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Abstract. Tamarin is a popular tool dedicated to the formal analysis
of security protocols. One major strength of the tool is that it offers
an interactive mode, allowing to go beyond what push-button tools can
typically handle. Tamarin is for example able to verify complex protocols
such as TLS, 5G, or RFID protocols. However, one of its drawback is
its lack of automation. For many simple protocols, the user often needs
to help Tamarin by writing specific lemmas, called “sources lemmas”,
which requires some knowledge of the internal behaviour of the tool.
In this paper, we propose a technique to automatically generate sources
lemmas in Tamarin. We prove formally that our lemmas indeed hold,
for arbitrary protocols that make use of cryptographic primitives that
can be modelled with a subterm convergent equational theory (modulo
associativity and commutativity). We have implemented our approach
within Tamarin. Our experiments show that, in most examples of the
literature, we are now able to generate suitable sources lemmas auto-
matically, in replacement of the hand-written lemmas. As a direct appli-
cation, many simple protocols can now be analysed fully automatically,
while they previously required user interaction.

1 Introduction

Security protocols are notoriously subtle to design and analyse. Many different
tools have been developed in order to detect flaws and prove security properties
such as authentication, secrecy, or privacy. However, even a simple property like
secrecy is undecidable in general [9]. Hence several tools focus on the analysis of
a decidable fragment, e.g. by bounding the number of sessions (e.g. AVISPA [1],
DeepSec [6]). But when considering wider classes of protocols, more general cryp-
tographic primitives, and an unlimited number of sessions, one necessarily goes
beyond the decidable fragment, possibly losing termination or even automation.

One popular tool in that direction is ProVerif [4], a push-button tool that
has been able to analyse hundred of protocols including e.g. TLS 1.3 [3], the
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ARINC823 avionic protocol [5], or the Neuchâtel voting protocol [7]. However,
ProVerif may fail to prove some protocols because of some internal approxima-
tions. In that case, the user must either simplify the model or just give up.

Another approach has been developed in the tool Tamarin [11]. One key
feature of Tamarin is that it provides an interactive mode: if the tool fails to
automatically prove a property by itself, the user may help the tool, for exam-
ple by writing intermediate lemmas, or by manually guiding the proof search.
Thanks to this approach, Tamarin supports many features that are typically
out of reach of many tools (Diffie-Hellman, stateful protocols), and has been
able to prove complex protocols such as 5G AKA [2] with exclusive or, group
key agreement protocols [13], or Noise framework [10] with Diffie-Hellman keys.

However, the fact that Tamarin is not fully automatic makes it more difficult
to use, at least in the learning phase. In particular, Tamarin fails to automat-
ically prove some “simple” protocols of the literature such as the well-known
Needham-Schroder protocol or the Denning-Sacco protocol. This is a barrier
when teaching the tool for example at the university or in summer schools.

Automation in Tamarin fails in particular if it encounters “partial decon-
structions”. To speed up the analysis, Tamarin computes in advance, for each
protocol and intruder fact, all possible origins (called sources) of these facts,
which are then repeatedly used in later steps of the analysis. However, this
pre-computation can stop in an incomplete stage if Tamarin lacks sufficient
information about the origins of some fact(s). In practice, as soon as Tamarin
encounters such a “partial deconstruction”, it is unlikely that it will be able to
prove any interesting property automatically. To solve the issue, the user needs to
manually write a “sources lemma” to help Tamarin. Unfortunately, this manual
step has to be done for many protocols, even simple ones.

Our contribution. In this paper, we automate the generation of sources lemmas.
The main idea is to provide a systematic analysis of the origins of a term in a
protocol. Intuitively, either a term has been forged by the attacker, or it comes
from an earlier step in the protocol. To avoid the exploration of too many cases,
we base our analysis on “deepest protected” subterms. We prove that the sources
lemmas that we generate are indeed true. Our result holds for any protocol
provided that the cryptographic primitives can be expressed as a convergent
subterm theory (modulo associativity and commutativity) with the finite variant
property. This is the case of most standard cryptographic primitives such as
symmetric and asymmetric encryptions, as well as signatures.

Interestingly, the correctness of Tamarin does not rely on the fact that
we are able to prove that our sources lemmas hold. Tamarin will verify them
anyway (as done with sources lemmas written by the user). This means that
our technique can also be used even in cases where our theoretical justification
does not apply. Our theoretical justification simply explains why Tamarin has
a good chance to work. We have implemented our technique in Tamarin, as a
new option --auto-sources. With this option, when partial deconstructions are
detected, a sources lemma is generated automatically and added to the original
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model, so that the user can see it and possibly amend it, if needed. We have
validated our approach with two kind of experiments.

– First, we consider simple protocols of the literature, used as benchmarks for
most tools. We modelled a handful of them and ran Tamarin. Our approach
is able to solve all partial deconstructions. Actually, we found out that for
these simple examples, this was the only reason they were not entirely au-
tomatic, hence thanks to our --auto-sources option, Tamarin can now
analyse all these examples automatically.

– We also wanted to evaluate how our technique behaves on more complex
protocols and on protocols that have not been specified by ourselves. Hence
we considered all the models provided within Tamarin’s distribution, and
that contained “partial deconstructions”. For a large majority of them, our
technique successfully close all partial deconstructions and for about a half of
them, Tamarin is now even able to analyse the whole protocol automatically.

Unsurprisingly, complex protocols still require the existing manually written
intermediate lemmas. However, our technique considerably improves the degree
of automation of Tamarin, yielding a better trade-off between what can be done
automatically, and what needs to be done manually.

2 Overview

We illustrate our technique on a simple challenge-response protocol.

