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ABSTRACT

Context. Kernel phase is a data analysis method based on a generalization of the notion of closure phase, which was invented in the
context of interferometry, but it applies to well corrected diffraction dominated images produced by an arbitrary aperture. The linear
model upon which it relies theoretically leads to the formation of observable quantities robust against residual aberrations.
Aims. In practice, the detection limits that have been reported thus far seem to be dominated by systematic errors induced by calibration
biases that were not sufficiently filtered out by the kernel projection operator. This paper focuses on the impact the initial modeling of
the aperture has on these errors and introduces a strategy to mitigate them, using a more accurate aperture transmission model.
Methods. The paper first uses idealized monochromatic simulations of a nontrivial aperture to illustrate the impact modeling choices
have on calibration errors. It then applies the outlined prescription to two distinct data sets of images whose analysis has previously
been published.
Results. The use of a transmission model to describe the aperture results is a significant improvement over the previous type of
analysis. The thus reprocessed data sets generally lead to more accurate results, which are less affected by systematic errors.
Conclusions. As kernel-phase observing programs are becoming more ambitious, accuracy in the aperture description is becoming
paramount to avoid situations where contrast detection limits are dominated by systematic errors. The prescriptions outlined in this
paper will benefit from any attempt at exploiting kernel phase for high-contrast detection.
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1. Introduction

Within the anisoplanetic field of an imaging instrument, and in
the absence of saturation, an in-focus image I can formally be
described as the result of a convolution product

I = O ? PSF (1)

between the spatially incoherent brightness distribution of an
object O and the instrumental point spread function (PSF). The
careful optical design of telescopes and instruments assisted by
adaptive optics (AO) attempts to bring the PSF as close as pos-
sible to the theoretical diffraction limit. Yet even for high qual-
ity AO correction, subtle temporal instabilities in the PSF make
it difficult to solve for important problems, such as the follow-
ing: the identification of faint sources or structures in the direct
neighborhood of a bright object (the high-contrast imaging sce-
nario) or the discrimination of sources that are close enough
to one another to be called nonresolved (the super-resolution
scenario). Weak signals of astrophysical interest compete with
time-varying residual diffraction features that render the decon-
volution difficult.

The overall purpose of interferometric processing of
diffraction-dominated images is to provide an alternative to the
otherwise ill-posed image deconvolution problem. The tech-
nique takes advantage of the properties of the Fourier transform,
which turns the convolution into a multiplication. One must,

however, abandon the language describing images and instead
manipulate the modulus, which is also referred to as the visi-
bility, and the phase of their Fourier transform counterpart. This
Fourier transform can be sampled over a finite area of the Fourier
plane traditionally described using the (u, v) coordinates, whose
extent depends on the geometry of the instrument pupil.

Nonredundant masking (NRM) interferometry uses a cus-
tom aperture mask featuring a finite number of holes that
considerably simplifies the interpretation of images. Accurate
knowledge of the mask’s subaperture locations unambiguously
associates particular complex visibility measurements in the
image’s Fourier transform to specific pairs of subapertures form-
ing a baseline. The Fourier phase Φ at the coordinate (u, v) is the
argument of a single phasor:

φ(u, v) = Arg
(
v0(u, v)ei(φ0(u,v)+∆ϕ(u,v))) (2)

= Φ0(u, v) + ∆ϕ(u, v), (3)

where v0(u, v) and φ0(u, v) represent the intrinsic target visibility
modulus and phase for this baseline, respectively, and ∆ϕ(u, v)
is the instrumental phase difference (i.e., the piston) experi-
enced by the baseline at the time of acquisition. The same geo-
metrical knowledge also makes it possible to combine complex
visibility measurements by baselines forming closing-triangles,
which lead to the formation of closure phases, which are observ-
able quantities engineered to be insensitive to differential piston
errors affecting the different baselines.
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The closure phase was first introduced in the context of
radio interferometry by Jennison (1958) and eventually exploited
in the optical starting with Baldwin et al. (1986). This useful
observable enables NRM interferometry to detect companions
at smaller angular separations than a coronagraph can probe.

Kernel-phase analysis attempts to take advantage of the
same property without requiring the introduction of a mask.
The description of the full aperture requires a more sophisti-
cated model that reflects the intrinsically redundant nature of the
aperture. Any continuous aperture can be modeled as a periodic
grid of elementary subapertures, resulting in a virtual interfero-
metric array where every possible pair of subapertures forms a
baseline. Whereas the NRM ensures that each baseline is only
sampled once, the regular grid results in a highly redundant
scenario. For a baseline of coordinate (u, v) and redundancy R,
the Fourier phase is that of the sum of R phasors that all measure
the same φ0(u, v) but experience different realizations of instru-
mental phase (∆ϕk)R

k=1:

φ(u, v) = Arg

 R∑
k=1

v0(u, v)ei(φ0(u,v)+∆ϕk)

 . (4)

In the low-aberration regime provided by modern AO sys-
tems, the impact the residual pupil aberration ϕ has on the
Fourier phase can be linearized and Eq. (4) can be rewritten as:

φ(u, v) = φ0(u, v) +
1
R

R∑
k=1

∆ϕk. (5)

The list of what pairs of subapertures contribute to the com-
plex visibility of a redundant baseline is kept in the baseline
mapping matrix A. It contains as many columns as there are sub-
apertures (nA) and as many rows as there are distinct baselines
(nB). Elements in a row of A are either 0, 1, or −1 (see Fig. 1
of Martinache 2010). The phase that is sampled at all relevant
coordinates of the Fourier-plane and gathered into a vector Φ,
can thus be written compactly as:

Φ = Φ0 + R−1 · A · ϕ, (6)

where R is the diagonal (redundancy) matrix that retains the tally
of how many subaperture pairs contribute to the Fourier phase
for that baseline, ϕ is the aberration experienced by the aper-
ture, and Φ0 is the Fourier phase associated with the object being
observed; it is related to the object function O of Eq. (1) by the
Van-Cittert Zernike theorem. The redundancy R is expected to
be directly proportional the modulus transfer function (MTF) of
the instrument. The product R−1 · A, referred to as the phase
transfer matrix, describes the way pupil phase aberration propa-
gate into the Fourier plane. The baseline mapping and the phase
transfer matrices are rectangular and feature nB rows (the num-
ber of baselines) for nA columns (the number of subapertures in
the pupil), with nB > nA.

