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Abstract: Software product lines (SPL) emulate the industrial production lines that are capable of generating large volumes of
products through reuse schemes and mass production. A multi product line (MPL) aims to reuse of several SPL. Feature
models are often used to manage the existing resources of SPLs and define valid products through notations and relationships
such as mandatory, optional, and alternative features. The main contribution of this study is a method to manage the variability
of multiple SPL and generate a new portfolio of products for Internet of Things (IoT). For this, the problem of developing a
universal feature model (FM) for an MPL from merging the FMs of the individual SPLs with a Search-Based Software
Engineering (SBSE) technique is addressed. In addition, the authors propose a multi-objective optimisation model to maximise
the reusability and compatibility between features and minimise the development cost. The model facilitates the design of an
MPL-feature model. Authors’ empirical results show that the proposed model solved by genetic algorithms allows to configure a
variety of software products and to determine the scope of the MPL.

challenges that may arise when implementing an MPL such as SPL
reuse, interoperability, product derivation, reference architecture,
among others [11].

MPL needs to manage SPL efficiently to identify the variation
points and the level of reuse and so configure new products in
different domains. To generate products in an MPL and reuse
artefacts from the SPLs available; it is advisable to merge their
FMs and determine the scope which will be an MPL [12]. A MPL's
scope is a description of the products that constitute the MPL or the
production capacity of an MPL from N SPL. Within that scope, the
disciplined reuse of core assets, such as requirements, features,
designs, test cases, tools, and other software development artefacts,
greatly reduces the cost of product development.

In this paper, we propose a SBSE method to manage the
variability (i.e. the ability to change, customise, or configure
systems) of multiple SPL. First, the problem of developing a
universal FM of the MPL from merging the FMs of the individual
SPLs with a SBSE is addressed. Then, we propose a multi-
objective optimisation model to maximise the reuse and
compatibility between features and minimise the development cost.
The model facilitates the design of an MPL-FM that integrates all
the features, which allows generating a new portfolio of products
for the Internet of Things (IoT).

IoT is a concept that refers to the digital interconnection of
everyday objects with the Internet and provides them with
intelligence, so they automate tasks and make life a little easier, it
reduces human effort and improve their quality of life. Currently,
there are many applications of IoT such as home automation,
healthcare, smart greenhouse, education, entertainment, social life,
energy conservation, among others. These multi-domain IoT
applications are interesting for an MPL implementation since this
paradigm arises for the development of large and complex systems
through several independent SPLs that are developed by several
organisations [13, 14] with different hardware and software
technologies for different geographical areas and in any context.

Our empirical results show that the proposed model solved by
genetic algorithms allows to configure a variety of software

1 Introduction
Software engineering incorporates practices or methodologies such 
as techniques of optimisation and product lines used in other 
already consolidated industries as viable alternatives for mass 
customisation, cost reduction, and efficient use of resources. This is 
in order for companies to meet the changing requirements of 
customers and get a competitive advantage in today's markets.

Software Product Lines (SPL) emulate industrial product lines 
that are capable of generating large volumes of products through 
reuse and optimisation of inputs and processes. A product line is a 
family of products developed from a set of variables and similar 
features. When the final product is software, it is called SPL. 
Unlike conventional software development paradigms that focus on 
developing unique systems, SPL Engineering (SPLE) is a paradigm 
focused on building a family of software systems across reuse and 
development assets in a given domain. This paradigm is used by 
companies such as Siemens, Nokia, Toshiba, Bosch, HP, Philips 
among others.

Multi product lines (MPL) emerge as a paradigm of flexible 
development that helps companies improve their products and keep 
them updated through the reuse of software artefact and products 
of several heterogeneous SPL.

