C. Margueray and L. Vollard, Fabrication additive métallique : technologies et opportunités, INSA Rouen, p.36, 2015.

, Standard terminology for additive manufacturing technologies, ASTM International, 2012.

E. Chlebus, B. Ku?nicka, R. Dziedzic, and T. Kurzynowski, Titanium alloyed with rhenium by selective laser melting, Mater. Sci. Eng. A, vol.620, pp.155-163, 2015.

P. C. Collins, R. Banerjee, S. Banerjee, and H. L. Fraser, Laser deposition of compositionally graded titanium-vanadium and titanium-molybdenum alloys, Mater. Sci. Eng. A, vol.352, issue.1-2, pp.118-128, 2003.

B. E. Carroll, Functionally graded material of 304L stainless steel and inconel 625 fabricated by directed energy deposition: Characterization and thermodynamic modeling, Acta Mater, vol.108, pp.46-54, 2016.

W. Z. Bakar, S. Basri, S. N. Jamaludin, and A. Sajjad, Functionally Graded Materials: An Overview of Dental Applications, World J. Dent, p.8

V. Birman, Functionally Graded Materials and Structures, Encyclopedia of Thermal Stresses, pp.1858-1865, 2014.

S. Heuer, Ultra-fast sintered functionally graded Fe/W composites for the first wall of future fusion reactors, Compos. Part B Eng, vol.164, pp.205-214, 2019.

A. Sola, D. Bellucci, and V. Cannillo, Functionally graded materials for orthopedic applications -an update on design and manufacturing, Biotechnol. Adv, vol.34, issue.5, pp.504-531, 2016.

H. H. Zhang, S. Y. Han, L. F. Fan, and D. Huang, The numerical manifold method for 2D transient heat conduction problems in functionally graded materials, Eng. Anal. Bound. Elem, vol.88, pp.145-155, 2018.

W. Zhen, M. Yuting, R. Xiaohui, and S. H. Lo, Analysis of Functionally Graded Plates Subjected to Hygrothermomechanical Loads, AIAA J, vol.54, issue.11, pp.3667-3673, 2016.

D. C. Hofmann, Developing gradient metal alloys through radial deposition additive manufacturing, Sci. Rep, vol.4, p.5357, 2014.

Y. P. Cao and J. Lu, A new method to extract the plastic properties of metal materials from an instrumented spherical indentation loading curve, Acta Mater, vol.52, issue.13, pp.4023-4032, 2004.

M. Dao, N. Chollacoop, K. J. Van-vliet, T. A. Venkatesh, and S. Suresh, Computational modeling of the forward and reverse problems in instrumented sharp indentation, Acta Mater, vol.49, issue.19, pp.295-301, 2001.

J. H. Lee, D. Lim, H. Hyun, and H. Lee, A numerical approach to indentation technique to evaluate material properties of film-on-substrate systems, Int. J. Solids Struct, vol.53, issue.9, 2005.

L. Meng, B. Raghavan, O. Bartier, X. Hernot, G. Mauvoisin et al., An objective metamodeling approach for indentation-based material characterization, Mech. Mater, vol.107, pp.31-44, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01451417

C. Moussa, X. Hernot, O. Bartier, G. Delattre, and G. Mauvoisin, Identification of the hardening law of materials with spherical indentation using the average representative strain for several penetration depths, Mater. Sci. Eng. A, vol.606, pp.409-416, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01003216

W. C. Oliver and G. M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res, vol.7, issue.6, pp.1564-1583, 1992.
URL : https://hal.archives-ouvertes.fr/hal-01518596

M. Zhao, N. Ogasawara, N. Chiba, and X. Chen, A new approach to measure the elastic-plastic properties of bulk materials using spherical indentation, Acta Mater, vol.54, issue.1, pp.23-32, 2006.

N. A. Branch, G. Subhash, N. K. Arakere, and M. A. Klecka, A new reverse analysis to determine the constitutive response of plastically graded case hardened bearing steels, Int. J. Solids Struct, vol.48, issue.3, pp.584-591, 2011.

