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Abstract

Sensitivity indices are commonly used to quantify the relative influence of any specific group of
input variables on the output of a computer code. In this paper, we focus both on computer codes for
which the output is a cumulative distribution function and on stochastic computer codes. We propose
a way to perform a global sensitivity analysis for these kinds of computer codes. In the first setting,
we define two indices: the first one is based on Wasserstein Fréchet means while the second one is
based on the Hoeffding decomposition of the indicators of Wasserstein balls. Further, when dealing
with the stochastic computer codes, we define an “ideal version” of the stochastic computer code thats
fits into the frame of the first setting. Finally, we deduce a procedure to realize a second-level global
sensitivity analysis, namely when one is interested in the sensitivity related to the input distributions
rather than in the sensitivity related to the inputs themselves. Several numerical studies are proposed
as illustrations in the different settings.

Keywords: Global sensitivity indices, functional computer codes, stochastic computer codes, second-
level uncertainty, Fréchet means, Wasserstein spaces.

AMS subject classification 62G05, 62G20, 62G30, 65C60, 62E17.

1 Introduction

The use of complex computer models for the analysis of applications from sciences, engineering and other
fields is by now routine. For instance, in the area of marine submersion, complex computer codes have
been developed to simulate submersion events (see, e.g., [4, 34] for more details). In the context of aircraft
design, sensitivity analysis and metamodelling are intensively used to optimize the design of an airplane
(see, e.g., [51]). Several other concrete examples of stochastic computer codes can be found in [42].

Often, the models are expensive to run in terms of computational time. Thus it is crucial to understand
the global influence of one or several inputs on the output of the system under study with a moderate
number of runs afforded [54]. When these inputs are regarded as random elements, this problem is
generally called (global) sensitivity analysis. We refer to [17, 52, 58] for an overview of the practical
aspects of global sensitivity analysis.

A classical tool to perform global sensitivity analysis consists in computing the Sobol indices. These
indices were first introduced in [50] and then considered by [57]. They are well tailored when the output
space is R. The Sobol indices compare, using the Hoeffding decomposition [33], the conditional variance
of the output knowing some of the input variables to the total variance of the output. Many different
estimation procedures of the Sobol indices have been proposed and studied in the literature. Some are
based on Monte-Carlo or quasi Monte-Carlo design of experiments (see [38, 47] and references therein
for more details). More recently a method based on nested Monte-Carlo [28] has been developed. In
particular, an efficient estimation of the Sobol indices can be performed through the so-called “Pick-Freeze”
method. For the description of this method and its theoretical study (consistency, central limit theorem,
concentration inequalities and Berry- Esseen bounds), we refer to [36, 25] and references therein. Some
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other estimation procedures are based on different designs of experiments using for example polynomial
chaos expansions (see [60] and the reference therein for more details).

Since Sobol indices are variance-based, they only quantify the influence of the inputs on the mean
behavior of the code. Many authors proposed other criteria to compare the conditional distribution of
the output knowing some of the inputs to the distribution of the output. In [47, 49, 48], the authors
use higher moments to define new indices while, in [7, 8, 16], the use of divergences or distances between
measures allows to define new indices. In [20], the authors use contrast functions to build indices that are
goal-oriented. Although these works define nice theoretical indices, the existence of a relevant statistical
estimation procedure is still, in most cases, an open question. The case of vectorial-valued computer
codes is considered in [26] where a sensitivity index based on the whole distribution using the Cramér-
von-Mises distance is defined. Within this framework, the authors show that the Pick-Freeze estimation
procedure provides an asymptotically Gaussian estimator of the index.

Nowadays, the computer code output is often no longer a real-valued multidimensional variable but
rather a function computed at various locations. In that sense, it can be considered as a functional
output. Some other times, the computer code is stochastic in the sense that the same inputs can lead
to different outputs. When the output of the computer code is a function (for instance, a cumulative
distribution function) or when the computer code is stochastic, Sobol indices are no longer well tailored.
It is then crucial to define indices adapted to the functional or random aspect of the output. When
the output is vectorial or valued in an Hilbert space, some generalizations of Sobol indices are available
[39, 24]. Nevertheless, these indices are still based on the Hoeffding decomposition of the output; so
that they only quantify the relative influence of an input through the variance. More recently, indices
based on the whole distribution have been developed [16, 9, 7]. In particular, the method relying on
Cramér-von-Mises distance [26] compares the conditionnal cumulative distribution function with the
unconditional one by considering the Hoeffding decomposition of half-space indicators (rather than the
Hoeffding decomposition of the output itself) and by integrating them. This method was then extend to
codes taking values in a Riemannian manifold [21] and then in general metric spaces [27].

In this work, we focus on two kinds of computer codes: 1) computer codes for which the output is
the cumulative distribution function of a real random variable and 2) real-valued stochastic computer
codes. A first step will consist in performing global sensitivity analysis for these kinds of computer codes.
Further, we focus on second-level analysis that corresponds to the sensitivity analysis with respect to
the input distribution (see Section 6 for more details on second-level analysis). Then we will deduce
how to perform second-level sensitivity analysis using the tools developed in the first step. A code
with cumulative distribution function as output can be seen as a code taking values in the space of all
probability measures on R. This space can be endowed with a metric (for example, the Wasserstein
metric [62]). This point of view allows to define at least two different indices for this kind of codes,
generalizing the framework of [27]. The first one is based on Wasserstein Fréchet means while the second
one is based on the Hoeffding decomposition of the indicators of Wasserstein balls. Further, stochastic
codes (see Section 5 for a bibliographical study) can be seen as a “discrete approximation” of codes
having cumulative distribution functions as values. Then it is possible to define “natural” indices for
such stochastic codes. Finally, second-level sensitivity analysis aims at considering uncertainties on the
type of the input distributions and/or on the parameters of the input distributions (see Section 6 for a
bibliographical study). Actually, this kind of problem can be embedded in the framework of stochastic
codes.

The article is organized as follows. In Section 2, we introduce and precisely define a general class of
global sensitivity indices. We also present statistical methods to estimate these indices. In Section 3, we
recall some basic facts on Wasserstein distances, Wasserstein costs and Fréchet means. In Section 4, we
define and study the statistical properties of two new global sensitivity indices for computer codes valued
in general Wasserstein spaces. Further, in Section 5, we study the case of stochastic computer codes. The
proof of the main result of this section has been postponed to Section A. Then, Section 6 is dedicated
to the sensitivity analysis with respect to the distributions of the input variables. In Section 7, practical
advices are given for the practitioners. Finally, we present conclusions, limitations and perspectives in
Section 8.
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2 Sensitivity indices for codes valued in general metric spaces

We consider a black-box code f defined on a product of measurable spaces £ = E; x Ey x ... x E,
(p € N*¥) taking its values in a metric space X. The output denoted by Z is then given by

Z = f(X1,...,X,). (1)

We denote by P the distribution of the output code Z.

The aim of this work is to give answers to the following questions.

Question 1 How can we perform Global Sensitivity Analysis (GSA) when the output space is the space of

103

104

probability distribution functions (p.d.f.) on R or the space of cumulative distribution functions
(c.d.f)?

Question 2 How can we perform GSA for stochastic computer codes?

Question 3 How can we perform GSA with respect to the choice of the distributions of the input variables?

107

2.1 The general metric spaces sensitivity index

In this section, we recall the defintion and the properties of the general metric spaces sensitivity index
introduced in [27]. We also discuss several ways of estimation: the Pick-Freeze estimation as introduced
in [36], the estimation procedure based on U-statistics proposed in [27], and a rank-based procedure
initiated in [23].

In [27], the authors performed GSA for codes f taking values in general metric spaces. To do so, they
consider a family of test functions parameterized by m € N* elements of X and defined by

X" x X — R
(a, ) = T,(x).

Let u C {1,...,p} and X, = (X;,i € u). Assuming that the test functions 7, are L2-functions with
respect to the product measure P®™ @ P (where P®™ is the product m-times of the distribution of the
output code Z) on X™ x X, they allow to define the general metric space (GMS) sensitivity index with
respect to Xy by

) JymE [(E[TQ(Z)} - E[Tu(Z )IXu])2] dPe™(a) [ Var (E[T,(2)|Xu]) dP™(a)
Sy.ams = Tom Var(T,(2))dPe™ (a) - Joom Var(To(2))dPo™ (a)

(2)

Roughly speaking, the previous indices divided into two parts. First, for any value of a, we consider the
numerator E[(E[T,(Z)] — E[T,(Z)|Xu])’] and the denominator Var(T,(Z)) of the classical Sobol index
of T,(Z). This part is called the Sobol part. Second, we integrate each part with respect to the measure
P®™; it is called the integration part.

As explained in [27], by construction, the indices S5 gyg lie in [0, 1] and share the same properties as
their Sobol counterparts:

- the different contributions sum to 1; (3)

- they are invariant by translation, by any isometry and by any non-degenerated scaling of Z.  (4)

Estimation Three different estimation procedures are available in this context. The two first methods
are based on the Pick-Freeze scheme. More precisely, the Pick-Freeze scheme, considered in [36], is a well
tailored design of experiment. Namely, let X" be the random vector such that X' = X, if i € u and
XM =X/ if i ¢ uwhere X/ is an independent copy of X;. We then set

7% = f(XM). (5)

Further, the procedure consists in rewriting the variance of the conditional expectation in terms of
covariances as follows

Var(E[Z| X4]) = Cov(Z, Z%). (6)
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Alternatively, the third estimation procedure that can be seen as an ingenious and effective approximation
of the Pick-Freeze scheme is based on rank statistics [23]. Until now, it is unfortunately only available to
estimate first-order indices in the case of real-valued inputs.

e First method - Pick-Freeze. Introduced in [26], this procedure is based on a double Monte-Carlo

scheme to estimate the Cramér-von-Mises (CVM) indices S;CVM. More precisely, to estimate
S5 Gus in our context, we consider the following design of experiment consisting in

1. a classical Pick-Freeze N-sample, that is two N-samples of Z: (Z;, Z‘-‘) <j<N;
2. m other N-samples of Z independent of (Z;, Z}')1<j<n: Wik, 1 <I<m, 1 <k < N.
The empirical estimator of the numerator of S3'yg is then given by
A'Ll 1 u
N2,GMS,PF :Nm Z |: Z TW1 i1 Wi (Zj>TW1,i17"' W im (Zj >:|
1<, im<N L j=1
1 | XN 2
N W Z |:2]\/' Z (TWLil v s Wi, (ZJ) + TW1,i1 v Wi, (Zju)):|
1<i1,eyim <N j=1

while the one of the denominator is

o 1 1
Dowser =3 % |3

M=

(Twl,il v s Wi, (Zj)2 + TWl,il v s Wi (Z]u)Q):|

1<, sim KN j=1
1 1 2
N m > N (Tw, o, o Wi (Z3) + T o o Wi, (Z}‘))} :
1<, i <N j=1

For X = R¥, m = 1, and T, given by T,(z) = l,<,, the index S5 Gums pr 18 nothing more than
the index Sy defined in [26] based on the Cramér-von-Mises distance and on the whole distri-
bution of the output. Its estimator 52 ‘cvy defined as the ratio of N2 'ams pr and D2 ‘aMms pr With
T, () = 1<, has been proved to be asymptotlcally Gaussian [26, Theorem 3. 8]. The proof relies
on Donsker’s theorem and the functional delta method [61, Theorem 20.8]. Analogously, in the
general case of S;GMS, the central limit theorem is still valid as soon as the collection (7})qecxm
forms a Donsker’s class of functions.

