
HAL Id: hal-02905753
https://hal.science/hal-02905753v2

Submitted on 15 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Global sensitivity analysis and Wasserstein spaces
Jean-Claude Fort, Thierry Klein, Agnès Lagnoux

To cite this version:
Jean-Claude Fort, Thierry Klein, Agnès Lagnoux. Global sensitivity analysis and Wasserstein
spaces. SIAM/ASA Journal on Uncertainty Quantification, 2021, 9 (2), �10.1137/20M1354957�. �hal-
02905753v2�

https://hal.science/hal-02905753v2
https://hal.archives-ouvertes.fr


Global sensitivity analysis and Wasserstein spaces1

Jean-Claude Fort1, Thierry Klein2, and Agnès Lagnoux32

1MAP5 Université Paris Descartes, SPC, 45 rue des Saints Pères, 75006 Paris, France.3

2Institut de Mathématiques de Toulouse; UMR5219. Université de Toulouse; ENAC -4

Ecole Nationale de l'Aviation Civile , Université de Toulouse, France5

3Institut de Mathématiques de Toulouse; UMR5219. Université de Toulouse; CNRS.6

UT2J, F-31058 Toulouse, France.7

December 8, 20208

Abstract9

Sensitivity indices are commonly used to quantify the relative in�uence of any speci�c group of10

input variables on the output of a computer code. In this paper, we focus both on computer codes for11

which the output is a cumulative distribution function and on stochastic computer codes. We propose12

a way to perform a global sensitivity analysis for these kinds of computer codes. In the �rst setting,13

we de�ne two indices: the �rst one is based on Wasserstein Fréchet means while the second one is14

based on the Hoe�ding decomposition of the indicators of Wasserstein balls. Further, when dealing15

with the stochastic computer codes, we de�ne an �ideal version� of the stochastic computer code thats16

�ts into the frame of the �rst setting. Finally, we deduce a procedure to realize a second-level global17

sensitivity analysis, namely when one is interested in the sensitivity related to the input distributions18

rather than in the sensitivity related to the inputs themselves. Several numerical studies are proposed19

as illustrations in the di�erent settings.20

Keywords: Global sensitivity indices, functional computer codes, stochastic computer codes, second-21

level uncertainty, Fréchet means, Wasserstein spaces.22

AMS subject classi�cation 62G05, 62G20, 62G30, 65C60, 62E17.23

1 Introduction24

The use of complex computer models for the analysis of applications from sciences, engineering and other25

�elds is by now routine. For instance, in the area of marine submersion, complex computer codes have26

been developed to simulate submersion events (see, e.g., [4, 34] for more details). In the context of aircraft27

design, sensitivity analysis and metamodelling are intensively used to optimize the design of an airplane28

(see, e.g., [51]). Several other concrete examples of stochastic computer codes can be found in [42].29

Often, the models are expensive to run in terms of computational time. Thus it is crucial to understand30

the global in�uence of one or several inputs on the output of the system under study with a moderate31

number of runs a�orded [54]. When these inputs are regarded as random elements, this problem is32

generally called (global) sensitivity analysis. We refer to [17, 52, 58] for an overview of the practical33

aspects of global sensitivity analysis.34

A classical tool to perform global sensitivity analysis consists in computing the Sobol indices. These35

indices were �rst introduced in [50] and then considered by [57]. They are well tailored when the output36

space is R. The Sobol indices compare, using the Hoe�ding decomposition [33], the conditional variance37

of the output knowing some of the input variables to the total variance of the output. Many di�erent38

estimation procedures of the Sobol indices have been proposed and studied in the literature. Some are39

based on Monte-Carlo or quasi Monte-Carlo design of experiments (see [38, 47] and references therein40

for more details). More recently a method based on nested Monte-Carlo [28] has been developed. In41

particular, an e�cient estimation of the Sobol indices can be performed through the so-called �Pick-Freeze�42

method. For the description of this method and its theoretical study (consistency, central limit theorem,43

concentration inequalities and Berry- Esseen bounds), we refer to [36, 25] and references therein. Some44
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other estimation procedures are based on di�erent designs of experiments using for example polynomial45

chaos expansions (see [60] and the reference therein for more details).46

Since Sobol indices are variance-based, they only quantify the in�uence of the inputs on the mean47

behavior of the code. Many authors proposed other criteria to compare the conditional distribution of48

the output knowing some of the inputs to the distribution of the output. In [47, 49, 48], the authors49

use higher moments to de�ne new indices while, in [7, 8, 16], the use of divergences or distances between50

measures allows to de�ne new indices. In [20], the authors use contrast functions to build indices that are51

goal-oriented. Although these works de�ne nice theoretical indices, the existence of a relevant statistical52

estimation procedure is still, in most cases, an open question. The case of vectorial-valued computer53

codes is considered in [26] where a sensitivity index based on the whole distribution using the Cramér-54

von-Mises distance is de�ned. Within this framework, the authors show that the Pick-Freeze estimation55

procedure provides an asymptotically Gaussian estimator of the index.56

Nowadays, the computer code output is often no longer a real-valued multidimensional variable but57

rather a function computed at various locations. In that sense, it can be considered as a functional58

output. Some other times, the computer code is stochastic in the sense that the same inputs can lead59

to di�erent outputs. When the output of the computer code is a function (for instance, a cumulative60

distribution function) or when the computer code is stochastic, Sobol indices are no longer well tailored.61

It is then crucial to de�ne indices adapted to the functional or random aspect of the output. When62

the output is vectorial or valued in an Hilbert space, some generalizations of Sobol indices are available63

[39, 24]. Nevertheless, these indices are still based on the Hoe�ding decomposition of the output; so64

that they only quantify the relative in�uence of an input through the variance. More recently, indices65

based on the whole distribution have been developed [16, 9, 7]. In particular, the method relying on66

Cramér-von-Mises distance [26] compares the conditionnal cumulative distribution function with the67

unconditional one by considering the Hoe�ding decomposition of half-space indicators (rather than the68

Hoe�ding decomposition of the output itself) and by integrating them. This method was then extend to69

codes taking values in a Riemannian manifold [21] and then in general metric spaces [27].70

In this work, we focus on two kinds of computer codes: 1) computer codes for which the output is71

the cumulative distribution function of a real random variable and 2) real-valued stochastic computer72

codes. A �rst step will consist in performing global sensitivity analysis for these kinds of computer codes.73

Further, we focus on second-level analysis that corresponds to the sensitivity analysis with respect to74

the input distribution (see Section 6 for more details on second-level analysis). Then we will deduce75

how to perform second-level sensitivity analysis using the tools developed in the �rst step. A code76

with cumulative distribution function as output can be seen as a code taking values in the space of all77

probability measures on R. This space can be endowed with a metric (for example, the Wasserstein78

metric [62]). This point of view allows to de�ne at least two di�erent indices for this kind of codes,79

generalizing the framework of [27]. The �rst one is based on Wasserstein Fréchet means while the second80

one is based on the Hoe�ding decomposition of the indicators of Wasserstein balls. Further, stochastic81

codes (see Section 5 for a bibliographical study) can be seen as a �discrete approximation� of codes82

having cumulative distribution functions as values. Then it is possible to de�ne �natural� indices for83

such stochastic codes. Finally, second-level sensitivity analysis aims at considering uncertainties on the84

type of the input distributions and/or on the parameters of the input distributions (see Section 6 for a85

bibliographical study). Actually, this kind of problem can be embedded in the framework of stochastic86

codes.87

The article is organized as follows. In Section 2, we introduce and precisely de�ne a general class of88

global sensitivity indices. We also present statistical methods to estimate these indices. In Section 3, we89

recall some basic facts on Wasserstein distances, Wasserstein costs and Fréchet means. In Section 4, we90

de�ne and study the statistical properties of two new global sensitivity indices for computer codes valued91

in general Wasserstein spaces. Further, in Section 5, we study the case of stochastic computer codes. The92

proof of the main result of this section has been postponed to Section A. Then, Section 6 is dedicated93

to the sensitivity analysis with respect to the distributions of the input variables. In Section 7, practical94

advices are given for the practitioners. Finally, we present conclusions, limitations and perspectives in95

Section 8.96
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2 Sensitivity indices for codes valued in general metric spaces97

We consider a black-box code f de�ned on a product of measurable spaces E = E1 × E2 × . . . × Ep98

(p ∈ N∗) taking its values in a metric space X . The output denoted by Z is then given by99

Z = f(X1, . . . , Xp). (1)

We denote by P the distribution of the output code Z.100

The aim of this work is to give answers to the following questions.101

Question 1 How can we perform Global Sensitivity Analysis (GSA) when the output space is the space of102

probability distribution functions (p.d.f.) on R or the space of cumulative distribution functions103

(c.d.f.)?104

Question 2 How can we perform GSA for stochastic computer codes?105

Question 3 How can we perform GSA with respect to the choice of the distributions of the input variables?106

2.1 The general metric spaces sensitivity index107

In this section, we recall the de�ntion and the properties of the general metric spaces sensitivity index108

introduced in [27]. We also discuss several ways of estimation: the Pick-Freeze estimation as introduced109

in [36], the estimation procedure based on U-statistics proposed in [27], and a rank-based procedure110

initiated in [23].111

In [27], the authors performed GSA for codes f taking values in general metric spaces. To do so, they112

consider a family of test functions parameterized by m ∈ N∗ elements of X and de�ned by113

Xm ×X → R
(a, x) 7→ Ta(x).

Let u ⊂ {1, . . . , p} and Xu = (Xi, i ∈ u). Assuming that the test functions Ta are L2-functions with
respect to the product measure P⊗m ⊗ P (where P⊗m is the product m-times of the distribution of the
output code Z) on Xm × X , they allow to de�ne the general metric space (GMS) sensitivity index with
respect to Xu by

Su2,GMS =

∫
Xm E

[
(E[Ta(Z)]− E[Ta(Z)|Xu])

2
]
dP⊗m(a)∫

Xm Var(Ta(Z))dP⊗m(a)
=

∫
Xm Var (E[Ta(Z)|Xu]) dP⊗m(a)∫

Xm Var(Ta(Z))dP⊗m(a)
. (2)

Roughly speaking, the previous indices divided into two parts. First, for any value of a, we consider the114

numerator E
[
(E[Ta(Z)]− E[Ta(Z)|Xu])

2]
and the denominator Var(Ta(Z)) of the classical Sobol index115

of Ta(Z). This part is called the Sobol part. Second, we integrate each part with respect to the measure116

P⊗m; it is called the integration part.117

As explained in [27], by construction, the indices Su2,GMS
lie in [0, 1] and share the same properties as

their Sobol counterparts:

- the di�erent contributions sum to 1; (3)

- they are invariant by translation, by any isometry and by any non-degenerated scaling of Z. (4)

Estimation Three di�erent estimation procedures are available in this context. The two �rst methods
are based on the Pick-Freeze scheme. More precisely, the Pick-Freeze scheme, considered in [36], is a well
tailored design of experiment. Namely, let Xu be the random vector such that Xu

i = Xi if i ∈ u and
Xu

i = X ′i if i /∈ u where X ′i is an independent copy of Xi. We then set

Zu := f(Xu). (5)

Further, the procedure consists in rewriting the variance of the conditional expectation in terms of
covariances as follows

Var(E[Z|Xu]) = Cov(Z,Zu). (6)
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Alternatively, the third estimation procedure that can be seen as an ingenious and e�ective approximation118

of the Pick-Freeze scheme is based on rank statistics [23]. Until now, it is unfortunately only available to119

estimate �rst-order indices in the case of real-valued inputs.120

• First method - Pick-Freeze. Introduced in [26], this procedure is based on a double Monte-Carlo121

scheme to estimate the Cramér-von-Mises (CVM) indices Su2,CVM. More precisely, to estimate122

Su2,GMS
in our context, we consider the following design of experiment consisting in123

1. a classical Pick-Freeze N -sample, that is two N -samples of Z: (Zj , Z
u

j ), 1 6 j 6 N ;124

2. m other N -samples of Z independent of (Zj , Z
u

j )16j6N : Wl,k, 1 6 l 6 m, 1 6 k 6 N .125

The empirical estimator of the numerator of Su2,GMS
is then given by

N̂u

2,GMS,PF =
1

Nm

∑
16i1,...,im6N

[
1

N

N∑
j=1

TW1,i1 ,··· ,Wm,im
(Zj)TW1,i1 ,··· ,Wm,im

(Zuj )

]

− 1

Nm

∑
16i1,...,im6N

[
1

2N

N∑
j=1

(
TW1,i1

,··· ,Wm,im
(Zj) + TW1,i1

,··· ,Wm,im
(Zuj )

)]2

while the one of the denominator is

D̂u

2,GMS,PF =
1

Nm

∑
16i1,...,im6N

[
1

2N

N∑
j=1

(
TW1,i1 ,··· ,Wm,im

(Zj)
2 + TW1,i1 ,··· ,Wm,im

(Zuj )2
)]

− 1

Nm

∑
16i1,...,im6N

[
1

2N

N∑
j=1

(
TW1,i1

,··· ,Wm,im
(Zj) + TW1,i1

,··· ,Wm,im
(Zuj )

)]2

.