As shown in Martinache (2010), selected linear combina-
tions of the rows of the phase transfer matrix cancel the effect of
the pupil phase ϕ out. These linear combinations, which are gath-
ered into an operator called K (the left-hand null space or kernel
of the phase transfer matrix), project the Fourier phase onto a
subspace that is theoretically untouched by residual aberrations.
The resulting observables, called kernel phases, are a generaliza-
tion of the concept of closure phase, which can be found for an
arbitrary pupil, regardless of the level of redundancy.

Practice suggests that the kernel and closure phase do not
self-calibrate perfectly. Recently published studies using kernel

phase to interpret high-angular resolution, diffraction-dominated
observations indeed lead to contrast detection limits, which are
mostly constrained by systematic errors (Kammerer et al. 2019;
Laugier et al. 2019; Sallum & Skemer 2019) instead of statisti-
cal errors (Ceau et al. 2019). The goal of this paper is to provide
insights into the limitations of Fourier phase methods, in gen-
eral, and to introduce the means by which to improve upon these
limitations.

This difficulty affects the kernel-phase interpretation of
images as well as that of NRM interferograms. Despite
the generalized assistance of AO during NRM observations
(Tuthill et al. 2006), the need for long integration times and the
use of subapertures that are not infinitely small means that inter-
ferograms are not simply affected by a simple and stable pis-
ton, but by a time-varying higher order amount of aberration
(Ireland 2013). Closure phases, which are thus acquired on a
point source, therefore rarely reach zero and are biased.

Nevertheless, even when evolving over time, if the spatial
and temporal properties of the perturbations experienced by the
system remain stable across the observation of multiple objects,
the overall resulting bias is also expected to remain stable. It is
therefore possible to calibrate the closure phases acquired on a
target of interest with those acquired on a point-source. Thus
calibrated closure phases have been used as the prime observ-
able for the detection of low to moderate contrast companions
(Kraus et al. 2008). There is, however, a limit to the stability
of the observing conditions when moving from target to target:
Changes in elevation, apparent magnitude for the AO, and tele-
scope flexures result in the evolution of the closure-phase bias.
Therefore, in practice, the observations never calibrate perfectly
and the evolution of the calibration bias results in what is gener-
ally referred to as a systematic error.

For low-to-moderate contrast detections up to a few tens,
systematic errors are often a minor contribution that do not
significantly affect the interpretation of the data. However, as
observing programs become more ambitious, attempting the
direct detection of higher contrast companions (Kraus & Ireland
2012) in a part of the parameter space that cannot be probed
by coronagraphic techniques yet, systematic errors become
more important than statistical errors and one must resort to
more advanced calibration strategies using multiple calibrators
(Ireland 2013; Kammerer et al. 2019) to better estimate the cali-
bration bias that minimizes the amount of systematic error.

2. Fourier phase calibration errors

Kernel-phase analysis requires approximating the near-
continuous aperture of the telescope by a discrete representation:
A virtual array of subapertures, which are laid on a regular grid
of a predefined pitch s, paves the surface covered by the original
aperture. The computation of all the possible pairs of virtual
subapertures in the array leads to the creation of a second grid
of virtual baselines, the majority of which are highly redundant.
An example is shown in Fig. 1 for the aperture of an 8 m
telescope, which is discretized with a grid of pitch s = 42 cm.
Keeping track of what pairs of subapertures contribute to all
the baselines leads to the computation of the baseline mapping
matrix A and the redundancy matrix R. The two are used to
eventually determine the kernel operator K that generalizes the
notion of closure phase, as introduced by Martinache (2010).

The following simulation illustrates the interest of this line
of reasoning. Using a single, simulated, monochromatic (λ =
1.6 µm), and noise-free image of a 10:1 contrast binary object
(located two resolution elements to the left of the primary) that is
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Fig. 1. Binary discrete representation of the SCExAO instrument pupil
for kernel-phase analysis. Left panel: dicretized instrument pupil built
from a square grid of pitch s = 42 cm. Right panel: Fourier coverage
associated with this discretization. The color code used to draw the
Fourier coverage reflects the redundancy associated with the virtual
interferometric baselines.

Fig. 2. Left: simulated monochromatic (λ= 1.6 µm) SCExAO image of
a 10:1 binary in the presence of 100 nm of coma along the axis of the
binary. Right: associated Fourier phase ranging from ±1.5 radian (see
also Fig. 3).

affected by a fairly large (100 nm rms) amount of coma is shown
in the left panel of Fig. 2. The Fourier phase Φ extracted from
this image (shown in the right panel of Fig. 2) appears to be com-
pletely dominated by the aberration. The plot of the same raw
Fourier phase (the blue curve in the top panel of Fig. 3) com-
pared to the predicted Fourier signature of the sole binary Φ0
confirms this observation. By using the kernel operator K com-
puted according to the properties of the discrete model1 repre-
sented in Fig. 1, it is possible to project the 546-component noisy
Fourier phase vector Φ onto a subspace that results in the forma-
tion of a 414-component kernel. The bottom panel shows how,
despite the drastic difference between the raw and theoretical
Fourier phase, the two resulting kernels match one another: The
kernel operator effectively erases the great majority of the aber-
rations affecting the phase present in the Fourier space, while
leaving enough information to describe the target in a meaning-
ful manner, such that:

K · Φ = K · Φ0. (7)

Although the application of K strongly reduces the impact of
the aberration, the match between the kernel curves is not per-
fect. The small difference between the two example curves is
what is generally referred to as the calibration error. This error
can be independently measured using the image of a point source

1 The model was computed using a python package called XARA,
which was developed in the context of the KERNEL project, and is
available for download http://github.com/fmartinache/xara/

Fig. 3. Demonstration of the impact of the kernel processing. Top panel:
experimental Fourier phase extracted from a single aberrated image
shown in Fig. 2 (the blue curve) bears little ressemblance with the the-
oretical expected binary signal (in orange). Contrasting with the raw
Fourier phase, the bottom panel shows how the projection onto the ker-
nel subspace efficiently erases the impact of the aberration and brings
the experimental kernel-phase curve (K ·Φ), which is also plotted with a
solid blue line, much closer to its theoretical counterpart (K ·Φ0), which
is now plotted with a dashed orange line so as to better distinguish them.