On the other hand, the search-based software engineering 
(SBSE) is an area in which the problems of software engineering 
are reformulated and modelled as optimisation problems and 
subsequently, they are solved using techniques, algorithms, and 
search strategies. These problems are characterised by a large 
search space, in which multiple objectives and constraints are 
involved and may be conflicting. This search aims to identify, 
among all possible solutions, one that is good enough according to 
the appropriate metrics. There are many studies in the literature 
that have explored the application of techniques of SBSE as 
simulated annealing (SA), genetic algorithms, ant colony 
optimisation and particle swarm optimisation in various activities 
of the life cycle of the SPLE for example optimal feature selection 
[1–6], test generation [7, 8], architecture [9, 10], and among others. 
These capabilities and applications are attractive to meet some



products and to determine the scope of the MPL. The paper is
organised as follows. Section 2 presents the background on SPL,
MPL, and SBSE. Section 3 describes the problem of MPL-feature
model as a search problem and the proposed multi-objective
optimisation model. Section 4 describes a method to generate the
MPL-feature model using a multi-objective optimisation model.
Section 5 is presents the as case study of the configuration of
applications to IoT reusing two SPL for smart building automation.
Section 6 presents the empirical results of experiments to evaluate
the algorithms. Finally, Section 7 presents the conclusion and
future work.

2 Background
SPL and SBSE are the two fields that constitute the essence of this
research. This section provides the necessary background
information on these topics.

2.1 Software product lines

A SPL is defined as ‘a set of software-intensive systems that share
a common, managed set of features to satisfy the specific needs of
a particular market segment or mission and that are developed from
a common set of core assets in a prescribed way [15]’.

SPLE separates two processes: Domain Engineering and
Application Engineering [16]. Domain Engineering is the process
responsible for establishing the platform of reusable assets,
specifically defining what is common and variable in the SPL.
Therefore, Application Engineering also called product derivation
is the process in which applications are constructed by reusing
domain artefacts and exploiting the variability of the SPL. The
main activity of the derivation of products is to find the best
configuration of features to meet the customer requirements. These
requirements can be functional and non-functional; some
competing and even entering conflict each other.

Variability is defined as the ability of a software system or
artefact to be efficiently extended, changed, customised, or
configured for use in a particular context [17]. The variability aims
to maximise the return on investment (ROI) to build and maintain
products during a specific period of time. Variability is explicated
in a software variability model called FM which distinguishes
different applications of SPL.

A feature model (FM) graphically or textually represents an
SPL through possible combinations of features. A FM is used to
capture common and variable aspects of all products in a SPL in
terms of features. This model also guides the product configuration
in an SPL. FMs are usually used to specify sets of mandatory,
optional, and alternative features which define valid products in the
SPL. A feature is a relevant functionality for stakeholders because
it captures common and variable aspects of the systems in an SPL
[18].

2.2 Multi product lines

For many years researchers have tried to reuse several artefacts of
multiple SPL [19–24]. An MPL (MPL or MSPL) is a special type
of SPL that reuses most of the software artefacts of various SPLs,
which are developed, managed, and implemented independently.
According to Holl [24], an MPL is ‘a set of several self-contained
but still interdependent product lines that together represent a
large-scale or ultra-large scale system’. Acher [22, 23] defined an
MPL as ‘an SPL that manages a set of SPLs {SPL1, SPL2, …,
SPLn}’. Such set of products is described by a FM called MPL-FM

(FMMPL) [25] that contains all the features of the SPLs and their
interrelationships.

2.3 SBSE techniques for SPLs

Over the last decade, the scope of SBSE has expanded to cover
different domains of SPL life cycle, such as feature selection, test
generation, architecture, maintenance, among others. Table 1
shows the optimisation problems identified in the SPLs and SBSE
techniques used to solve them. 

The selection of search-based techniques is performed keeping
in view the way they can solve most of the issues lying in the
SPLE domain. SBSE techniques and how they have been used to
resolve different SPL issues are described below.