For X = Rk, m = 1, and Ta given by Ta(x) = 1x6a, the index Su2,GMS,PF is nothing more than126

the index Su2,CVM de�ned in [26] based on the Cramér-von-Mises distance and on the whole distri-127

bution of the output. Its estimator Ŝu2,CVM de�ned as the ratio of N̂u

2,GMS,PF and D̂u

2,GMS,PF with128

Ta(x) = 1x6a has been proved to be asymptotically Gaussian [26, Theorem 3.8]. The proof relies129

on Donsker's theorem and the functional delta method [61, Theorem 20.8]. Analogously, in the130

general case of Su2,GMS
, the central limit theorem is still valid as soon as the collection (Ta)a∈Xm131

forms a Donsker's class of functions.132

• Second method - U-statistics. As done in [27], this method allows the practitioner to get rid of the133

additional random variables (Wl,k) for l ∈ {1, . . . ,m} and k ∈ {1, . . . , N}. The estimator is now134

based on U-statistics and deals simultaneously with the Sobol part and the integration part with135

respect to dP⊗m(a). It su�ces to rewrite Su2,GMS
as136

Su2,GMS =
I(Φ1)− I(Φ2)

I(Φ3)− I(Φ4)
, (7)

where,

Φ1(z1, . . . , zm+1) = Tz1,...,zm(zm+1)Tz1,...,zm(zum+1),

Φ2(z1, . . . , zm+2) = Tz1,...,zm(zm+1)Tz1,...,zm(zum+2), (8)

Φ3(z1, . . . , zm+1) = Tz1,...,zm(zm+1)2,

Φ4(z1, . . . , zm+2) = Tz1,...,zm(zm+1)Tz1,...,zm(zm+2),

denoting by zi the pair (zi, z
u

i ) and, for l = 1, . . . , 4,

I(Φl) =

∫
Xm(l)

Φl(z1, . . . , zm(l))dP
u,⊗m(l)
2 (z1 . . . , zm(l)), (9)

with m(1) = m(3) = m+ 1 and m(2) = m(4) = m+ 2. Finally, one considers the empirical version137

of (7) as estimator of Su2,GMS
138

Ŝu2,GMS,Ustat =
U1,N − U2,N

U3,N − U4,N
, (10)

4



where, for l = 1, . . . , 4,

Ul,N =

(
N
m(l)

)−1 ∑
16i1<···<im(l)6N

Φsl
(
Zi1 , . . . ,Zim(l)

)
(11)

and the function

Φsl (z1, . . . , zm(l)) =
1

(m(l))!

∑
τ∈Sm(l)

Φl(zτ(1), . . . , zτ(m(l)))

is the symmetrized version of Φl. In [27, Theorem 2.4], the estimator Ŝu2,GMS,U-stat has been proved139

to be consistent and asymptotically Gaussian.140

• Third method - Rank-based. In [15], Chatterjee proposes an e�cient way based on ranks to esti-141

mate a new coe�cient of correlation. This estimation procedure can be seen as an approximation142

of the Pick-Freeze scheme and then has been exploited in [23] to perform a more e�cient estimation143

of Su2,GMS
. Nevertheless, this method is only well tailored for estimating �rst-order indices i.e. in144

the case of u = {i} for some i ∈ {1, . . . , p} and when the input Xi ∈ R.145

More precisely, an i.i.d. sample of pairs of real-valued random variables (Xi,j , Yj)16j6N (i ∈146

{1, · · · , p}) is considered, assuming for simplicity that the laws of Xi and Y are both di�use (ties147

are excluded). The pairs (Xi,(1), Y(1)), . . . , (Xi,(N), Y(N)) are rearranged in such a way that148

Xi,(1) < . . . < Xi,(N)

and, for any j = 1, . . . , N , Y(j) is the output computed from Xi,(j). Let rj be the rank of Y(j), that149

is,150

rj = #{j′ ∈ {1, . . . , N}, Y(j′) 6 Y(j)}.
The new correlation coe�cient is then given by151

ξN (Xi, Y ) = 1−
3
∑N−1
j=1 |rj+1 − rj |
N2 − 1

. (12)

In [15], it is proved that ξN (Xi, Y ) converges almost surely to a deterministic limit ξ(Xi, Y ) which152

is actually equal to Si2,CVM when Y = Z = f(X1, · · · , Xp). Further, the author also proves a153

central limit theorem when Xi and Y are independent, which is clearly not relevant in the context154

of sensitivity analysis (SA) (where Xi and Y are dependent through the computer code).155

In our context, recall that u = {i} and let Y = Z. Let also πi(j) be the rank of Xi,j in the sample
(Xi,1, . . . , Xi,N ) of Xi and de�ne

Ni(j) =

{
π−1
i (πi(j) + 1) if πi(j) + 1 6 N,

π−1
i (1) if πi(j) = N.

(13)

Then the empirical estimator Ŝi2,GMS,Rank of S
i
2,GMS

only requires a N -sample (Zj)16j6N of Z and
is given by the ratio between

N̂ i
2,GMS,Rank =

1

Nm

∑
16i1,...,im6N

[
1

N

N∑
j=1

TZi1 ,··· ,Zim (Zj)TZi1 ,··· ,Zim (ZNi(j))

]

− 1

Nm

∑
16i1,...,im6N

[
1

N

N∑
j=1

TZi1 ,··· ,Zim (Zj)

]2

(14)

and D̂i
2,GMS,Rank

1

Nm

∑
16i1,...,im6N

[
1

N

N∑
j=1

TZi1 ,··· ,Zim (Zj)
2

]
− 1

Nm

∑
16i1,...,im6N

[
1

N

N∑
j=1

TZi1 ,··· ,Zim (Zj)

]2

. (15)

It is worth mentioning that ZNi(j) plays the same role as Zij (the Pick-Freeze version of Zj with156

respect to Xi) in the Pick-Freeze estimation procedure.157
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Comparison of the estimation procedures158

First, the Pick-Freeze estimation procedure allows the estimation of several sensitivity indices: the159

classical Sobol indices for real-valued outputs, as well as their generalization for vectorial-valued codes,160

but also the indices based on higher moments [49] and the Cramér-von-Mises indices which take the whole161

distribution into account [26, 21]. Practically, this methodology is quite general and easy to implement.162

Moreover, the Pick-Freeze estimators have desirable statistical properties. More precisely, this estimation163

scheme has been proved to be consistent and asymptotically normal (i.e. the rate of convergence is164 √
N) in [36, 25, 27]. The limiting variances can be computed explicitly, allowing the practitioner to165

build con�dence intervals. In addition, for a given sample size N , exponential inequalities have been166

established. Last but not least, the sequence of estimators is asymptotically e�cient from such a design167

of experiment (see, [61] for the de�nition of the asymptotic e�ciency and [25] for more details on the168

result).169

However, the Pick-Freeze estimators have two major drawbacks. First, they rely on a particular170

experimental design that may be unavailable in practice. Second, it can be unfortunately very time171

consuming in practice: the number of model calls to estimate all �rst-order Sobol indices grows linearly172

with the number of input parameters. For example, if we consider p = 99 input parameters and only173

N = 1000 calls are allowed, then only a sample of size N/(p+ 1) = 10 is available to estimate each single174

�rst-order Sobol index.175

Secondly, the estimation procedure based on U-statistics has the same kind of asymptotic guarantees as176

the Pick-Freeze estimators (namely, consistency and asymptotic normality). Furthermore, the estimation177

scheme is reduced to 2N evaluations of the code. Last, using the results of Hoe�ding [33] on U-statistics,178

the asymptotic normality is proved straightforwardly.179

Finally, embedding Chatterjee's method in the GSA framework (called rank-based method in this180

framework) thereby eliminates the two drawbacks of the classical Pick-Freeze estimation. Indeed, the181

strength of the rank-based estimation procedure lies in the fact that only one N -sample of Z is required182

while (m + 2) samples of size N are necessary in the Pick-Freeze estimation of a single index (worse,183

(m+ 1 + p) samples of size N are required when one wants to estimate p indices). Using a single sample184

of size N , it is now possible to estimate at the same time all the �rst-order Sobol indices, �rst-order185

Cramér-von-Mises indices, and other useful �rst-order sensitivity indices as soon as all inputs are real186

valued. More generally, the rank-based method allows for the estimation of a large class of GSA indices187

which includes the Sobol indices and the higher-order moment indices proposed by Owen [47, 49, 48].188

In addition, the rank-based estimator has nice theoretical properties. For instance, the estimator of the189

Sobol index Si has been proved to be consistent and asymptotically Gaussian (see, e.g., Theorem 3.3 in190

[23]).191

2.2 The universal sensitivity index192

In this section, the aim is to generalize the already-known general metric space index Su2,GMS
presented193

in the previous section. Here, we then de�ne a new index that we call the �universal sensitivity index�194

and we denote by Su2,Univ.195

To do so, observe that Formula (2) can be generalized in the following ways.196

1. The point a in the de�nition of the test functions can be allowed to belong to another measurable197

space than Xm.198

2. The probability measure P⊗m in (2) can be replaced by any �admissible� probability measure.199

Such generalizations lead to the de�nition of a universal sensitivity index and its procedures of estimation.200

De�nition 2.1. Let a belongs to some measurable space Ω endowed with some probability measure Q.
For any u ⊂ {1, · · · , p}, we de�ne the universal sensitivity index with respect to Xu by

Su2,Univ(Ta,Q) =

∫
Ω
E
[
(E[Ta(Z)]− E[Ta(Z)|Xu])

2
]
dQ(a)∫

Ω
Var(Ta(Z))dQ(a)

=

∫
Ω
Var (E[Ta(Z)|Xu]) dQ(a)∫

Ω
Var(Ta(Z))dQ(a)

. (16)

Notice that the index Su2,Univ(Ta,Q) is obtained by the integration over a with respect to Q of the201

Hoe�ding decomposition of Ta(Z). Hence, by construction, this index lies in [0, 1] and shares the same202

properties as its Sobol counterparts, namely the two previously cited properties in (3) and (4).203
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The universality is twofold. First, it allows to consider more general relevant indices. Secondly, this204

de�nition encompasses, as particular cases, the classical sensitivity indices. Indeed,205

• the so-called Sobol index Su with respect to Xu is Su2,Univ(Id,P), with Id the identity test function;206

• the Cramér-von-Mises index Su2,CVM with respect to Xu is Su2,Univ(1·6a,P⊗d) where X = Rd and207

Ω = X ;208

• the general metric space sensitivity index Su2,GMS
with respect to Xu is Su2,Univ(1·6a,P⊗m) where209

Ω = Xm.210

An example where Q is di�erent from P will be considered in Section 4.211

Estimation Here, we assume that Q is di�erent from P⊗m and we follow the same tracks as for the212

estimation of Su2,GMS
in Section 2.1.213

• First method - Pick-Freeze. We use the same design of experiment as in the �rst method of Section214

2.1 but instead of considering that the m additional N -samples (Wl,k) for l ∈ {1, . . . ,m} and215

k ∈ {1, . . . , N} are drawn with respect to the distribution P of the output, they are now drawn216

with respect to Q. More precisely, we consider the following design of experiment consisting in217

1. a classical Pick-Freeze sample, that is two N -samples of Z: (Zj , Z
u

j ), 1 6 j 6 N ;218

2. m Q-distributed N -samples Wl,k, l ∈ {1, . . . ,m} and k ∈ {1, . . . , N} that are independent of219

(Zj , Z
u

j ) for 1 6 j 6 N .220

The empirical estimator of the numerator of Su2,Univ is then given by

N̂u

2,Univ,PF =
1

Nm

∑
16i1,...,im6N

[
1

N

N∑
j=1

TW1,i1
,··· ,Wm,im

(Zj)TW1,i1
,··· ,Wm,im

(Zuj )

]

− 1

Nm

∑
16i1,...,im6N

[
1

2N

N∑
j=1

(
TW1,i1 ,··· ,Wm,im

(Zj) + TW1,i1 ,··· ,Wm,im
(Zuj )

)]2

while the one of the denominator is

D̂u

2,Univ,PF =
1

Nm

∑
16i1,...,im6N

[
1

2N

N∑
j=1

(
TW1,i1 ,··· ,Wm,im

(Zj)
2 + TW1,i1 ,··· ,Wm,im

(Zuj )2
)]

− 1

Nm

∑
16i1,...,im6N

[
1

2N

N∑
j=1

(
TW1,i1

,··· ,Wm,im
(Zj) + TW1,i1

,··· ,Wm,im
(Zuj )

)]2

.