I → R : {req, I, n}pk(R)

R→ I : {rep, n}pk(I)

The initiator sends a nonce n encrypted with the public key of the responder,
and then waits for the corresponding answer, i.e. the nonce n encrypted with
his own public key. The symbols req and rep are constants used to avoid con-
fusion between the two types of messages: they indicate whether the ciphertext
corresponds to a request or a reply. In Tamarin the responder role is as follows:

rule Rule_R:

[ In(aenc{’req’, I, x}pk(ltkR)), !Ltk(R, ltkR), !Pk(I, pkI) ]

--[]-> [ Out(aenc{’rep’, x}pkI) ]

Intuitively, this rule can be read as follows: at the reception of a message
of the form aenc{’req’, I, x}pk(ltkR), the agent R (with private key ltkR)
sends the message aenc{’rep’, x}pkI on the network to the agent I (with
public key pkI). Note that there are other rules modelling the Initiator role, as
well as the key generation. The latter rule creates the !LtK and !Pk facts used
here to retrieve the agents’ public and private keys.

This protocol rule models the behaviour of the responder role. It can be trig-
gered arbitrary many times, possibly with different values for x. When loading
this model in Tamarin, it turns out that the proof attempt of e.g. a simple
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secrecy property of nonce n does not terminate due to partial deconstructions.
In Tamarin’s interactive interface, they are identified by dashed green arrows
as shown in Figure 1. The green arrow symbolises a deconstruction chain. De-
construction chains are used in Tamarin’s intruder reasoning to extract values
from messages output by the protocol. In this example, Tamarin tries to extract
a fresh value from the message output by the rule Rule R (at the top). Tamarin
has computed that if it can decrypt the output of the rule (rule d 0 adec) and
then extract the second term (rule d 0 snd), it obtains the value x.7 (a renaming
of the variable x given in the initial rule definition). However, here Tamarin is
unable to continue its deconstruction, as x.7 can potentially be any value: di-
rectly the desired fresh value, or a pair of values, or an encryption, or something
completely different. As this deconstruction is incomplete, it is called a partial
deconstruction.

Fig. 1. Example of a partial deconstruction

In the above example, Tamarin does not know anything about the contents
of the variable x.7, hence, to ensure soundness, it is obliged to consider this case
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as a potential source for any value, which leads to an explosion of the number
of cases, and often to non termination issues. This is the case here: the rule
Rule R producing the x.7 requires an input, which could itself be the result of
(a different instantiation of) the same source, and so on.

To get rid of partial deconstructions, Tamarin uses source lemmas. They are
a special type of lemmas which are applied at the precomputation phase. More
precisely, after computing the initial raw sources without any lemmas, Tamarin
computes the refined sources using the source lemmas to hopefully discard partial
deconstructions. To ensure that the refined sources are correct, one further has
to prove the source lemmas correct, using only the raw sources. This can be done
either automatically by Tamarin or manually in the interactive mode.

The idea behind a source lemma is to provide more information regarding
the origin of the message mentioned in the partial deconstruction, i.e., the one
corresponding to the variable identified by the dashed green arrow. Going back
to our example and assuming that R(aenc{’req’, I, x}pk(ltkR), x) (resp.
I(aenc{’req’, I, n}pkR)) is added as a label to the responder rule Rule R

(resp. initiator rule), a source lemma could be as follows:

lemma typing [sources]:

"All x m #i. R(m,x)@#i ==> ( (Ex #j. I(m)@#j & #j < #i)

|(Ex #j. KU(x)@#j & #j < #i )) "

This lemma says that whenever the responder receives the value x inside a mes-
sage m (at time point #i), either this message (actually a ciphertext) has been
forged by the attacker who therefore knew x before, denoted KU(x), or it has
been produced (for the first time) by another protocol rule, here the one denoted
I(m). Indeed, a quick inspection of the protocol shows that here this is the only
option to produce an output having the right format.

When generating the refined sources from the raw sources, Tamarin applies
the source lemmas. In this case, the source lemma above will allow it to learn
that x is either a nonce (generated by the initiator role) or a message already
known by the attacker. This solves the partial deconstruction as the previous
source will be refined into two refined sources. The first one is the case where the
intruder learns the nonce generated by the initiator, by passing the initiator’s
message to the responder, and then extracting the nonce like the variable x.7
above. However, Tamarin now knows that x.7 is not any value, but the initiator’s
nonce. The second case will be discarded by Tamarin since, if the intruder
already knew x before, it is useless to extract it again.

3 Tamarin syntax and semantics

We explain here the syntax and semantics of Tamarin, as presented in [12, 8],
as necessary background for the remainder of the paper.
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3.1 Term algebra

Cryptographic messages are represented by a (sorted) term algebra. In Tamarin,
terms are all of sort msg and there are two incomparable subsorts fr and pub used
to represent respectively fresh names (e.g. nonces or keys) and public names (e.g.
agent names). We assume an infinite set N of names of each sort and an infinite
set V of variables of each sort as well. A variable x of sort s is denoted x : s.
The sort msg is often omitted, that is, the variable x typically denotes a variable
of sort msg. Each cryptographic primitive is represented by a function symbol
f : s1 × · · · × sn → s that takes n arguments of sort resp. s1, . . . , sn and returns a
term of sort s. We assume given a signature Σ, i.e. a set of function symbols with
their arities. Then the set of terms is built from the application of symbols of Σ
to names and variables and is denoted TΣ(N ,V). The set of variables occurring
in a term t is denoted vars(t). A term is ground if it contains no variable. A
substitution θ is grounding for t if tθ is ground.

Example 1. The standard primitives are often expressed by the signature

Σstand = {enc( , ),dec( , ), encA( , ),decA( , ),pk( ), 〈 , 〉, fst( ), snd( )}
where all functions are of sort msg× · · · ×msg→ msg. They model respectively
symmetric encryption and decryption, asymmetric encryption and decryption,
and concatenation and (left and right) projections.

The properties of the primitives are reflected through an equational theory E.
In Tamarin, user defined equational theories are given as a convergent rewrite
system. Tamarin additionally supports built-in theories such exclusive or [8]
and a set of equations for Diffie-Hellman (DH) exponentiation [12]. The equality
modulo associativity and commutativity (AC) is denoted =AC and the normal
form of a term t, modulo AC, is denoted t↓ (we consider any representative of
the normal form of t). Two terms t1 and t2 are unifiable (modulo AC) if there
exists a substitution θ such that t1θ =AC t2θ. Positions of a term t are defined
as usual considering AC operators as binary symbols. A subterm of t is a term t′

such that t′ = t|p for some position p.