SA is named so because it was inspired by the physical process
of annealing, the cooling of a material in a heat bath. When a solid
material is heated past its melting point and then cooled back into
its solid state, the structural properties of the final material will
vary depending on the rate of cooling. SA is an approximation
algorithm to the optimal solution and is used in the search for
solutions to large optimisation problems. In [33], this technique is
used to optimise the scope of a software product platform.

Genetic algorithms (GA) are techniques used to solve search
and optimisation problems that simulate the natural evolution
process. The algorithms are based on Darwin's theory in which the
most apt individuals survive while the less-adapted individuals
tend to disappear. The search procedure aims to maintain a
population of potential solutions (chromosomes) while conducting
parallel research for solutions with a high fitness function. GAs
have several variations, specifically for genetic operators
(crossover, mutation), selection, and how individuals are replaced
to form the new population. In [30], the authors present an
approach to feature location in model-based SPLs that is called
genetic algorithm to feature location (GA-FL). FL is known as the
process of finding the set of software artefacts that realise a
particular feature.

Ant colony optimisation (ACO) is a technique for approximate
optimisation to solve computational problems that search the best
paths or routes in graphs. The inspiring source of ACO algorithms
are real ant colonies. Wang and Pang presented a polynomial
algorithm for feature selection with constraints in SPL using ACO
[2]. The authors propose a method to transform a FM from and/or
tree to multistage-directed graphs. Then, the feature selection
problem is converted to find an optimal path from the origin to the
destination.

Pairwise SPL testing aims to select a set of products (test suite),
such that their combined coverage contains all the possible
pairwise feature combinations of the SPL.

Bat algorithm (BA) is one of the recently proposed heuristic
algorithms imitating the echolocation behaviour of bats to perform
global optimisation. In [32], an approach called SPLBA is
presented for the reduction of SPL tests using a bat-inspired
algorithm.

Multi-objective optimisation (MOO) also called multi-criteria
optimisation considers optimisation problems involving more than
one objective function to be optimised simultaneously. A product
line architecture design is an optimisation problem that has been
effectively solved using multi-objective algorithms to find optimal
solutions that satisfy defined objectives. For example, MOA4PLA
(Multi-Objective Optimisation Approach for PLA design) is a
search-based approach to support the product line architectures
[34]. MOA4PLA uses a PLA modelled in a UML class diagram
and optimise it. A set of solutions with the best trade-off between

Table 1 SBSE techniques for SPLs
Problem domain SA GA ACO Pairwise BA MOO
feature selection/product configuration Yes [26] Yes [1, 27, 28, 29] Yes [2] — — Yes [27]
architecture — — — — — Yes [9, 10]
maintenance and evolution/feature location — Yes [30] — — — —
SPL testing/multi-objective test generation — Yes [8, 31] — Yes [7] Yes [32] Yes [8]
product platform scope Yes [33] — — — — —



objectives is generated and the architect may select which
architecture will be used. In [8], an approach is presented to handle
multiple conflicting objectives in test generation for SPLs. This
approach combines genetic algorithms and constraint solving
techniques to deal with the following objectives: (i) maximising the
pairwise coverage, (ii) minimising the number of products selected,
and (iii) minimising the overall test suite cost.

3 Reformulating SPLE as a search problem
For product derivation, first of all, it is advisable to design a
universal FM (MPL-FM) that merges FMs of the individual SPLs
with a SBSE technique. In order to reformulate this issue of SPLE
as a search problem, it is necessary to define:

• A representation of the problem which is amenable to symbolic
manipulation.

• A definition of fitness function to quantify the optimality of a
solution so that particular solution may be ranked against all the
other solutions.

3.1 Problem formulation

In order to solve the MPL-FM problem in multiple SPL, it is
necessary to define the problem. In this section, we first define the
MPL-FM problem and then proceed to model it as a search
problem. To formulate this problem mathematically, the notations
are introduced in Table 2. 

Given m features models and a requirements specification, a
configuration is a set of features to select and that they will
integrate the MPL. These features should be compatible between
itself and the configuration should meet the requirements of the
application and optimise reuse of SPL artefacts.

