M. Backens and A. Kissinger, ZH: A complete graphical calculus for quantum computations involving classical non-linearity, Proceedings of the 15th International Conference on Quantum Physics and Logic, vol.287, pp.23-42, 2018.

C. John, B. Baez, F. Coya, and . Rebro, Props in network theory, Theory and Applications of Categories, vol.33, issue.25, pp.727-783, 2018.

M. Barr and C. Wells, Toposes, theories, and triples. Reprints in Theory and Applications of Categories, vol.12, pp.1-287, 2005.

F. Bonchi, J. Holland, R. Piedeleu, F. Pawe-l-soboci?ski, and . Zanasi, Diagrammatic algebra: from linear to concurrent systems, Proceedings of the ACM on Programming Languages, vol.3, pp.1-28, 2019.

F. Bonchi, P. Sobocinski, and F. Zanasi, Full abstraction for signal flow graphs, ACM SIGPLAN Notices, vol.50, issue.1, pp.515-526, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01178437

F. Bonchi, F. Pawe-l-soboci?ski, and . Zanasi, Interacting hopf algebras, Journal of Pure and Applied Algebra, vol.221, issue.1, pp.144-184, 2017.

T. Carette, D. Horsman, and S. Perdrix, Szx-calculus: Scalable graphical quantum reasoning, 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02400070

T. Carette and E. Jeandel, A recipe for quantum graphical languages, 47th International Colloquium on Automata, Languages and Programming, 2020.

N. Chancellor, A. Kissinger, J. Roffe, S. Zohren, and D. Horsman, Graphical structures for design and verification of quantum error correction, 2016.

, Apiwat Chantawibul and Pawe l Soboci?ski. Monoidal multiplexing, International Colloquium on Theoretical Aspects of Computing, pp.116-131, 2018.

B. Coecke and R. Duncan, Interacting quantum observables: categorical algebra and diagrammatics, New Journal of Physics, vol.13, issue.4, p.43016, 2011.

P. Curien, The joy of string diagrams, International Workshop on Computer Science Logic, pp.15-22, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00697115

J. Girard, Proof-nets: the parallel syntax for proof-theory, Logic and Algebra, pp.97-124, 2017.

P. Hackney and M. Robertson, On the category of props, Applied Categorical Structures, vol.23, issue.4, pp.543-573, 2015.

A. Hadzihasanovic, Zw calculi: diagrammatic languages for pure-state quantum computing, Logic and Applications, p.13, 2018.

A. Kissinger and D. Quick, Tensors,!-graphs, and non-commutative quantum structures, New Generation Computing, vol.34, issue.1-2, pp.87-123, 2016.

S. Lack, Composing props. Theory and Applications of Categories, vol.13, pp.147-163, 2004.

Y. Lafont, Towards an algebraic theory of boolean circuits, Journal of Pure and Applied Algebra, vol.184, issue.2-3, pp.257-310, 2003.

S. Maclane, Categorical algebra, Bulletin of the American Mathematical Society, vol.71, issue.1, pp.40-106, 1965.

M. Filippo and . Miatto, Graphical calculus for products and convolutions, 2019.

A. Michael, I. Nielsen, and . Chuang, Quantum computation and quantum information, 2002.

T. Pirashvili, On the prop corresponding to bialgebras. Cahiers de topologie et géométrie différentielle catégoriques, vol.43, pp.221-239, 2002.

P. Selinger, A survey of graphical languages for monoidal categories, New structures for physics, pp.289-355, 2010.

F. Zanasi, Interacting hopf algebras: the theory of linear systems, 2018.
URL : https://hal.archives-ouvertes.fr/tel-01218015

. }-=-g, !(h(t)) =!(? f (a) ? S 1 (g(t)) ? ? f (b) )

. =!-f, Now let l : K ? SL be another functor such that { } ? l = g and ! ? l = f . we have l(t) ? SL[l(a), l(b)] the structure theorem gives us: l(t) = ? l(a) ? S 1 ({l(t)}) ? ? l(b) = ? f (a) ? S 1 (g(t)) ? ? f (b) . So l = h. The diagram is a pullback square. Proof of Lemma 7. By construction C p is the pullback of, f (b) = f (t)

, We consider the wire striper functor { } : SL ? L. It is clearly essentially surjective. It is also full and faithful since it induces a bijection between SL

, ? b )) ? ? b = ? a ? B(O(? )) ? ? b . Thus we only need to show that B(O(? )) of BoxP of type n · 1 ? m · 1 is in boxed form if it is of the form ? m ? f ? ? n . A diagram in boxed form satisfies B(O(? )) = ? thus we just have to show that any ? : n · 1 ? m · 1 can be rewrite into boxed form

, The structure theorem of BoxL finally gives us ? = ?. U nbox is faithful. Given ? ? SL[a, b], the structure theorem gives us ? = ? b ? S 1 ({?}) ? ? a Then U nbox(? b ? B({?}) ? ? a ) = ? b ? S 1 (O(B({?}))) ? ? a =, Proof of Lemma 9. U nbox is an N 0 -colored prop morphism so it is essentially surjective