Second method - U-statistics. As done in [27], this method allows the practitioner to get rid of the
additional random variables (W) for I € {1,...,m} and k € {1,..., N}. The estimator is now
based on U-statistics and deals simultaneously with the Sobol part and the integration part with
respect to dP®™(a). Tt suffices to rewrite S§ g as

1(®1) — 1(®2)

S3ams = 1(@s) — 1(@4)" (7)
where,
P1(z15- s Zmt1) = Loy oz Bt 1) Loy o (Zm1)s
Po(z1s -y Zma2) = Loy (Bt 1) Loy (Zim2) (8)
D3(21, ., Zms1) = Ty (Zma1)?s
(1)4(Z17 e >Zm+2) =Tu,. . 2m (zm+1)TZ1,--.,zm (Zm+2)v

denoting by z; the pair (z;,2*) and, for [ =1,...,4,

3

I(¥) = /X o ‘I’z(Z1,-~-,Zm(l))dPg@m(l)(Zl--~7Zm(l))7 9)

with m(1) = m(3) = m+ 1 and m(2) = m(4) = m + 2. Finally, one considers the empirical version
of (7) as estimator of S5'qyg

Uiy —Usn

S;GMS,UStat = Us x — Uy N7 (10)
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where, for [ =1,...,4,

Uin = (mf(vl)) S 8 (2T (11)

1< < <ipy <N

and the function

R 1
(I)l (le--azm(l)) = (m(l))' SZ ¢Z(ZT(1)7"'7ZT(1’TLU)))
TESM(1)

is the symmetrized version of ®;. In [27, Theorem 2.4], the estimator §§"GMS’U_SM has been proved
to be consistent and asymptotically Gaussian.

Third method - Rank-based. In [15], Chatterjee proposes an efficient way based on ranks to esti-
mate a new coefficient of correlation. This estimation procedure can be seen as an approximation
of the Pick-Freeze scheme and then has been exploited in [23] to perform a more efficient estimation
of 53 cms- Nevertheless, this method is only well tailored for estimating first-order indices i.e. in
the case of u = {i} for some ¢ € {1,...,p} and when the input X; € R.

More precisely, an i.i.d. sample of pairs of real-valued random variables (X;;,Y;)i<j<n (¢ €
{1,---,p}) is considered, assuming for simplicity that the laws of X; and Y are both diffuse (ties
are excluded). The pairs (X; 1y, Y{(1)), ..., (X; (n), Y(w)) are rearranged in such a way that

Xz‘,(l) <...< Xi,(N)

and, for any j =1,..., N, Y(; is the output computed from X; ;). Let r; be the rank of Y(;), that
is,

= #{jl € {13 <. '7N}7 Yv(j’) < Yv(])}
The new correlation coefficient is then given by

3ZN 1‘7’J+1 7l
N2 -1 '

Env(X;,Y)=1- (12)
In [15], it is proved that {n(X;,Y) converges almost surely to a deterministic limit £(X;,Y") which
is actually equal to S5 vy When Y = Z = f(Xy,---,X,). Further, the author also proves a
central limit theorem when X; and Y are independent, which is clearly not relevant in the context
of sensitivity analysis (SA) (where X; and Y are dependent through the computer code).

In our context, recall that u = {i} and let Y = Z. Let also m;(j) be the rank of X, ; in the sample
(Xia,...,Xin) of X; and define

—1 . . .
; i 1 fm; 1< N,
NG = 4, D ) (13)
m; (1) if m;(j) = N.
Then the empirical estimator 52 GMS Rank Of S ams only requires a N-sample (Z;)1¢j<n of Z and
is given by the ratio between

N
- 1 1
N3 S Rank = J7m > {N > Tz, iz, (Z) Tz, . 2., (ZNi,(j))}
11, im <N B j=1
1 [1 N 2
_ Z - TZM_.VZW(ZJ-)] (14)
nm 1<y, im KN N j=1
and D§7GMS,Rank
N N 2
1 1 1
D DI F S NRPEAL SR DI 5 DL ANRPEA) I
11,0 yim <IN =1 1<i1 e i <IN =1

It is worth mentioning that Zy, ;) plays the same role as Z} (the Pick-Freeze version of Z; with
respect to X;) in the Pick-Freeze estimation procedure.
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Comparison of the estimation procedures

First, the Pick-Freeze estimation procedure allows the estimation of several sensitivity indices: the
classical Sobol indices for real-valued outputs, as well as their generalization for vectorial-valued codes,
but also the indices based on higher moments [49] and the Cramér-von-Mises indices which take the whole
distribution into account [26, 21]. Practically, this methodology is quite general and easy to implement.
Moreover, the Pick-Freeze estimators have desirable statistical properties. More precisely, this estimation
scheme has been proved to be consistent and asymptotically normal (i.e. the rate of convergence is
VN ) in [36, 25, 27]. The limiting variances can be computed explicitly, allowing the practitioner to
build confidence intervals. In addition, for a given sample size N, exponential inequalities have been
established. Last but not least, the sequence of estimators is asymptotically efficient from such a design
of experiment (see, [61] for the definition of the asymptotic efficiency and [25] for more details on the
result).

However, the Pick-Freeze estimators have two major drawbacks. First, they rely on a particular
experimental design that may be unavailable in practice. Second, it can be unfortunately very time
consuming in practice: the number of model calls to estimate all first-order Sobol indices grows linearly
with the number of input parameters. For example, if we consider p = 99 input parameters and only
N = 1000 calls are allowed, then only a sample of size N/(p+ 1) = 10 is available to estimate each single
first-order Sobol index.

Secondly, the estimation procedure based on U-statistics has the same kind of asymptotic guarantees as
the Pick-Freeze estimators (namely, consistency and asymptotic normality). Furthermore, the estimation
scheme is reduced to 2N evaluations of the code. Last, using the results of Hoeffding [33] on U-statistics,
the asymptotic normality is proved straightforwardly.

Finally, embedding Chatterjee’s method in the GSA framework (called rank-based method in this
framework) thereby eliminates the two drawbacks of the classical Pick-Freeze estimation. Indeed, the
strength of the rank-based estimation procedure lies in the fact that only one N-sample of Z is required
while (m + 2) samples of size N are necessary in the Pick-Freeze estimation of a single index (worse,
(m+ 1+ p) samples of size N are required when one wants to estimate p indices). Using a single sample
of size N, it is now possible to estimate at the same time all the first-order Sobol indices, first-order
Cramér-von-Mises indices, and other useful first-order sensitivity indices as soon as all inputs are real
valued. More generally, the rank-based method allows for the estimation of a large class of GSA indices
which includes the Sobol indices and the higher-order moment indices proposed by Owen [47, 49, 48].
In addition, the rank-based estimator has nice theoretical properties. For instance, the estimator of the
Sobol index S? has been proved to be consistent and asymptotically Gaussian (see, e.g., Theorem 3.3 in
123).

2.2 The universal sensitivity index

In this section, the aim is to generalize the already-known general metric space index Sy )5 presented
in the previous section. Here, we then define a new index that we call the “universal sensitivity index”
and we denote by S5 ;-

To do so, observe that Formula (2) can be generalized in the following ways.

1. The point @ in the definition of the test functions can be allowed to belong to another measurable
space than X'™.

2. The probability measure P®™ in (2) can be replaced by any “admissible” probability measure.
Such generalizations lead to the definition of a universal sensitivity index and its procedures of estimation.

Definition 2.1. Let a belongs to some measurable space 2 endowed with some probability measure Q.
For any u C {1,--- ,p}, we define the universal sensitivity index with respect to X, by

Jo B [BIT.(2)] - BL(2) X)) | dQ@) | Var (B[T,(2)|Xa]) dQ(a)
[y Var(T,.(2))dQ(a)  Jo Var(Tu(2))dQ(a)
Notice that the index S3'y; ;. (Ta, Q) is obtained by the integration over a with respect to Q of the

Hoeffding decomposition of T, (Z). Hence, by construction, this index lies in [0, 1] and shares the same
properties as its Sobol counterparts, namely the two previously cited properties in (3) and (4).

S;,Univ (Tav Q) = (16)
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The universality is twofold. First, it allows to consider more general relevant indices. Secondly, this
definition encompasses, as particular cases, the classical sensitivity indices. Indeed,

e the so-called Sobol index S with respect to Xy is 3,5, (Id, P), with Id the identity test function;

e the Cramér-von-Mises index S5 vy with respect to Xy, is S;Univ(l.ga,ﬂb@d) where X = R? and
Q=X

e the general metric space sensitivity index 53y g with respect to Xy is S;Univ(]l.ga,ﬂl’@m) where
Q=xm.

An example where Q is different from P will be considered in Section 4.

Estimation Here, we assume that Q is different from P®™ and we follow the same tracks as for the
estimation of Sy ;s in Section 2.1.

e First method - Pick-Freeze. We use the same design of experiment as in the first method of Section
2.1 but instead of considering that the m additional N-samples (W) for I € {1,...,m} and
k € {1,...,N} are drawn with respect to the distribution P of the output, they are now drawn
with respect to Q. More precisely, we consider the following design of experiment consisting in

1. a classical Pick-Freeze sample, that is two N-samples of Z: (Z;, Z}J), 1<j<N;
2. m Q-distributed N-samples W, ! € {1,...,m} and k € {1,..., N} that are independent of
(Zj,23) for 1 < j < N.

The empirical estimator of the numerator of S3'y;,;, is then given by

N
N2,Univ,PF :Nm Z |:N Z TWl,il s s Wi, (Zj)TWLil v Wi (Zj ):|

11,0 i <N j=1
1 1 & 2
- W Z |:2.ZV Z (Twl,il v Wi, (ZJ) + TWl,il o Wi, (Z]u)):|
1 °

Sitseetm KN Jj=

_

while the one of the denominator is

N
~ 1 1
D;Univ,PF :W Z |:2]V Z (TW1,1‘1 v Wi, (Zj)2 + TW1,i1 v Wi, (Z]u)Q):|

1<i1,enyim KN j=1
N

1 2
- W Z Z (TW1,i1 v Wiy, (ZJ) + TWl,z‘l v s W im (Z]u)):| .
1

i1 tm SN Jj=1

[\
2=

As previously, it is straightforward (as soon as the collection (T}),ecxm forms a Donsker’s class of
functions) to adapt the proof of Theorem [26, Theorem 3.8] to prove the asymptotic normality of
the estimator.

e Second method - U-statistics. This method is not relevant in this case since Q # P24,

e Third method - Rank-based. Here, the design of experiment reduces to

1. a N-sample of Z: Z;, 1 < j < N;
2. a N-sample of W that is Q-distributed: Wy, 1 < k < N, independent of Z;, 1 < j < N.