Thus, if a particular software product is defined by n features f,
with each feature xij ∈ Ni having a value by reusability of rij, a
selection reward pij by compatibility and a development cost wij, it
is possible to define mathematically the MPL-FM problem as a
multi-objective optimisation model.

Reusability Rij (1) defines the frequency of usage Uij (2) of a
feature i in a FM j.

Rij = ∑
i = 1

n Uij
n (1)

Uij = ∑
i = 1

n
Uij (2)

3.2 Multi-objective optimisation model

The multi-objective optimisation model (3) simultaneously
integrates and optimises three objective functions: software
reusability (Z1), software compatibility (Z2), and cost (Z3) with
the same set of features.

The objective function (4) is an optimisation by maximisation,
which aims to select a feature from every SPL with the maximum
total benefit (reusability) while the development cost of the chosen
features must not exceed the budget restriction W (7).

The objective function (5) is an optimisation by maximisation,
which aims to select a feature from every SPL with the maximum
compatibility while the development cost of the chosen features
must not exceed the budget restriction W (7).

The objective function (6) is an optimisation by minimisation,
which aims to select a feature from every SPL with the minimum
development cost while the reusability should exceed the limit
value of reusability (8).

Maximise Z1, Z2 and Minimise Z3 (3)

Maximise Z1 = ∑
i = 1

m

∑
j = 1

n
xijrij (4)

Maximise Z2 = ∑
i = 1

m

∑
j = 1

n
xijpij (5)

Minimise Z3 = ∑
i = 1

m

∑
j = 1

n
xijwij (6)

subject to

∑
i = 1

m

∑
j ∈ Ni

wijxij ≤ W , (7)

∑
i = 1

m

∑
j ∈ Ni

rijxij ≥ R, (8)

∑
j ∈ Ni

xij = 1, ∀i ∈ 1, 2, …, n (9)

xij ∈ 0, 1 , ∀i = 1, 2, …, n ∀ j = 1, 2, …, m , xij
∈ Ni

(10)

xp = 1 → xij = 1 i ∈ MA (11)

xp = 0 → xij = 0 i ∈ O (12)

Table 2 Notation
Notation Description
f feature
n number of features
m number of SPLs. variable equal to the number of feature models
i = 1, 2, …, n index of a feature
j = 1, 2, …, m index of a SPL
xij variable equal to 1 if the feature i is assigned to SPL j; 0 otherwise
rij reusability of feature i if it is assigned to SPL j
wij development cost of the feature i if it is assigned to SPL j
pij profit or score of the feature i if it is assigned to SPL j for compatibility
W the user's available budget
R limit value of reusability required by the user
MA set of mandatory features
O set of optional features
XOR set of all exclusive alternatives features
OR set of all non-exclusive alternatives features



xp = 1 → ∑
i ∈ P

xij = 1 ∀P ∈ XORp (13)

xp = 1 → ∑
i ∈ Q

xij ≥ 1 ∀Q ∈ ORp (14)

Constraint (9) ensures selecting a single feature from each j SPL.
Constraint (10) ensures each feature f ij ∈ N having an

associated decision variable xij ∈ {0, 1}, such that xij = 1 if feature
i is assigned to SPL j and it will be included in the final software
product. Otherwise xij = 0, if this feature is not included in the
product.

Constraint (11) ensures that the mandatory feature ij ∈ MA is
selected if its parent is selected.

Constraint (12) ensures that the optional feature ij ∈ O is not
selected if its parent is not selected.

Constraint (13) ensures that for each XOR feature set, exactly
one feature in P is selected if p is selected.

Constraint (14) ensures that for each OR feature set, at least one
feature in Q is selected if p is selected.