As previously, it is straightforward (as soon as the collection (Ta)a∈Xm forms a Donsker's class of221

functions) to adapt the proof of Theorem [26, Theorem 3.8] to prove the asymptotic normality of222

the estimator.223

• Second method - U-statistics. This method is not relevant in this case since Q 6= P⊗d.224

• Third method - Rank-based. Here, the design of experiment reduces to225

1. a N -sample of Z: Zj , 1 6 j 6 N ;226

2. a N -sample of W that is Q-distributed: Wk, 1 6 k 6 N , independent of Zj , 1 6 j 6 N .227

Assume as previously u = {i} and Ni(·) be de�ned in (13). The empirical estimator Ŝi2,Univ,Rank of

Si2,Univ is then given by the ratio between

N̂ i
2,Univ,Rank =

1

Nm

∑
16i1,...,im6N

[
1

N

N∑
j=1

TWi1
,··· ,Wim

(Zj)TWi1
,··· ,Wim

(ZNi(j))

]

− 1

Nm

∑
16i1,...,im6N

[
1

N

N∑
j=1

TWi1
,··· ,Wim

(Zj)

]2

(17)
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and D̂i
2,Univ,Rank

1

Nm

∑
16i1,...,im6N

[
1

N

N∑
j=1

TWi1 ,··· ,Wim
(Zj)

2

]
− 1

Nm

∑
16i1,...,im6N

[
1

N

N∑
j=1

TWi1 ,··· ,Wim
(Zj)

]2

. (18)

We recall that this last method only applies for �rst-order sensitivity indices and real-valued input228

variables.229

2.3 A sketch of answer to Questions 1 to 3230

In the sequel, we discuss how pertinent choices of the metric, of the class of test functions Ta and of the231

probability measure Q can provide answers to Questions 1 to 3 raised at the beginning of Section 2. For232

instance, in order to answer to Question 1, we can consider that X =Mq(R) is the space of probability233

measures µ on R having �nite q-moments that we endow with the Wasserstein metric Wq (see Section234

3.1 for some recalls on Wasserstein metrics). We propose two possible approaches to de�ne interesting235

sensitivity indices in this framework.236

• In Section 4.1, we use (2) with m = 2, a = (µ1, µ2) and Ta(Z) = 1Z∈B(µ1,µ2) where B(µ1, µ2) is237

the open ball de�ned by {µ ∈Mq(R),Wq(µ, µ1) < Wq(µ1, µ2)}.238

• In Section 4.2, we use the notion of Fréchet means on Wasserstein spaces (see Section 3.2) and the239

index de�ned in (16) with appropriate choices of a, Ta, and Q.240

The case of stochastic computer computer codes raised in Question 2 will be addressed as follows. A241

computer code (to be de�ned) valued inMq(R) will be seen as an ideal case of stochastic computer codes.242

Finally, it will be possible to treat Question 3 using the framework of Question 2.243

3 Wasserstein spaces and random distributions244

3.1 De�nition245

For any q > 1, we de�ne the q-Wasserstein distance between two probability distributions that are
Lq-integrable and characterized by their c.d.f.'s F and G on Rp by

Wq(F,G) = min
X∼F,Y∼G

(
E[‖X − Y ‖q]1/q

)
,

where X ∼ F and Y ∼ G mean that X and Y are random variables with respective c.d.f.'s F and G.
We de�ne the Wasserstein space Wq(Rp) as the space of all measures de�ned on Rp endowed with the
q-Wasserstein distance Wq with �nite q-moments. In the sequel, any measure is identi�ed to its c.d.f. or
in some cases to its p.d.f. In the unidimensional case (p = 1), it is a well known fact that Wq(F,G) has
an explicitly expression given by

Wq(F,G) =

(∫ 1

0

|F−(v)−G−(v)|qdv
)1/q

= E[|F−(U)−G−(U)|q]1/q, (19)

where F− and G− are the generalized inverses of the increasing functions F and G and U is a random246

variable uniformly distributed on [0, 1]. Of course, F−(U) and G−(U) have c.d.f.'s F and G. The247

representation (19) of the q-Wasserstein distance when p = 1 can be generalized to a wider class of248

�contrast functions�. For more details on Wasserstein spaces, one can refer to [62] and [6] and the249

references therein.250

De�nition 3.1. We call contrast function any application c from R2 to R satisfying the "measure
property" P de�ned by

P : ∀x 6 x′ and ∀y 6 y′, c(x′, y′)− c(x′, y)− c(x, y′) + c(x, y) 6 0,

meaning that c de�nes a negative measure on R2.251

8



For instance, c(x, y) = −xy satis�es P. If c satis�es P, any function of the form a(x) + b(y) + c(x, y)252

also satis�es P. If C is a convex real function, c(x, y) = C(x − y) satis�es P. In particular, c(x, y) =253

(x− y)2 = x2 + y2 − 2xy satis�es P and actually so does c(x, y) = |x− y|q as soon as q > 1.254

De�nition 3.2. We de�ne the Skorokhod space D := D ([0, 1]) of all distribution functions as the space255

of all non-decreasing functions from R to [0, 1] that are right-continuous with left-hand limits with limit256

0 (resp. 1) in −∞ (resp. +∞) equipped with the supremum norm.257

De�nition 3.3. For any F ∈ D, any G ∈ D, and any positive contrast function c, we de�ne the258

c-Wasserstein cost by259

Wc(F,G) = min
X∼F,Y∼G

E [c(X,Y )] < +∞.

Obviously,W q
q = Wc with c(x, y) = |x−y|q. The following theorem has been established by Cambanis,260

Simon, and Stout in [12].261

Theorem 3.4. Let c be a contrast function. Then262

Wc(F,G) =

∫ 1

0

c(F−(v), G−(v))dv = E[c(F−(U), G−(U))],

where U is a random variable uniformly distributed on [0, 1].263

3.2 Extension of the Fréchet mean to contrast functions264

In this section, we recall the classical de�nition of the notion of the Fréchet mean which is a natural265

extension of the classical mean for general metric spaces and then we extend this de�nition to the notion266

of a Fréchet feature.267

De�nition 3.5. We call a loss function any positive and measurable function l. Then, we de�ne a
Fréchet feature El[X] of a random variable X taking values in a measurable spaceM (whenever it exists)
as

El[X] ∈ Argmin
θ∈M

E[l(X, θ)]. (20)

WhenM is a metric space endowed with a distance d, the Fréchet feature with l = d2 corresponds to268

the classical Fréchet mean (see [22]). In particular, Ed2 [X] minimizes E[d2(X, θ)] which is an extension269

of the de�nition of the classical mean in Rp which minimizes E[‖X − θ‖2].270

Now we considerM = D and l = Wc. Further, (20) becomes

EWc [F] ∈ Argmin
G∈D

E [Wc(F, G)] .

where F is a measurable function from a measurable space Ω to D.271

In the next theorem, we propose a very general non-parametric framework for which we have existence272

and uniqueness of the Fréchet means.273

Theorem 3.6. Let c be a positive contrast function. Assume that the application de�ned by (ω, v) ∈274

Ω× (0, 1) 7→ F−(ω, v) ∈ R is measurable. In addition, assume that Ec[F] exists and is unique. Then there275

exists a unique Fréchet mean of E[c(F−(v), s)] denoted by Ec[F−](v) and we have276

(Ec[F])−(v) = Ec[F−](v) = Argmin
s∈R

E[c(F−(v), s)].

Proof of Theorem 3.6. Since c satis�es P, we have277

E[Wc(F, G)] = E
[∫ 1

0

c(F−(v), G−(v))dv

]
=

∫ 1

0

E[c(F−(v), G−(v))]dv,

by Fubini's theorem. Now, for all v ∈ (0, 1), the quantity E[c(F−(v), G−(v))] is minimum for G−(v) =
Ec[F−](v). ∫ 1

0

E[c(F−(v), Ec[F−](v))]dv 6
∫ 1

0

E[c(F−(v), G−(v))]dv

9



and, in particular, for G− = Ec[F]−, one gets∫ 1

0

E[c(F−(v), Ec[F−](v))]dv 6
∫ 1

0

E[c(F−(v), Ec[F]−(v))]dv.

Conversely, by the de�nition of Ec[F]−, we have for all G,∫ 1

0

E[c(F−(v), Ec[F]−(v))]dv 6
∫ 1

0

E[c(F−(v), G−(v))]dv

and, in particular, for G− = Ec[F−], one gets∫ 1

0

E[c(F−(v), Ec[F]−(v))]dv 6
∫ 1

0

E[c(F−(v), Ec[F−](v))]dv.

The theorem then follows by the uniqueness of the minimizer.278

In the previous theorem, we propose a very general non-parametric framework for the random element279

F together with some assumptions on existence and uniqueness of the Fréchet feature and measurability280

of the map (ω, v) 7→ F−(ω, v). Nevertheless, it is possible to construct explicit parametric models for F281

for which these assumptions are satis�ed. For instance, the authors of [5] ensure measurability for some282

parametric models on F using results of [19]. Notice that, in [20], a new sensitivity index is de�ned for283

each feature associated to a contrast function. In Section 4.2, we will restrict our analysis to Fréchet284

means and hence to Sobol indices.285

3.3 Examples286

The Fréchet mean in the W2(R)-space is the inverse function v 7→ E [F−(v)]. Another example is the287

Fréchet median. Since the median in R is related to the L1-cost, the Fréchet W1(R)-median of a random288

c.d.f. is289

Med(F)−(v) ∈ Med(F−(v)).

More generally, we recall that, for α ∈ (0, 1), the α-quantile in R is the Fréchet feature associated to290

the contrast function cα(x, y) = (1−α)(y− x)1x−y<0 +α(x− y)1x−y>0, also called the pinball function.291

Then we can de�ne an α-quantile qα(F) of a random c.d.f. as292

qα(F)−(v) ∈ qα(F−(v)),

where qα(X) is the set of the α-quantiles of a random variable X taking values in R. Naturally, taking293

α = 1/2 leads to the median.294

Let us illustrate the previous de�nitions on an example. Let X be a random variable with c.d.f. F0295

which is assumed to be increasing and continuous (hence F− = F−1). Let also m and σ be two real296

random variables such that σ>0. Then we consider the random c.d.f. F of σX +m297

F(x) = F0

(
x−m
σ

)
and F−1(v) = σF−1

0 (v) +m.

Naturally, the Fréchet mean of F is E [F](x) = F0 ((x− E[m])/E[σ]) and its α-quantile is given by298

qα(F)−1(v) = qα(σF−1
0 (v) +m).

4 Sensitivity analysis in general Wasserstein spaces299

In this section, we particularize the indices de�ned in Section 2.2 in the speci�c context of general300

Wasserstein spaces. Moreover, we exploit the framework of Section 3 to de�ne a new index based on301

Fréchet means in such general Wasserstein spaces.302

More precisely, we consider here that our computer code is Wq(R)-valued; namely, the output of an303

experiment is the c.d.f. or the p.d.f. of a measure µ ∈ Wq(R). For instance, in [10], [40] and [46], the304
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authors deal with p.d.f.-valued computer codes (and stochastic computer codes). In other words, they305

de�ne the following application306

f : E → F (21)

x 7→ fx

where F is the set of p.d.f.'s307

F =

{
g ∈ L1(R); g > 0,

∫
R
g(t)dt = 1

}
.