Tamarin assumes equational theories that have the finite variant property,
that is where all the instances of a given term follow a finite number of differ-
ent patterns. Formally, a convergent equational theory E has the finite variant
property if for any term t, there exists a finite number of substitutions σ1, . . . , σk
such that, for any substitution θ, there is 1 ≤ i ≤ k, there exists a substitution θ′

such that (tθ)↓ =AC tσiθ
′. A particular class of rewriting systems is the class of

subterm rewriting system. A rewriting system is said subterm if it is defined by a
set of equations of the form l→ r such that r is a subterm of l or a (public) con-
stant. Many cryptographic primitives can be modelled by (convergent) subterm
rewriting systems, such as signatures, symmetric and asymmetric encryption,
pair, hash, etc. Our theoretical development only consider equational theories
that can be defined by a subterm rewriting system, convergent modulo AC, that
have the finite variant property. Tamarin is not limited to subterm equational
theories, and actually our approach can be applied in this general setting too
relying on Tamarin to establish the correctness of the generated lemmas.
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Example 2. Orienting from left to right the equations below yields a subterm
convergent rewrite system that is usually used to model concatenation and asym-
metric encryption. Here, there is no AC symbol.

decA(encA(x, pk(y)), y) = x fst(〈x, y〉) = x snd(〈x, y〉) = y

In what follows, we will consider sets and multisets. Given a multiset S,
set(S) denotes the set of its elements. The symbol ⊆ denotes the set inclusion.
We will write S ⊆ S′ even if S and S′ are multisets, which is then interpreted
as set(S) ⊆ set(S′). In contrast, ⊆] denotes the multiset inclusion. Similarly, ∪]
denotes the multiset union and \] the multiset difference.

3.2 Transition system

In Tamarin, a protocol execution is modelled as a transition system where a
state contains a multiset of facts, representing the current knowledge of the
attacker and the current steps of the protocol, for each agent and each session.
Formally, we assume a set of fact symbols F partitioned into linear and persistent
fact symbols. A fact is an expression F(t1, . . . , tn) where F ∈ F and t1, . . . , tn ∈
TΣ(N ,V). Given a multiset of facts F , lfacts(F ) denotes the multiset of its linear
facts while pfacts(F ) denotes the multiset of its persistent facts.

Linear facts represent resources that are consumed. Tamarin includes three
pre-defined linear fact symbols: Fr(n) models the generation of a fresh name n,
Out(m) represents a message m sent over the network by a participant, and
In(m) denotes that the adversary has sent message m, that can then be received
by an agent of the protocol. Persistent facts represent facts that remain forever
and are not consumed by rules. Tamarin includes the persistent fact symbol K
that models the knowledge of the attacker, as well as K↑ and K↓ that allow to
distinguish between the terms built by the attacker and those obtained from
listening to the network or by decomposing learned messages. Then the protocol
may use other user defined facts, that can be either linear or persistent.

The protocol execution is specified through labelled multiset rewriting rules
[l]−−[ a ]→[r] where l, a, r are multisets of facts. The multiset l denotes the premises
of the rule that need to be present in the state in order for the rule to be exe-
cuted; a denotes the actions of the rule (later used to specify properties), while r
contains the conclusions, added to the state. There are three kinds of rules.

Fresh name generation (Fresh). This is the only rule that can produce facts
of the form Fr(n). Moreover, to ensure freshness, a distinct name n is used for
each application.

[]−−[]→[Fr(x : fr)]

Message deduction rules (MD). They are pre-defined in Tamarin and repre-
sents the attacker’s actions.

[Out(x)]−−[]→[K↓(x)] and [K↑(x)]−−[ K(x) ]→[In(x)]

model the fact that the attacker can learn any message sent by the protocol and
conversely, may send any message of her knowledge. Note that this is the only
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rule where the predicate K appears as an action of a rule. The rules

[]−−[ K↑(x) ]→[K↑(x : pub)] and [Fr(x : fr)]−−[ K↑(x) ]→[K↑(x : fr)]

express respectively that the attacker can learn any public name and can create
fresh name on his own. Finally, the attacker can extend his knowledge by apply-
ing function symbols. The intuitive rule is:

[K(x1), . . . ,K(xn)]−−[]→[K(f(x1, . . . , xn))] for any f ∈ Σ

Actually, this rule is split into two cases in Tamarin, depending on whether the
attacker is building a term, or decomposing it. Formally, for any substitution θ
(in normal form), we consider the rule

[K↑(x1θ), . . . ,K
↑(xnθ)]−−[ K↑(f(x1, . . . , xn)θ) ]→[K↑(f(x1, . . . , xn)θ)]

when f(x1, . . . , xn)θ is in normal form. When the term f(x1, . . . , xn)θ reduces to a
subterm of xi0θ for some i0 (remember that we only consider subterm theories),
then we consider

[Kα1(x1θ), . . . ,K
αn(xnθ)]−−[ K↓(f(x1, . . . , xn)θ ↓) ]→[K↓( f(x1, . . . , xn)θ

y)]

where αi =↑ for all i 6= i0 and αi0 =↓. Intuitively, the deduction rule is annotated
with K↑ when the attacker applies a “constructor” term such as an encryption
and a pair. It can also be annotated with K↑ when the attacker applies a de-
constructor (for example, a decryption), if the term cannot be further reduced
(for example, the decryption fails). Conversely, the deduction rule is annotated
with K↓ when the attacker decomposes a term. Finally, it is possible to switch
from K↓ to K↑ thanks to the “coerce” rule:

[K↓(m)]−−[ K↑(m) ]→[K↑(m)]

for any m in normal form that is not a pair.