3.3 Solution procedure

The MPL-FM problem is identified as a non-deterministic
polynomial-time hard problem (NP-Hard). In this paper, genetic
algorithms are used to find the best result for the MPL FM problem
because they are capable to solve many optimisation problems due
their good performance to deal with combinatorial explosion
effectively. In addition, the genetic algorithms have also been
explored in various aspects of SPL to solve problems such as
feature selection, testing, variability management, feature location
in model-based SPL, among others.

Algorithm 1 (See Fig. 1) shows the general process of genetic
algorithm. 

The multi-objective optimisation model was evaluated using
various genetic algorithms included in the MULTIGEN library
[35]. This library was developed by the Process Optimisation
Department of the Chemical Engineering Laboratory of the
Institute National Polytechnique Toulouse (INP). MULTIGEN
includes eight algorithms (Table 3), which are distinguished by
their structure and type of variables (continuous, integer, or
binary). 

The representation of a chromosome used in genetic algorithm
is illustrated by an example as show in Fig. 2. 

4 Generating MPL-feature model

The proposed method for managing MPL variability and
generating a new product portfolio for IoT is presented in Fig. 3.
This method is based on the analysis and comparison of FMs to
find matches between the features maximising compatibility and
reusability of features at the lowest possible cost. The proposed
method has six main steps:

(i) Identification of variability. As a first step, it is necessary to
identify the variability available in the SPL, which consists of
listing common and variable features of the products and their
relationships (mandatory, optional and alternative) for each SPL.
(ii) Evaluate the SPLs that will integrate the MPL. This step refers
to evaluate the reusability and compatibility of the features from
every SPL that will integrate the MPL. In this step, the FMs are
translated into the data required by the model and the necessary
calculations are performed as rij, pij, and cij.
(iii) Implementation of the multi-objective optimisation model
proposed in MULTIGEN.
(iv) Solve the multi-objective optimisation model with the genetic
algorithms included in MULTIGEN.
(v) Compare the results obtained by each genetic algorithm and
choose the optimal configuration.
(vi) Create MPL-FM. With the results obtained from the multi-
objective optimisation model, create a new FM (MPL-FM). Merge
features with high level of reuse through compositional techniques.

5 Case study
We validate our proposed multi-objective optimisation model
based on experiments made on a case study consisting on a family
of n product variants (Table 4) for IoT applications. The case study
involves the development of an MPL for manufacturing IoT
applications in various automation domains such as home, hotels,
smart greenhouse, offices, among others. 

The MPL must reuse two SPL previously developed by
different development teams and distinguished mainly by
technology used such as programming languages, modelling
notations, and hardware. The two SPLs are capable of generating n
software products for smart building automation and are
represented by FMs (see Figs. 4 and 5) respectively. 

The problem is how to implement a configuration tool for
multiple SPL to develop IoT applications. This tool should
concentrate the good configurations (i.e. a combination of features
or products) that meet the compatibility and reusability
requirements and with the lowest possible development cost.

As shown in Fig. 4, the mandatory features lighting, hardware,
or sensor must be selected if any product is implemented.

Fig. 1  Algorithm 1: Genetic algorithm

Table 3 Algorithms
Algorithm Variable type Description
NSGA-II continuous elitist multi-objective genetic algorithm
NSGA-IIb continuous elitist multi-objective genetic algorithm
NSGA-II MI continuous, integer mixed elitist multi-objective genetic algorithm
NSGA-II MIB continuous, integer, binary mixed elitist multi-objective genetic algorithm
MOGA binary multi-objective genetic algorithm with binary representation

Fig. 2  Representation of chromosome



measure the performance of the multi-objective optimisation
model, it is necessary to identify the best approach for identifying
candidate solutions. We evaluate all genetic algorithms available in
the MULTIGEN library using the following metrics: desirability
value for reusability, compatibility, cost, and time complexity.

The proposed multi-objective optimisation model was executed
a total of eight times under the same parameters. For each
execution, the initial values of the optimisation variables were
changed in order to start the search from different points and to
observe if the evolution behaves in the same way. The eight
executions of the model gave results greater than those required;
therefore, it is possible to conclude that the model performs
adequately in the proposed optimisation scenario.