(a calibrator), assuming that the system suffers from the same
aberration. In this noise-free scenario, the subtraction of the ker-
nel phase extracted from one such calibration image would result
in a perfect match. An instrumental drift between the two expo-
sures would result in a new bias. If the magnitude of this new bias
becomes comparable to or larger than the statistical uncertain-
ties; the interpretation of the kernel and closure phase typically
requires invoking a tunable amount of systematic error added in
quadrature to the uncertainty.

3. Kernel phase discretization prescriptions

Given that no noise was included in this ideal scenario, the fact
that some aberration leaks into the kernel and results in the need
for calibration suggests that the discrete model used to describe
how pupil phase propagates into the Fourier plane is not suffi-
ciently accurate. Thus, we look into ways to improve it.

3.1. Building a discrete representation

The discretization process is as follows: A high-resolution 2D
image of the aperture is generated from the details of the pupil
specifications (outer and inner diameter, spider thickness, angle,
and offset). A square grid of subapertures of pitch s is laid atop
the pupil image and the points that fall within the open parts of
the aperture are kept in the model. To be counted amongst the
virtual subapertures, the area of the transmissive part of the orig-
inal aperture that overlaps with the region covered by the square
virtual subaperture has to be greater than 50%. When building
the model, it is critical to ensure that no virtual baseline is greater
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Fig. 4. Example of discretized version of SCExAO’s pupil using a
square grid, aligned with the center of the aperture. Only the virtual
subapertures for which the transmission, which was determined as the
normalized intersection between the virtual subaperture and the under-
lying pupil, is greater or equal to 50% are kept as valid subapertures
contributing to the model. The s = 0.42 m pitch value was chosen so
as to fit an entire number (here 19) of subapertures across the pupil
diameter.

than the actual telescope diameter: This would indeed result
in attempting to extract information from outside the Fourier
domain to which the true aperture gives access. To mitigate this
risk, one needs to first ensure that an entire number of sub-
apertures fits within one aperture diameter and then eliminate
all of the computed baselines that are greater than the aperture
diameter.

A regular grid is required so that the density of the dis-
crete representation is as homothetic as possible to the original
aperture: This translates into a model redundancy R that better
matches the true instrument MTF. It is also important to align
the grid with the aperture model so that the symmetry properties
of the apertures are reflected in its discrete representation: one
either uses a grid that is centered on the aperture, which features
an integer odd number of apertures (the option retained to build
the discretized aperture shown in this paper), or an offset grid
with an integer even number of subapertures.

Figure 4 introduces the example that serves as a reference
to compare the relative merits of different discrete models. It
uses the Subaru Telescope pupil mask of the SCExAO instru-
ment (Jovanovic et al. 2015), which is characterized by its large
(2.3 m diameter) central obstruction and nonintersecting thick
spider vanes at the nontrivial angle of 51.75◦ (Lozi et al. 2009).
This nontrivial aperture geometry makes it a rich test case. Using
the aforementionned recommendations, that is, a centered grid
with a s = 0.42 m pitch, fits almost exactly 19 virtual subaper-
tures across the aperture nominal diameter of 7.92 m.

The nA = 272 virtual subapertures of this array form nB =
562 distinct baselines. As discussed in Martinache (2013), for
a rotational symmetric of order 2 aperture2, the Fourier phase
and its kernels are insensitive to even order aberrations. This
property is reflected in the properties of the linear phase transfer
model: The number of nonsingular values of the baseline trans-
fer matrix A should be equal to nE = nA/2, therefore leaving
nK = nB − nA/2 kernel phases. For the kernel analysis to lead to
optimal results, it is important to ensure that these properties are

2 The aperture is identical to itself rotated by 180◦ relative to its center.

verified. An aperture that does not respect this symmetry condi-
tion results, in contrast, in less (nK = nB − nA + 1) kernels.

3.2. Grid pitch and image size

The 42 cm pitch of the grid illustrated in Fig. 4 does not offer
enough resolution to reflect the presence of the 25 cm thick spi-
der vanes of the real aperture. This contrasts with models that
have generally been used since the inception of the kernel phase
(see for instance Fig. 2 of Martinache 2010) that have naively
overemphasized the impact of spider, which in turn contributes,
as is made clear below, in amplifying the calibration bias.

The pitch s of the grid is of course a free parameter that
can be adjusted: The finer the grid, the more representative the
details of the pupil are expected to become and the more capable
of capturing higher spatial frequency are the components of the
images. A discrete model with a finer pitch, however, implies the
description of a wider effective field of view (of radius 0.5λ/s)
over which the kernel analysis can lead to meaningful results.
The size of the image therefore imposes a limit on how fine the
pitch can get.

For the wavelength (λ = 1.6 µm) of the simulations used in
this section, the plate-scale (16.7 mas per pixel) and size (128 ×
128) of the images suggest that the pitch cannot be finer than
s > 206.265 × 1.6/(128 × 16.7) ≈ 0.15 m. Beyond this simula-
tion scenario, image noises induced by dark current, readout and
photon noise, and a preference for computationally manageable
problems guide the user toward using coarser models in practice.

3.3. Comparing models

To assess the relative merits of multiple models, we look at
the impact the discretization strategy has on the magnitude of
the calibration bias. We have seen that the pitch of the model
impacts the overall dimension of the problem. It also impacts
the associated redundancy R and therefore the overall magnitude
of the kernel phases extracted from a given image. To enable a
meaningful comparison of multiple models, we compare the root
mean square of the calibration bias to the theoretical standard
deviation of the theoretical signature (see, for instance, Eq. (27)
of Ceau et al. 2019) induced by a 100:1 contrast companion that
would be located two resolution elements to the left of the pri-
mary along the horizontal axis.