Protocol rules. Then the protocol as well as additional attacker capabilities
are specified through protocol rules, that are multiset rewriting rules that satisfy
some conditions.

Definition 1. A protocol rule is a multiset rewriting rule [l]−−[ a ]→[r] such that

1. it does not contain fresh names and Fr does not occur in r
2. K, K↑, K↓, and Out do not occur in l
3. K, K↑, K↓, In do not occur in r
4. vars(r) ⊆ vars(l) ∪ {x ∈ V | x : pub}.

The first condition guarantees in particular that fresh names are only produced
thanks to the fresh name generation rule. The last three rules are easily met by
any rule modelling a protocol step.

Example 3. Going back to our running example, the rule given in Section 2 is a
protocol rule where Ltk and Pk are user-defined persistent facts used to model
generation of long-term keys. Actually, our model contains the following rule:

[Fr(xsk)]−−[]→[!Ltk(xid, xsk), !Pk(xid,pk(xsk)),Out(pk(xsk))]
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where xsk is variable of sort fr, and xid is a variable of sort pub. This proto-
col rule represents the possibility to generate key pairs (xsk, pk(xsk)) for any
identity xid. The public part of the key is revealed to the attacker.

3.3 Execution traces

A set of protocol rules P induces a transition relation →P between states.

Namely, we have S  set(aθ)
P S′ if there exists a rule ru ∈ P ∪ MD ∪ {Fresh}

and a grounding substitution θ for ru such that

– lfacts(lθ) ⊆] S, the linear facts of lθ should be present in S, with enough
occurrences,

– pfacts(lθ) ⊆ S,
– and S′ = (S r# lfacts(lθ)) ∪# rθ. The linear facts of lθ are removed and all

the conclusion facts are added to the state.

Moreover, if the applied rule is the Fresh rule then rθ = {Fr(n)} and n must be
a new name not used earlier. The execution of a protocol is simply modelled by
a sequence of transitions. A trace of a protocol is the sequence of actions that
appear in the execution. Formally, we have that:

traces(P ) = {[A1, . . . , An] | ∅ A1

P · · · 
An

P S′}.

Example 4. Continuing Example 3, the protocol rule modelling key generation
can be used twice (or even more) to generate two key pairs for two different
identities leading to the following trace:

{} {Fr(ska)} Fa ∪ {Out(pk(ska))}
 {Fr(skb)} Fa ∪ Fb ∪ {Out(pk(ska)),Out(pk(skb))}
 Fa ∪ Fb ∪ {K↓(pk(ska)),Out(pk(skb))}

where Fa = {!Ltk(A, ska), !Pk(A,pk(ska))}, Fb = {!Ltk(B, skb), !Pk(B, pk(skb))}.
Here ska and skb are names of sort fr whereas A,B are public names of sort pub.
This corresponds to the application of the Fresh rule followed by the protocol
rule to obtain key material for the first agent A and then for a second agent B.
The last rule corresponds to an application of an MD rule adding the public key
of A to the knowledge of the attacker.

3.4 Properties

Security properties are expressed as properties on the traces of a protocol.
Tamarin offers a first order logic to specify properties. Formulas make use of
variables of a novel sort temp to reason about when a fact occurs and to be
able to express that some event occurs before another one. The full syntax and
semantics of the logic is provided in [12]. We provide here only informally the
semantics of atomic formulas:

– F@i, where i is of sort temp, refers to the fact F that occurs in the ith

element of the trace;
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– i
.
= j expresses that the timepoints i and j are equal;

– il j expresses that timepoint i occurs before j;
– t1 ≈ t2 says that t1 and t2 are equal (modulo the equational theory).

The first order logic is built from atomic formulas and closed by the boolean
connectors ∨, ∧, and ¬, as well as the quantificators ∃ and ∀.

A set of protocol rules P satisfies a formula φ, denoted P |= φ if, for any
trace tr ∈ traces(P ), then tr satisfies φ.

Example 5. Continuing the running example, a typical lemma expressing nonce
secrecy of the challenge is as follows:

lemma nonce_secrecy:

"not(Ex A B s #i #j. (SecretI(A, B, s)@#i & K(s)@#j))"

This requires us to annotate the rule of the Initiator role with the action fact
SecretI. Then intuitively this lemma expresses that there does not exit any
trace such that SecretI(A,B,s) occurs at stage i (for some A, B, and s) and
the attacker knows s at stage j. If we consider only the three protocol rules
mentioned so far (initiator’s rule, responder’s rule, and key generation), then
this security property is satisfied. However, as expected, the same lemma is not
satisfied as soon as we model corruption, for example with the following rule.

rule Reveal_ltk: [!Ltk(xid, xsk)] --[RevLtk(xid)]-> [Out(xsk)]

Tamarin also allows to express diff-equivalence, a refined notion of equiva-
lence. This can be used for example to state that a protocol preserves unlinkabil-
ity, anonymity, or other privacy properties such as ballot privacy. For example,
the fact that Alice remains anonymous is often expressed as the property that
P (Alice) ∼ P (Bob). This intuitively says that an adversary should not see the
difference when Alice is playing protocol P or Bob is playing protocol P . The
formal definition of diff-equivalence can be found in [12]. We do not need to
provide it here as our automatically generated lemmas are simple trace prop-
erties and do not use diff-equivalence. Note however that our approach applies
to protocols with diff-equivalence as well since our generated lemmas also helps
Tamarin to terminate in the case of diff-equivalence properties.

4 Automatically generated sources lemmas

Whenever Tamarin fails to complete a deconstruction, we aim at providing the
tool with a sources lemma that resolves the partial deconstruction. We formalise
here our approach and prove it to be correct.

4.1 Definitions

We introduce the notion of protected term, which is any term that is headed
by a function symbol that is not a pair (because we know the adversary can
always open such terms) nor an AC symbol (simply because our heuristic does
not apply to case of failures due to an AC theory).
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Definition 2. A protected term t is a term whose head symbol is not 〈 , 〉 nor
an AC symbol. Given a term t and a variable x occurring in t, we say that t′

is a deepest protected subterm w.r.t. x if t′ is a protected subterm of t that
contains x and such that one of the paths from the root of t′ to x contains only
pair symbols 〈 , 〉 (except for head symbol at top level).