We propose to find the configuration of features that would
allow to generate a software product that costs less than $
30,000.00 USD, a minimum reusability of 15 and a minimum
compatibility of 40.

Fig. 6 shows an example of the Pareto Fronts obtained when
testing each algorithm to solve the multi-objective optimisation
model. The results are indicated with a 1 if the feature was selected
and with a 0 if it was not selected. 

In order to better visualise the optimal results obtained by all
genetic algorithms implemented in MULTIGEN, we present the
results of the multi-objective optimisation are plotted in three-
dimensional graphs.

The Pareto Fronts show the reusability-compatibility-cost
relationship in the feature configuration of an MPL using the
following algorithms such as NSGA II (Fig. 7), NSGA II SBX
Classique (Fig. 8), NSGA II b (Fig. 9), NSGA II Mixte Continu-
Entier (Fig. 10), NSGA II Mixte Continu-Entier-Booléen (Fig. 11),
NSGA II Mixte Continu-Entier-Booléen LBCE (Fig. 12) and MIB
MOGA Continu-Entier-Booléen (Fig. 13). 

6.4 Discussion of optimisation results

We consider a scenario in which the balance between the technical
criteria (reusability, compatibility) and economic (cost) have the

Fig. 3  Proposed method

Examples of optional features are Protocol, MQ2, or MQ7. The 
FM shows alternative features which may be exclusive (XOR) or 
non-exclusive (OR). An exclusive feature implies that only a sub-
feature can be selected from the alternative features such as 
RaspberryPi. OR hierarchical relationships such as hardware, 
sensor, and protocol allow choosing more than one option for the 
product.

6 Computational results
This section presents empirical results from experiments we 
performed to evaluate the algorithms.

6.1 Dataset

A sample of the dataset for features to generate a portfolio of 
products for IoT is provided in Table 4.

6.2 Parameter setting

Table 5 shows the input parameters used for the execution of each 
genetic algorithm. These parameters can influence the population 
diversity. For example, an excessively high crossover rate will 
cause the solution to converge quickly before the optimum is 
found. On the other hand, a low crossover rate decreases the 
population diversity and results in long computation time. 

The mutation rate also influences the GA performance, as it 
determines the frequency of random search. Generally, a very low 
mutation rate is recommended to avoid that the genetic algorithm 
process becomes a pure random search, which impairs the property 
of GA. The population size may be the most distinct factor 
influencing the population diversity.

6.3 Experiment results

The algorithms were implemented in MULTIGEN and tested on a 
PC with an Intel(R) Core(TM) i7 2.8 GHz processor, 16 GB RAM 
and the Microsoft Windows 10 operating system. In order to



same importance when we choose possible configurations of
features and, therefore, we decide the product generation.

After analysing the execution results of NSGA II and MOGA
algorithms (Fig. 14), we determined that the best alternative to the
proposed optimisation problem is the implementation of NSGA II
Mixte Continu-Entier-Booléen, both in execution time (1060 s) and
in the results obtained (Table 6). 

In our tests, the obtained configuration satisfied the expected
conditions (subsection 6.3) and we obtained a development cost of
$20,728 USD with values higher than expected reusability (17.33)
and compatibility (51).

6.5 MPL-feature model

In the proposed method, the mechanism for generating a universal
FM for MPLs is mainly based on the optimal configuration
obtained by the multi-objective optimisation model (Table 7). 

Fig. 15 shows the MPL-FM for IoT applications. The rectangles
indicate features and the lines between them are their relations. 