M. Idriss, O. Bartier, G. Mauvoisin, and X. Hernot, Determining the stress level of monotonic plastically pre-hardened metal sheets using the spherical instrumented indentation technique, J. Mech. Sci. Technol, vol.33, issue.1, pp.183-195, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02049569

J. J. Kim, T. Pham, and S. Kim, Instrumented indentation testing and FE analysis for investigation of mechanical properties in structural steel weld zone, Int. J. Mech. Sci, vol.103, pp.265-274, 2015.

J. H. Lee, T. Kim, and H. Lee, A study on robust indentation techniques to evaluate elastic-plastic properties of metals, Int. J. Solids Struct, vol.47, issue.5, pp.647-664, 2010.

C. Moussa, O. Bartier, X. Hernot, G. Mauvoisin, J. Collin et al., Mechanical characterization of carbonitrided steel with spherical indentation using the average representative strain, Mater. Des, vol.89, pp.1191-1198, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01247082

S. Nagaraju, J. Ganeshkumar, P. Vasantharaja, M. Vasudevan, and K. Laha, Evaluation of strength property variations across 9Cr-1Mo steel weld joints using automated ball indentation (ABI) technique, Mater. Sci. Eng. A, vol.695, pp.199-210, 2017.

L. Sow, S. Kamali-bernard, O. Bartier, G. Mauvoisin, and F. Bernard, Experimental Estimation of the Elastic Modulus of Non-Hazardous Waste Incineration Bottom Ash Aggregates by Indentation Tests -Microanalysis of Particles by Scanning Electron Microscopy, Advanced Materials Research, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01708768

M. Zhao, X. Han, G. Wang, and G. Xu, Determination of the mechanical properties of surface-modified layer of 18CrNiMo7-6 steel alloys after carburizing heat treatment, Int. J. Mech. Sci, vol.148, pp.84-93, 2018.

C. Schneider-maunoury, L. Weiss, P. Acquier, D. Boisselier, and P. Laheurte, Functionally graded Ti6Al4V-Mo alloy manufactured with DED-CLAD® process, Addit. Manuf, vol.17, pp.55-66, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02455040

. O'neil, Hardness Measurements of Metals and Alloys, 1951.

S. I. Bulychev, V. P. Alekhin, M. K. Shorshorov, A. P. Ternovskii, and G. D. Shnyrev, Determining Young's modulus from the indentor penetration diagram, Ind Lab USSR, vol.41, pp.1409-1412, 1975.

S. I. Bulychev, V. P. Alekhin, M. K. Shorshorov, and A. P. Ternovskii, Mechanical properties of materials studied from kinetic diagrams of load versus depth of impression during microimpression, Strength Mater, vol.8, issue.9, pp.1084-1089, 1976.

J. L. Hay and P. J. Wolff, Small correction required when applying the Hertzian contact model to instrumented indentation data, J. Mater. Res, vol.16, issue.5, pp.1280-1286, 2001.

J. L. Murray, The Nb?Ti (Niobium-Titanium) system, Bull. Alloy Phase Diagr, vol.2, issue.1, pp.55-61, 1981.

C. Schneider-maunoury, L. Weiss, O. Perroud, D. Joguet, D. Boisselier et al., An application of differential injection to fabricate functionally graded Ti-Nb alloys using DED-CLAD® process, J. Mater. Process. Technol, vol.268, pp.171-180, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02455053

Y. Combres, Propriétés du titane et de ses alliages, p.21, 2010.

H. Y. Kim, S. Hashimoto, J. I. Kim, H. Hosoda, and S. Miyazaki, Mechanical Properties and Shape Memory Behavior of Ti-Nb Alloys, Mater. Trans, vol.45, issue.7, pp.2443-2448, 2004.

H. Y. Kim, Y. Ikehara, J. I. Kim, H. Hosoda, and S. Miyazaki, Martensitic transformation, shape memory effect and superelasticity of Ti-Nb binary alloys, Acta Mater, vol.54, issue.9, pp.2419-2429, 2006.

M. Tane, K. Hagihara, M. Ueda, T. Nakano, and Y. Okuda, Elastic-modulus enhancement during roomtemperature aging and its suppression in metastable Ti-Nb-Based alloys with low body-centered cubic phase stability, Acta Mater, vol.102, pp.373-384, 2016.