The simulations systematically include a 20 nm rms static
(odd) aberration which is either a three-cycle horizontal sinu-
soid or coma along the same direction. These two examples were
selected first because they are both perfectly odd, and therefore
have full impact on the analysis, and second because they fea-
ture different structures: The impact of the sinusoidal modula-
tion is more uniformly distributed across the aperture, whereas
the impact of the coma (similar to that of most higher order
Zernike modes) is stronger toward the edges. The same two
images (128 × 128 pixels, one featuring coma and one featuring
the sinusoidal aberration) were processed using the kernel-phase
pipeline, using three discrete models. The results of these three
analyses are summarized in Fig. 5, which features, side by side,
a rendering of the discrete aperture model and the plot of the thus
biased kernel-phase vector extracted from either image, as well
as in Table 1, which summarizes the dimensions of the models
and their intrinsic sensitivity to calibration error.

The first model, presented in the top panel of Fig. 5, is the
reference using the s = 0.42 m pitch grid introduced earlier.
Using this model, the magnitude of the calibration bias extracted
from the images affected by either type of aberration represents a
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Fig. 5. Comparison of the self-calibrating performance of the kernel-phase analysis of a single image for three discrete models of the same
aperture. Each of the three panels features, side by side, a 2D representation of the discrete aperture model used and a plot of the kernels extracted
from the image of a point source (the calibration error) in the presence of either coma (the orange curve) or a three-cycle sinusoidal aberration
(the red curve) and how they compare to the signal of a 100:1 contrast binary (the blue curve). Top panels: reference binary model of the SCExAO
pupil, with a 42 cm pitch; middle panel: denser model with a 21 cm pitch that more accurately matches the fine structures of the telescope;
third panel: model that uses the original 42 cm pitch grid, but it includes the transmission function.
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Table 1. Summary of the model properties and their performance.

Sparse binary Dense binary Sparse gray

Pitch 0.42 0.21 0.42
nA 272 956 300
nB 562 2132 562
nK 426 1654 412
Ref. signal 0.435 1.583 0.402
Coma bias 0.180 (41%) 0.317 (20%) 0.036 (9%)
Sine bias 0.286 (66%) 0.263 (17%) 0.026 (6%)

Notes. We note that nA, nB, and nK represent the number of subaper-
tures, the number of baselines, and the number of kernels of each model,
respectively. The coma and sine bias rows show the magnitude of the
bias induced 20 nm rms of coma and the sinusoidal aberration in radi-
ans, respectively.

significant fraction (on the order of 50%) of the signature of the
100:1 binary companion. Under such circumstances, the contrast
detection limits associated with these uncalibrated kernel phases
are likely to be rapidly dominated by this systematic error. The
middle panel of Fig. 5 illustrates the impact of a finer s = 0.21 m
grid pitch: The model better reflects the presence of the spiders
and the overall shape of the pupil. A larger number of kernels
was extracted from the same image (almost four times as many),
but more importantly, for this discussion, the relative magnitude
of the calibration bias is reduced by a factor ≈2−3: A kernel-
phase analysis based on a finer and more accurate description of
the original aperture would feature reduce model-induced cali-
bration errors and would, therefore be less susceptible to cali-
bration errors in general.

Increasing the resolution of the grid is not the only available
option. One can indeed also refine its description by allowing
for a variable subaperture transmission. In addition to deciding
whether to keep or discard one virtual subaperture as part of the
model, the information on the clear fraction of the subaperture,
translated into a local transmission value, can be appended and
taken into account when creating the phase transfer model. Such
a “gray aperture” model makes it possible to more accurately
describe the edges and high-spatial frequency features of the
aperture without necessarily increasing the pitch of the model.
One example using such a continuous transmission model is
illustrated in the bottom panel of Fig. 5: despite using a grid
pitch identical to the reference model, the discrete representa-
tion of the aperture clearly better outlines the finer features of
the aperture as the trace of the spider vanes becomes visible. For
this example, the transmission cut-off value was set to 10−3: The
gray model includes a slightly higher number of virtual subaper-
tures than its binary counterpart for which the cut-off was set to
0.5. In the end, one forms a number of kernels (see Appendix A
for a general discussion regarding the number of kernels) similar
to the binary case. The improvement brought by the inclusion of
this transmission model is substantial: The magnitude of the bias
is brought well below 10% of the signature of the 100:1 binary
companion.

The two effects of a finer resolution and a transmission model
can be compounded to lead to even better performance. Generally,
whether one uses a binary or a gray model, doubling the resolution
of the grid leads to an improvement by a factor of ≈2. The perfor-
mance of the kernel phase reaches a point where the details of the
implementation of the upstream simulation becomes critical.

Overall, there seems to be no significant difference between
the two types of aberrations introduced. Sinusoidal modulation

seems to be better processed in general, which is likely because
of the sharper edge structure of the coma that systematically
requires more resolution. The impact of aberrations of higher
spatial frequency, beyond what the chosen model can effectively
describe, are filtered out either by adequate image cropping (fol-
lowing the recommendations given in Sect. 3.2) or by the appli-
cation of an image mask. We can conclude that including the
aperture transmission model is a major improvement that renders
the kernel-phase analysis less susceptible to systematic errors.

4. Kernel-phase analysis revisited

In this section, we use the recommendations outlined in the pre-
vious section and apply them to a series of data sets whose
kernel-phase analysis has already been published. We feature
the following two applications: the analysis of a ground-based
data set published by Pope et al. (2016) and an extended version
of the data set used for the original kernel-phase publication by
Martinache (2010). The review of these two applications further
illustrates the importance of better aperture modeling practices
for kernel-phase analysis.