Assume as previously u = {i} and N;(-) be defined in (13). The empirical estimator §§)Univ’Rank of
S5 Uniy is then given by the ratio between

N

~. 1 1

N%,Univ,Rank :7Nm E [N E TWI-I,-»»,Wim(Zj)TWil,m,W,gm(ZNi(j))}
j=1

1K1, im <N

1 1 & 2
T Nm > { Twil,»--,wim(Zj)] (17)
1 =1

Sityim <N

2|

EN|
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i
and D2,Univ,Rank

LY Erteem@d] - T
Nm™ N —~ Wiy Wiy \ & Nm

1<ia,im SN J 11,0 im SN J

N 2
Tw, ... w., (Z;)| - (18)
=1

2=

We recall that this last method only applies for first-order sensitivity indices and real-valued input
variables.

2.3 A sketch of answer to Questions 1 to 3

In the sequel, we discuss how pertinent choices of the metric, of the class of test functions T, and of the
probability measure Q can provide answers to Questions 1 to 3 raised at the beginning of Section 2. For
instance, in order to answer to Question 1, we can consider that X = M,(R) is the space of probability
measures 4 on R having finite g-moments that we endow with the Wasserstein metric W, (see Section
3.1 for some recalls on Wasserstein metrics). We propose two possible approaches to define interesting
sensitivity indices in this framework.

e In Section 4.1, we use (2) with m = 2, a = (1, p2) and To(Z) = 1z p(uy,u0) Where B(uy, po) is
the open ball defined by { € Mg(R), Wy, 1) < We(pa, p2)}.

e In Section 4.2, we use the notion of Fréchet means on Wasserstein spaces (see Section 3.2) and the
index defined in (16) with appropriate choices of a, T, and Q.

The case of stochastic computer computer codes raised in Question 2 will be addressed as follows. A
computer code (to be defined) valued in M, (R) will be seen as an ideal case of stochastic computer codes.
Finally, it will be possible to treat Question 3 using the framework of Question 2.

3 Wasserstein spaces and random distributions

3.1 Definition

For any ¢ > 1, we define the g-Wasserstein distance between two probability distributions that are
L4-integrable and characterized by their c.d.f.’s F' and G on R? by

Wy(F.G)= _min_ (E[|X - Y1),

where X ~ F and Y ~ G mean that X and Y are random variables with respective c.d.f.’s F' and G.
We define the Wasserstein space W, (RP) as the space of all measures defined on R? endowed with the
g-Wasserstein distance W, with finite ¢-moments. In the sequel, any measure is identified to its c.d.f. or
in some cases to its p.d.f. In the unidimensional case (p = 1), it is a well known fact that W,(F,G) has
an explicitly expression given by

1 1/q
W,(F,G) = ( [irw-e <v>qdv) — E[F(U) - ¢ ()], (19)

where '~ and G~ are the generalized inverses of the increasing functions F' and G and U is a random
variable uniformly distributed on [0,1]. Of course, F~(U) and G~ (U) have c.df’s F and G. The
representation (19) of the g-Wasserstein distance when p = 1 can be generalized to a wider class of
“contrast functions”. For more details on Wasserstein spaces, one can refer to [62] and [6] and the
references therein.

Definition 3.1. We call contrast function any application ¢ from R? to R satisfying the "measure
property" P defined by

PV <2’ and Vy <y e(2,y) —e(@’,y) — c(z,y') + c(2,y) <0,

meaning that ¢ defines a negative measure on R2.
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For instance, c¢(x,y) = —xy satisfies P. If ¢ satisfies P, any function of the form a(z) + b(y) + ¢(z,y)
also satisfies P. If C is a convex real function, c¢(z,y) = C(x — y) satisfies P. In particular, c¢(z,y) =
(x —y)? = 2% + y? — 2wy satisfies P and actually so does c(z,y) = |x — y|? as soon as ¢ > 1.

Definition 3.2. We define the Skorokhod space D := D ([0,1]) of all distribution functions as the space
of all non-decreasing functions from R to [0, 1] that are right-continuous with left-hand limits with limit
0 (resp. 1) in —oo (resp. +00) equipped with the supremum norm.

Definition 3.3. For any F' € D, any G € D, and any positive contrast function ¢, we define the
c-Wasserstein cost by
W.(F,G)=_ min E[e(X,Y)] < +oc.

X~FY~G

Obviously, Wi = W, with ¢(z,y) = [x—y|?. The following theorem has been established by Cambanis,
Simon, and Stout in [12].

Theorem 3.4. Let ¢ be a contrast function. Then
1
W.(F,G) = / (F~ (v),G~ (v))dv = E[e(F~ (U), G~ (U))],
0
where U is a random variable uniformly distributed on [0, 1].

3.2 Extension of the Fréchet mean to contrast functions

In this section, we recall the classical definition of the notion of the Fréchet mean which is a natural
extension of the classical mean for general metric spaces and then we extend this definition to the notion
of a Fréchet feature.

Definition 3.5. We call a loss function any positive and measurable function I. Then, we define a
Fréchet feature £[X] of a random variable X taking values in a measurable space M (whenever it exists)
as

&1X] € ArgminE[I(X, 0)]. (20)

0eM
When M is a metric space endowed with a distance d, the Fréchet feature with I = d? corresponds to
the classical Fréchet mean (see [22]). In particular, £42[X] minimizes E[d?(X, )] which is an extension

of the definition of the classical mean in R? which minimizes E[|| X — 6]|?].
Now we consider M = D and [ = W,. Further, (20) becomes

Ew,|F] € ArgminE [W,.(F, G)].
GeD

where F is a measurable function from a measurable space €2 to D.
In the next theorem, we propose a very general non-parametric framework for which we have existence
and uniqueness of the Fréchet means.

Theorem 3.6. Let ¢ be a positive contrast function. Assume that the application defined by (w,v) €
Qx(0,1) = F (w,v) € R is measurable. In addition, assume that E.[F] exists and is unique. Then there
exists a unique Fréchet mean of E[c(F~(v),s)] denoted by E.[F~](v) and we have

(E[F)) (v) = £[F)(v) = Argmin E[e(F~ (1), )]

Proof of Theorem 3.6. Since c satisfies P, we have

Bv.(F.6) - 2| (), G- opae| = [ Ele(E (), G~ (o))},

by Fubini’s theorem. Now, for all v € (0,1), the quantity E[¢(F~(v), G~ (v))] is minimum for G~ (v) =
Ec[F](v).

/ E[e(F~ (v), £&.[F](0))}dv < / Ele(F~ (1), G~ (v))]dv
0 0
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and, in particular, for G~ = E.[F]~, one gets

/ Ele(F~ (v), £,[F~](0v))}dv < / E[e(F~ (v), £.[F]~ (v))]dv.
0 0

Conversely, by the definition of £.[F]~, we have for all G,

/O E[c(F~ (v), £ [F]~ (1))]dv < / Ele(F~ (1), G~ (v))}dv

and, in particular, for G~ = E.[F~], one gets

1 1
| B ). £ @i < [ Bl (0). EF )l
The theorem then follows by the uniqueness of the minimizer. O

In the previous theorem, we propose a very general non-parametric framework for the random element
F together with some assumptions on existence and uniqueness of the Fréchet feature and measurability
of the map (w,v) — F~(w,v). Nevertheless, it is possible to construct explicit parametric models for F
for which these assumptions are satisfied. For instance, the authors of [5] ensure measurability for some
parametric models on F using results of [19]. Notice that, in [20], a new sensitivity index is defined for
each feature associated to a contrast function. In Section 4.2, we will restrict our analysis to Fréchet
means and hence to Sobol indices.

3.3 Examples

The Fréchet mean in the Ws(R)-space is the inverse function v — E[F~(v)]. Another example is the
Fréchet median. Since the median in R is related to the L'-cost, the Fréchet Wi (R)-median of a random
c.df. is

Med(F)~ (v) € Med(F~ (v)).

More generally, we recall that, for a € (0, 1), the a-quantile in R is the Fréchet feature associated to
the contrast function cq(z,y) = (1 —a)(y — ) Lo—y<o + a(x — y)1,—y>0, also called the pinball function.
Then we can define an a-quantile ¢, (FF) of a random c.d.f. as

9a(F)”(v) € ga(F™ (v)),

where ¢, (X) is the set of the a-quantiles of a random variable X taking values in R. Naturally, taking
a = 1/2 leads to the median.

Let us illustrate the previous definitions on an example. Let X be a random variable with c.d.f. Fy
which is assumed to be increasing and continuous (hence F~ = F~1). Let also m and o be two real
random variables such that ¢>0. Then we consider the random c.d.f. F of 6 X +m

r—m

F(z) = F, ( ) and F~(v) =cF;  (v) +m.

Naturally, the Fréchet mean of F is E[F](x) = Fy ((x — E[m])/E[o]) and its a-quantile is given by

4a(F) 7} (v) = ga (0 Fy ' (v) + m).

4 Sensitivity analysis in general Wasserstein spaces

In this section, we particularize the indices defined in Section 2.2 in the specific context of general
Wasserstein spaces. Moreover, we exploit the framework of Section 3 to define a new index based on
Fréchet means in such general Wasserstein spaces.

More precisely, we consider here that our computer code is W, (R)-valued; namely, the output of an
experiment is the c.d.f. or the p.d.f. of a measure p € W,(R). For instance, in [10], [40] and [46], the

10
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authors deal with p.d.f.-valued computer codes (and stochastic computer codes). In other words, they
define the following application

f+ E =F (21)
T = fy

where F is the set of p.d.f.’s

F=lsermi g0 [ona=1}

Here, we choose to identify any element of W, (R) with its c.d.f. In this framework, the output of the
computer code is then a c.d.f. denoted by

F=f(X1,...,X,) (22)

Moreover, P denotes the law of the c.d.f. F and we set ¢ = 2. The case of a general value of ¢ can be
handled analogously.

4.1 Sensitivity anlaysis using Equation (2) and Wasserstein balls
Consider F', Fy, and F; three elements of Wh(R) and, for a = (F}, F»), the family of test functions
To(F) = T(ry, 7o) (F) = Vw, (k7Y <Wa(F1, Fy) - (23)
Then, for all u C {1, -+, p}, the already known index S3' ;g of (2) becomes
S;WZ = S;,Univ((Flv Fs, F) = TFl,Fz (F)7]P®2)

2
Iwa@yxwa ) E [(E[“ Wa (k) <wa (B, )| — B[V ws (my ) <ws (1, ) [ X)) } dP®*(Fy, Fy)

fWg(R)XWz(R) Var(]J Wz(F17F)<W2(F1,F2))dP®2(Flv FQ)
 Iwa@eoma ) Var Bl wa e m<wa(r, )| Xa]) AP (1, F)

(24)
sz(R)sz(R) Var(]J W2(F1aF)§W2(F17F2))dP®2(F1’ FQ)

As explained in Section 2.1, S5y, is obtained by integration over a with respect to I’ of the Hoeffding
decomposition of T, (F). Hence by construction, this index lies in [0,1] and shares the two properties
previously cited in (3) and (4).