Here, we choose to identify any element of Wq(R) with its c.d.f. In this framework, the output of the308

computer code is then a c.d.f. denoted by309

F = f(X1, . . . , Xp). (22)

Moreover, P denotes the law of the c.d.f. F and we set q = 2. The case of a general value of q can be310

handled analogously.311

4.1 Sensitivity anlaysis using Equation (2) and Wasserstein balls312

Consider F , F1, and F2 three elements of W2(R) and, for a = (F1, F2), the family of test functions313

Ta(F ) = T(F1,F2)(F ) = 1W2(F1,F )6W2(F1,F2). (23)

Then, for all u ⊂ {1, · · · , p}, the already known index Su2,GMS
of (2) becomes

Su2,W2
= Su2,Univ((F1, F2, F ) 7→ TF1,F2(F ),P⊗2)

=

∫
W2(R)×W2(R)

E
[(
E[1W2(F1,F)6W2(F1,F2)]− E[1W2(F1,F)6W2(F1,F2)|Xu]

)2]
dP⊗2(F1, F2)∫

W2(R)×W2(R)
Var(1W2(F1,F)6W2(F1,F2))dP⊗2(F1, F2)

=

∫
W2(R)×W2(R)

Var
(
E[1W2(F1,F)6W2(F1,F2)|Xu]

)
dP⊗2(F1, F2)∫

W2(R)×W2(R)
Var(1W2(F1,F)6W2(F1,F2))dP⊗2(F1, F2)

. (24)

As explained in Section 2.1, Su2,W2
is obtained by integration over a with respect to P of the Hoe�ding314

decomposition of Ta(F). Hence, by construction, this index lies in [0, 1] and shares the two properties315

previously cited in (3) and (4).316

4.2 Sensitivity analysis using Equation (16) and Fréchet means317

In the classical framework where the output Z is real, we recall that the Sobol index with respect to Xu318

is de�ned by319

Su =
Var(E[Z|Xu])

Var(Z)
=

Var(Z)− E[Var(Z|Xu)]

Var(Z)
, (25)

by the property of the conditional expectation. On the one hand, we extend this formula to the framework320

of this section where the output of interest is the c.d.f. F and we de�ne a new index Su(F) given by321

Su(F) =
Var(F)− E[Var(F|Xu))]

Var(F)
,

where Var(F) = E[W 2
2 (F, EW2(F))] with EW2(F) the Fréchet mean of F. From Theorem 3.6, we get322

Var(F) = E
[∫ 1

0

|F−(v)− E(F)−(v)|2dv
]

= E
[∫ 1

0

|F−(v)− E[F−(v)]|2dv
]

=

∫ 1

0

Var(F−(v))dv

leading to

Su(F) =

∫ 1

0
Var(F−(v))dv −

∫ 1

0
E[Var(F−(v)|Xu)]dv∫ 1

0
Var(F−(v))dv

=

∫ 1

0
Var(E[F−(v)|Xu])dv∫ 1

0
Var(F−(v))dv

. (26)
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Another point of view is to consider (16), with m = 1,

Tv(F) = F−(v), (27)

and with Q the uniform probability measure on [0, 1]. In that case,

Var(F) = E
[∫ 1

0

|F−(v)− EW2
(F)−(v)|2dv

]
=

∫ 1

0

Var(F−(v))dv = E[W 2
2 (F, EW2

(F))].

Then

Su2,Univ(Tv,U([0, 1])) =

∫ 1

0
E
[
(EW2(F)−(v)− EW2(F|Xu)−(v))

2
]
dv∫ 1

0
Var(F−(v))dv

=
E
[
W 2

2 (EW2(F|Xu), EW2(F))
]

E [W 2
2 (F, EW2(F))]

.

is exactly the same as Su(F) in (26). Thus, as explained in Section 2.2, Su(F) lies in [0, 1] and has the323

two properties previously cited in (3) and (4).324

Notice that the index de�ned by (26) is a non-trivial example of the Universal sensitivity index de�ned325

in (16).326

4.3 Estimation procedure327

As noticed in the previous section, both328

Su2,W2
= Su2,Univ(Ta,P⊗2)

with Ta de�ned in (23) and329

Su(F) = Su2,Univ(Tv,U([0, 1]))

with Tv de�ned in (27), are particular cases of indices of the form (16).330

When a belongs to the same space as the output and when Q is equal to P⊗m, we �rst use the Pick-
Freeze estimations of the indices given in (24) and (26). To do so, it is convenient once again to use (6)
leading to

Su2,W2
=

∫
W2(R)×W2(R)

Cov
(
1W2(F1,F)6W2(F1,F2), 1W2(F1,Fu)6W2(F1,F2)

)
dP⊗2(F1, F2)∫

W2(R)×W2(R)
Var(1W2(F1,F)6W2(F1,F2))dP⊗2(F1, F2)

(28)

and

Su(F) =

∫ 1

0
Cov (F−(v),F−,u(v)) dv∫ 1

0
Var(F−(v))dv

(29)

where Fu and F−,u are respectively the Pick-Freeze versions of F and F−. Secondly, one may resort to331

the estimations based on U-statistics together on the Pick-Freeze design of experiment. Thirdly, it is also332

possible and easy to obtain rank-based estimations in the vein of (12).333

4.4 Numerical comparison of both indices334

Example 4.1 (Toy model). Let X1, X2, X3 be three independent and positive random variables. We335

consider the c.d.f.-valued code f for which the output is given by336

F(t) =
t

1 +X1 +X2 +X1X3
1 06t61+X1+X2+X1X3

+ 1 1+X1+X2+X1X3<t, (30)

so that337

F−1(v) = v
(

1 +X1 +X2 +X1X3

)
. (31)

In addition, one gets

Var
(
F−1(v)

)
= v2 (Var(X1(1 +X3)) + Var(X2))

= v2
(
Var(X1)Var(X3) + Var(X1)(1 + E[X3])2 + Var(X3)E[X1]2 + Var(X2)

)
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and

E
[
F−1(v)|X1

]
= v
(

1 +X1(1 + E[X3]) + E[X2]
)
,

E
[
F−1(v)|X2

]
= v
(

1 + E[X1](1 + E[X3]) +X2

)
,

E
[
F−1(v)|X3

]
= v
(

1 + E[X1](1 +X3) + E[X2]
)
,

E
[
F−1(v)|X1, X3

]
= v
(

1 +X1(1 +X3) + E[X2]
)
,

and �nally

Var
(
E
[
F−1(v)|X1

])
= v2(1 + E[X3])2Var(X1),

Var
(
E
[
F−1(v)|X2

])
= v2Var(X2),

Var
(
E
[
F−1(v)|X3

])
= v2E[X1]2Var(X3),

Var
(
E
[
F−1(v)|X1, X3

])
= v2

(
Var(X1)Var(X3) + Var(X1)(1 + E[X3])2 + Var(X3)E[X1]2

)
.

For u = {i} ∈ {1, 2, 3} or u = {1, 3}, it remains to plug the previous formulas in (26) to get the explicit338

expressions of the indices Su(F).339

Now, in order to get a closed formula for the indices de�ned in (24), we assume Xi is Bernoulli340

distributed with parameter 0 < pi < 1 for i = 1, 2, and 3. In (24), the distributions F1 and F2 can341

be either U([0, 1]), U([0, 2]), U([0, 3]), or U([0, 4]) with respective probabilities q1 = (1 − p1)(1 − p2),342

q2 = (1− p1)p2 + p1(1− p2)(1− p3), q3 = p1((1− p2)p3 + p2(1− p3)), and q4 = p1p2p3. In the sequel, we343

give, for all sixteen possibilities for the distribution of (F1, F2), the corresponding contributions for the344

numerator and for the denominator of (24).345

With probability p1,1 = (1− p1)2(1− p2)2, F1 and F2 ∼ U([0, 1]). Then W 2
2 (F1, F2) = 0, W 2

2 (F1,F) =
1
3 (X1 + X2 + X1X3)2, and W 2

2 (F1,F) 6 W 2
2 (F1, F2) if and only if X1 + X2 + X1X3 = 0. Since

P (X1 +X2 +X1X3 = 0) = (1− p1)(1− p2), the contribution d1,1 to the denominator is thus

d1,1 = q1,1(1− q1,1) with q1,1 = (1− p1)(1− p2).

Moreover,

E[1X1+X2+X1X3=0|X1] = P
(
X1 +X2 +X1X3 = 0|X1

)
= 1X1=0P(X2 = 0) = (1− p2)1X1=0.

so that, the contribution to the numerator is given by

n1
1,1 = Var(E[1X1+X2+X1X3=0|X1]) = p1(1− p1)(1− p2)2.

Similarly, one gets346

n2
1,1 = Var(E[1X1+X2+X1X3=0|X2]) = p2(1− p2)(1− p1)2 and n3

1,1 = 0.

Moreover, regarding the indices with respect to X1 and X3,347

E[1X1+X2+X1X3=0|X1, X3] = P
(
X1 +X2 +X1X3 = 0|X1, X3

)
= 1X1=0P(X2 = 0) = (1− p2)1X1=0

and the contribution to the numerator is given by348

n1,3
1,1 = Var(E[1X1+X2+X1X3=0|X1, X3]) = p1(1− p1)(1− p2)2.

The remaining �fteen cases can be treated similarly and are gathered (with the �rst case developed above)
in the following table. Finally, one may compute the explicit expression of Su2,W2

Su2,W2
=

∫
W2(R)×W2(R)

Cov
(
1W2(F1,F)6W2(F1,F2), 1W2(F1,Fu)6W2(F1,F2)

)
dP⊗2(F1, F2)∫

W2(R)×W2(R)
Var(1W2(F1,F)6W2(F1,F2))dP⊗2(F1, F2)

=

∑
k,l pk,ln

u

k,l∑
k,l pk,ldk,l

.
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Some numerical values have not been explicited in the table but given below349

Case 2 Var(1X1=1(1− (1− p2)1X3=0)) = p1(1− p1)(1− (1− p2)(1− p3))
2 + p1(1− p2)

2p3(1− p3),

Case 6 Var(1X1=1(p2 − (1− p2)1X3=0)) = p1(1− p1)(p2 − (1− p2)(1− p3))
2 + p1(1− p2)

2p3(1− p3),

Case 11 Var(1X1=1(p2 + (1− 2p2)1X3=1)) = p1(1− p1)(p2 + (1− 2p2)p3)
2 + p1(1− 2p2)

2p3(1− p3),

Case 15 Var(1X1=1(p2 + (1− p2)1X3=1)) = p1(1− p1)(p2 + (1− p2)p3)
2 + p1(1− p2)

2p3(1− p3).

350

Direct representations of the indices Su(F) and Su2,W2
In Figure 1, we have represented the indices351

S1(F), S2(F), S3(F), and S1,3(F) given by (26) with respect to the values of p1 and p2 varying from 0 to 1352

for a �xed value of p3. We have considered three di�erent values of p3: p3 = 0.01 (�rst row), 0.5, (second353

row) and 0.99 (third row). Analogously, the same kind of illustration for the indices S1
2,W2

, S2
2,W2

, S3
2,W2

,354

and S1,3
2,W2

given by (24) is provided in Figure 2. The analysis of Figures 1 and 2 shows that, although355

the Fréchet indices Su(F) di�er from the Wasserstein indices Su2,W2
as expected, they behave reassuringly356

similarly.357

Regions of predominance of the indices Su(F) and Su2,W2
In addition, the regions of predominance358

of each index Su(F) are plotted in Figure 3. The values of p1 and p2 still vary from 0 to 1 and the �xed359

values of p3 considered are: p3 = 0.01 (�rst row), 0.5, (second row) and 0.99 (third row). Finally, the360

same kind of illustration for the indices Su2,W2
is given in Figure 4. Once again, we observe a global361

accordance of the predominance regions between the Fréchet indices Su(F) and the Wasserstein indices362

Su2,W2
.363

Comparison of the estimation procedures (rank-based and Pick-Freeze) In order to compare364

the accuracy of the Pick-Freeze method and the accuracy of the rank-based method at a �xed size, we365

assume that only 450 calls of the computer code are allowed to estimate the indices Su(F) and Su2,W2
366

for u = {1}, {2}, and {3}. Hence, the sample size allowed in the rank-based procedure is N = 450.367

In the Pick-Freeze methodology, the estimation of the Fréchet indices Su(F) requires one initial output368

sample and three extra output samples to get the Pick-Freeze versions (one for each index) leading to369

an allowed sample size N = b450/4c = 112 while it is N = b450/6c = 75 for the Wasserstein indices370

Su2,W2
(1 + 3 = 4 output samples + two extra samples to handle the integration). We only focus on the371

�rst-order indices since, as explained previously, the rank-based procedure has not been developed yet372

for higher-order indices. We repeat the estimation procedure nr = 200 times. The boxplots of the mean373

square errors for the estimation of the Fréchet indices Su(F) and the Wasserstein indices Su2,W2
have been374

plotted in Figure 5. We observe that, for a �xed total number of calls 450 to the code f (corresponding375

to a rank-based sample size N = 450 and to a Pick-Freeze sample size N = 112 for the Fréchet indices376

