach with the symbolic reduction step is able to solve all poses from the
dataset, but it takes more than 2 hours on average to symbolically process the equations. In this case,
the best approach would be to try to solve a query end-effector pose by the naïve approach, which
takes seconds and has approx. a 50 % chance to succeed. If it fails, then one would need to preprocess
the equations by the symbolic reduction step. This approach may significantly reduce the required
computation time but still keep the failure rate near zero.

8 Conclusions

We presented the first practical method for globally solving the 7DOF IK problem with a polynomial
objective function. Our solution is accurate and can solve/decide infeasibility in 99.9 % of cases out of
10 000 cases tested on the KUKA LBR IIWA manipulator. We have shown that the method is general
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Table 8: Overview of the execution times and accuracy of the presented methods. Methods have been
evaluated on the randomly generated generic manipulator.

Method Average execution time Median error % of failed
Reduction step GloptiPoly Translation Rotation poses

Naïve — 14.0 s 1.02 · 10−6 mm 0 deg 51.0 %
With symbolic reduction step 7331 s 11.0 s 9.62 · 10−8 mm 0 deg 0 %

and therefore can be used to solve the IK problem of a generic 7DOF serial revolute manipulator. The
code is open-sourced at https://github.com/PavelTrutman/Global-7DOF-IKT.

For future work, we consider two interesting directions. First, in the case that the POP constraints
are incompatible (i.e., the feasible set of admissible parameters is empty), it would be desirable to
return a certificate of infeasibility. This certificate can be either numerical (obtained by solving the
moment-SOS hierarchy with an SDP solver) or symbolic (obtained by the Gröbner basis method).
It can be obtained, e.g., by computing an SOS representation for the polynomial −1 (or any other
negative polynomial) on the quadratic module corresponding to the feasible set. See, e.g., [16] in the
specific case of certifying emptiness of spectrahedra (SDP feasibility sets).

Secondly, it would be interesting to exploit the specific structure of the POP studied in this paper
to prove (maybe under some assumptions on the data) the exactness of the first or the second SDP
relaxation in the moment-SOS hierarchy, i.e., that solving this relaxation always solves the original
POP. For Euclidean distance POP arising in computer vision, this was achieved in [1] by arguing on
the curvature properties of the Lagrangian and its SOS representation in the quadratic module.

Acknowledgments

P. Trutman and T. Pajdla were supported by the EU Structural and Investment Funds, Operational
Programe Research, Development and Education under the project IMPACT (reg. no. CZ.02.1.01/0.0/-
0.0/15_003/0000468) and Grant Agency of the CTU Prague project SGS19/173/OHK3/3T/13. Di-
dier Henrion and Mohab Safey El Din are supported by the European Union’s Horizon2020 research
and innovation programme under the Marie Skłodowska-Curie grant agreement N°813211 (POEMA).
Mohab Safey El Din is supported by the ANR grants ANR-18-CE33-0011 Sesame, ANR-19-CE40-0018
De Rerum Natura, ANR-19-CE48-0015 ECARP, and the CAMiSAdo PGMO project.

References

[1] Chris Aholt, Sameer Agarwal, and Rekha Thomas. A qcqp approach to triangulation. In European
Conference on Computer Vision, pages 654–667. Springer, 2012.

[2] MOSEK ApS. The MOSEK optimization toolbox for MATLAB manual. Version 8.0., 2016.

[3] Samuel R Buss. Introduction to inverse kinematics with jacobian transpose, pseudoinverse and
damped least squares methods. IEEE Journal of Robotics and Automation, 17(1-19):16, 2004.

[4] John Canny, Bruce Donald, and Eugene K Ressler. A rational rotation method for robust geo-
metric algorithms. In Proceedings of the eighth annual symposium on Computational geometry,
pages 251–260, 1992.

[5] David Cox, John Little, and Donal OShea. Ideals, varieties, and algorithms: an introduction to
computational algebraic geometry and commutative algebra. Springer Science & Business Media,
2013.

[6] David A. Cox, John Little, and Donald O’Shea. Ideals, Varieties, and Algorithms: An Introduction
to Computational Algebraic Geometry and Commutative Algebra. Springer, 2015.

19

https://github.com/PavelTrutman/Global-7DOF-IKT


[7] Hongkai Dai, Gregory Izatt, and Russ Tedrake. Global inverse kinematics via mixed-integer convex
optimization. The International Journal of Robotics Research, page 0278364919846512, 2017.

[8] Hongkai Dai, Andrés Valenzuela, and Russ Tedrake. Whole-body motion planning with centroidal
dynamics and full kinematics. In 2014 IEEE-RAS International Conference on Humanoid Robots,
pages 295–302. IEEE, 2014.

[9] Rosen Diankov. Automated Construction of Robotic Manipulation Programs. PhD thesis, Pitts-
burgh, PA, USA, 2010. AAI3448143.

[10] Jean-Charles Faugère. A new efficient algorithm for computing gröbner bases (f4). Journal of
Pure and Applied Algebra, 139(1):61 – 88, 1999.

[11] Jean Charles Faugère. A new efficient algorithm for computing gröbner bases without reduction
to zero (f5). In Proceedings of the 2002 International Symposium on Symbolic and Algebraic
Computation, ISSAC ’02, pages 75–83, New York, NY, USA, 2002. ACM.