4.2 Sensitivity analysis using Equation (16) and Fréchet means

In the classical framework where the output Z is real, we recall that the Sobol index with respect to X,

is defined by

Var(E[Z|Xy])  Var(Z) — E[Var(Z|Xy)]
Var(Z) Var(Z)

by the property of the conditional expectation. On the one hand, we extend this formula to the framework

of this section where the output of interest is the c.d.f. F and we define a new index S%(F) given by

Var(F) — E[Var(F|X,))]
Var(F) ’

S" = , (25)

SU(F) =

where Var(F) = E[W3(F, Ew, (F))] with Ew, (F) the Fréchet mean of F. From Theorem 3.6, we get

Var(F [ / 7 )—(u)%zv] _E [ /O E () —E[F‘(v)Hde} _ /O Var(F~ (0))do

leading to

fol Var(F~ (v) dvffo [Var(F~ (v)|Xy)]dv _ fol Var(]E[IF’(v)|Xu])dv'
Jy Var(F-(v))dv Ji Var(F-(v))dv

SU(F) = (26)

11
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Another point of view is to consider (16), with m =1,
T,(F) =F (v), (27)
and with Q the uniform probability measure on [0, 1]. In that case,

1 1
Var(F) = E [/0 IF~(v) — Ew, (F)(U)|2dv] = /0 Var(F~ (v))dv = E[WZ(F, Ew, (F))].

Then

o E [(5% (F)~(v) — Ews, (F\Xu)‘(v)ﬂ dv _ E[W3(Ew, (F1Xu), Ews (F))]
Jy Var(F=(v))dv E W3 (F, &w, (F))]

is exactly the same as S"(F) in (26). Thus, as explained in Section 2.2, S™(FF) lies in [0, 1] and has the
two properties previously cited in (3) and (4).

Notice that the index defined by (26) is a non-trivial example of the Universal sensitivity index defined
in (16).

S5 uniy (1o, U([0,1])) =

4.3 Estimation procedure

As noticed in the previous section, both
2
S;,WQ = S;,Univ(Tm]P)@ )

with T, defined in (23) and
SU(IF) = Sz umiv (To, U([0, 1))

with T, defined in (27), are particular cases of indices of the form (16).

When a belongs to the same space as the output and when Q is equal to P®™, we first use the Pick-
Freeze estimations of the indices given in (24) and (26). To do so, it is convenient once again to use (6)
leading to

@ vy Cov (Mwa(m my<wa(my, Fa) s Dwa(py 5o <ws (7, o)) APP2(FY, F)

Syw, = (28)

Son®) xwn @) Var(lws(ry -y <wa (7, 7y )APE? (F1, F)
and
_ Jy Cov (™ (v),F~"(v)) dv

[} Var(F~ (v))dv

SU(F) (29)

where F" and F~-" are respectively the Pick-Freeze versions of F and F~. Secondly, one may resort to
the estimations based on U-statistics together on the Pick-Freeze design of experiment. Thirdly, it is also
possible and easy to obtain rank-based estimations in the vein of (12).

4.4 Numerical comparison of both indices

Example 4.1 (Toy model). Let X;, X5, X3 be three independent and positive random variables. We
consider the c.d.f.-valued code f for which the output is given by

t
F(t) = 1 1 30
(1) T+ X; + Xg + X X5 OSSN X400 X F DX+ X0+ X1 X<t (30)

so that
F1(v) = v(l + X1+ Xo +X1X3>. (31)

In addition, one gets

Var (F~'(v)) = v* (Var(X; (1 + X3)) 4 Var(X>))
= v? (Var(X;)Var(X3) + Var(X1)(1 + E[X3])? + Var(X3)E[X;]* + Var(X3))

12
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and

E[F(v)|X,] = (1 + X1 (1 + E[X3]) + E[Xa] )
E [F(v)|X5] = v(l +E[X](1+E[Xs)) + Xg)
E[F~!(0)|X;] = (1 +E[X1](1+ X3) + E[X5] )
E [F~(v)| X1, X3] = v(l F X (14 X3) + E[XQ]),
and finally
Var (E [F~'(v)|X1]) (1 + E[X3])*Var(X;)
Var (E [F~'(v)|X2]) = v*Var(X>)
Var (E [F~'(v)|X3]) = v*E[X;]*Var(X3)
Var (E [F~' (v)| X1, X3]) = v? (Var(X;) Var(X3) 4+ Var(X1)(1 + E[X3])? + Var(X3)E[X;]?) .

For u = {i} € {1,2,3} or u = {1, 3}, it remains to plug the previous formulas in (26) to get the explicit
expressions of the indices S"(F).

Now, in order to get a closed formula for the indices defined in (24), we assume X; is Bernoulli
distributed with parameter 0 < p; < 1 for ¢ = 1, 2, and 3. In (24), the distributions F; and F» can
be either U([0,1]), U([0,2]), U([0,3]), or U([0,4]) with respective probabilities ¢; = (1 — p1)(1 — p2),
g2 = (1 = p1)p2 +p1(1 —p2)(1 —p3), g3 = p1((1 — p2)p3 + p2(1 — p3)), and g4 = p1paps. In the sequel, we
give, for all sixteen possibilities for the distribution of (Fy, F3), the corresponding contributions for the
numerator and for the denominator of (24).

With probablhty P11 = (1 —p1)2(1 —p2)2, F1 and F2 ~ Z/[([O, 1]) Then W22<F1,F2) = O, WQQ(F17F) =
%(Xl + X2 + X1X3)2, and WQQ(F:[,F) < W22(F1,F2) if and only if X1 + X2 + X1X3 = 0. Since
P (X1 4+ X2+ X1X3 =0) = (1 —p1)(1 — p2), the contribution dy 1 to the denominator is thus

dig=q1(1—q1) with gy = (1—p1)(1—p2).
Moreover,
E[1x,+x,4x: x5=0]X1] = P<X1 +Xo+ X1 X3 = O|X1> = 1x,=0P(X2 = 0) = (1 — p2)1x, =0
so that, the contribution to the numerator is given by
n%,1 = Var(E[Lx, + x,+x, x5=0]| X1]) = p1(1 — p1)(1 — p2)°.
Similarly, one gets
i, = Var(E[Lx, 4 x,+x,x5=0/X2]) = p2(1 = p2)(1 —p1)® and nf, =0.
Moreover, regarding the indices with respect to X; and Xs,
E[1x, 4 x5+ X, Xs=0] X1, X3] = ]P’(X1 +Xo+ X1 X3 = 0\X17X3) = 1x,=0P(X2 = 0) = (1 — p2)1x,=0
and the contribution to the numerator is given by
ny'y = Var(E[Lx, + X1 x, x,=0/X1, X3]) = p1 (1 — p1)(1 — p2)*.

The remaining fifteen cases can be treated similarly and are gathered (with the first case developed above)
in the following table. Finally, one may compute the explicit expression of S5 w,

Swa @y @y COV (B (F By <wa(Fr F)s D wa(Fy 5oy <wa (7, By ) APE2 (P2, F) _ Lkt PRIy
fWg(R)XWz(]R) Var(Uy, (ry ) <ws(Fy, 1) JAPE2 (F1, F2) > k1 Phadicl

SQ Wz

13
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Some numerical values have not been explicited in the table but given below

Case 2 Var(lx,=1(1 — (1 —p2)lxs=0)) =p1(1 —p1)(1 — (1 —p2)(1 fpg))z +p1(1— p2)2p3(1 —p3),
Case 6 Var(Lx,—1(p2 — (1 — p2)lxs—0)) = p1(1 — p1)(p2 — (1 — p2)(1 — p3))* + p1(1 — p2)*ps(1 — p3),
Case 11 Var(Ix,=1(p2 + (1 — 2p2)Txy=1)) = p1(1 — p1)(p2 + (1 — 2p2)ps)® + p1(1 — 2p2)°p3(1 — p3),

Case 15 Var(lx,=1(p2 + (1 —p2)lx,=1)) =p1(1 — p1)(p2 + (1 — p2)p3)2 +p1(1— P2)2p3(1 —P3).

Direct representations of the indices S"(F) and S5, In Figure 1, we have represented the indices
SY(F), S?(F), S3(F), and S*:3(F) given by (26) with respect to the values of p; and ps varying from 0 to 1
for a fixed value of p3. We have considered three different values of p3: p3 = 0.01 (first row), 0.5, (second
row) and 0.99 (third row). Analogously, the same kind of illustration for the indices S3 yy,, S3 w,> S5 v,

and 521:13;(/2 given by (24) is provided in Figure 2. The analysis of Figures 1 and 2 shows that, although
the Fréchet indices S“(F) differ from the Wasserstein indices S5 w, as expected, they behave reassuringly
similarly.

Regions of predominance of the indices S%(F) and Syw, Inaddition, the regions of predominance
of each index SY(F) are plotted in Figure 3. The values of p; and po still vary from 0 to 1 and the fixed
values of p3 considered are: ps = 0.01 (first row), 0.5, (second row) and 0.99 (third row). Finally, the
same kind of illustration for the indices S3'y;, is given in Figure 4. Once again, we observe a global
accordance of the predominance regions between the Fréchet indices S"(FF) and the Wasserstein indices

u
S5 w,-

Comparison of the estimation procedures (rank-based and Pick-Freeze) In order to compare
the accuracy of the Pick-Freeze method and the accuracy of the rank-based method at a fixed size, we
assume that only 450 calls of the computer code are allowed to estimate the indices S*(F) and S3'yy,
for u = {1}, {2}, and {3}. Hence, the sample size allowed in the rank-based procedure is N = 450.
In the Pick-Freeze methodology, the estimation of the Fréchet indices S"(F) requires one initial output
sample and three extra output samples to get the Pick-Freeze versions (one for each index) leading to
an allowed sample size N = |450/4] = 112 while it is N = [450/6] = 75 for the Wasserstein indices

2 W, (1 + 3 = 4 output samples + two extra samples to handle the integration). We only focus on the
first-order indices since, as explained previously, the rank-based procedure has not been developed yet
for higher-order indices. We repeat the estimation procedure n, = 200 times. The boxplots of the mean
square errors for the estimation of the Fréchet indices S"(IF) and the Wasserstein indices S3'y;,, have been
plotted in Figure 5. We observe that, for a fixed total number of calls 450 to the code f (corresponding
to a rank-based sample size N = 450 and to a Pick-Freeze sample size N = 112 for the Fréchet indices
SU(F) and N = 74 for the Wasserstein indices S3'yy,), the rank-based estimation procedure performs
much better than the Pick-Freeze method with significantly lower mean errors.

5 Sensitivity analysis for stochastic computer codes

This section deals with stochastic computer codes in the sense that two evaluations of the code for the
same input lead to different outputs. Before performing a SA in this context, let us briefly describe the
state of the art in this setting.

5.1 State of the art

A first natural way to handle stochastic computer codes is definitely to consider the expectation of the
output code. Indeed, as mentioned in [10], previous works dealing with stochastic simulators together
with robust design or optimization and SA consist mainly in approximating the mean and the variance

14



Case 1 Fy ~U([0,1]), F» ~ U([0,1]) Case 2 Fy ~U([0,1]), F» ~ U([0,2])
Prob. q% Prob. q192

Num. 1 p1(1—p1)(1 — p2)? Num. 1 p1(1 —p1)(p2 + p3 — pap3)?
Num. 2 (1—p1)?p2(l —p2) Num. 2 p?pa(1— p2)(1 — p3)?