Su(F) and N = 74 for the Wasserstein indices Su2,W2
), the rank-based estimation procedure performs377

much better than the Pick-Freeze method with signi�cantly lower mean errors.378

5 Sensitivity analysis for stochastic computer codes379

This section deals with stochastic computer codes in the sense that two evaluations of the code for the380

same input lead to di�erent outputs. Before performing a SA in this context, let us brie�y describe the381

state of the art in this setting.382

5.1 State of the art383

A �rst natural way to handle stochastic computer codes is de�nitely to consider the expectation of the384

output code. Indeed, as mentioned in [10], previous works dealing with stochastic simulators together385

with robust design or optimization and SA consist mainly in approximating the mean and the variance386
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Case 1 F1 ∼ U([0, 1]), F2 ∼ U([0, 1]) Case 2 F1 ∼ U([0, 1]), F2 ∼ U([0, 2])

Prob. q21 Prob. q1q2
Num. 1 p1(1− p1)(1− p2)2 Num. 1 p1(1− p1)(p2 + p3 − p2p3)2

Num. 2 (1− p1)2p2(1− p2) Num. 2 p21p2(1− p2)(1− p3)2

Num. 3 0 Num. 3 p21(1− p2)2p3(1− p3)
Num. 1,3 p1(1− p1)(1− p2)2 Num. 1,3 Var(1X1=1(1− (1− p2)1X3=0)
q Den. (1− p1)(1− p2) q Den. (1− p1) + p1(1− p2)(1− p3)

Case 3 F1 ∼ U([0, 1]), F2 ∼ U([0, 3]) Case 4 F1 ∼ U([0, 1]), F2 ∼ U([0, 4])

Prob. q1q3 Prob. q1q4
Num. 1 p1(1− p1)p22p

2
3 Num. 1 0

Num. 2 p21p2(1− p2)p23 Num. 2 0
Num. 3 p21p

2
2p3(1− p3) Num. 3 0

Num. 1,3 p1p22p3(1− p1p3) Num. 1,3 0
q Den. 1− p1p2p3 q Den. 0

Case 5 F1 ∼ U([0, 2]), F2 ∼ U([0, 1]) Case 6 F1 ∼ U([0, 2]), F2 ∼ U([0, 2])

Prob. q1q2 Prob. q22
Num. 1 p1(1− p1)p22p

2
3 Num. 1 p1(1− p1)(p2 − (1− p2)(1− p3))2

Num. 2 p21p2(1− p2)p23 Num. 2 p2(1− p2)(p1(1− p3)− (1− p1))2

Num. 3 p21p
2
2p3(1− p3) Num. 3 p21(1− p2)2p3(1− p3)

Num. 1,3 p1p22p3(1− p1p3) Num. 1,3 Var(1X1=1(p2 − (1− p2)1X3=0))
q Den. 1− p1p2p3 q Den. (1− p1)p2 + p1(1− p2)(1− p3)

Case 7 F1 ∼ U([0, 2]), F2 ∼ U([0, 3]) Case 8 F1 ∼ U([0, 2]), F2 ∼ U([0, 4])

Prob. q2q3 Prob. q2q4
Num. 1 p1(1− p1)p22p

2
3 Num. 1 0

Num. 2 p21p2(1− p2)p23 Num. 2 0
Num. 3 p21p

2
2p3(1− p3) Num. 3 0

Num. 1,3 p1p22p3(1− p1p3) Num. 1,3 0
q Den. 1− p1p2p3 q Den. 0

Case 9 F1 ∼ U([0, 3]), F2 ∼ U([0, 1]) Case 10 F1 ∼ U([0, 3]), F2 ∼ U([0, 2])

Prob. q1q3 Prob. q2q3
Num. 1 0 Num. 1 p1(1− p1)(1− p2)2

Num. 2 0 Num. 2 (1− p1)2p2(1− p2)
Num. 3 0 Num. 3 0
Num. 1,3 0 Num. 1,3 p1(1− p1)(1− p2)2

q Den. 0 q Den. (1− p1)p2 + p1

Case 11 F1 ∼ U([0, 3]), F2 ∼ U([0, 3]) Case 12 F1 ∼ U([0, 3]), F2 ∼ U([0, 4])

Prob. q23 Prob. q3q4
Num. 1 p1(1− p1)(p2(1− p3) + (1− p2)p3)2 Num. 1 p1(1− p1)(1− p2)2

Num. 2 p21p2(1− p2)(2p3 − 1)2 Num. 2 (1− p1)2p2(1− p2)
Num. 3 p21(2p2 − 1)2p3(1− p3) Num. 3 0
Num. 1,3 Var(1X1=1(p2 + (1− 2p2)1X3=1) Num. 1,3 p1(1− p1)(1− p2)2

q Den. p1(p2(1− p3) + (1− p2)p3) q Den. (1− p1)p2 + p1

Case 13 F1 ∼ U([0, 4]), F2 ∼ U([0, 1]) Case 14 F1 ∼ U([0, 4]), F2 ∼ U([0, 2])

Prob. q1q4 Prob. q2q4
Num. 1 0 Num. 1 p1(1− p1)(1− p2)2

Num. 2 0 Num. 2 (1− p1)2p2(1− p2)
Num. 3 0 Num. 3 0
Num. 1,3 0 Num. 1,3 p1(1− p1)(1− p2)2

q Den. 0 q Den. (1− p1)p2 + p1

Case 15 F1 ∼ U([0, 4]), F2 ∼ U([0, 3]) Case 16 F1 ∼ U([0, 4]), F2 ∼ U([0, 4])

Prob. q3q4 Prob. q24
Num. 1 p1(1− p1)(p2 + (1− p2)p3)2 Num. 1 p1(1− p1)p22p

2
3

Num. 2 p21p2(1− p2)(1− p3)2 Num. 2 p21p2(1− p2)p23
Num. 3 p21(1− p2)2p3(1− p3) Num. 3 p21p

2
2p3(1− p3)

Num. 1,3 Var(1X1=1(p2 + (1− p2)1X3=1) Num. 1,3 p1p22p3(1− p1p3)
q Den. p1(p2 + (1− p2)p3) q Den. p1p2p3
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Figure 1: Model (30). Values of the indices S1(F), S2(F), S3(F), and S1,3(F) given by (26) (from left to
right) with respect to the values of p1 and p2 (varying from 0 to 1). In the �rst row (resp. second and
third), p3 is �xed to p3 = 0.01 (resp. 0.5 and 0.99).

Figure 2: Model (30). Values of the indices S1
2,W2

, S2
2,W2

, S3
2,W2

, and S1,3
2,W2

given by (24) (from left to
right) with respect to the values of p1 and p2 (varying from 0 to 1). In the �rst row (resp. second and
third), p3 is �xed to p3 = 0.01 (resp. 0.5 and 0.99).
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Figure 3: Model (30). In the �rst row of the �gure, regions where S1(F) > S2(F) (black), S1(F) 6 S2(F)
(white), and S1(F) = S2(F) (gray) with respect to p1 and p2 varying from 0 to 1 and, from left to right,
p3 = 0.01, 0.5, and 0.99. Analogously, the second (resp. last) row considers the regions with S1(F) and
S3(F) (resp. S2(F) and S3(F)) with respect to p1 and p3 (resp. p2 and p3) varying from 0 to 1 and, from
left to right, p2 = 0.01, 0.5, and 0.99 (resp. p1 = 0.01, 0.5, and 0.99).

Figure 4: Model (30). In the �rst row of the �gure, regions where S1
2,W2

> S2
2,W2

(black), S1
2,W2

6 S2
2,W2

(white), and S1
2,W2

= S2
2,W2

(gray) with respect to p1 and p2 varying from 0 to 1 and, from left to right,

p3 = 0.01, 0.5, and 0.99. Analogously, the second (resp. last) row considers the regions with S1
2,W2

and

S3
2,W2

(resp. S2
2,W2

and S3
2,W2

) with respect to p1 and p3 (resp. p2 and p3) varying from 0 to 1 and, from
left to right, p2 = 0.01, 0.5, and 0.99 (resp. p1 = 0.01, 0.5, and 0.99).
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Figure 5: Model (30) with p1 = 1/3, p2 = 2/3, and p3 = 3/4. Boxplots of the mean square errors of the
estimation of the Fréchet indices Su(F) (top row) and the Wasserstein indices Su2,W2

(bottom row) with
a �xed sample size N and nr = 200 replications. The indices with respect to u = {1}, {2}, and {3} are
displayed from left to right. The results of the Pick-Freeze estimation procedure with N = 112 for the
Fréchet indices Su(F) and N = 75 for the Wasserstein indices Su2,W2

are provided in the left side of each
graphic. The results of the rank-based methodology with N = 450 are provided in the right side of each
graphic.

of the stochastic output [18, 11, 37, 2] and then performing a GSA on the expectation of the output code387

[42].388

As pointed out by [35], another approach amounts to consider that the stochastic code is of the form389

f(X,D) where the random element X contains the classical input variables and the variable D is an390

extra unobserved random input. Such an idea was exploited in [36] to compare the estimation of the391

Sobol indices in an �exact� model to the estimation of the Sobol indices in an associated metamodel.392

In this framework, the metamodel is considered as a random perturbation of the "exact" model and393

the perturbation is a function of the inputs and of an extra independent random variable. Analogously,394

the author of [43] assumes the existence of an extra random variable D which is not chosen by the395

practitioner but rather generated at each computation of the output independently of X. In this setting,396

the author builds two di�erent indices. The �rst index is obtained by substituting f(X,D) for f(X) in397

the classical de�nition of the �rst-order Sobol index Si = Var(E[f(X)|Xi])/Var(f(X)). In this case, D is398

considered as another input, even though it is not observable. The second index is obtained by substituting399

E[f(X,D)|X] for f(X) in the Sobol index. The noise is then smoothed out. Similarly, the authors of400

[31] traduce the randomness of the computer code using such an extra random variable. In practice,401

they approximate the statistical properties of the �rst-order Sobol indices by using a sample of the extra402

random variable and the associated sample of estimates of the Sobol indices. In [63], the expectation403

of these random Sobol indices is investigated in the case of stochastic simulator and generalized lambda404

models. In the same vein, the authors of [3] propose to deal with the di�erential entropy of the output405

of a stochastic simulator.406

5.2 The space Wq as an ideal version of stochastic computer codes407

When dealing with stochastic computer codes, the practitioner is generally interested in the distribution408

µx of the output for a given input x. As previously seen, one can translate this type of codes in terms409

of a deterministic code by considering an extra input which is not chosen by the practitioner himself but410

which is a latent variable generated randomly by the computer code and independently of the classical411

input. As usual in the framework of SA, one considers the input as a random variable. All the random412
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variables (the one chosen by the practitioner and the one generated by the computer code) are built on413

the same probability space, leading to the function fs414

fs : E ×D → R (32)

(x,D) 7→ fs(x,D),

where D is the extra random variable lying in some space D. We naturally denote the output random415

variable fs(x, ·) by fs(x).416

Hence, one may de�ne another (deterministic) computer code associated with fs for which the output417

associated to x is the probability measure µx418

f : E →Wq(E) (33)

x 7→ µx.

The framework of (33) is exactly the one of Section 4.1 and has already been handled. Obviously, in419

practice, one does not assess the output of the code f but one can only obtain an empirical approximation420

of the measure µx given by n evaluations of fs at x, namely,421

µx,n =
1

n

n∑
k=1

δfs(x,Dk)

where δ· is the Dirac function. Further, (33) can be seen as an ideal version of (32). Concretely, for422

a single random input
−→
X = (X1, . . . , Xp) ∈ E = E1 × · · · × Ep, we will evaluate n times the code fs423

de�ned by (32) (so that the code will generate independently n hidden variables D1, . . . , Dn) and one424

may observe425

fs(
−→
X,D1), . . . , fs(

−→
X,Dn)

leading to the measure µ−→
X,n

=
∑n
k=1 δfs(

−→
X,Dk)

/n that approximates the distribution µx of fs(
−→
X ). We426

emphasize on the fact that the random variables D1, . . . , Dn are not observed.427

5.3 Sensitivity analysis428

Let us now present the methodology we adopt in the sequel. In order to study the sensitivity of the429

distribution µx, one can use the framework introduced in Section 4.1 and the index Su2,Wq
given by (24).430

In an ideal scenario which corresponds to the framework of (33), one may assess the probability431

measure µx for any x. Then following the estimation procedure of Section 4.3, one gets an estimation of432

the sensitivity index Su2,Wq
with good asymptotic properties [27, Theorem 2.4].433

In the more realistic framework presented above in (32), we only have access to the approximation434

µx,n of µx rendering more complex the estimation procedure and the study of the asymptotic properties.435

In this case, the general design of experiments is the following436

(
−→
X 1, D1,1, . . . , D1,n) → fs(

−→
X 1, D1,1), . . . , fs(

−→
X 1, D1,n),

(
−→
Xu

1 , D
′
1,1, . . . , D

′
1,n) → fs(

−→
Xu

1 , D
′
1,1), . . . , fs(

−→
Xu

1 , D
′
1,n),

...