7 Conclusion
We present a method formalisation for feature modelling for an
MPL. This method allows to develop a universal FM of the MPL
from merging the FMs of the individual SPLs using genetic

Table 4 Test problem details
No. Feature f i j f ij rij wij pij Product 1 Product 2 Product 3 Product 4 Product 5 Product 6
1 lighting X1 1 X11 1 1000 3 ✓ ✓ ✓ ✓ ✓ ✓

2 hardware X2 1 X21 1 500 3 ✓ ✓ ✓ ✓ ✓ ✓

3 Arduino X3 1 X31 0.33 400 1 ✓ — — — — ✓

4 RaspberryPi X4 1 X41 0.66 500 2 — ✓ ✓ ✓ ✓ —
5 R3MA X5 1 X51 0.166 725 1 — ✓ — — — —
6 R3MB X6 1 X61 0.166 300 1 — — ✓ — — —
7 R2MA X7 1 X71 0.166 500 1 — — — ✓ — —
8 sensor X8 1 X81 1 400 3 ✓ ✓ ✓ ✓ ✓ ✓

9 temperature X9 1 X91 0.333 1000 1 ✓ — — — — ✓

10 humidity X10 1 X101 0.666 800 2 ✓ ✓ ✓ — — ✓

11 gas X11 1 X111 0.166 500 1 ✓ — — — — —
12 MQ2 X12 1 X121 0.5 200 1 ✓ ✓ — — — ✓

13 MQ7 X13 1 X131 0.166 300 1 ✓ — — — — —
14 flame X14 1 X141 0.166 1650 1 ✓ — — — — —
15 protocol X15 1 X151 0.166 320 1 ✓ — — — — —
16 Wifi X16 1 X161 0.666 298 2 ✓ ✓ ✓ — ✓ —
17 bluetooth X17 1 X171 0.5 2356 1 — ✓ — ✓ — ✓

18 illumination X1 2 X12 1 2250 3 ✓ ✓ ✓ ✓ ✓ ✓

19 automatic X2 2 X22 0.5 3500 1 ✓ ✓ — ✓ — —
20 semiautomatic X3 2 X32 0.666 1500 2 ✓ — ✓ — ✓ ✓

21 environmental X4 2 X42 0.333 2000 1 ✓ — ✓ — — —
22 computer X5 2 X52 0.666 1000 2 ✓ ✓ ✓ — ✓ —
23 switch X6 2 X62 1 2000 3 ✓ ✓ ✓ ✓ ✓ ✓

24 device X7 2 X72 1 1000 3 ✓ ✓ ✓ ✓ ✓ ✓

25 RaspberryPi X8 2 X82 0.666 900 2 — — ✓ ✓ ✓ ✓

26 Arduino X9 2 X92 0.333 800 1 ✓ ✓ — — — —
27 alarm X10 2 X102 0.666 1000 2 ✓ — ✓ — ✓ ✓

28 flood X11 2 X112 0.5 860 1 ✓ — ✓ — ✓ —
29 fire X12 2 X122 0.5 950 1 ✓ — ✓ — — ✓

30 surveillance X13 2 X132 0.666 2500 2 ✓ ✓ ✓ ✓ — —
31 sensor X14 2 X142 1 1000 3 ✓ ✓ ✓ ✓ ✓ ✓

32 MQ7 X15 2 X152 0.333 500 1 ✓ — ✓ — — —
33 luminosity X16 2 X162 1 1200 3 ✓ ✓ ✓ ✓ ✓ ✓

34 flame X17 2 X172 0.333 980 1 ✓ ✓ — — — —
35 DHT11 X18 2 X182 0.5 250 1 ✓ — ✓ — ✓ —
36 DHT22 X19 2 X192 0.666 300 2 — ✓ ✓ ✓ — ✓

37 motion X20 2 X202 0.333 700 1 ✓ — ✓ — — —
38 humidity X21 2 X212 0.5 800 1 ✓ — ✓ — ✓ —
39 bluetooth X22 2 X222 0.666 1000 2 ✓ ✓ ✓ — — ✓