Intuitively, if t′ is a deepest protected subterm w.r.t. x, then the only way to
obtain t′ is either by extracting it directly from some output, or by building it,
in which case x is already known to the attacker.

Example 6. Let t = enc(〈x, enc(〈b, x〉, k2)〉, k1). There are two deepest protected
subterms w.r.t. x, namely t itself and t′ = enc(〈b, x〉, k2).

We denote by Stpair(u) the set of subterms of u that can be obtained from u
simply by projecting. Formally, Stpair(u) is formally defined as

Stpair(u) =

{
{u} ∪ Stpair(u1) ∪ Stpair(u2) if u = 〈u1, u2〉
{u} otherwise

Normalised traces. In order to keep track of the origin of a protected subterm,
we need to assume that the shape of a term is not modified by the application
of the equational theory. Fortunately, since we assume an equational theory
with the finite variant property, it is possible to compute in advance the shapes
of all the terms obtained after normalisation. Given a set of protocol rules P ,
Tamarin computes the variants Variant(P ) of P such that, for any rule ru ∈ P ,
for any substitution θ, there is ru ′ ∈ Variant(P ) and a substitution θ′ such that
ruθ =E ru ′θ′ and (ru ′, θ′) is normalised, that is, for any fact F (u′) occurring
in ru ′, we have that (uθ′)

y =AC u′θ′. Moreover, ru ′ = (ruσ)
y for some σ.

Tamarin considers only traces that are normalised, i.e. executions of the
form ∅ A1

Variant(P ) S1 · · · An

Variant(P ) Sn and such that:

– the execution involves only rules ru ∈ Variant(P ) and substitutions θ such
that (ru, θ) is normalised;

– pairs are always decomposed before been used, that is, if K↑(u) appears in
the left-hand-side of Ai then K↑(t) ∈ Si−1 for any t ∈ Stpair(u)1.

We write P |=norm φ if for any normalised trace tr of P , tr satisfies φ. Then,
given a formula φ that does not contain the fact K↑ nor K↓, we have P |= φ
if, and only if, P |=norm φ, which is what is actually checked by Tamarin. This
follows from the soundness of Tamarin [12].

In some cases, computing the variants Variant(ru) of a protocol rule ru may
introduce new variables on the right of the rule, and thus lead to rules that are
not protocol rules (according to Definition 1).

1 This comes from the fact that, whenever the attacker learns a pair K↓(〈m1,m2〉),
she cannot directly convert it in K↑(〈m1,m2〉) since the coerce rule does not apply
to terms headed with a pair. Hence it is necessary to decompose it first (with K↓

rules) and then reconstruct it (with K↑ rules).
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Example 7. The rule [In(decA(x, y))]−−[]→[Out(x)] is a protocol rule. However,
one of its variant is [In(z)]−−[]→[Out(encA(z,pk(y)))] which is not a protocol rule
according to Definition 1.

However, such cases correspond to badly defined protocols and Tamarin
typically raises a warning in this case. Hence, in what follows, we consider well-
formed protocol rules P , that is such that Variant(P ) is still a set of protocol
rules. In practice, protocol rules representing a protocol are indeed well-formed.

4.2 Algorithm

Given a set P of protocol rules, Tamarin first computes its variants Variant(P ).
It then precomputes sources as already explained. Whenever Tamarin fails to
complete a deconstruction, it returns the partial deconstruction. For the moment,
assume that from there we can extract a rule ru = [l]−−[ a ]→[r] of Variant(P )
and a variable x for which the deconstruction has failed (in practice there might
be multiple composed rules, as explained below, but the approach is similar). It
must be the case that x appears in some fact of l.

For each fact symbol F occurring in P , for each rule ru of Variant(P ), and
each (deepest) protected subterm t occurring in of ru, we assume new fact sym-
bols LeftF,ru,t and RightF,ru,t that will be used to further annotate the rules of
Variant(P ). These facts will appear only in the sources lemmas we generate.

The sources lemma SourceLemma(P, ru, x) associated to a failed deconstruc-
tion on variable x and rule ru for protocol P is defined by Algorithm 1. In-
tuitively, we first look for any occurrence of x in the premisses of ru, under a
(deepest) protected term t1 and we annotate the rule ru with LeftF,ru,t1(t1, x).
Then we look for all facts in the conclusions of a rule ru ′ that may have pro-
duced t1, that is that contain a term t2 that can be unified with t1 and we
annotate ru ′ with RightF ′,ru′,t1(t2). Finally, we generate the formula that says
that if we have LeftF,ru,t1(y, x) at some step i, then either x is already known to
the attacker, that is K(x) holds at an earlier step, or y has been obtained from
the protocol, that is RightF ′,ru′,t1(y) holds at some earlier step.

We can show that under our assumptions the generated sources lemmas al-
ways hold, which explains why Tamarin is usually able to prove them.

Theorem 1. Given a set of well-formed protocol rules P , a rule ru ∈ Variant(P ),
a variable x occurring in ru, and φ returned by SourceLemma(Variant(P ), ru, x),
then φ is satisfied by Variant(P ), that is Variant(P ) |=norm φ.