Num. 3 0 Num. 3 p3(1 — p2)?p3(1 — p3)

Num. 1,3 p1(1—p1)(1 = p2)? Num. 1,3 Var(Ix,=1(1 — (1 = p2)lxz=0)
q Den. (1 —p1)(1 —p2) q Den. (1 =p1) +p1(1 —p2)(1 —ps)
Case 3 Fy ~U([0,1]), F» ~ U([0, 3]) Case 4 Fy ~U([0,1]), F» ~ U([0,4])
Prob. q1q3 Prob. q194

Num. 1 p1(1 fpl)pgpg Num. 1 0

Num. 2 p?p2(1 — p2)ps Num. 2 0

Num. 3 pipaps (1 — p3) Num. 3 0

Num. 1,3 p1p%p3(1 — p1p3) Num. 1,3 0

q Den. 1 — p1p2ps g Den. 0

Case 5 F1 ~U([0,2]), F» ~U([0,1]) Case 6 F1 ~U([0,2]), F» ~ U(0,2])
Prob. q192 Prob. q%

Num. 1 p1(1 —p1)p3p3 Num. 1 p1(1—p1)(p2 — (1 — p2)(1 — p3))?
Num. 2 pipa2(l —p2)p3 Num. 2 pa(1 —p2)(pr(1—p3) — (1 —p1))?
Num. 3 pip3p3(1l — p3) Num. 3 p7(1—p2)?p3(1 — p3)

Num. 1,3 p1p%p3(1 — p1p3) Num. 1,3 Var(lx,—1(p2 — (1 —p2)lx,—0))
q Den. 1 — p1p2ps q Den. (1 =p1)p2 +p1(1 —p2)(1 —p3)
Case 7 Fy ~U([0,2]), F» ~U([0, 3]) Case 8 F1 ~U([0,2]), F» ~ U([0,4])
Prob. q2q3 Prob. q2q4

Num. 1 p1(1 fpl)pgpg Num. 1 0

Num. 2 p?p2(1 — p2)p3 Num. 2 0

Num. 3 pipaps (1 — p3) Num. 3 0

Num. 1,3 p1p%p3(1 — p1p3) Num. 1,3 0

q Den. 1 — p1p2p3 q Den. 0

Case 9 F1 ~U([0,3]), Fa ~ U([0,1]) Case 10 F1 ~U([0,3]), F5 ~ U([0,2])
Prob. q1q3 Prob. q2q3

Num. 1 0 Num. 1 p1(l—p1)(1 —p2)?

Num. 2 0 Num. 2 (1 —p1)2%p2(1 — p2)

Num. 3 0 Num. 3 0

Num. 1,3 0 Num. 1,3 p1(1 —p1)(1 —p2)?

q Den. 0 q Den. (1—p1)p2 +p1

Case 11 Iy ~U([0,3]), F> ~ U([0,3]) Case 12 Fy ~U([0,3)), I ~ U([0, 4])
Prob. a3 Prob. 4394

Num. 1 p1(1—p1)(p2(1 —ps) + (1 — p2)ps)? | Num. 1 p1(1—p1)(1 —p2)?

Num. 2 pp2(1 — p2)(2ps — 1)2 Num. 2 (1 —p1)2%p2(1 — p2)

Num. 3 p% (2p2 — 1)2p3(1 — p3) Num. 3 0

Num. 1,3  Var(lx,=1(p2 + (1 — 2p2) 1 x5=1) Num. 1,3  p1(1 —p1)(1 — p2)?

q Den. p1(p2(1 — p3) + (1 — p2)ps3) q Den. (1=p1)p2 +p1

Case 13 Iy ~U([0,4]), F> ~ U([0,1]) Case 14 F1 ~U([0,4]), I ~ U([0,2])
Prob. q1q4 Prob. q2q4

Num. 1 0 Num. 1 p1(l—p1)(1 —p2)?

Num. 2 0 Num. 2 (1 —p1)2%p2(1 — p2)

Num. 3 0 Num. 3 0

Num. 1,3 0 Num. 1,3  p1(1 —p1)(1 — p2)?

q Den. 0 q Den. (1—p1)p2 +p1

Case 15 Fy ~U(]0,4]), F» ~U([0,3]) Case 16 Fy ~U(]0,4]), Fo ~U([0,4])
Prob. q3q4 Prob. a

Num. 1 pi(1—p1)(p2 + (1 — p2)ps)? Num. 1 pi(1 —p1)p3p}

Num. 2 p2p2(1 — p2)(1 — p3)? Num. 2 p2pa(l — pg)p%

Num. 3 p%(l — p2)2p3(1 — p3) Num. 3 p%p%pg(l — p3)

Num. 1,3 Var(lx,=1(p2 + (1 — p2)Ixg=1) Num. 1,3 pipsps(l — p1p3)

q Den. p1(p2 + (1 — p2)p3) g Den. P1P2P3
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Figure 1: Model (30). Values of the indices S*(F), S%(F), S3(F), and S*3(FF) given by (26) (from left to

right) with respect to the values of p; and py (varying from 0 to 1). In

third), ps is fixed to ps = 0.01 (resp. 0.5 and 0.99).

Figure 2: Model (30).
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Values of the indices S217W2, 5227W2, S§7W2, and 5’21’31,2 given by (24) (from left to
right) with respect to the values of p; and py (varying from 0 to 1). In the first row (resp. second and
third), ps is fixed to p3 = 0.01 (resp. 0.5 and 0.99).
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Figure 3: Model (30). In the first row of the figure, regions where S'(F) > S?(F) (black), S*(F) < S?(F)
(white), and S*(F) = S?(F) (gray) with respect to p; and ps varying from 0 to 1 and, from left to right,
p3 = 0.01, 0.5, and 0.99. Analogously, the second (resp. last) row considers the regions with S*(F) and
S3(F) (resp. S?(F) and S3(F)) with respect to p; and ps (resp. pe and p3) varying from 0 to 1 and, from
left to right, po = 0.01, 0.5, and 0.99 (resp. p; = 0.01, 0.5, and 0.99).
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Figure 4: Model (30). In the first row of the figure, regions where Sj y,, > S5y, (black), Sy, < S3y,
(white), and Sy, = S3 1y, (gray) with respect to p; and py varying from 0 to 1 and, from left to right,
p3 = 0.01, 0.5, and 0.99. Analogously, the second (resp. last) row considers the regions with 521’W2 and

S3 w, (resp. S3yy, and S3 ;) with respect to pi and ps (resp. py and p3) varying from 0 to 1 and, from
left to right, po = 0.01, 0.5, and 0.99 (resp. p; = 0.01, 0.5, and 0.99).
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Figure 5: Model (30) with p; = 1/3, po = 2/3, and p3 = 3/4. Boxplots of the mean square errors of the
estimation of the Fréchet indices S*(IF) (top row) and the Wasserstein indices S3'y,, (bottom row) with
a fixed sample size N and n, = 200 replications. The indices with respect to u = {1}, {2}, and {3} are
displayed from left to right. The results of the Pick-Freeze estimation procedure with N = 112 for the
Fréchet indices S*(F) and N = 75 for the Wasserstein indices S3'y;, are provided in the left side of each
graphic. The results of the rank-based methodology with N = 450 are provided in the right side of each
graphic.

of the stochastic output [18, 11, 37, 2] and then performing a GSA on the expectation of the output code
[42].

As pointed out by [35], another approach amounts to consider that the stochastic code is of the form
f(X,D) where the random element X contains the classical input variables and the variable D is an
extra unobserved random input. Such an idea was exploited in [36] to compare the estimation of the
Sobol indices in an “exact” model to the estimation of the Sobol indices in an associated metamodel.
In this framework, the metamodel is considered as a random perturbation of the "exact" model and
the perturbation is a function of the inputs and of an extra independent random variable. Analogously,
the author of [43] assumes the existence of an extra random variable D which is not chosen by the
practitioner but rather generated at each computation of the output independently of X. In this setting,
the author builds two different indices. The first index is obtained by substituting f(X, D) for f(X) in
the classical definition of the first-order Sobol index S = Var(E[f(X)|X;])/Var(f(X)). In this case, D is
considered as another input, even though it is not observable. The second index is obtained by substituting
E[f(X, D)|X] for f(X) in the Sobol index. The noise is then smoothed out. Similarly, the authors of
[31] traduce the randomness of the computer code using such an extra random variable. In practice,
they approximate the statistical properties of the first-order Sobol indices by using a sample of the extra
random variable and the associated sample of estimates of the Sobol indices. In [63], the expectation
of these random Sobol indices is investigated in the case of stochastic simulator and generalized lambda
models. In the same vein, the authors of [3] propose to deal with the differential entropy of the output
of a stochastic simulator.

5.2 The space W, as an ideal version of stochastic computer codes

When dealing with stochastic computer codes, the practitioner is generally interested in the distribution
1z of the output for a given input z. As previously seen, one can translate this type of codes in terms
of a deterministic code by considering an extra input which is not chosen by the practitioner himself but
which is a latent variable generated randomly by the computer code and independently of the classical
input. As usual in the framework of SA, one considers the input as a random variable. All the random
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variables (the one chosen by the practitioner and the one generated by the computer code) are built on
the same probability space, leading to the function f;

fo: ExD —R (32)
(z,D) + fi(z,D),

where D is the extra random variable lying in some space D. We naturally denote the output random

variable fs(z,-) by fs(z).
Hence, one may define another (deterministic) computer code associated with f, for which the output
associated to x is the probability measure p,

[+ E = W,(E) (33)
T g

The framework of (33) is exactly the one of Section 4.1 and has already been handled. Obviously, in
practice, one does not assess the output of the code f but one can only obtain an empirical approximation
of the measure pu, given by n evaluations of f, at x, namely,

1 n
Ham = — > 6o
k=1

where §. is the Dirac function. Further, (33) can be seen as an ideal version of (32). Concretely, for

a single random input )7 = (X1,...,Xp) € E = E; x--- x E,, we will evaluate n times the code f;
defined by (32) (so that the code will generate independently n hidden variables D1, ..., D,) and one
may observe

fs(yaDl)a"-afS(Y7Dn)

leading to the measure uz = Y, Ly @ Dk)/n that approximates the distribution p, of fs(j(}). We
emphasize on the fact that the random variables D1, ..., D, are not observed.

5.3 Sensitivity analysis

Let us now present the methodology we adopt in the sequel. In order to study the sensitivity of the
distribution fi,, one can use the framework introduced in Section 4.1 and the index 53y, given by (24).

In an ideal scenario which corresponds to the framework of (33), one may assess the probability
measure p, for any x. Then following the estimation procedure of Section 4.3, one gets an estimation of
the sensitivity index S;Wq with good asymptotic properties [27, Theorem 2.4].