(
−→
XN , DN,1, . . . , DN,n) → fs(

−→
XN , DN,1), . . . , fs(

−→
XN , DN,n),

(
−→
Xu

N , D
′
N,1, . . . , D

′
N,n) → fs(

−→
Xu

N , D
′
N,1), . . . , fs(

−→
Xu

N , D
′
N,n),

where
−→
X j is the j-th realization of

−→
X with j = 1, ,̇N ,

−→
Xu

j is the associated Pick-Freeze version, and
2 ×N × n is the total number of evaluations of the stochastic computer code (32). Then, we construct
the approximations µ−→

X j ,n
of µ−→

X j
for any j = 1, . . . , N given by

µ−→
X j ,n

=
1

n

n∑
k=1

δ
fs(
−→
X j ,Dj,k)

. (34)

From there, one may use one of the three estimation procedures presented in Section 2.1.437
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• First method - Pick-Freeze. It su�ces to plug the empirical version µn of each measure µ under438

concern in (28) to get Ŝu2,Wq,PF,n
.439

• Second method - U-statistics. For l = 1, . . . , 4, let

Ul,N,n =

(
N
m(l)

)−1 ∑
16i1<···<im(l)6N

Φsl

(
µi1,n, . . . ,µim(l),n

)
(35)

where as previously seen Φs· is the symmetrized version of Φ· de�ned in (8) and µ = (µ, µu). Then,440

we estimate Su2,Wq
by441

Ŝu2,Wq,Ustat,n =
U1,N,n − U2,N,n

U3,N,n − U4,N,n
. (36)

• Third method - Rank-based. The rank-based estimation procedure may also easily be extended442

to this context by using the empirical version µn of each measure µ under concern instead of the443

true one µ, as explained into more details in the numerical study developed in Section 5.5. This444

procedure leads to Ŝu2,Wq,Rank,n
.445

Actually, these estimators are easy to compute since, for two discrete measures supported on a same446

number of points and given by447

ν1 =
1

n

n∑
k=1

δxk , ν2 =
1

n

n∑
k=1

δyk ,

the Wasserstein distance between ν1 and ν2 simply writes

W q
q (ν1, ν2) =

1

n

n∑
k=1

(x(k) − y(k))
q, (37)

where z(k) is the k-th order statistics of z.448

5.4 Central limit theorem for the estimator based on U-statistics449

In this section, we focus on the computationnally less expensive estimator: the one based on U-statistics.450

For statistical purposes, we establish a central limit theorem for Ŝu2,Wq,Ustat,n
inspired from [27]. In451

addition, we consider several examples and study when the conditions of Proposition 5.1 hold.452

Proposition 5.1. Consider three i.i.d. copies X1, X2 and X3 of a random variable X. Let δ(N) be a453

sequence tending to 0 as N goes to in�nity and such that454

P (|Wq(µX1
, µX3

)−Wq(µX1
, µX2

)| 6 δ(N)) = o

(
1√
N

)
.

Let n be such that E[Wq(µX , µX,n)] = o(δ(N)/
√
N). Under the assumptions of Theorem 2.4 in [27], we

get, for any u ⊂ {1, · · · , p},
√
N
(
Ŝu2,Wq,Ustat,n − S

u

2,Wq

)
L−−−−−→

n→+∞
N (0, σ2) (38)

where the asymptotic variance σ2 is given by (13) in the proof of Theorem 2.4 in [27].455

In some particular frameworks, one may derive easily a suitable value of δ(N). Two examples are456

given in the following.457

Example 5.2. If the inverse of the random variable W = |Wq(µX1
, µX3

)−Wq(µX1
, µX2

)| has a �nite
expectation, then, by Markov inequality,

P (W 6 δ(N)) = P
(
W−1 > δ(N)−1

)
6

1

δ(N)
E
[

1

W

]
and it su�ces to choose δ(N) so that δ(N)−1 = o

(
N−1/2

)
as N goes to in�nity.458

20



Example 5.3 (Uniform example). Assume that X is uniformly distributed on [0, 1] and that µX is a459

Gaussian distribution centered at X with unit variance. Then the Wasserstein distance W2(µX1
, µX2

)460

rewrites as (X1 −X2)2 so that the random variable W = |W2(µX1
, µX3

)−W2(µX1
, µX2

)| is given by461 ∣∣(X1 −X3)2 − (X1 −X2)2
∣∣ = |(X3 −X2)(X2 +X3 − 2X1)| .

Consequently,

P(W 6 δ(N)) 6 P(|X3 −X2| 6
√
δ(N)) + P(|X2 +X3 − 2X1| 6

√
δ(N)).

Notice that |X3 −X2| is triangularly distributed with parameter a = 0, b = 1, and c = 0 leading to462

P(|X3 −X2| 6 α) = α(2− α), for all α ∈ [0, 1].

In addition,

P(|X2 +X3 − 2X1| 6
√
δ(N)) 6 P(||X2 −X1| − |X3 −X1|| 6

√
δ(N))

=

∫ 1

0

P(||X2 − u| − |X3 − u|| 6
√
δ(N))du.

Now, X2−u and X3−u are two independent random variables uniformly distributed on [−u,−u]. Then463

(see Figure 6), one has464

P(||X2 − u| − |X3 − u|| 6 α) 6 4α,

whence465

P(|X2 +X3 − 2X1| 6
√
δ(N)) 6 4

√
δ(N).

Thus it turns out that P(W 6 δ(N)) = O(
√
δ(N)). Consequently, a suitable choice for δ(N) is δ(N) =466

o(1/N).467

u

u

u− 1

u− 1

α

α

−α

−α
0

•

•

•

•

468

Figure 6: Domain Γu,α = {(x1, x2) ∈ [0, 1]; ||x1 − u| − |x2 − u|| 6 α} (in grey).469

Analogously, one may derive suitable choices for n in some particular cases. For instance, we refer the470

reader to [6] to get upper bounds on E[Wq(µX , µX,n)] for several values of q > 1 and several assumptions471

on the distribution on µX : general, uniform, Gaussian, beta, log concave, etc. Here are some results.472
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• In the general framework, the upper bound for q > 1 relies on the functional473

Jq(µX) =

∫
R

(FµX (x)(1− FµX (x)))
q/2

fµX (x)q−1)
dx

where FµX is the c.d.f. associated to µX and fµX its p.d.f. See Cf. [6, Theorems 3.2, 5.1 and 5.3].474

• Assume that µX is uniformly distributed on [0, 1]. Then by [6, Theorems 4.7, 4.8 and 4.9], for any475

n > 1,476

E[W2(µX , µX,n)2] 6
1

6n
,

for any q > 1 and for any n > 1,477

E[Wq(µX , µX,n)q]1/q 6 (Const)

√
q

n
.

and for any n > 1,478

E[W∞(µX , µX,n)] 6
(Const)

n
.

E.g. (Const) =
√
π/2.479

• Assume that µX is a log-concave distribution with standard deviation σ. Then by [6, Corollaries480

6.10 and 6.12], for any 1 6 q < 2 and for any n > 1,481

E[Wq(µX , µX,n)q] 6
(Const)

2− q

(
σ√
n

)q
,

for any n > 1,482

E[W2(µX , µX,n)2] 6
(Const)σ2 log n

n
,

and for any q > 2 and for any n > 1,483

E[Wq(µX , µX,n)q] 6
Cqσ

q

n
,

where Cq depends on q, only. Furthermore, if µX supported on [a, b], then for any n > 1,484

E[W2(µX , µX,n)2] 6
(Const)(b− a)2

n+ 1
.

E.g. (Const) = 4/ ln 2. Cf. [6, Corollary 6.11].485

Example 5.3 - continued. We consider that X is uniformly distributed on [0, 1] and µX is a Gaussian486

distribution centered at X with unit variance. Then, by [6, Corollary 6.14], we have, for any n > 3,487

E[W2(µX , µX,n)2] 6
(Const) log log n

n
,

and for any q > 2 and for any n > 3,488

E[Wq(µX , µX,n)q] 6
Cq

n(log n)q/2
,

where Cq depends only on q. Since we have already chosen δ(N) = o(N−1), it remains to take n so that489

log log n/n = o(N−2) to ful�ll the condition E[W2(µX , µX,n)] = o(δ(N)/
√
N).490
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5.5 Numerical study491

Example 4.1 - continued. Here, we consider again the code given by (30) and we set
−→
X = (X1, X2, X3)492

and p = 3. Having in mind the notation of Section 5.2, we consider the ideal code493

f : E →Wq(E)

(X1, X2, X3) 7→ µ(X1,X2,X3)

where µ(X1,X2,X3) is the uniform distribution on [0, 1 +X1 +X2 +X1X3] for which the c.d.f. is F given494

by (30) and its stochastic counterpart495

fs : E ×D → R (39)

(X1, X2, X3, D) 7→ fs(X1, X2, X3, D)

where fs(X1, X2, X3, D) is a realization of µ(X1,X2,X3).496

Hence, we no longer assume that one may observe N realizations of F associated to the N initial497

realizations of (X1, X2, X3). Instead, for any of the N initial realizations of (X1, X2, X3), we assess n498

realizations of a uniform random variable on [0, 1 +X1 +X2 +X1X3].499

In order to compare the estimation accuracy of the Pick-Freeze method and the rank-based method at500

a �xed size, we assume once again that only 450 calls of the computer code f are allowed to estimate the501

Fréchet indices Su(F) and the Wasserstein indices Su2,W2
for u = {1}, {2}, and {3}. As in Example 4.1 of502

Section 4.4, the sample size allowed in the rank-based procedure is then N = 450 while, in the Pick-Freeze503

methodology, it is only N = 112 for the Fréchet indices Su(F) and N = 75 for the Wasserstein indices504

Su2,W2
. We only focus on the �rst-order indices since, as explained previously, the rank-based procedure505

has not been developed yet for higher-order indices. The empirical c.d.f. based on the empirical measures506

µXj ,n for j = 1, . . . , N in (34) are constructed with n = 500 evaluations. We repeat the estimation507

procedure nr = 200 times. The boxplots of the mean square errors for the estimation of the Fréchet508

indices Su(F) and the Wasserstein indices Su2,W2
have been plotted in Figure 7. We observe that, for a509

�xed total number of calls 450 to the code f (corresponding to a rank-based sample size N = 450 and to510

a Pick-Freeze sample size N = 112 for the Fréchet indices Su(F) and N = 74 for the Wasserstein indices511

Su2,W2
), the rank-based estimation procedure performs much better than the Pick-Freeze method with512

signi�cantly lower mean errors.513

Another numerical study, in the particular setting of stochastic computer codes and inspired by [32],514

is considered in Section 6.3.515

6 Sensitivity analysis with respect to the law of the inputs516

This section deals with what is called second-level analysis and that corresponds to the SA with respect517

to the input distributions (rather than the inputs themselves). Before explaining our contributions in518

this framework, let us brie�y describe its state of the art.519

6.1 State of the art520

The paper [44] is devoted to second-level uncertainty which corresponds to the uncertainty on the input521

distributions and/or on the parameters of the input distributions. As mentioned by the authors, such522

uncertainties can be handled in two di�erent manners: (1) aggregating them with no distinction [13, 14]523

or (2) separating them [44]. In [13], the uncertainty concerns the parameters of the input distributions.524

The authors study the expectation with respect to the distribution of the parameters of the conditional525

output. In [14], the second-level uncertainties are transformed into �rst-level uncertainties considering526

the aggregated vector containing the input random variables vector together with the vector of uncer-527

tain parameters. Alternatively, in [44], the uncertainty brought by the lack of knowledge of the input528

distributions and the uncertainty of the random inputs are treated separately. A double Monte-Carlo529

algorithm is �rst considered. In the outer loop, a Monte-Carlo sample of input distribution is generated,530

while the inner loop proceeds to a GSA associated to each distribution. A more e�cient algorithm is also531

proposed with a unique Monte-Carlo loop. The SA is then performed using the so-called Hilbert-Schmidt532

dependence measures (HSIC indices) on the input distributions rather than the input random variables533

themselves. See, e.g., [29] for the de�nition of the HSIC indices and more details on the algorithms.534
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Figure 7: Model (39) with p1 = 1/3, p2 = 2/3, and p3 = 3/4. Boxplot of the mean square errors of the
estimation of the Fréchet indices Su(F) (top row) and the Wasserstein indices Su2,W2

(bottom row) with
a �xed sample size N , an approximation size n �xed at n = 500, and a number nr = 200 of replications.
The indices with respect to u = {1}, {2}, and {3} are displayed from left to right. The results of the Pick-
Freeze estimation procedure with N = 112 for the Fréchet indices Su(F) and N = 75 for the Wasserstein
indices Su2,W2

are provided in the left side of each graphic. The results of the rank-based methodology
with N = 450 are provided in the right side of each graphic.