4.3 Dealing with composed rules

Actually, during the precomputations, Tamarin might compute the composition
of several rules. For example, when a rule ru1 depends on a rule ru2 in the sense
that ru1 can only be executed if ru2 has been executed previously, Tamarin
will return the composition of both, not only ru1. This yields bigger steps and
it allows Tamarin to prove lemmas more quickly.
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Algorithm 1 SourceLemma(P, ru, x)

Input: P, ru = [l]−−[ a ]→[r], x
for all t1 deepest protected term w.r.t. x that is subterm of F (v) ∈ l do

% we annotate ru with the fact that x may provide from t1
a := a ∪ {LeftF,ru,t1(t1, x)}
% then we identify from which facts t1 may provide.
for all rule ru ′ = [l′]−−[ a′ ]→[r′] ∈ P do

if t1 unifiable with t2 modulo AC for some t2 protected subterm in F ′(v′) ∈ r′
then

% we annotate ru ′ with the fact that t2 may be used to produce x
a′ := a′ ∪ {RightF ′,ru′,t1(t2)}

end if
end for
Let φ the formula defined as follows

∀y, x, i LeftF,ru,t1(y, x)@i =⇒

(∃k RightF ′,ru′1,t1
(y)@k ∧ k l i)

∨ . . .
∨ (∃k RightF ′,ru′n,t1(y)@k ∧ k l i)

∨ (∃k K↑(x)@k ∧ k l i)
return φ

end for

Thus, the sources computed by Tamarin are actually composed variants
of initial protocol rules. Formally, given two rules ru1 = [l1]−−[ a1 ]→[r1] and
ru2 = [l2]−−[ a2 ]→[r2], we define the composition of ru1 and ru2 w.r.t. θ, denoted
ru1 ◦θ ru2 as the rule [l]−−[ a ]→[r] defined as follows:

l = l1θ ∪# (l2θ r# r1θ), a = a1θ ∪ a2θ, and r = (r1θ r# l2θ) ∪# r2θ.

We denote ru1 ◦θ ru2 ◦θ · · · ◦θ ruk the rule ru obtained by iterating k − 1
compositions: ru = ((ru1 ◦θ ru2) ◦θ · · · ) ◦θ ruk. Since the rules do not share any
variable, θ is just the union of substitutions θi where the domain of θi is the set
of variables of rui. It is easy to check that compositions of protocol rules yield
protocol rules. Not all compositions are computed by Tamarin, but we do not
need to characterise which compositions are considered exactly. We simply show
that any sources lemma generated from a composed rule is also sound.

Algorithm 2 SourceLemmaComp(P, ru, x)

Input: P, ru = ru1 ◦θ ru2 ◦θ · · · ◦θ ruk, x
let l, a, r such that ru = [l]−−[ a ]→[r]
for all position p such that there exists F (v) ∈ l such that v|p = x do

for all i such that F (v) = F (viθ) with F (vi) in the premisses of rui do
if p is a position of vi then

call SourceLemma(P, rui, vi|p)
end if

end for
end for
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Algorithm 2 describes how to generate a sources lemma from a composed
rule. The idea is simply to identify, given a variable x, for which the partial de-
construction is incomplete, at which positions x appears in the composed rule ru.
Then whenever the position exists in the some rule rui used for composition, we
generate the sources lemmas based on this rule. Algorithm 2 is well defined only if
whenever SourceLemma(P, rui, vi|p) is called, then vi|p is a variable. This follows
from the fact that viθ|p = x is a variable (with the notations of Algorithm 2).

Theorem 2. Given a set of well-formed protocol rules P , a composed rule ru =
ru1 ◦θ ru2 ◦θ · · · ◦θ ruk with rui ∈ Variant(P ), a variable x occurring in ru, and φ
returned by SourceLemmaComp(Variant(P ), ru, x), then Variant(P ) |=norm φ.

5 Implementation and experimental evaluation

We have implemented our approach in Tamarin version 1.6.0 [15]. The auto-
matic generation of source lemmas is activated using the command line option
--auto-sources. When Tamarin is called with this option, it will first load
the theory and run the pre-computations normally (in particular compute rule
variants and sources). If Tamarin is called using --auto-sources, and the the-
ory does not contain a sources lemma but has partial deconstructions, our new
algorithm is executed on the computed rule variants to generate a new sources
lemma, which is then added to the theory, as well as the required rule annota-
tions. In the interactive mode, the user can inspect the generated lemma and
annotations, and prove lemmas as usual. He can also download the modified
theory if he wants to export the lemma, or modify it. In the automatic mode,
Tamarin directly tries to prove the generated sources lemma. When showing
the results, Tamarin displays the sources lemma among the other lemmas, and
whether it managed to prove it.

Heuristic. Our first experiments using Algorithm 2 showed that, for some exam-
ples, the generated lemmas, while true, caused Tamarin to loop in the precom-
putations. This happened when the algorithm considered the case where a fact
in the premises of a rule might have been produced by a fact in the conclusion of
the same rule. Hence, we have implemented an additional check that ignores this
case, should it arise. This means that the generated lemmas could potentially
be false, however we did not observe this in practice. In particular, the examples
that looped can now be proven correct. Note that this does not contradict our
theorems, as our lemmas are not minimal - we consider potentially too many
cases, so removing some (unnecessary) ones can still result in a correct lemma.

Evaluation. To evaluate the effectiveness of our approach, we selected several
classical examples from the SPORE library of cryptographic protocols [14] and
checked for standard properties such as secrecy of the exchanged key and mutual
(injective and non-injective) authentication. Because of partial deconstructions,
many of them were not entirely automatically verifiable in Tamarin previously
(except for extremely simple examples such as CCITT with only one message).



Automatic generation of sources lemmas in Tamarin 15

Protocol Name Partial Dec. Resolved Automatic Time

Andrew Secure RPC 14 42.8s

Modified Andrew Secure RPC 21 134.3s

BAN Concrete Andrew Secure RPC 0 - 10.6s

Lowe modified BAN Andrew Secure RPC 0 - 29.8s

CCITT 1 0 - 0.8s

CCITT 1c 0 - 1.2s

CCITT 3 0 - 186.1s

CCITT 3 BAN 0 - 3.7s

Denning Sacco Secret Key 5 0.8s

Denning Sacco Secret Key - Lowe 6 2.7s

Needham Schroeder Secret Key 14 3.6s

Amended Needham Schroeder Secret Key 21 7.1s

Otway Rees 10 7.7s

SpliceAS 10 5.9s

SpliceAS 2 10 7.3s

SpliceAS 3 10 8.7s

Wide Mouthed Frog 5 0.6s

Wide Mouthed Frog Lowe 14 3.5s

WooLam Pi f 5 0.6s

Yahalom 15 3.1s

Yahalom - BAN 5 0.9s

Yahalom - Lowe 21 2.2s

Table 1. SPORE examples. “Partial Dec.” indicates the number of partial deconstruc-
tions, “Resolved” indicates whether our auto-generated lemmas resolve them, and can
be proven correct by Tamarin. “Automatic” means that our auto-generated lemmas
are then sufficient to directly prove or disprove the desired security properties.