T. Ozaki, H. Matsumoto, S. Watanabe, and S. Hanada, Beta Ti Alloys with Low Young's Modulus, Mater. Trans, vol.45, issue.8, pp.2776-2779, 2004.

S. G. Fedotov and . Belousov, Elastic constants of alloys of the system titanium niobium, Phys. Met. Metallogr, vol.17, pp.83-86, 1964.

D. Raabe, B. Sander, M. Friák, D. Ma, and J. Neugebauer, Theory-guided bottom-up design of ?-titanium alloys as biomaterials based on first principles calculations: Theory and experiments, Acta Mater, vol.55, issue.13, pp.4475-4487, 2007.

H. Ikehata, N. Nagasako, T. Furuta, A. Fukumoto, K. Miwa et al., First-principles calculations for development of low elastic modulus Ti alloys, Phys. Rev. B, vol.70, issue.17, p.174113, 2004.

M. Bönisch, Composition-dependent magnitude of atomic shuffles in Ti-Nb martensites, J. Appl. Crystallogr, vol.47, issue.4, 2014.

C. M. Lee, C. P. Ju, and J. H. Chern-lin, Structure-property relationship of cast Ti-Nb alloys, J. Oral Rehabil, vol.29, issue.4, pp.314-322, 2002.

A. V. Dobromyslov and V. A. Elkin, Martensitic transformation and metastable ß-phase in binary titanium alloys with beta-metals of 4-6 periods, J. Phys. IV Proc, vol.112, pp.723-726, 2003.

M. Abdel-hady, K. Hinoshita, and M. Morinaga, General approach to phase stability and elastic properties of ?-type Ti-alloys using electronic parameters, Scr. Mater, vol.55, issue.5, pp.477-480, 2006.

J. I. Kim, H. Y. Kim, H. Hosoda, and S. Miyazaki, Shape Memory Behavior of Ti--22Nb--(0.5--2.0)O(at%) Biomedical Alloys, p.6

E. G. Obbard, The effect of oxygen on ?'' martensite and superelasticity in Ti-24Nb-4Zr-8Sn, Acta Mater, vol.59, issue.1, pp.112-125, 2011.

D. Tabor, The Hardness of Metals, 1951.

X. Hernot, C. Moussa, and O. Bartier, Study of the concept of representative strain and constraint factor introduced by Vickers indentation, Mech. Mater, vol.68, pp.1-14, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00864927

J. Dzugan, Effects of thickness and orientation on the small scale fracture behaviour of additively manufactured Ti-6Al-4V, Mater. Charact, vol.143, pp.94-109, 2018.

T. Debroy, Additive manufacturing of metallic components -Process, structure and properties, Prog. Mater. Sci, vol.92, pp.112-224, 2018.

N. Benmhenni, S. Bouvier, R. Brenner, T. Chauveau, and B. Bacroix, Micromechanical modelling of monotonic loading of CP ?-Ti: Correlation between macroscopic and microscopic behaviour, Mater. Sci. Eng. A, vol.573, pp.222-233, 2013.

V. Tuninetti, G. Gilles, O. Milis, T. Pardoen, and A. M. Habraken, Anisotropy and tension-compression asymmetry modeling of the room temperature plastic response of Ti-6Al-4V, Int. J. Plast, vol.67, pp.53-68, 2015.

B. Taljat, T. Zacharia, and F. Kosel, New analytical procedure to determine stress-strain curve from spherical indentation data, Int J Solids Struct, vol.33, issue.33, 1998.

A. Thoemmes, I. A. Bataev, N. S. Belousova, and D. V. Lazurenko, Microstructure and mechanical properties of binary Ti-Nb alloys for application in medicine, 2016 11th International Forum on Strategic Technology (IFOST), pp.26-29, 2016.

&. Titanium and . Ti, , 2020.

H. Attar, M. J. Bermingham, S. Ehtemam-haghighi, A. Dehghan-manshadi, D. Kent et al., Evaluation of the mechanical and wear properties of titanium produced by three different additive manufacturing methods for biomedical application, Mater. Sci. Eng. A, vol.760, pp.339-345, 2019.

Y. Hon, J. Wang, and Y. Pan, Composition/Phase Structure and Properties of Titanium-Niobium Alloys, vol.44, pp.2384-2390, 2003.

. Niobium-|-plansee, , 2020.