In [45], a di�erent approach is adopted. A failure probability is studied while the uncertainty concerns535

the parameters of the input distributions. An algorithm with low computational cost is proposed to handle536

such uncertainty together with the rare event setting. A single initial sample allows to compute the failure537

probabilities associated to di�erent parameters of the input distributions. A similar idea is exploited in538

[41] in which the authors consider input perturbations and Perturbed-Law based Indices that are used to539

quantify the impact of a perturbation of an input p.d.f. on a failure probability. Analogously, the authors540

of [30, 32] are interested in (marginal) p.d.f. perturbations and the aim is to study the �robustness of the541

Sobol indices to distributional uncertainty and to marginal distribution uncertainty� which correspond542

to second-level uncertainty. For instance, the basic idea of the approach proposed in [30] is to view the543

total Sobol index as an operator which inputs the p.d.f. and returns the Sobol index. Then the analysis544

of robustness is done computing and studying the Fréchet derivative of this operator. The same principle545

is used in [32] to treat the robustness with respect to the marginal distribution uncertainty. Recently,546

[59] proposes a very clever approach of second-level SA when some moments of the distribution of the547

inputs are �xed. Its approach characterizes among all compactly supported input distribution with �xed548

�rst moments the range of variability of the Sobol indices.549

Note that the �p-box� framework in the sense it is used by [55] presents some similarities with the550

example provided in Section 3.3 (in the context of random distributions and Fréchet means). It is also551

worth mentioning the classical approach of epistemic GSA of Dempster-Shafer theory (see, e.g., [56, 1]).552

This theory describes the random variables together with an epistemic uncertainty traduced in terms of553

an associated epistemic variable Z on a set A, a mass function representing a probability measure on the554

set P(A) of all subsets A. This lack of knowledge leads to an upper bound and a lower bound of the c.d.f.555

and can be viewed as second-level uncertainty.556

6.2 Link with stochastic computer codes557

We propose a new procedure that stems from the methodology in the context of stochastic computer codes558

described in Section 5. We denote by ηi (i = 1, . . . , p) the distribution of the input Xi (i = 1, . . . , p) in559

the model given by (1). There are several ways to model the uncertainty with respect to the choice of560
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each ηi. Here we adopt the following framework. We assume that each ηi belongs to some family Pi of561

probability measures endowed with the probability measure Pηi . In general, there might be measurability562

issues and the question of how to de�ne a σ−�eld on some general spaces Pi can be tricky. We will563

restrict our study to the simple case where the existence of the probability measure Pηi on Pi is given by564

the construction of the set Pi. More precisely, we proceed as follows.565

• First, for 1 6 i 6 p, let di be an integer and let Θi ⊂ Rdi . Then consider the probability space566

(Θi,B(Θi), νΘi) where B(Θi) is the Borel σ−�eld and νΘi is a probability measure on (Θi,B(Θi)).567

• Second, for 1 6 i 6 p, we consider an identi�able parametric set of probability measure Pi on
Ei: Pi := {ηθ, θ ∈ Θi}. Let us denote by πi the one-to-one mapping from Θi to Pi de�ned by
πi(θ) := ηθ ∈ Pi and de�ne the σ−�eld Fi on Pi by

A ∈ Fi ⇐⇒ ∃B ∈ B(Θi), A = πi(B).

Then we endow this measurable space with the probability Πi de�ned, for any A ∈ Fi, by

Πi(A) = νΘi

(
π−1
i (A)

)
.

• Third, in order to perform a second-level SA on (1), we introduce the stochastic mapping fs from568

P1 × . . .× Pp to X de�ned by569

fs (η1, . . . , ηp) = f(X1, . . . , Xp) (40)

where (X1, . . . , Xp) is a random vector distributed as µ1⊗. . .⊗µp. Hence fs is a stochastic computer570

code from P1× . . .×Pp to X and once the probability measures Pηi on each Pi are de�ned, we can571

perform SA using the framework of Section 5.572

6.3 Numerical study573

As in [32], let us consider the synthetic example de�ned on [0, 1]3 by

f(X1, X2, X3) = 2X2e
−2X1 +X2

3 . (41)

We are interested in the uncertainty in the support of the random variables X1, X2, and X3. To do574

so, we follow the notation and framework of [32]. For i = 1, 2, and 3, we assume that Xi is uniformly575

distributed on the interval [Ai, Bi], where Ai and Bi are themselves uniformly distributed on [0, 0.1] and576

[0.9, 1] respectively. As remarked in [32], it seems natural that f will vary more in the X2-direction when577

X1 is close to 0 and less when X1 is close to 1.578

As mentioned in Section 6.1, the authors of [32] view the total Sobol index as an operator which inputs579

the p.d.f. and returns the total Sobol index. Then they study the Fréchet derivative of this operator and580

determine the most in�uential p.d.f., which depends on a parameter denoted by δ. Finally, they make581

the parameter δ vary.582

Here, we adopt the methodology explained in the previous section (Section 6.2). Namely, we consider
the stochastic computer code given by

fs(η1, η2, η3) = 2X2e
−2X1 +X2

3 , (42)

where the Xi's are independently drawn according to the uniform measure ηi on [Ai, Bi] with Ai and Bi583

themselves uniformly distributed on [0, 0.1] and [0.9, 1] respectively. Then to estimate the indices Su2,W2
,584

for u = {1}, {2}, {3}, {1, 2}, {1, 3}, and {2, 3}, we proceed as follows.585

1. For i = 1, 2, and 3,586

(a) we produce a N -sample ([Ai,j , Bi,j ])j=1,...,N of intervals [Ai, Bi].587

(b) for j = 1, . . . , N ,588

i. we generate a n-sample (Xi,j,k)k=1,...,n of Xi, where Xi,j,k is uniformly distributed on589

[Ai,j , Bi,j ].590
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ii. we compute the n-sample (Zj,k)k=1,...,n of the output using591

Z = f(X1, X2, X3) = 2X2e
−2X1 +X2

3 .

Thus we get a N -sample of the empirical measures of the distribution of the output Z given592

by593

µZj ,n :=
1

n

n∑
k=1

δZj,k , for j = 1, . . . , N.

(c) We order the intervals ([Ai,j , Bi,j ])j=1,...,N and we get the Pick-Freeze versions of Z to treat594

the SA regarding the input u.595

2. Finally, it remains to compute the indicators of the empirical version of (28) using (37) and their596

means to get the Pick-Freeze estimators of Su2,W2
.597

Notice that we only consider the estimators based on the Pick-Freeze method since we allow for598

both bounds of the interval to vary and, as explained previously, the rank-based procedure has not been599

developed yet, neither for higher-order indices nor in higher dimensions.600

Simulations First, we compute the estimators of Su2,W2
following the previous procedure with a sample601

size N = 500 and an approximation size n = 500. The results are displayed in Table 1 (�rst row). We602

also perform another batch of simulations allowing for higher variability on the bounds: for i = 1, 2, and603

3, Ai is now uniformly distributed on [0, 0.45] while Bi is now uniformly distributed on [0.55, 1]. The604

results are displayed in Table 1 (second row).

u {1} {2} {3} {1, 2} {1, 3} {2, 3}
Ai ∈ [0, 0.1]

Bi ∈ [0.9, 1] Ŝu2,W2
0.07022 0.08791 0.09236 0.14467 0.21839 0.19066

Ai ∈ [0, 0.45]

Bi ∈ [0.55, 1] Ŝu2,W2
0.11587 0.06542 0.169529 0.22647 0.40848 0.34913

Table 1: Model (41). GSA on the parameters of the input distributions. Estimations of Su2,W2
with a

sample size N = 500 and an approximation size n = 500. In the �rst row, for i = 1, 2, and 3, Ai is
uniformly distributed on [0, 0.1] while Bi is uniformly distributed on [0.9, 1]. In the second row, we allow
for more variability: for i = 1, 2, and 3, Ai is uniformly distributed on [0, 0.45] while Bi is uniformly
distributed on [0.55, 1].

605

Second, we run another simulation allowing for more variability on the upper bound related to the606

third input X3 only: B3 is uniformly distributed on [0.5, 1] (instead of [0.9, 1]). For i = 1 and 2, Ai is607

still uniformly distributed on [0, 0.1] while Bi is still uniformly distributed on [0.9, 1]. The results are608

displayed in Table 2. We still use a sample size N = 500 and an approximation size n = 500.609

u {1} {2} {3} {1, 2} {1, 3} {2, 3}

Ŝu2,W2
0.01196 0.06069 0.56176 -0.01723 0.63830 0.59434

Table 2: Model (41). GSA on the parameters of the input distributions. Estimations of Su2,W2
with

a sample size N = 500 and an approximation size n = 500 and more variability on B3, now uniformly
distributed on [0.5, 1]. For i = 1 and 2, Ai is still uniformly distributed on [0, 0.1] while Bi is still
uniformly distributed on [0.9, 1].

Third, the aim is to highlight the fact that performing a classical GSA di�ers from performing a610

second-level SA. In that view, we perform a classical GSA on the inputs rather than on the parameters611

of their distributions (corresponding to a second-level analysis). Namely, we consider the index Su2,CVM612

and proceed to its estimation with a sample size N = 104. The reader is referred to [26, Section 3] for the613

de�nition of this index Su2,CVM and its Pick-Freeze estimator together with their properties. The results614

are displayed in Table 3.615
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u {1} {2} {3} {1, 2} {1, 3} {2, 3}

Ŝu2,CVM 0.13717 0.15317 0.33889 0.33405 0.468163 0.53536

Table 3: Model (41). Direct GSA on the inputs. Estimations of Su2,CVM with a sample size N = 104. The
reader is referred to [26, Section 3] for the de�nition of the index Su2,CVM and its Pick-Freeze estimator
together with their properties.

Comments When one is interested in the choice of the input distributions of X1, X2, and X3, the �rst616

row in Table 1 shows that each choice is equally important. Now, if we give more freedom to the space617

where the distribution lives, the relative importance may change as one can see in Table 1 (second row)618

and in Table 2. More precisely, in Table 2, the variability of the third input distribution (namely, the619

variability of its upper bound) is �ve times larger than the other variabilities. Not surprisingly, it results620

that the importance of the choice of the third input distribution is then much more important than the621

choices of the distributions of the two �rst inputs.622

As said in the previous paragraph, when one is interested in the choice of the input distributions of623

X1, X2, and X3, the �rst row in Table 1 shows that each choice is equally important. Nevertheless,624

performing a classical GSA on the inputs using the Cramér-von-Mises index for example, we see, in Table625

3, that the index related to X3 is more than twice as important as X1 and X2 (when considering only626

�rst-order e�ects). Hence, here, the classical GSA largely di�ers numerically from a second-level SA as627

expected.628

7 Synthesis and pratical advices629

In this short section, we give a �road map� to help the practitioners. We restrict our study to the case of630

order-one indices; for higher indices, the road map remains the same except that the rank statistics can631

not be used to estimate the several indices.632

7.1 First-level sensitivity analysis for the practitioners633

7.1.1 The road map634

Here, the input distributions are �xed and we aim at performing SA for a deterministic or a stochas-635

tic code. In the sections above, we have presented several indices that depend on the nature of the636

code/inputs/outputs, on the choice of the family of test functions Ta, and on the integrating probability637

measure Q. The choice of (Ta,Q) is still an open question that is beyond the scope of this work. We638

present in Figure 8 a classi�cation tree giving the practitioners the algorithm to be used in order to639

estimate the index he is interested in. The several algorithms are described in Section 7.1.2.640
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Figure 8: Road map for the practitionners642
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7.1.2 Algorithms643

We assume in the following that our only aim is to estimate the order-one index with respect to X1 and644

we present the di�erent simulation algorithms depending on the nature of the computer code.

Algorithm 1 Estimating the order-one Sobol index S1 for a R-valued deterministic code with R-valued
inputs

Enter N the total number of calls to the computer code
Simulate a N -sample of the inputs (X1,j , . . . , Xp,j) for j = 1, . . . , N
Compute the N corresponding outputs Zj = f(X1,j , . . . , Xp,j) for j = 1, . . . , N
Rearrange the pairs (X1,j , Zj) for j = 1, . . . , N by increasing order according to the �rst coordinate
Denote by (X1,(j), Z(j)) for j = 1, . . . , N the reordered pairs

return Ŝ1
Rank

=
1
N

∑N−1
j=1 Z(j)Z(j+1)−( 1

N

∑N
j=1 Zj)

2

1
N

∑N−1
j=1 Z2

j−( 1
N

∑N
j=1 Zj)

2 .