[12] Richard S Hartenberg and Jacques Denavit. A kinematic notation for lower pair mechanisms
based on matrices. Journal of applied mechanics, 77(2):215–221, 1955.

[13] Didier Henrion and Jean-Bernard Lasserre. Gloptipoly: Global optimization over polynomials
with matlab and sedumi. ACM Transactions on Mathematical Software (TOMS), 29(2):165–194,
2003.

[14] Reza Jazar. Theory of Applied Robotics: Kinematics, Dynamics, and Control. Springer, 2007.

[15] Fredrik Kahl and Richard Hartley. Multiple-view geometry under the L∞-norm. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 30(9):1603–1617, 2008.

[16] Igor Klep and Markus Schweighofer. An exact duality theory for semidefinite programming based
on sums of squares. Mathematics of Operations Research, 38(3):569–590, 2013.

[17] I Kuhlemann, A Schweikard, P Jauer, and F Ernst. Robust inverse kinematics by configuration
control for redundant manipulators with seven dof. In 2016 2nd International Conference on
Control, Automation and Robotics (ICCAR), pages 49–55. IEEE, 2016.

[18] Zuzana Kukelova, Martin Bujnak, and Tomas Pajdla. Automatic generator of minimal problem
solvers. In European Conference on Computer Vision (ECCV), pages 302–315. Springer, 2008.

[19] Viktor Larsson, Magnus Oskarsson, Kalle Åström, Alge Wallis, Zuzana Kukelova, and Tomás
Pajdla. Beyond grobner bases: Basis selection for minimal solvers. In 2018 IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-22,
2018, pages 3945–3954, 2018.

[20] Jean Bernard Lasserre. Global optimization with polynomials and the problem of moments. SIAM
Journal on optimization, 11(3):796–817, 2001.

[21] Jean Bernard Lasserre. An introduction to polynomial and semi-algebraic optimization, volume 52.
Cambridge University Press, 2015.

[22] Daniel Lazard. Generalized stewart platform: How to compute with rigid motions. 1993.

[23] Johan Löfberg. YALMIP : A toolbox for modeling and optimization in MATLAB. In Proceedings
of the CACSD Conference, Taipei, Taiwan, 2004.

[24] Dinesh Manocha and John F. Canny. Efficient inverse kinematics for general 6r manipulators.
IEEE Trans. Robotics and Automation, 10(5):648–657, 1994.

[25] Filip Marić, Matthew Giamou, Soroush Khoubyarian, Ivan Petrović, and Jonathan Kelly. Inverse
kinematics for serial kinematic chains via sum of squares optimization. In 2020 IEEE International
Conference on Robotics and Automation (ICRA), pages 7101–7107. IEEE, 2020.

20



[26] Ernst W Mayr and Albert R Meyer. The complexity of the word problems for commutative
semigroups and polynomial ideals. Advances in Mathematics, 46(3):305 – 329, 1982.

[27] Victor J Milenkovic and Veljko Milenkovic. Rational orthogonal approximations to orthogonal
matrices. Computational Geometry, 7(1-2):25–35, 1997.

[28] Ugo Pattacini, Francesco Nori, Lorenzo Natale, Giorgio Metta, and Giulio Sandini. An exper-
imental evaluation of a novel minimum-jerk cartesian controller for humanoid robots. In 2010
IEEE/RSJ international conference on intelligent robots and systems, pages 1668–1674. IEEE,
2010.

[29] Mihai Putinar. Positive polynomials on compact semi-algebraic sets. Indiana University Mathe-
matics Journal, 42(3):969–984, 1993.

[30] Manasa Raghavan and Bernard Roth. Inverse kinematics of the general 6r manipulator and related
linkages. 1993.

[31] Manasa Raghavan and Bernard Roth. Solving polynomial systems for the kinematic analysis and
synthesis of mechanisms and robot manipulators. 1995.

[32] Madhusudan Raghaven and Bernard Roth. Kinematic analysis of the 6r manipulator of general
geometry. In The Fifth International Symposium on Robotics Research, pages 263–269, Cambridge,
MA, USA, 1990. MIT Press.

[33] J.E. Shigley and J.J. Uicker. Theory of machines and mechanisms. McGraw-Hill series in me-
chanical engineering. McGraw-Hill, 1980.

[34] Charles W. Wampler, Alexander P. Morgan, and Andrew J. Sommese. Numerical continuation
methods for solving polynomial systems arising in kinematics. 1990.

21


	Introduction
	Contribution

	Previous work
	The most relevant previous work

	Problem formulation
	The goal of our work
	Forward kinematics
	Inverse kinematics problem

	Polynomial optimization
	Symbolic reduction of the POP
	Solving the IK problem
	Direct application of polynomial solver
	Symbolic reduction
	Solving the reduced polynomial optimization problem
	Overcoming numerical issues
	Rational approximation

	Experiments
	The KUKA LBR IIWA manipulator
	Polynomial optimization problem for KUKA LBR IIWA
	Direct application of the polynomial solver
	POP with symbolic reduction
	Results

	Modified KUKA LBR IIWA manipulator
	A generic 7DOF serial manipulator

	Conclusions