In the more realistic framework presented above in (32), we only have access to the approximation
ltz n Of 11, rendering more complex the estimation procedure and the study of the asymptotic properties.
In this case, the general design of experiments is the following

(?1,D1’1,...,D1’n) — fs(717D1,1)7~--7fs(?17Dl,n)7
(?111’ /1,17"" lln) - fs( il’ ,1,1)’--'7f8( 1117 /1,n>7

(Xn.Dniav.o . Dym) = fo(XnDxa)se s fo(X o D),

(X4, Dy D) = Fo(X%, D) Fo(X %, D),

where Yj is the j-th realization of )_f with j = 1,,N, X)'f is the associated Pick-Freeze version, and
2 X N x n is the total number of evaluations of the stochastic computer code (32). Then, we construct
the approximations pu of up forany j=1,..., N given by

70 J

1 n
FXm = 4 ;61“3(?]',%,;@)' (34)

From there, one may use one of the three estimation procedures presented in Section 2.1.
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e First method - Pick-Freeze. It suffices to plug the empirical version u, of each measure y under
concern in (28) to get S5y pp -

e Second method - U-statistics. For [ =1,...,4, let

N\ .
Ul,N,n = (m(l)) Z (I)l (“h,m R “im(l),n> (35)

1S < <ipm@y SN

where as previously seen ®° is the symmetrized version of ®. defined in (8) and p = (u, ). Then,
3 u
we estimate S5y, by
Ul,N,n - UQ,N,TL

ay _ ZLNin T Z2.Nin (36)
2,W,,Ustat,n .
a UsNon —Usnp

e Third method - Rank-based. The rank-based estimation procedure may also easily be extended
to this context by using the empirical version p, of each measure p under concern instead of the
true one p, as explained into more details in the numerical study developed in Section 5.5. This
procedure leads t0 S5y Rankn-

Actually, these estimators are easy to compute since, for two discrete measures supported on a same

number of points and given by
n

n
vV = i;(swk’ Vg = %Zéyk,

k=1

the Wasserstein distance between v; and v simply writes

1 n
Wi(vi, 1) = - > (@ — yw)? (37)
k=1

where z(;) is the k-th order statistics of 2.

5.4 Central limit theorem for the estimator based on U-statistics

In this section, we focus on the computationnally less expensive estimator: the one based on U-statistics.
For statistical purposes, we establish a central limit theorem for S;Wq’Ustat’n inspired from [27]. In
addition, we consider several examples and study when the conditions of Proposition 5.1 hold.

Proposition 5.1. Consider three i.i.d. copies X1, Xo and X3 of a random variable X. Let 5(N) be a

sequence tending to 0 as N goes to infinity and such that

P (Wi e, sixs) = Wyl )| < 600) =0 ().

Let n be such that E[W,(ux, ix )] = o(§(N)/V'N). Under the assumptions of Theorem 2.4 in [27], we
get, for any w C {1,---,p},

Qu u L
VN (52,Wq,Ustat,n - S2,Wq> — N0, ‘72) (38)

n—-4o0o
where the asymptotic variance o2 is given by (13) in the proof of Theorem 2.4 in [27].

In some particular frameworks, one may derive easily a suitable value of §(N). Two examples are
given in the following.

Example 5.2. If the inverse of the random variable W = |W,(ux,, tx,) — Wy(px,, ttx,)| has a finite
expectation, then, by Markov inequality,

B(W <3(N) =P (W' > 5(N)™) < ——E {W]

and it suffices to choose J(V) so that §(N)~! = o (N"1/2) as N goes to infinity.
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Example 5.3 (Uniform example). Assume that X is uniformly distributed on [0, 1] and that px is a
Gaussian distribution centered at X with unit variance. Then the Wasserstein distance Wa(ux,, pix,)
rewrites as (X7 — X3)? so that the random variable W = |Wa(ux, , ix,) — Wal(x, , ix, )| is given by

(X1 — X3)? — (X1 — X2)?| = [(X3 — X2) (X2 + X5 — 2X1)].

Consequently,

B(W < 6(N)) < P(1 X5 - Xa| <

5(N)) + P(|Xs + X3 — 2X1| < V/O(IV)).

Notice that | X5 — Xo| is triangularly distributed with parameter a = 0, b = 1, and ¢ = 0 leading to

In addition,

P(| X2 + X3 — 22X, <

P(| X5 — Xo| € a) = a2 — a),

for all o € [0, 1].

6(N)) < P(J|[ X2 — Xq| = [ X5 = Xu|| < VO(NV))

1
- / P(|X — ul - | X3 — ul] < v/3(N))du.

Now, X —u and X3 — u are two independent random variables uniformly distributed on [—u, —u]. Then

(see Figure 6), one has

whence

o(1/N).

P(I|X2 — ul — X3 — ul| < @) < 4o

P(| X2 + X3 — 2X1]| < V/O(N)) < 44/0(N).
Thus it turns out that P(W < 6(N))

= O(y/d(N)). Consequently, a suitable choice for 6(N) is §(N) =

U
7
e
7/
Ve
e
y
e
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p
e
7
e
7/
p
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7
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7
7
p
7
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7
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7
p
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, — N
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Figure 6: Domain I, o = {(z1,22) € [0,1]; ||z1 — u| — |22 — ul| < a} (in grey).

Analogously, one may derive suitable choices for n in some particular cases. For instance, we refer the
reader to [6] to get upper bounds on E[W, (1 x, ttx,n)] for several values of ¢ > 1 and several assumptions
on the distribution on py: general, uniform, Gaussian, beta, log concave, etc. Here are some results.
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e In the general framework, the upper bound for ¢ > 1 relies on the functional

X

z)(1 — )2
Jq(ﬂx):/ (Fux ( }il (;}Xl)( D",

where F), . is the c.d.f. associated to ux and f,, its p.d.f. See Cf. [6, Theorems 3.2, 5.1 and 5.3].

e Assume that px is uniformly distributed on [0, 1]. Then by [6, Theorems 4.7, 4.8 and 4.9], for any
n>=1,
1

EW n2 <77
W ux, nxn)] <

for any ¢ > 1 and for any n > 1,

E[W,(ux, pxn)?9 < (Const)\/g.

and for any n > 1,
(Const)

E.g. (Const) = +/7/2.

e Assume that px is a log-concave distribution with standard deviation o. Then by [6, Corollaries
6.10 and 6.12], for any 1 < ¢ < 2 and for any n > 1,

for any n > 1,

Const)o? logn
BV (i, ) < 222008
and for any ¢ > 2 and for any n > 1,
C,of
E[WQ(MX)MX,H)(I] < (;L s

where Cy depends on g, only. Furthermore, if yx supported on [a, b], then for any n > 1,

(Const)(b— a)Q-

E[Wa(px, pxn)?] < T

E.g. (Const) =4/In2. Cf. [6, Corollary 6.11].

Example 5.3 - continued. We consider that X is uniformly distributed on [0, 1] and px is a Gaussian
distribution centered at X with unit variance. Then, by [6, Corollary 6.14], we have, for any n > 3,

Const)loglogn
EWa (ex, ox)?) < 2 cgloBn,

and for any ¢ > 2 and for any n > 3,

C
EW. n q < 7‘17
[Walpx, pxn)] n(logn)i/2

where C,; depends only on ¢. Since we have already chosen §(IN) = o(N 1), it remains to take n so that
loglogn/n = o(N~2) to fulfill the condition E[Wy(ux, px.n)] = o(§(N)/VN).
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5.5 Numerical study

Example 4.1 - continued. Here, we consider again the code given by (30) and we set X = (X1, X2, X3)
and p = 3. Having in mind the notation of Section 5.2, we consider the ideal code

f: E — Wy(E)
(X1, X2, X3) = p(x,,X0,X3)

where px, x,,x,) is the uniform distribution on [0,1 4 X; 4+ X5 + X X3] for which the c.d.f. is F given
by (30) and its stochastic counterpart

fs: ExD - R (39)
(X1, X2,X3,D) = fo(X1,X2,X3,D)

where f (X1, X2, X3, D) is a realization of u(x, x, x,)-

Hence, we no longer assume that one may observe N realizations of F associated to the N initial
realizations of (X7, X5, X3). Instead, for any of the N initial realizations of (X7, X5, X3), we assess n
realizations of a uniform random variable on [0,1 + X7 + X5 + X1 X3].

In order to compare the estimation accuracy of the Pick-Freeze method and the rank-based method at
a fixed size, we assume once again that only 450 calls of the computer code f are allowed to estimate the
Fréchet indices S"(F) and the Wasserstein indices S5y, for u = {1}, {2}, and {3}. As in Example 4.1 of
Section 4.4, the sample size allowed in the rank-based procedure is then N = 450 while, in the Pick-Freeze
methodology, it is only N = 112 for the Fréchet indices S"(F) and N = 75 for the Wasserstein indices
S5 w,- We only focus on the first-order indices since, as explained previously, the rank-based procedure
has not been developed yet for higher-order indices. The empirical c.d.f. based on the empirical measures
px,;n for j = 1,...,N in (34) are constructed with n = 500 evaluations. We repeat the estimation
procedure n, = 200 times. The boxplots of the mean square errors for the estimation of the Fréchet
indices S™(F) and the Wasserstein indices S3'y,, have been plotted in Figure 7. We observe that, for a
fixed total number of calls 450 to the code f (corresponding to a rank-based sample size N = 450 and to
a Pick-Freeze sample size N = 112 for the Fréchet indices S®(F) and N = 74 for the Wasserstein indices
S;W2), the rank-based estimation procedure performs much better than the Pick-Freeze method with
significantly lower mean errors.

Another numerical study, in the particular setting of stochastic computer codes and inspired by [32],
is considered in Section 6.3.

6 Sensitivity analysis with respect to the law of the inputs

This section deals with what is called second-level analysis and that corresponds to the SA with respect
to the input distributions (rather than the inputs themselves). Before explaining our contributions in
this framework, let us briefly describe its state of the art.

6.1 State of the art

The paper [44] is devoted to second-level uncertainty which corresponds to the uncertainty on the input
distributions and/or on the parameters of the input distributions. As mentioned by the authors, such
uncertainties can be handled in two different manners: (1) aggregating them with no distinction [13, 14]
or (2) separating them [44]. In [13], the uncertainty concerns the parameters of the input distributions.
The authors study the expectation with respect to the distribution of the parameters of the conditional
output. In [14], the second-level uncertainties are transformed into first-level uncertainties considering
the aggregated vector containing the input random variables vector together with the vector of uncer-
tain parameters. Alternatively, in [44], the uncertainty brought by the lack of knowledge of the input
distributions and the uncertainty of the random inputs are treated separately. A double Monte-Carlo
algorithm is first considered. In the outer loop, a Monte-Carlo sample of input distribution is generated,
while the inner loop proceeds to a GSA associated to each distribution. A more efficient algorithm is also
proposed with a unique Monte-Carlo loop. The SA is then performed using the so-called Hilbert-Schmidt
dependence measures (HSIC indices) on the input distributions rather than the input random variables
themselves. See, e.g., [29] for the definition of the HSIC indices and more details on the algorithms.
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Figure 7: Model (39) with p; = 1/3, po = 2/3, and p3 = 3/4. Boxplot of the mean square errors of the
estimation of the Fréchet indices S*(IF) (top row) and the Wasserstein indices S3'y,, (bottom row) with
a fixed sample size N, an approximation size n fixed at n = 500, and a number n,, = 200 of replications.
The indices with respect to u = {1}, {2}, and {3} are displayed from left to right. The results of the Pick-
Freeze estimation procedure with N = 112 for the Fréchet indices S"(F) and N = 75 for the Wasserstein
indices S5y, are provided in the left side of each graphic. The results of the rank-based methodology
with N = 450 are provided in the right side of each graphic.