4.1. Palomar/PHARO

The data consist of two data cubes of 100 images of the
binary system α-Ophiuchi (Hinkley et al. 2011) and of the single
star ε-Herculis that were acquired with the PHARO instrument
(Hayward et al. 2001) at the focus of the Palomar Hale Tele-
scope after AO correction was provided by the P3K AO system
(Dekany et al. 2013).

The data cubes were recovered from an archive linked in
the original publication. The preprocessed large 512×512 pixels
original frames were first cropped down to a more manageable
64×64 pixel size. With a plate scale of 25 mas per pixel, the field
of view is still ±800 mas. To reach sufficient resolution in the
Fourier space, a fast Fourier transform (FFT) based extraction
algorithm, such as the one used in the original study, requires an
adapted amount of zero-padding. The now standard complex vis-
ibility extraction method of XARA instead explicitly computes
the discrete Fourier transform for the spatial frequencies of the
discrete model, such as suggested by Soummer et al. (2007), and
filters out subpixel centering errors as used by Kammerer et al.
(2019). The cropping of the image not only filters out the higher
level of noise brought out by weakly illuminated pixels, but it is
also more computationally efficient as it requires the computa-
tion of smaller Fourier transform matrices.

Images were acquired using the Ks filter (central wavelength:
2.14 µm) and the medium cross pupil mask inside the PHARO
camera was used to limit the risk of saturation in the image for
the otherwise bright target of interest. An example of the image
is shown in Fig. 6. The image presents a few noteworthy features
as follows: The apparent companion that is clearly visible in the
bottom left quadrant is a ghost induced by the 0.1% neutral den-
sity filter used at the time of the acquisition. This ghost is present
in all of the frames, including those acquired on the calibrator.
Strong diffraction spikes are also visible and they were induced
by the very thick spider vanes of the medium-cross mask, whose
orientation does not quite match the grid of pixels (the upper
vertical spike slightly leans to the left).

We built a new discrete gray model of the medium-cross
based on the specifications published by Hayward et al. (2001),
which were confirmed by an image of the pupil enabled by one
of the modes of the camera. In the image provided by the pupil
imaging mode of the PHARO camera, the medium-cross mask
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Fig. 6. Example of frame acquired on α-Ophiucus (nonlinear scale:
power 0.25). Notable features of this image include the thick and
slightly tilted diffraction spikes induced by the medium-cross pupil
mask used at the time of acquisition as well as the ghost induced by
the neutral density filter in the bottom left quadrant of the frame. The
companion later recovered by the kernel-phase data reduction is buried
underneath the first diffraction ring, which is to the left of the primary.

Fig. 7. Representation of the discrete model (left: aperture, right:
Fourier coverage) of the PHARO med-cross aperture, using the trans-
mission model of the true aperture. To further reduce the amount of sys-
tematic error, the model was built using a square grid that was rotated to
match the orientation of the original pupil mask. The impact of the pres-
ence of the spiders in the model is revealed in the Fourier plane as four
small depressions appear in the intermediate spatial frequency range.

appears to be rotated counterclockwise by two degrees. We used
the recipe outlined in Sect. 3 to produce gray discrete repre-
sentation of the true aperture using a square grid with a pitch
s = 0.16 m that was then rotated to match the grid to the true
aperture. To eliminate possible mistakes, we used a simulation
reproducing the properties of the PHARO Ks-band images that
included a fixed amount of aberration and rotated our mask until
we found the orientation that minimizes the amount of calibra-
tion error. The optimum model that was thus identified is shown
in Fig. 7.

The presence of the ghost in all of the images contributes to
the calibration bias of the data. Pope et al. (2016) chose to fur-
ther window the data so as to mask the ghost out before attempt-
ing to extract the kernels. This, however, leaves too few useful

pixels to lead to the formation of nK = 1048 kernels of the model
(nA = 528, nB = 1312). In this analysis, we keep all the informa-
tion available in the image, under the assumption that the contri-
bution of the ghost is erased when subtracting the kernel phase
from the calibrator.

In the high-contrast regime, which in practice applies when
the contrast is greater than 10:1, the amplitude of the kernel sig-
nature of a binary is expected to be directly proportional to the
contrast (secondary/primary). This makes it convenient to com-
pute the normalized dot product between the calibrated signal
and the theoretical signal of a high-contrast binary, over a finite
grid of positions around the primary. The use of such colinearity
maps is introduced by Laugier et al. (2019): The presence of a
clear maximum in this map shows where the input signal best
matches the theoretical signature of a binary.

Figure 8 shows the result of this computation for the raw sig-
nal of both the target and calibrator as well as for the calibrated
signal of α-Ophiuchi over a ±500 mas field of view. The kernel
phase, similar to the closure phase, is a measure of asymme-
try of a target so the colinearity map is always antisymmetric.
The two uncalibrated maps prominently feature the signature of
the ghost present in all images in the bottom left quadrant as
well as other structures at closer separations (up to ∼200 mas).
While the signature of the ghost is expected, these intermedi-
ate separation features (particularly on the map of the calibrator)
suggest that the kernel phases are still affected by a calibration
bias, despite our efforts to minimize the modeling induced errors.
However, given that individual images were integrated over 1.4 s,
which is many times the coherence time, the kernel phases are
still affected by an additional bias induced by temporal variance
described by Ireland (2013). We can observe that the subtrac-
tion of the kernel phases of the calibrator from those obtained on
α-Ophiucus effectively erases these features along with that of
the ghost. The bright bump (and its antisymmetric dark counter-
part) that is clearly visible to the left (and the right) of the central
star in the right panel of Fig. 8 is indicative of the quality of the
detection of the companion around α-Ophiuchi.

We used the location of the maximum of colinearity as the
starting point for a traditional χ2 minimization algorithm using
the Levenberg-Marquardt method that is shipped as part of the
python package scipy. The uncertainties associated with the cali-
brated kernel phases were simply computed as the quadratic sum
σe of the uncertainties deduced from variance between frames
for the α-Ophiuchi and ε-Herculis. The result of this optimiza-
tion is represented in the correlation plot of Fig. 9: The model
fit looks very convincing and locates the companion in the area
hinted at in the calibrated colinearity maps of Fig. 8.