40 Wifi X23 2 X232 0.5 1200 1 ✓ — — ✓ — ✓

41 ZigBee X24 2 X242 0.166 2000 1 — — — — ✓ —

Fig. 4  Feature Model of SPL1



complement the proposed multi-objective optimisation model with
new variables in order to customise other software products and
covering different market segments.
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Fig. 5  Feature Model of SPL2

Table 5 Input parameters for genetic algorithm
Parameter Description Value
population number of individuals in population 200
generation number of generations 500
crossover crossover index (0.1–1.0) 0.9
mutation mutation index (0.1–1.0) 0.5

Fig. 6  Pareto Front

algorithms. Also, the multi-objective optimisation model offers an 
alternative to combine features, and it is useful to visualise 
different valid products. The obtained results prove that the 
optimisation in software product design gives great benefits not 
only the reusability but the quality and the final performance of 
software product, as well as a greater economic benefit by 
adjusting the production cost to the user's budget.

As future work, to update and introduce new functionalities for 
MPL is proposed. In the same way, it is convenient to refine and



Fig. 7  Pareto Front obtained by NSGA II algorithm

Fig. 8  Pareto Front obtained by the NSGA II SBX Classique algorithm

Fig. 9  Pareto Front obtained by the NSGA II b algorithm

Fig. 10  Pareto Front obtained by the NSGA II Mixte Continu-Entier
algorithm

Fig. 11  Pareto Front obtained by the NSGA II Mixte Continu-Entier-
Booléen algorithm

Fig. 12  Pareto Front obtained by the NSGA II Mixte Continu-Entier-
Booléen LBCE algorithm

Fig. 13  Pareto Front obtained by the MIB MOGA Continu-Entier-Booléen
(LBCE) algorithm

Fig. 14  Results of solving the optimisation model using GA



Table 6 Comparative study of the results obtained with genetic algorithms
Algorithm Cost Reusability Compatibility Run-time, s
NSGA II 12,390.67 9.5276 27.2361 1073
NSGA II SBX Classique 18,135.54 13.9791 41.6974 1380
NSGA II b 14,101.18 13.7945 41.5040 1416
NSGA II Mixte Continu-Entier 21,618 16.3333 48 1353
NSGA II Mixte Continu-Entier-Booléen 20,728 17.3333 51 1060
NSGA II Mixte Continu-Entier-Booléen LBCE 13,098 10.5 30 1016
MIB MOGA Continu-Entier-Booléen 18,325 12.3333 37 2137

Table 7 Optimal configuration by each algorithm
NSGA II NSGA II SBX

Classique
NSGA II b NSGA II Mixte

Continu-Entier
NSGA II Mixte
Continu-Entier-

Booléen

NSGA II Mixte
Continu-Entier-
Booléen LBCE

MIB MOGA Continu-
Entier-Booléen

1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 0
1 1 1 1 1 1 0
0 0 0 0 0 0 1
0 0 0 0 1 0 1
0 0 0 0 0 0 0
1 1 1 1 1 1 1
0 0 0 0 0 0 1
1 1 1 1 1 0 1
0 0 0 0 0 0 0
1 1 1 1 1 1 1
1 1 1 1 1 0 1
0 0 0 0 0 0 0
1 1 1 1 1 0 1
1 1 1 1 1 1 1
0 0 0 0 0 0 1
0 0 0 1 1 1 1
0 0 0 1 0 1 1
0 0 0 1 0 1 1
0 0 0 1 0 1 1
1 1 1 1 1 0 1
0 0 0 0 1 0 1
1 1 1 1 1 1 1
1 1 1 1 1 0 1
0 0 0 0 0 0 1
1 1 1 1 1 0 0
0 0 0 0 1 0 0
0 0 0 0 1 0 1
0 0 0 0 0 0 0
1 1 1 1 1 1 1
1 1 1 1 1 0 1
1 1 1 1 1 0 1
0 0 0 0 0 0 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
0 0 0 1 1 0 1
1 1 1 1 1 0 0
1 1 1 1 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 1
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