In [45], a different approach is adopted. A failure probability is studied while the uncertainty concerns
the parameters of the input distributions. An algorithm with low computational cost is proposed to handle
such uncertainty together with the rare event setting. A single initial sample allows to compute the failure
probabilities associated to different parameters of the input distributions. A similar idea is exploited in
[41] in which the authors consider input perturbations and Perturbed-Law based Indices that are used to
quantify the impact of a perturbation of an input p.d.f. on a failure probability. Analogously, the authors
of [30, 32] are interested in (marginal) p.d.f. perturbations and the aim is to study the “robustness of the
Sobol indices to distributional uncertainty and to marginal distribution uncertainty” which correspond
to second-level uncertainty. For instance, the basic idea of the approach proposed in [30] is to view the
total Sobol index as an operator which inputs the p.d.f. and returns the Sobol index. Then the analysis
of robustness is done computing and studying the Fréchet derivative of this operator. The same principle
is used in [32] to treat the robustness with respect to the marginal distribution uncertainty. Recently,
[59] proposes a very clever approach of second-level SA when some moments of the distribution of the
inputs are fixed. Its approach characterizes among all compactly supported input distribution with fixed
first moments the range of variability of the Sobol indices.

Note that the “p-box” framework in the sense it is used by [55] presents some similarities with the
example provided in Section 3.3 (in the context of random distributions and Fréchet means). It is also
worth mentioning the classical approach of epistemic GSA of Dempster-Shafer theory (see, e.g., [56, 1]).
This theory describes the random variables together with an epistemic uncertainty traduced in terms of
an associated epistemic variable Z on a set A, a mass function representing a probability measure on the
set P(A) of all subsets A. This lack of knowledge leads to an upper bound and a lower bound of the c.d.f.
and can be viewed as second-level uncertainty.

6.2 Link with stochastic computer codes

We propose a new procedure that stems from the methodology in the context of stochastic computer codes
described in Section 5. We denote by 7; (i = 1,...,p) the distribution of the input X; (i =1,...,p) in
the model given by (1). There are several ways to model the uncertainty with respect to the choice of
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each 7;. Here we adopt the following framework. We assume that each n; belongs to some family P; of
probability measures endowed with the probability measure P,,. In general, there might be measurability
issues and the question of how to define a o—field on some general spaces P; can be tricky. We will
restrict our study to the simple case where the existence of the probability measure P,; on P; is given by
the construction of the set P;. More precisely, we proceed as follows.

e First, for 1 <

i < p, let d; be an integer and let ©; C R%. Then consider the probability space
(91'7 B(@Z)v l/@i) w

here B(0;) is the Borel c—field and veg, is a probability measure on (0;, 3(0;)).

e Second, for 1 < ¢ < p, we consider an identifiable parametric set of probability measure P; on
E;: P; := {ng,0 € O©;}. Let us denote by m; the one-to-one mapping from ©; to P; defined by
m;(0) :=ng € P; and define the o—field F; on P; by

AeF, < 3B € B(©;), A=mi(B).
Then we endow this measurable space with the probability IT; defined, for any A € F;, by

IL;(A) = ve, (7] '(A)).

e Third, in order to perform a second-level SA on (1), we introduce the stochastic mapping fs from
P1 x ... x Ppto X defined by

fs(ms.ooymp) = f(X1,..., Xp) (40)

where (X1,...,X,) is arandom vector distributed as 1 ®. ..®u,. Hence f; is a stochastic computer
code from Py x ... x P, to X and once the probability measures P,, on each P; are defined, we can
perform SA using the framework of Section 5.

6.3 Numerical study

As in [32], let us consider the synthetic example defined on [0, 1] by
f(X1, Xa, X3) = 2X0e 2% 4 X2, (41)

We are interested in the uncertainty in the support of the random variables X;, X5, and X3. To do
so, we follow the notation and framework of [32]. For ¢ = 1, 2, and 3, we assume that X; is uniformly
distributed on the interval [A;, B;], where A; and B; are themselves uniformly distributed on [0,0.1] and
[0.9,1] respectively. As remarked in [32], it seems natural that f will vary more in the Xs-direction when
X, is close to 0 and less when X is close to 1.

As mentioned in Section 6.1, the authors of [32] view the total Sobol index as an operator which inputs
the p.d.f. and returns the total Sobol index. Then they study the Fréchet derivative of this operator and
determine the most influential p.d.f., which depends on a parameter denoted by J. Finally, they make
the parameter § vary.

Here, we adopt the methodology explained in the previous section (Section 6.2). Namely, we consider
the stochastic computer code given by

fs(n177727773) = 2X26_2X1 + X§7 (42)

where the X;’s are independently drawn according to the uniform measure n; on [A;, B;] with A; and B;
themselves uniformly distributed on [0,0.1] and [0.9, 1] respectively. Then to estimate the indices S5y, ,
for u = {1}, {2}, {3}, {1, 2}, {1, 3}, and {2, 3}, we proceed as follows.

1. Fori=1, 2, and 3,
(a) we produce a N-sample ([A;;, Bi;]),_, y of intervals [4;, Bi].
(b) forj=1,...,N,

i. we generate a n-sample (X, jx),
[Aij, Bi ).

.

1, of X;, where X; ; is uniformly distributed on
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ii. we compute the n-sample (Z;),_, , of the output using

Z = f(X1, Xy, X3) = 2Xpe~ 20 4 X2,

Thus we get a N-sample of the empirical measures of the distribution of the output Z given
by

1o :
1z, n ::ﬁ;(szj’k’ forj=1,...,N.

(¢) We order the intervals ([A;;, B;;]);_,  , and we get the Pick-Freeze versions of Z to treat
the SA regarding the input u.

2. Finally, it remains to compute the indicators of the empirical version of (28) using (37) and their
means to get the Pick-Freeze estimators of S3'yy, .

Notice that we only consider the estimators based on the Pick-Freeze method since we allow for
both bounds of the interval to vary and, as explained previously, the rank-based procedure has not been
developed yet, neither for higher-order indices nor in higher dimensions.

Simulations First, we compute the estimators of S3'y;, following the previous procedure with a sample
size N = 500 and an approximation size n = 500. The results are displayed in Table 1 (first row). We
also perform another batch of simulations allowing for higher variability on the bounds: for i = 1, 2, and
3, A; is now uniformly distributed on [0,0.45] while B; is now uniformly distributed on [0.55,1]. The
results are displayed in Table 1 (second row).

u {1} {2} {3} (1.2} | {13} | {23}
A; € [0, 01]

B; €[0.9,1] | S3yy. | 0.07022 | 0.08791 | 0.09236 | 0.14467 | 0.21839 | 0.19066
A; €[0,0.45]
B; €(0.55,1] | Sy, | 011587 | 0.06542 | 0.169529 | 0.22647 | 0.40848 | 0.34913

Table 1: Model (41). GSA on the parameters of the input distributions. Estimations of S3'y,, with a
sample size N = 500 and an approximation size n = 500. In the first row, for i = 1, 2, and 3, A; is
uniformly distributed on [0, 0.1] while B; is uniformly distributed on [0.9,1]. In the second row, we allow
for more variability: for ¢ = 1, 2, and 3, A; is uniformly distributed on [0,0.45] while B; is uniformly
distributed on [0.55,1].

Second, we run another simulation allowing for more variability on the upper bound related to the
third input X3 only: Bs is uniformly distributed on [0.5, 1] (instead of [0.9,1]). For ¢ = 1 and 2, A4, is
still uniformly distributed on [0,0.1] while B; is still uniformly distributed on [0.9,1]. The results are
displayed in Table 2. We still use a sample size N = 500 and an approximation size n = 500.

w | {1y | f2r | {3 | {12} | {1,3} | {23}

S;WQ 0.01196 | 0.06069 | 0.56176 | -0.01723 | 0.63830 | 0.59434

Table 2:  Model (41). GSA on the parameters of the input distributions. Estimations of S5y, with
a sample size N = 500 and an approximation size n = 500 and more variability on Bs, now uniformly
distributed on [0.5,1]. For ¢ = 1 and 2, A; is still uniformly distributed on [0,0.1] while B; is still
uniformly distributed on [0.9, 1].

Third, the aim is to highlight the fact that performing a classical GSA differs from performing a
second-level SA. In that view, we perform a classical GSA on the inputs rather than on the parameters
of their distributions (corresponding to a second-level analysis). Namely, we consider the index S3' vy
and proceed to its estimation with a sample size N = 10%. The reader is referred to [26, Section 3] for the
definition of this index S3' ¢y and its Pick-Freeze estimator together with their properties. The results
are displayed in Table 3.
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w o | | {2 | {3F | {n2} | {13} | {23}

Sycym | 013717 | 0.15317 | 0.33889 | 0.33405 | 0.468163 | 0.53536

Table 3: Model (41). Direct GSA on the inputs. Estimations of S§ .y, with a sample size N = 10*. The
reader is referred to [26, Section 3| for the definition of the index S3' ¢y, and its Pick-Freeze estimator
together with their properties.

Comments When one is interested in the choice of the input distributions of X7, X5, and X3, the first
row in Table 1 shows that each choice is equally important. Now, if we give more freedom to the space
where the distribution lives, the relative importance may change as one can see in Table 1 (second row)
and in Table 2. More precisely, in Table 2, the variability of the third input distribution (namely, the
variability of its upper bound) is five times larger than the other variabilities. Not surprisingly, it results
that the importance of the choice of the third input distribution is then much more important than the
choices of the distributions of the two first inputs.

As said in the previous paragraph, when one is interested in the choice of the input distributions of
X1, Xo, and X3, the first row in Table 1 shows that each choice is equally important. Nevertheless,
performing a classical GSA on the inputs using the Cramér-von-Mises index for example, we see, in Table
3, that the index related to X3 is more than twice as important as X; and X5 (when considering only
first-order effects). Hence, here, the classical GSA largely differs numerically from a second-level SA as
expected.

7 Synthesis and pratical advices

In this short section, we give a “road map” to help the practitioners. We restrict our study to the case of
order-one indices; for higher indices, the road map remains the same except that the rank statistics can
not be used to estimate the several indices.

7.1 First-level sensitivity analysis for the practitioners
7.1.1 The road map

Here, the input distributions are fixed and we aim at performing SA for a deterministic or a stochas-
tic code. In the sections above, we have presented several indices that depend on the nature of the
code/inputs/outputs, on the choice of the family of test functions T,, and on the integrating probability
measure Q. The choice of (T,,Q) is still an open question that is beyond the scope of this work. We
present in Figure 8 a classification tree giving the practitioners the algorithm to be used in order to
estimate the index he is interested in. The several algorithms are described in Section 7.1.2.
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7.1.2 Algorithms

We assume in the following that our only aim is to estimate the order-one index with respect to X7 and
we present the different simulation algorithms depending on the nature of the computer code.