645

Algorithm 2 Estimating the order-one Sobol index S1 for a R-valued deterministic code with general
inputs (not necessarily R-valued)
Enter N the total number of calls to the computer code
Simulate a Pick-Freeze N∗-sample of the inputs (X1,j , . . . , Xp,j) for j = 1, . . . , N∗ with N∗ = bN/2c
Compute the N∗ corresponding outputs (Zj , Z

(1)
j ) for j = 1, . . . , N∗

return Ŝ1
PF

=
1
N∗
∑N∗
j=1 ZjZ

(1)
j −

(
1
N∗
∑N∗
j=1(Zj+Z

(1)
j )/2

)2

1
2N∗

∑N∗
j=1(Z2

j+(Z
(1)
j )2)−

(
1

2N∗
∑N∗
j=1(Zj+Z

(1)
j )

)2 .

Algorithm 3 Estimating the order-one universal index S1
2,Univ for a metric space-valued deterministic

code with R-valued inputs

Choose a class of functions Ta
Choose a probability measure Q
Enter N the total number of calls to the computer code
Simulate a N -sample of the inputs (X1,j , . . . , Xp,j) for j = 1, . . . , N
Compute the N corresponding outputs Zj = f(X1,j , . . . , Xp,j) for j = 1, . . . , N
Rearrange the pairs (X1,j , Zj) for j = 1, . . . , N by increasing order according to the �rst coordinate
Denote by (X1,(j), Z(j)) for j = 1, . . . , N the reordered pairs
if Q = P then
Compute N̂1

2,GMS,Rank as in (14) and D̂1
2,GMS,Rank as in (15)

return Ŝ1
2,GMS,Rank =

N̂1
2,GMS,Rank

D̂1
2,GMS,Rank

else
Simulate a N -sample (W1, . . . ,WN ) of a Q-distributed random variable

Compute N̂1
2,Univ,Rank as in (17) and D̂1

2,Univ,Rank as in (18)

return Ŝ1
2,Univ,Rank =

N̂1
2,Univ,Rank

D̂1
2,Univ,Rank

end if
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Algorithm 4 Estimating the order-one universal index S1
2,Univ for a metric space-valued deterministic

code with general inputs (not necessarily R-valued)
Choose a class of functions Ta with dim(a) = m
Choose a probability measure Q
Enter N the total number of calls to the computer code
if Q = P then
Replace the N -sample of the output in Algorithm 3 by the Pick-Freeze Nm-sample of Algorithm 2
with Nm = bN/(m+ 2)c
Simulate m new samples of size Nm of the output
Proceed as in Algorithm 3
return Ŝ1

2,GMS,PF

else
Replace the N -sample of the output in Algorithm 3 by the Pick-Freeze N∗-sample of Algorithm 2
with N∗ = bN/2c
Proceed as in Algorithm 3
return Ŝ1

2,Univ,PF

end if

Algorithm 5 Estimating the order-one universal index S1
2,Univ for a R-valued stochastic code with R-

valued inputs

Choose the class of functions Ta as in (23)
Enter N the total number of calls to the computer code
Enter n the approximation size
Simulate a Nn-sample of the inputs (X1,j , . . . , Xp,j) for j = 1, . . . , Nn with Nn = bN/nc
for j = 1, . . . , Nn do
Compute n times the random value of f(X1,j , . . . , Xp,j) denoted by Zj,k for k = 1, . . . , n

end for
Proceed as in Algorithm 3 with output the empirical measure µZj ,n = 1

n

∑n
k=1 δZj,k

return Ŝ1
2,W2,Rank,n

Algorithm 6 Estimating the order-one universal index S1
2,Univ for a R-valued stochastic code with general

inputs (not necessarily R-valued)
Choose the class of functions Ta as in (23) with dim(a) = m
Enter N the total number of calls to the computer code
Enter n the approximation size
Simulate a Nm,n-sample of the inputs (X1,j , . . . , Xp,j) for j = 1, . . . , Nn with Nm,n = bN/(n(m+ 2))c
for j = 1, . . . , Nm,n do
Compute n times the random value of f(X1,j , . . . , Xp,j) denoted by Zj,k for k = 1, . . . , n

end for
Proceed as in Algorithm 4 with output the empirical measure µZj ,n = 1

n

∑n
k=1 δZj,k

return Ŝ1
2,W2,PF,n
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7.2 Second-level sensitivity analysis for the practitioners646

In this section, we present the algorithms to be used in second-level SA.647

Algorithm 7 Estimating the order-one universal index S1
2,Univ for a R-valued deterministic code with

R-valued inputs

Choose the class of functions Ta as in (23)
Enter N the total number of simulations
Enter n the approximation size
Simulate a N -sample of the distribution parameters of the inputs (θ1,j , . . . , θp,j) for j = 1, . . . , N
for j = 1, . . . , N do
Simulate a N -sample of the inputs (X1,j , . . . , Xp,j)
Simulate a n-sample of inputs distributed following (µθ1,j , . . . , µθ1,j ) denoted by (X1,j,k, . . . , Xp,j,k)
for k = 1, . . . , n
Compute the n corresponding outputs Zj,k = f(X1,j,k, . . . , Xp,j,k) for k = 1, . . . , n

end for
Proceed as in Algorithm 5 with output the empirical measure µZj ,n = 1

n

∑n
k=1 δZj,k

return Ŝ1
2,W2,PF,n

Algorithm 8 Estimating the order-one universal index S1
2,Univ for a R-valued deterministic code with

general inputs (not necessarily R-valued) for second-level SA
Choose the class of functions Ta as in (23)
Enter N the total number of simulations
Enter n the approximation size
Simulate a N -sample of the distribution parameters of the inputs (θ1,j , . . . , θp,j) for j = 1, . . . , N
for j = 1, . . . , N do
Simulate a N -sample of the inputs (X1,j , . . . , Xp,j)
Simulate a n-sample of inputs distributed following (µθ1,j , . . . , µθ1,j ) denoted by (X1,j,k, . . . , Xp,j,k)
for k = 1, . . . , n
Compute the n corresponding outputs Zj,k = f(X1,j,k, . . . , Xp,j,k) for k = 1, . . . , n

end for
Proceed as in Algorithm 6 with output the empirical measure µZj ,n = 1

n

∑n
k=1 δZj,k

return Ŝ1
2,W2,PF,n

8 Conclusion648

In this article, we present a very general way to perform SA when the output Z of a computer code lives649

in a metric space. The main idea is to consider real-valued squared integrable test functions (Ta(Z))a∈Ω650

parameterized by a �nite number of elements of a probability space. Then Hoe�ding decomposition of the651

test functions Ta(Z) is computed and integrated with respect to the parameter a. This very general and652

�exible de�nition allows, on the one hand, to recover a lot of classical indices (namely, the Sobol indices653

and the Cramér-von-Mises indices) and, on the other hand, to perform a well tailored and interpretable654

SA. Furthermore, a SA is also made possible for computer codes for which the output is a c.d.f. and for655

stochastic computer codes (that are seen as an approximation of c.d.f.-valued computer codes). Last, it656

enables also to perform second-level SA by embedding second-level SA as a particular case of stochastic657

computer codes.658

As already seen, a clear limitation comes from the dimensions. On the one hand, the metric based659

on Wasserstein balls is well-suited in dimension one for its nice theoretical properties and its easy-to-660

implement estimation. In higher dimension, things become more tricky. On the other hand, the rank-661

based estimation has not been developed yet in dimension higher than one. A nice perspective is then to662

tackle the estimation beyond the dimension one.663
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A Proof of Proposition 5.1666

Notation It is convenient to have short expressions for terms that converge in probability to zero.
We follow [61]. The notation oP(1) (respectively OP(1)) stands for a sequence of random variables that
converges to zero in probability (resp. is bounded in probability) as n → ∞. More generally, for a
sequence of random variables Rn,

Xn = oP(Rn) means Xn = YnRn with Yn
P→ 0

Xn = OP(Rn) means Xn = YnRn with Yn = OP(1).

For deterministic sequences Xn and Rn, the stochastic notation reduce to the usual o and O. Finally, c667

stands for a generic constant that may di�er from one line to another.668

Proof of Proposition 5.1. One has669

√
N
(
Ŝu2,Wq,Ustat,n − S

u

2,GMS

)
=
√
N
(
Ŝu2,Wq,Ustat,n − Ŝ

u

2,GMS,Ustat

)
+
√
N
(
Ŝu2,GMS,Ustat − Su2,GMS

)
.

By [27, Theorem 2.4], the second term in the right-hand side of the previous equation is asymptotically670

Gaussian. If we prove that the �rst term in the right-hand side is oP(1), then by Slutsky's Lemma [61,671

Lemma 2.8],
√
N
(
Ŝu2,GMS,Ustat,n − Su2,GMS

)
is asymptotically Gaussian.672

Now we prove that
√
N
(
Ŝu2,GMS,Ustat,n − Ŝu2,GMS,Ustat

)
= oP(1). We write

Ŝu2,Wq,Ustat,n − Ŝ
u

2,GMS,Ustat = Ψ(U1,N,n, U2,N,n, U3,N,n, U4,N,n)−Ψ(U1,N , U2,N , U3,N , U4,N )

=
[(U1,N,n − U1,N )− (U2,N,n − U2,N )] (U3,N − U4,N )

[(U3,N,n − U3,N )− (U4,N,n − U4,N ) + (U3,N − U4,N )] (U3,N − U4,N )

− [(U3,N,n − U3,N )− (U4,N,n − U4,N )] (U1,N − U2,N )

[(U3,N,n − U3,N )− (U4,N,n − U4,N ) + (U3,N − U4,N )] (U3,N − U4,N )
.

Since (Ul,N,n − Ul,N,n), for l = 3 and 4 and (U3,N − U4,N ) converges almost surely respectively to 0 and
I(Φ3) − I(Φ4), the denominator converges almost surely. Thus it su�ces to prove that the numerator
is oP(1/

√
N) which reduces to prove that

√
N (Ul,N,n − Ul,N ) = oP(1) for l = 1, . . . , 4, where Ul,N,n

(respectively Ul,N ) has been de�ned in (35) (resp. (11)). Let l = 1 for example. The other terms can be
treated analogously. Here, m(1) = 3. We write

E [|U1,N,n − U1,N |]

6

(
N
3

)−1

(3!)−1
∑

16i1<i2<i36N
τ∈S3

E
[∣∣∣Φ1

(
µXτ(i1),n

,µXτ(i2),n
,µXτ(i3),n

)
− Φ1

(
µXτ(i1)

,µXτ(i2)
,µXτ(i3 )

)∣∣∣]
= E

[∣∣Φ1

(
µX1,n, . . .µX2,n,µX3,n

)
− Φ1

(
µX1

,µX2
,µX3

)∣∣]
6 2E

[∣∣∣1Wq(µX1
,µX3

)6Wq(µX1
,µX2

) − 1Wq(µX1,n
,µX3,n

)6Wq(µX1,n
,µX2,n

)

∣∣∣]
=: 2E [Bn]

where the random variable Bn in the expectation in the right-hand side of the previous inequality is673

a Bernoulli random variable whose distribution does not depend on (µX1 , µX2 , µX3). Let ∆(N) be the674

following event675

∆(N) =
{∣∣Wq(µXτ (1), µXτ (3))−Wq(µXτ (1), µXτ (2))

∣∣ > δ(N)
}
.
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Obviously, we get E
[
Bn1∆(N)c

]
6 P(∆(N)c), where Ac stands for the complementary of A in Ω. Fur-

thermore,

E
[
Bn1∆(N)

]
6 E [Bn|∆(N)] = P (Bn = 1|∆(N))

6
3∑
r=1

P
(
Wq(µXr , µXr,n) >

δ(N)

4

)
6

12

δ(N)
E[Wq(µX1

, µX1,n)].

Finally, we introduce ε > 0 and we study:

P
(√

N |U1,N,n − U1,N | > ε
)
6

√
N

ε
E [|U1,N,n − U1,N |]

6 2

√
N

ε
E [Bn]

6

√
N

ε

24

δ(N)
E[Wq(µX1 , µX1,n)] + 2

√
N

ε
P(∆(N)c).

It remains to choose �rst, δ(N) so that P(∆(N)c) = o
(

1/
√
N
)
and second, n such that E[Wq(µX1

, µX1,n)] =676

o(δ(N)/
√
N). Consequently,

√
N(U1,N,n − U1,N ) = oP(1). Analogously, one gets

√
N(Ul,N,n − Ul,N ) =677

oP(1) for l=2, 3 and 4.678
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