The careful modeling of the aperture unfortunately does not
suffice in eliminating the need for ad hoc systematic errors at
the time of the optimization. A relatively large amount of sys-
tematic error (σS = 1.2 rad) still needs to be added quadrat-
ically to the experimental dispersion (σE = 0.1) in order to
give a reduced χ2 = 1 for the following parameters: separation
ρ = 123.5 ± 2.9 mas, position angle θ = 86.5 ± 0.2◦, and con-
trast c = 25.1 ± 1.1. It should be pointed out that these do not
quite match the values reported (see Table 1 of Pope et al. 2016)
for the NRM observation that usually set the standard. It should,
however, also be pointed out that the new contrast estimate is
in good agreement with the measurements reported in Table 3
of Hinkley et al. (2011), which were taken when the companion
was at larger angular separation.

While the signature of the companion is more clearly visible
in this analysis than in the results reported by Pope et al. (2016),
the situation is still not fully satisfactory as our improved model
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Fig. 8. Colinearity maps for the raw and calibrated kernel phases extracted from the data, over a ±500 mas field of view. Left panel: map built from
the uncalibrated kernel phases of α-Oph. Middle panel: same map built from the uncalibrated kernel phase of ε-Her. Right panel: colinearity map
of the calibrated signal, which is the difference between the kernel phases of α-Oph and ε-Her. The two uncalibrated maps prominently feature the
signature of the ghost present in all images in the bottom left quadrant as well as other structures at closer separations. The map of the calibrated
signal on the other hand shows that most of these features are gone and reveals a positive bump on the left-hand side of the central star (for a
separation of 100 mas and a position angle of 84◦), which is taken as an indication of the presence of a companion.

Fig. 9. Correlation plot of the calibrated signal of α-Ophiuchi with the
best binary fit solution: following the hint provided by the colinearity
map of the calibrated data, the signal present in the data is fairly well
reproduced by a binary companion located at angular separation ρ =
123.4±1.7 mas, position angle θ = 86.5±0.5 and contrast c = 25.1±0.1.
Residual structure in the data is accounted for by the introduction of an
ad hoc amount of systematic error so that the reduced χ2 = 1.

of the aperture did not lead to a detection with uncertainties on
the binary parameters driven solely by statistical errors. Several
explanations were invoked in the original publication to justify
the subpar performance, which still apply here. The substandard
seeing conditions that induce variability in the AO correction
on targets of distinct magnitudes and the fact that both sources
were acquired in very different areas of the detector explain, in
large part, how the statistical variance experienced during the
observation cannot, on its own, be representative of all errors
affecting the kernel phase. Since this new analysis uses a model

that is adapted to the information available in the data cubes, it
draws a more favorable picture for kernel phase, which shows a
much more convincing result here.

4.2. HST/NICMOS

As pointed out in Sect. 3.2, the seminal kernel-phase publica-
tion used a rather crude and discrete representation of the aper-
ture of the Hubble Space Telescope and was nevertheless able
to report the detection of a companion to the M-dwarf GJ 164
(Martinache et al. 2009). In attempting to accurately model the
effective aperture of the NICMOS1 instrument used to acquire
the data, we refer to the work of Krist & Hook (1997), which
suggests the presence of an important (∼10%) misalignment of
the instrument cold mask relative to the original optical telescope
assembly (OTA) that was completely overlooked by Martinache
(2010).

Multiple data sets recovered from the HST archival were
acquired on GJ 164 on epoch 2004-02-14 UT (proposal ID
#9749) in several narrow band filters: F108N, F164N, and
F190N (Viana et al. 2009). Our updated analysis also includes
images of calibration star SAO 179809 observed at a single
epoch (1998-05-01, proposal ID #7232) acquired in the F190N
filter. The original 256 × 256 pixel images were bad-pixel cor-
rected, recentered, and cropped down to 84 × 84 pixel size
over which the F190N filters seem to feature good signal-to-
noise ratio (S/N), before being gathered into data cubes. With
a plate scale of 43 mas per pixel, the effective field of view is
thus ±1.8 arcsec. According to the image sampling constraints
addressed in Sect. 3.2, the size of the field of view and the wave-
length of acquisition set a limit to how fine the pitch can get,
which for the F190N filter translates into s = 0.109 m. Although
the model pitch could be updated for the shorter wavelengths,
which for a fixed image size give access to an increasing number
of spatial frequencies, we built a single discrete model (includ-
ing transmission) for a homogeneous analysis across the entire
data set that enables comparison across spectral bandpasses.

We, however, first need to demonstrate that the discrete
model indeed benefits from the updated aperture description
recommended by Krist & Hook (1997). For this, we used the
images of the calibration star SAO 179809. In Sect. 3.1, we
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Fig. 10. Comparison of the predicted redundancy with the experimental
MTF (estimated from the modulus of the Fourier transform of F190N
images of calibration star SAO 179809) for two models: the first (top
panel) assumes that the aperture is that of the HST Optical Telescope
Assembly (OTA) and the second (bottom panel) takes into account the
misaligned cold mask of the NICMOS camera. While the redundancy
of the first model fails to reproduce the modulus of the Fourier trans-
form that was effectively measured from the image, the second model
convincingly matches the fine features of the instrument MTF.

introduce the idea that an accurate discrete model should trans-
late into a predicted redundancy diagonal matrix R that matches
the true instrument MTF, which for a calibration star should cor-
respond to the modulus of the complex visibility extracted for
the different baselines of the model. Figure 10 illustrates this
property and compares the redundancy associated with models
characterized by the same s = 0.109 m pitch for two apertures:
one that includes the outline of the OTA only (top panel) and one
that includes the misaligned NICMOS cold mask (bottom panel).
While the OTA model should already be an improvement on the
one originally used, we can observe that the associated redun-
dancy fails to reproduce the modulus of the Fourier transform
computed for the corresponding spatial frequencies. The gap is
particularly visible for intermediate spatial frequencies that fea-
ture less power than what is predicted by the model. The more
accurate model including the misaligned cold mask is a major
improvement as the predicted redundancy R almost perfectly
matches the fine features (in particular the dropped lobes visible
for baseline indices ranging from 400 to 800) of the experimental
MTF.