The results are presented in Table 1, the Tamarin models are available in the
directory examples/features/auto-sources/spore of the Tamarin reposi-
tory [15]. Our approach succeeded in all cases.

To see whether our approach works on more complicated examples, we se-
lected all files from the Tamarin github repository [15] that contained lemmas
annotated with sources, and that were not marked as “experimental” or “work
in progress”. It turned out that in some cases these examples did not actually
contain any partial deconstructions, and that these “sources” lemmas were ac-
tually used to prove other protocol invariants. As our approach is only meant to
handle partial deconstructions, we removed these examples from the set. Table 2
summarises our results on the remaining examples, the files can be found in the
directory examples/features/auto-sources/tamarin-repo of the Tamarin
repository [15].

It turns out that our algorithm still succeeds in generating successful sources
lemmas in the majority of cases, in the sense that the sources lemma resolve
all the partial deconstructions and can be proved by Tamarin. Our examples
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Name
Partial
Dec.

Resolved Automatic
Time
(new)

Time
(previous)

Feldhofer (Equivalence) 5 3.8s 3.5s

NSLPK3 12 1.8s 1.8s

NSLPK3 untagged 12 1 - -

NSPK3 12 2.4s 2.2s

JCS12 Typing Example 7 2 0.3s 0.2s

Minimal Typing Example 6 0.1s 0.1s

Simple RFID Protocol 24 2 0.7s 0.5s

StatVerif Security Device 12 0.3s 0.4s

Envelope Protocol 9 2 25.7s 25.3s

TPM Exclusive Secrets 9 2 1.8s 1.8s

NSL untagged (SAPIC) 18 4.3s 19.9s

StatVerif Left-Right (SAPIC) 18 28.8s 29.6s

TPM Envelope (Equivalence) 9 3 - - -

5G AKA 240 - - -

Alethea 30 - - -

PKCS11-templates 68 - - -

NSLPK3XOR 24 - - -

Chaum Offline Anonymity 128 - - -

FOO Eligibility 70 - - -

Okamoto Eligibility 66 - - -

Table 2. Examples from Tamarin repository. 1 The sources lemma needs to be an-
notated with reuse for the following lemmas to be proven automatically. 2 The file
contains further intermediate lemmas annotated with reuse. 3 The generated lemma
removes all partial deconstructions, however Tamarin does not terminate while trying
to prove its correctness automatically.

include protocols with equivalence properties and SAPIC-generated2 theories.
However, as the examples are more complex, even with a correct sources lemma,
Tamarin does not always succeed in proving all other lemmas fully automati-
cally.

We also analysed the examples where our algorithm failed to generate a cor-
rect sources lemma. The reasons turned out to be a too complex equational
theory (e.g., FOO and Okamoto, using blind signatures, or NSLPK3XOR and
Chaum using XOR), or a complex protocol model where the partial decon-
structions stem from the handling of state facts, which escapes our definition
of protected subterms (5G AKA, Alethea, PKCS’11). We only encountered one
example where the algorithm generated a lemma resolving the partial decon-
structions, but Tamarin was unable to (automatically) verify its correctness.

When our approach succeeds, the verification times are close to timings mea-
sured using the manual sources lemmas. All timings have been measured on a
standard laptop (Core i7, 16GB RAM, Ubuntu 18.04).

2 SAPIC translates from applied pi models to Tamarin theories.
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6 Conclusion

We have provided a technique that allows to automatically generate sources
lemmas in Tamarin, which otherwise had to be written by the user. In return,
most simple protocols can now be analysed automatically with Tamarin.

As future work, we plan to look for even more automation. First, in several
cases where our sources lemmas solve the partial deconstructions but are not yet
sufficient to prove the security properties specified by the user, we are actually
close to full automation. What is missing is simply to indicate to Tamarin that
it should reuse one of the properties (e.g. secrecy of some long-term key) to prove
another property (e.g. authentication). We plan to investigate how to automate
these “re-use” annotations, without increasing the complexity of the tool.

Our result holds for subterm convergent theories (modulo AC) that have the
variant property. However, our algorithm does not generate lemmas for terms
headed with an AC symbol (for example exclusive or) as the resulting lemmas
would be false in most cases. Hence, manual sources lemmas are still necessary.
We plan to explore how to extend our result to tackle this case, which may
require to write more complex sources lemmas, e.g. to account for all possible
decompositions induced by the exclusive or operator.

Our algorithm also fails when the model uses state facts in such a way that
the variables in question do not occur within protected subterms. By generalising
the notion of protected subterms, we hope to also cover these cases.

Thanks to our sources lemma, the automation of Tamarin has improved, in
particular on simple protocols. It would be interesting to compare extensively
the tools ProVerif and Tamarin, in order to identify on which cases they are
both automatic, and on which kind of protocols, one of the two tools is more
likely to conclude automatically. This should also provide directions to improve
the automation of both tools.
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A Proofs of Theorems 1 and 2

Theorem 1. Given a set of well-formed protocol rules P , a rule ru ∈ Variant(P ),
a variable x occurring in ru, and φ returned by SourceLemma(Variant(P ), ru, x),
then φ is satisfied by Variant(P ), that is Variant(P ) |=norm φ.