Algorithm 1 Estimating the order-one Sobol index S* for a R-valued deterministic code with R-valued
inputs

Enter N the total number of calls to the computer code

Simulate a N-sample of the inputs (X ;,...,X, ;) forj=1,...,N

Compute the N corresponding outputs Z; = f(X1;,...,Xp ;) for j=1,...,N

Rearrange the pairs (X ;, Z;) for j =1,..., N by increasing order according to the first coordinate
Denote by (X1 (), Zj)) for j =1,..., N the reordered pairs

N—1 N 2
¥ 26 Zon—(F 21 Zs)
kA

d1
return S, =
Rank N-1
an FXitz2— (2, z5)

Algorithm 2 Estimating the order-one Sobol index S* for a R-valued deterministic code with general
inputs (not necessarily R-valued)

Enter N the total number of calls to the computer code
Simulate a Pick-Freeze N*-sample of the inputs (X1 ;,..., X, ;) for j=1,...,N* with N* = | N/2]
Compute the N* corresponding outputs (Z;, Zj(l)) forj=1,...,N*
o= 0 220 (3= 2 2420 /2)
e SN (224(200)2) ~ (s S (2420

return Spp =

Algorithm 3 Estimating the order-one universal index Sj
code with R-valued inputs

Univ for a metric space-valued deterministic

Choose a class of functions T,

Choose a probability measure Q

Enter N the total number of calls to the computer code

Simulate a N-sample of the inputs (X; ;,...,X, ;) for j=1,...,N

Compute the N corresponding outputs Z; = f(X1j,...,Xp ;) forj=1,...,N

Rearrange the pairs (X ;, Z;) for j = 1,..., N by increasing order according to the first coordinate
Denote by (X7 (j), Z(j)) for j =1,..., N the reordered pairs
if Q =P then

= ] ~ _
Compute Nj gys rank 28 i (14) and Dj gyig gani @8 in (15)
N21,GMS,Rank

Dl

o~ B
return S2,GMS,Rank =
2,GMS,Rank

else
Simulate a N-sample (W71, ..., Wy) of a Q-distributed random variable
Compute Ny iy Rank 88 1 (17) and Dj iy Rani 88 in (18)

ﬁzl,Univ,Rank

D1

[ —
return SQ,Univ,Rank -
2,Univ,Rank

end if
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Algorithm 4 Estimating the order-one universal index Sj 5,5, for a metric space-valued deterministic
code with general inputs (not necessarily R-valued)

Choose a class of functions T, with dim(a) =m
Choose a probability measure Q
Enter N the total number of calls to the computer code
if Q =P then
Replace the N-sample of the output in Algorithm 3 by the Pick-Freeze N,,-sample of Algorithm 2
with N, = |[N/(m + 2)]
Simulate m new samples of size N, of the output
Proceed as in Algorithm 3
return S’iGMS’PF
else
Replace the N-sample of the output in Algorithm 3 by the Pick-Freeze N*-sample of Algorithm 2
with N* = | N/2]
Proceed as in Algorithm 3
return ‘§21,Univ,PF
end if

Algorithm 5 Estimating the order-one universal index 53 y;,;, for a R-valued stochastic code with R-
valued inputs

Choose the class of functions Ty, as in (23)
Enter N the total number of calls to the computer code
Enter n the approximation size
Simulate a N,,-sample of the inputs (X1 j,...,X, ;) for j =1,..., N, with N, = |[N/n|
for j=1,...,N, do
Compute n times the random value of f(X; ;,..., X, ;) denoted by Z;, for k=1,...,n
end for
Proceed as in Algorithm 3 with output the empirical measure pz; , = % Yoreq 0 Zi

Q1
return SQ,WQ ,Rank,n

Algorithm 6 Estimating the order-one universal index S; 1;,;,, for a R-valued stochastic code with general
inputs (not necessarily R-valued)

Choose the class of functions T, as in (23) with dim(a) =m
Enter N the total number of calls to the computer code
Enter n the approximation size
Simulate a N,, ,-sample of the inputs (X1 ;,...,X, ;) for j =1,..., N, with Np, , = |[N/(n(m+2))]
forj=1,...,Np,, do
Compute n times the random value of f(X ;,...,X, ;) denoted by Z; for k=1,...,n
end for
Proceed as in Algorithm 4 with output the empirical measure pz; , = % Shey 07,

a1
return SQ,Wg,PF,n
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7.2 Second-level sensitivity analysis for the practitioners

In this section, we present the algorithms to be used in second-level SA.

Algorithm 7 Estimating the order-one universal index Sj y;,;, for a R-valued deterministic code with
R-valued inputs

Choose the class of functions T, as in (23)
Enter N the total number of simulations
Enter n the approximation size
Simulate a N-sample of the distribution parameters of the inputs (6y ;,...,6, ;) for j=1,...,N
for j=1,...,N do
Simulate a N-sample of the inputs (X1 ;,...,Xp ;)
Simulate a n-sample of inputs distributed following (u, ;,...,pe, ;) denoted by (X1 jx,..., Xp k)
fork=1,....n
Compute the n corresponding outputs Zj i = f(X1 k..., Xpjk) for k=1,...,n
end for
Proceed as in Algorithm 5 with output the empirical measure iz, ,, = %Zzzl 07;

g1
return S, ) pr,

Algorithm 8 Estimating the order-one universal index Sj ,;, for a R-valued deterministic code with
general inputs (not necessarily R-valued) for second-level SA

Choose the class of functions T, as in (23)
Enter N the total number of simulations
Enter n the approximation size
Simulate a N-sample of the distribution parameters of the inputs (6y ;,...,0, ;) for j=1,...,N
for j=1,...,N do
Simulate a N-sample of the inputs (X j,...,X, ;)
Simulate a n-sample of inputs distributed following (u, ;, ..., pe, ;) denoted by (X jx,..., Xp k)
fork=1,...,n
Compute the n corresponding outputs Z; i = f(X1 k..., Xpjk) for k=1,...,n
end for
Proceed as in Algorithm 6 with output the empirical measure pz; ,, = %22:1 07, 4
return g%’W%PF’n

8 Conclusion

In this article, we present a very general way to perform SA when the output Z of a computer code lives
in a metric space. The main idea is to consider real-valued squared integrable test functions (7, (Z))qcq
parameterized by a finite number of elements of a probability space. Then Hoeffding decomposition of the
test functions T,(Z) is computed and integrated with respect to the parameter a. This very general and
flexible definition allows, on the one hand, to recover a lot of classical indices (namely, the Sobol indices
and the Cramér-von-Mises indices) and, on the other hand, to perform a well tailored and interpretable
SA. Furthermore, a SA is also made possible for computer codes for which the output is a c.d.f. and for
stochastic computer codes (that are seen as an approximation of c.d.f.-valued computer codes). Last, it
enables also to perform second-level SA by embedding second-level SA as a particular case of stochastic
computer codes.

As already seen, a clear limitation comes from the dimensions. On the one hand, the metric based
on Wasserstein balls is well-suited in dimension one for its nice theoretical properties and its easy-to-
implement estimation. In higher dimension, things become more tricky. On the other hand, the rank-
based estimation has not been developed yet in dimension higher than one. A nice perspective is then to
tackle the estimation beyond the dimension one.
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A Proof of Proposition 5.1

Notation It is convenient to have short expressions for terms that converge in probability to zero.
We follow [61]. The notation op(1) (respectively Op(1)) stands for a sequence of random variables that
converges to zero in probability (resp. is bounded in probability) as n — oo. More generally, for a
sequence of random variables R,,,

X, = op(R,) means X, =7Y,R, with Y, 50
X, =O0p(R,) means X,=Y,R, with Y, =O0p(1).

For deterministic sequences X,, and R,,, the stochastic notation reduce to the usual o and O. Finally, ¢
stands for a generic constant that may differ from one line to another.

Proof of Proposition 5.1. One has

/ Ju u ./ Ju Qu / Ju u
N (SQ,Wq,Ustat,n - SQ,GMS) =VN (SQ,Wq,Ustat,n - SQ,GMS,Ustat> + VN (SQ,GMS,Ustat - SQ,GZMS) :

By [27, Theorem 2.4], the second term in the right-hand side of the previous equation is asymptotically
Gaussian. If we prove that the first term in the right-hand side is op(1), then by Slutsky’s Lemma [61,

~

Lemma 2.8], VN (S;GMS_UStat_n - S;GN[S) is asymptotically Gaussian.

o~ o~

Now we prove that v N <S;GMS’Umt’n — S;GMS’Usm) = op(1). We write

St w. Ustatn — S8 aars stat = C(ULNm: Uz Ny Us N Us,von) — ©(Ur Uz, Us v, Us, )
(U1,Nn — Ui n) — (Uz,npn — Uz n)] (Us,n — Us n)
[(Us,nn —Usn) = (Us,nn — Us,n) + (Us,n — Usn)] (Us, v — Usn)
[(Us,Nn — Us,N) — (Us,nn — Usn)] (Ur,n — Us )
[(Us,Njn — Us,N) — (Us,njp — Us,n) + (Us,n —UsN)] (Us,y — Uan)

Since (U;,N,n — Ui,nn), for I = 3 and 4 and (Us,y — Uy, n) converges almost surely respectively to 0 and
I(®5) — I(Py), the denominator converges almost surely. Thus it suffices to prove that the numerator
is op(1/v/N) which reduces to prove that vN (U, n., —Upn) = op(l) for I = 1,...,4, where U .,
(respectively U n) has been defined in (35) (resp. (11)). Let [ = 1 for example. The other terms can be
treated analogously. Here, m(1) = 3. We write

E[|Ui,nn — Ui nl]

—1
N -1
(3> (3 Z E H‘I)l (H’XT(“),nv,U'XT(iQ),nvll’XT(iS),n) -0 (NXT(i1)7HXT(,i2)aNXT”S)) H

1<i1 <ia<is<N
TES3

=E Hq)l (I'LX1777/7"',"LX27”7IJ/X3,”) - (I‘I'XNI‘I’Xz’p’Xs)H

N

N

}

2B H]qu(uxl x5 ) Wiy sixy) — Wy (s ot ) SWa (i st )
=: 2E [B,)]
where the random variable B, in the expectation in the right-hand side of the previous inequality is

a Bernoulli random variable whose distribution does not depend on (ux,, fix,, ptx,). Let A(N) be the
following event

AN) = {Wy(px, 1) x, 3)) — Waltix, ays x, 2))| = 6(N)}.
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Obviously, we get E I:Bn]].A(N)C} < P(A(N)€), where A€ stands for the complementary of A in Q. Fur-
thermore,

E[Bulaw)] < E[B.A(N)] = P(B, = 1|A(N))

<

T

JUATHEER

3
=1
12
< (S(TE[WQ(/"LX17MX1»'”)]‘

~—

Finally, we introduce € > 0 and we study:

VN
B (VN [U1,v0 = Unwl > £) < “ZE[[U1, v — Vsl

< 2@1@ [B,]
< Y B, )] + 2V AV

It remains to choose first, 6 (V) so that P(A(N)¢) = o (I/W) and second, n such that E[W, (ux,, px, »n)] =

o(6(N)/v/N). Consequently, VN (U n., — Ui.n) = op(1). Analogously, one gets VN (Ui n.n — Uin) =
op(1) for [=2, 3 and 4. O
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