Fig. 11. Kernel-phase histograms computed from a set of images of cal-
ibration source SAO 179809 using two aperture models characterized
by the same pitch s = 0.109 m. The first model assumes that the aper-
ture is that of entire optical telecope assembly (OTA) and results in the
blue histogram. The second model takes into account the misaligned
cold mask inside the NICMOS camera and results in the red histogram.

Unlike any of the previously considered scenarios, the pupil
here is clearly not rotation symmetric so we do not expect to
form the optimal number of kernels (see the end of Sect. 3.1).
The more accurate model is nevertheless expected to translate
into a more accurate kernel phase. As SAO 179809 is a calibra-
tion source, we can verify that the magnitude of the calibration
biases decreases by comparing (see Fig. 11) the histograms of
the kernel phase computed using the two aforementioned mod-
els. The improvement is significant with a reduction of the stan-
dard deviation by a factor ∼10, despite a larger number of ker-
nels in the better model (375 vs 320), demonstrating one more
time that a more accurate model reduces the impact of calibra-
tion errors. With the accurate model, the magnitude of the cali-
bration bias (σS = 0.222 radians) is now comparable to that of
a 100:1 contrast ratio companion (rms = 0.215 radians) that is
located two resolution elements away from the primary.

The images of SAO 179809 were acquired more than five
years before those of GJ 164. We continue to use the same
aperture model, but do not expect to use the kernel phase of
SAO 179809 reliably to calibrate the kernel-phase signal of
GJ 164. The magnitude of the calibration error estimated from
the observation of SAO 179809 can, however, provide an order
of magnitude for the expected fitting error for a binary such as
GJ 164.

One interesting feature of the GJ 164 data set is the availabil-
ity of images acquired in multiple filters: 80 in the F190N fil-
ter, 40 in the F164N filter, and 10 in the F108N filter for this
2004-12-23 epoch. Figure 12 shows a snapshot of GJ164 for
these three filters. In addition to the expected linear scaling of
the diffraction with the wavelength, one observes the linear scal-
ing size of the circular window, which matches the effective field
of view induced by the choice of a unique model with a fixed
pitch. The phase transfer model at the core of the kernel analy-
sis is achromatic: The pupil coordinate points and baselines are
indeed all expressed in meters and not in radians as is customary
in long baseline interferometry. At the time of data extraction,
however, the wavelength needs to be taken into account in the
computation of a discrete Fourier transform matrix in order to
match the sampling of the data.
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Fig. 12. Snapshots of GJ 164 AB for the 2004-12-23 epoch in the three
NICMOS narrow band filters: F108N, F164N, and F190N. The non-
linear scaling of the image makes the window applied to the data more
apparent. Given that a single discrete model with a fixed pitch is used
to process this data set, the window, used to cover a finite number of
resolution elements, must be scaled linearly with the wavelength. Here,
the effect of the window is mostly to reduce the contribution of poorly
illuminated pixels to the overall noise of the kernel phase.

The published analysis of the F190N images has revealed
that a companion is present at an angular separation ∼90 mas,
which is on the order of 0.5λ/D. In the high-contrast regime,
the kernel-phase signature of a binary companion of contrast c
at wavelength λ has a simple analytic expression:

K · Φ0(u, v) = K · c × sin
2π
λ

(αu + βv), (8)

where α and β are the angular Cartesian coordinates of the com-
panion (in radians) and u and v are the vectors collecting the
coordinates of the baselines (in meters). Assuming that the con-
trast of the companion is constant for the different filters, we can
write the derivative of the binary kernel-phase signal relative to
the wavelength as:

∂

∂λ
K · Φ0(u, v) = K · c × cos

2π
λ

(αu + βv) ×
−2π
λ2 · (9)

If the companion is unresolved, the cosine term varies slowly
and the dominant wavelength dependant effect is the overall
1/λ2 scaling factor of Eq. (9). Thus by multiplying the kernel
phase extracted in the different filters by associated wavelength
(expressed in microns) squared, we expect to see signals of com-
parable structure and magnitude. Figure 13 shows the result of
one such comparison for the median signal extracted from the
three sets of images. The stability of the signature of the compan-
ion across the three bands, covering almost a decade, is striking
and suggests that the contrast is indeed stable for the different
filters. Additionally, this attests to the consistency of the kernel-
phase data analysis.

However, moving from 1.9 to 1.08 µm almost doubles the
resolving power. The signature of the companion, which is
expected to be degenerate in the F190N filter, for which one
observes a strong correlation between contrast and angular sepa-
ration, is better constrained by the F108N observation. The three
data sets were combined to feed a five-parameter model fit opti-
mization algorithm, including two astrometric parameters and
three contrasts, which lead to a total of 1120 degrees of free-
dom. The result of this global optimization is represented in
the correlation plots of Fig. 14, split by filter. The best solution
places the companion 89.3± 0.4 mas away from the primary at
the 100.4± 0.1 degree position angle and leads to the following
three contrasts: 6.23± 0.1 in the F108N filter, 6.19± 0.1 in the
F164N filter, and 6.36± 0.1 in the F190N filter. Figure 14 also
shows that the 1/λ2 signal scaling factor of the binary signal (see
Eq. (9)) leads to an intrinsically higher S/N for the observation
at the shorter wavelength.

Fig. 13. Representation of the median kernel-phase vector extracted for
the data sets of the three filters (F108N, F164N, and F190N), rescaled
by the wavelength of the filter (taken in microns) squared. The three sig-
nals were rescaled and are thus very consistent with one another, con-
firming the presence of a near constant contrast structure partly resolved
from the central star.