Proof. Let P be a set of protocol rules, ru ∈ Variant(P ) and a variable x occur-
ring in ru, let φ be a formula returned by SourceLemma(Variant(P ), ru, x). The
rule ru is of the form [l]−−[ a ]→[r] and φ is of the form:

∀y, x, i LeftF,ru,t1(y, x)@i =⇒

(∃k RightF ′,ru′1,t1(y)@k ∧ k l i)

∨ . . .
∨(∃k RightF ′,ru′n,t1(y)@k ∧ k l i)

∨(∃k K↑(x)@k ∧ k l i)
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for some t1 deepest protected term w.r.t. x, subterm of F (t) ∈ l. By definition
of a deepest protected subterm, t1|p = x for some position p and there are only
pairs along the path p (except at position ε).

Let tr be a normalised trace of Variant(P ). Let us show that tr satisfies φ.

tr = ∅ A1 S1 · · · An−1 Sn−1  
An Sn

Let i be such that LeftF,ru,t1(m,n) ∈ Si for some terms m,n. Then the ith

applied rule must the rule ru in Variant(P ) mentioned above which has the form:

ru = {[F (t)} ∪ l′]−−[ LeftF,ru,t1(t1, x) ∪ a′ ]→[r]

Moreover, there exists a substitution σi in normal form (the one used to in-
stantiate ru) such that m =AC (t1σi)

y and n =AC xσi↓. Since the trace is

normalised, m =AC t1σi and n =AC xσi. Let u =AC (tσi)
y. Again, we have

u =AC tσi. Since t1 is a subterm of t and t1 is not headed by an AC symbol, we
have that m is a subterm of u (modulo AC). Moreover F (u) ∈ Si−1 by definition
of the application of a rule.

Let j < i be the first occurence of j such that m (modulo AC) is a subterm
of a fact in Sj and consider the jth rule that has been applied.

– Either this rule is a rule ru ′′ in Variant(P ) of the form

ru ′′ = [l′′]−−[ a′′ ]→[{F ′(w)} ∪ r′′]

and there exists σj in normal form (the substitution used to instantiate ru ′′)
such that m (modulo AC) is a subterm of u′ = (wσj)

y. Since the trace is

normalised, (wσj)
y =AC wσj . Let p′ be the position at which m occurs in

wσj , i.e. such that wσj |p′ =AC m.

• Either p′ is a path of w that does not end on a variable. Then w|p′ = w′

with w′ a protected subterm of w.
We have that w′σj =AC m =AC t1σi thus w′ and t1 are unifiable (mod-
ulo AC) thus we have annotated ru ′′, that is, RightF ′,ru′′,t1(w′) ∈ a′′,
which concludes this case.

• Or p′ is a path of w that ends on a variable or is not a path at all. Then
there must exist a variable y in w such that m (modulo AC) is a subterm
of yσj . Then y also appears in some premise fact F ′′(w′′), thanks to the
definition of a protocol rule and the fact that the variant rules are still
protocol rules. Therefore m (modulo AC) is a subterm of a fact in Sj−1
(since (w′′σj)

y =AC w′′σj), which contradicts the minimality of j.

– Or the rule is one of the MD rules. Since m is a protected term, the rule
cannot be []−−[ K↑(x) ]→[K↑(x : pub)] nor [Fr(x : fr)]−−[ K↑(x) ]→[K↑(x : fr)]
since these two rules only generate names. By minimality of j, it cannot
be the rule [Out(x)]−−[]→[K↓(x)], nor [K↑(x)]−−[ K(x) ]→[In(x)], nor the rule
[K↓(x)]−−[ K↑(x) ]→[K↑(x)] either. So it must be the deduction rule, either in
the K↑ version or in the K↓ version.
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• Either it is the rule

[K↑(x1θ), . . . ,K
↑(xnθ)]−−[ K↑(f(x1, . . . , xn)θ) ]→[K↑(f(x1, . . . , xn)θ)]

with f(x1, . . . , xn)θ in normal form. We have K↑(x1θ), . . . ,K
↑(xkθ) ∈

Sj−1. Then, by minimality of j, and since m is not headed with an AC
symbol, we must have m =AC t1σi =AC f(x1θ, . . . , xkθ), otherwise we
would have that m is subterm of some xiθ hence subterm of Sj−1 or m
is a constant, which cannot be the case since m is a protected subterm.
Remember that xσi is a subterm at position p = i0.p

′ (for some i0) of t1
such that there are only pairs along p′, that is, xσi ∈ Stpair(xi0θ). Since
the trace is normalised (i.e. pairs are decomposed before being used), we
get that K↑(xσi) ∈ Sj−1, that is K↑(n) ∈ Sj−1. Now, by inspection of the

rules, we notice that the only way to obtain K↑(t) in a state is through
a rule annotated by K↑(t), hence we can conclude that K↑(n) appears in
one of the actions of an earlier rule.

• Or the rule

[Kα1(x1θ), . . . ,K
αn(xnθ)]−−[ K↓( f(x1, . . . , xn)θ

y) ]→[K↓( f(x1, . . . , xn)θ
y)]

has been applied, with f(x1, . . . , xk)θ that can be reduced at top level.
Since the equational theory is a subterm theory, it must be the case that
m = (f(x1, . . . , xk)θ) ↓ is a subterm of one of the xiσ, hence m is a
subterm of a fact of Sj−1, which contradicts the minimality of j. ut

Theorem 2. Given a set of well-formed protocol rules P , a composed rule ru =
ru1 ◦θ ru2 ◦θ · · · ◦θ ruk with rui ∈ Variant(P ), a variable x occurring in ru, and φ
returned by SourceLemmaComp(Variant(P ), ru, x), then Variant(P ) |=norm φ.

Proof. The correctness of Algorithm 2 is a direct consequence of Theorem 1.
Indeed, let φ be a formula returned by SourceLemmaComp(Variant(P ), ru, x).
Then φ is actually a formula returned by SourceLemma(Variant(P ), rui, vi|p) for
some rui ∈ Variant(P ) and some variable vi|p of rui. Applying Theorem 1, we
have that Variant(P ) |=norm φ, hence the conclusion. ut