Although the astrometric solution for the combined fit is gen-
erally consistent with the result published by Martinache (2010),
the contrast in the F190N is revised and drops from 9.1 ± 1.2 to
6.36 ± 0.1. The origin of the initial overestimation of the con-
trast, which was not captured by the uncertainty, is not clear and
can likely be attributed to the following combination of causes:
the use of an inappropriate aperture model, the strong contrast-
separation degeneracy of the F190N observation, and an overall
more mature data analysis process today. One can incidentally
note that the revised F190N and F164N contrasts are in bet-
ter agreement with the majority of the contrast measurements
reported by Martinache et al. (2009) with NRM observations
using broad band H and K filters.

In the absence of a calibrator, the computation of parameter
uncertainties requires the introduction of a controlled amount of
systematic error (added in quadrature to the measured statistical
uncertainties) so that the reduced χ2 is unity. In this case, σS =
0.15 rad amount of systematic error is required, which seems to
be comparable to the magnitude of the calibration bias that was
estimated (≈0.22 rad) after the analysis of the SAO 179809 data
set. Unlike what was the case with the PHARO data set (see
Sect. 4.1), it seems that our modeling of the aperture and the
interpretation of the resulting data meets our expectations.

5. Discussion

While we are able to show that the modeling prescriptions out-
lined in this paper do indeed bring the closure and kernel phase
closer to the true self-calibration, it seems that in order to reach
the highest contrast detection limits one must always resort
to calibration observations, which typically require telescope
repointing and this is therefore a time-consuming option. If a
target were to exhibit different properties at two nearby wave-
lengths, such as a strong absorption or emission spectral line
caught by one filter and not the other, it seems that a powerful
and more efficient calibration scheme would subtract the kernel
phase acquired in the two filters from one another. One would
then have to fit the thus calibrated data to a spectral differential
kernel-phase model.

We have seen that with its stable contrast, GJ 164 AB does
not really feature any noteworthy spectral behavior and that fil-
ters are reasonably far apart from one another so this data set
is not ideal to test this idea. Nevertheless, because of the rel-
ative proximity of the F164N and F190N filters, we can still
assess the potential of one such observing mode by looking for
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Fig. 14. Correlation plots for the combined five-parameter model fit of the multifilter GJ 164 AB image data set, split back between the different
filters (from left to right: F108N, F164N, and F190N). The detection of the companion by the kernel-phase analysis is unequivocal.

Fig. 15. Correlation plot of the kernel-phase residuals after subtraction
from the best-fitting binary model. The relatively good match between
the two residuals (correlation coefficient ≈0.87) suggests that the use of
the spectral differential kernel phase would be a valid way to solve the
calibration problem.

similarities in the structure of the kernel-phase residuals after
subtraction of the best fit model. Figure 15 features a corre-
lation plot of these residuals for the F164N and F190N fil-
ters that include experimental uncertainties. The apparent good
correlation between the two residuals suggests that a spectral-
differential calibration scheme has some merit: The magnitude
of the differential kernel-phase residual is ∼0.11 rad, which is
getting close to the associated experimental dispersion (σE =
0.08 rad). This approach should be further tested on images
acquired in two filters that are not as far away or in the analysis
of data cubes produced by an AO-fed integral field spectrograph,
which will be the object of future work.

6. Conclusion

Kernel phase is a versatile adaptation of the idea of closure phase
that can be used in a wide variety of configurations, assuming

that images are reasonably well corrected. With versatility how-
ever comes the need for care. The description of the aperture
upon which the analysis is made must be thought through,
requiring good knowledge of the original pupil, and matched to
the constraints brought by images, in particular, the number of
useful pixels as well as the scientific ambition.

We have seen that the inclusion of a transmission model
for the description of the aperture required to build the pupil-
Fourier-phase transfer model brings a major improvement in
fidelity. Several examples using ideal numerical simulations and
actual data sets from ground-based observations as well as from
space have demonstrated that this overall higher fidelity reduces
the impact of systematic errors and leads to better results. One
should also note that the introduction of the gray transmission
model now makes it possible to take advantage of pupil apodiza-
tion masks used to reduce the contribution of photon noise over
a finite area of the image, which, assuming good self-calibration,
result in improved contrast detection limits.

Closure- and kernel-phase-based observing programs are
becoming more and more ambitious with instruments that make
it theoretically possible, in some cases, to probe for planetary
mass companions (Sallum & Skemer 2019; Ceau et al. 2019)
down to the diffraction limit without a coronagraph. The proper
handling of systematic errors in both scenarios is becoming
paramount. While efficient calibration procedures offer a way to
recover from problematic solutions, the work described here is
an attempt to avoid them in the first place.
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Appendix A: Number of kernels for a symmetric
aperture

Given the properties of the expected theoretical number of
kernels nK associated with the model of a circular obstructed

aperture, one can compute an approximate number of expected
kernels that is only based on its dimension and the pitch s of the
grid used to build the model. In neglecting the effect of spider
vanes, the total number of virtual subapertures nA that fit within
a circular aperture of diameter D featuring a central obstruction
of diameter d is proportional to the surface area of the aperture:
S A = π × (D2 − d2)/4. The number of baselines nB is itself pro-
portional to the surface area of the Fourier coverage, which is
half of a disk of diameter 2D: S UV = πD2.

If the aperture is 180◦ rotational symmetric, we know
(Martinache 2013) that the number of kernels nK yielded by the
model is nK = nB − nA/2. We can therefore compute the ratio of
the number of kernels and the number of baselines to find a num-
ber that only depends on the geometric properties of the aperture
r = nK/nA = 1 − 0.25 × (1 − (d/D)2). This makes it possible
to evaluate the kernel efficiency of a circular aperture, which is
on the order of 77% for the SCExAO pupil case discussed in the
body of the paper.

Given the step s, one can estimate how many virtual base-
lines fit within the Fourier coverage, nB = S UV/s2, and pre-
dict the number of kernels one can build, using the ratio deter-
mined above, nK = r × nB. Applications for the reference model
(s = 0.42 m) predict nK = 430 kernels, and for the finer model
(s = 0.21 m), nK = 1719, which are reasonably close to the true
values listed in Table 1.
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