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COMPLETE INTEGRABILITY OF DIFFEOMORPHISMS AND
THEIR LOCAL NORMAL FORMS

KAI JJANG AND LAURENT STOLOVITCH

ABSTRACT. In this paper, we consider the normal form problem of a commutative
family of germs of diffeomorphisms at a fixed point, say the origin, of K™(K = C or R).
We define a notion of integrability of such a family. We give sufficient conditions which
ensure that such an integrable family can be transformed into a normal form by an
analytic (resp. a smooth) transformation if the initial diffeomorphisms are analytic
(resp. smooth).

A la mémoire de Walter

1. INTRODUCTION

When studying dynamical systems with continuous time (i.e. systems of differential
equations) or discrete time (i.e. diffeomorphisms), special solutions, such as fixed points
also called equilibrium points, attract a lot of attention. In particular, one needs to
understand the behavior of nearby solutions. This usually requires some deep analysis
involving normal forms [2], which are models supposed to capture the very nature
of the dynamics to which the initial dynamical system is conjugate.When considering
analytic or smooth dynamical systems, one needs extra assumptions in order to really
obtain dynamical and geometrical information on the initial dynamical system via its
normal form. These assumptions can sometimes be understood as having a lot of
symmetries. This led to the concept of integrability.

In the framework of differential equations or vector fields, a first attempt to define
such a notion for Hamiltonian systems is due to Liouville [I§]. This led, much later,
to the now classic Liouville-Mineur-Arnold theorem [I] which provides action-angle
coordinates by a canonical transformation. For a general concept of action-angle co-
ordinates we refer to [31]. In 1978, J. Vey studied in the groundbreaking work [24], a
family of n Poisson commuting analytic Hamiltonian functions in a neighborhood of a
common critical point. Under a generic condition on their Hessians, he proved that the
family can be simultaneously transformed into a (Birkhoff) normal form. This system
of Hamiltonian has to be understood as “completely integrable system”. Later, H. El-
liason, H. Ito, L. Stolovitch, N.T.Zung to name a few, generalized or improved J. Vey’s
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2 KAI JIANG AND LAURENT STOLOVITCH

theorem in different aspects including non-Hamiltonian setting [8, @] 12} 13| 19} 20} 29].
This has been recently developed in the context of PDE’s as infinite dimensional dy-
namical systems [15, 16, 4]. In a different context of global dynamics, a notion of
"integrable maps” has been devised relative to long-time behaviour of their orbits and
their complexity [22], 23].

In [3], a new integrability condition for non-Hamiltonian vector fields was established,
which involves commuting vector fields and common first integrals. Concretely, such an
integrable system on an n-dimensional manifold consists of p independent commuting
vector fields and n — p functionally independent common first integrals. For a local
integrable system near a common equilibrium point of the vector fields, the p vector
fields (resp. m — p first integrals) may be not always independent (resp. functionally
independent), so they are required to be independent (resp. functionally independent)
almost everywhere. Then one can seek for a simultaneous Poincaré-Dulac normal form
(named “normal form” for short) of the vector fields. Such a transformation can be
obtained under certain non-degeneracy conditions [19] [30} [14].

We aim at considering, in the same spirit, discrete dynamical systems given by
a family of germs of commuting diffeomorphisms at a fixed. On the one hand, the
simultaneous linearization of such holomorphic family under an appropriate ”small
divisors” condition has been treated by the second author [2I]. On the other hand
and to the best of our knowledge, the only known result in this spririt, related to
"integrability of diffeomeorphisms” is due to X. Zhang [27] who considered a single
diffeomorphism near a fixed point. On the other hand, In this article, we propose
an analogue notion of integrability of a family of commuting diffeomorphisms near a
common fixed point, then we explore their local behavior and study their normal forms.

In this paper, we consider local diffeomorphisms on (K", 0) having the form

(1.1) O (z) = Ax + higher order terms

such that the coefficient matrix A of the linear part at the origin has a (real or complex)
logarithm, i.e., there exists a matrix B such that A = e®. It is known that a complex
matrix has a logarithm if and only if it is invertible [I0]; a real matrix has a real
logarithm if and only if it is invertible and each Jordan block belonging to a negative
eigenvalue occurs an even number of times [7].

Let ® be a germ of diffeomorphism near a fixed point, say the origin. Then, for
any integer k > 1, ®®*) denotes the homogeneous polynomial of degree k of the Taylor
expansion at the origin of ®.

Definition 1.1 (Integrability, local version). Let ® be a local diffeomorphism on
K"(K = C or R) having the origin 0 as its isolated fixed point. If there exists p > 1
pairwise commuting (germs of) diffeomorphisms ®; = ®, ®,, ..., ®, of the form (L.I))
with D®;(0) = A; and ¢ = n — p common first integrals Fy,. .., F, of the diffeomor-
phisms such that

e the diffeomorphisms are independent in the following sense: the matrices {In 4;},—1
are linearly independent over K; if K = C then In A; are not unique and we
require the independence of families of all possible logarithms;
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e the first integrals are functionally independent almost everywhere, i.e., the
wedge of differentials of the first integrals satisfies dFy A --- A dF, # 0 almost
everywhere,

then & is called a completely integrable diffeomorphism and we say
(&1 = &, Dy,...,9,, Fy,...,F,) is a (discrete) completely integrable system of type
(P, q)-

We remark that analytic integrable systems in n-dimensional Euclidean spaces con-
taining a single diffeomorphism and n — 1 functionally independent first integrals were
studied [26], 27] and a local normal form was obtained under a mild generic condition.

We now introduce the notion of non-degeneracy of integrable diffeomorphisms.

Definition 1.2 (non-degeneracy). We say that a local discrete integrable system
(®y,...,P,, F1,..., F,) of type (p, q) is non-degenerate, if for all i = 1,...,p,

e the linear part @El) of the diffeomorphism ®; at the origin is semi-simple, i.e.,

write @El)(:)j) = A,x, then the coeflicient matrix A; is diagonalizable over C;
o there exist ¢ functionally independent homogeneous polynomials P, ..., P, such

that (@gl), o <I>§;1), Py, ..., P,) is a linear (discrete) completely integrable sys-
tem of type (p, );

The notion of the non-degeneracy of commuting diffeomorphisms follows that of non-
degeneracy of commuting vector fields defined in [30]. The first condition is generic in
the sense that almost all matrices are diagonalizable over C; and the second condition
is automatically satisfied for formal or analytic integrable systems by Ziglin’s lemma
[28].

If there exist logarithms In A; of A; such that any common first integral of @gl), cee <I>§,1)
is also a common first integral of the linear vector fields X; defined by In A;, then
Xi,..., X, together with P,,..., P, form a linear non-degenerate integrable system of
type (p,q). In such a case, the family of (linear) integrable diffeomorphisms is said to
be infinitesimally integrable and X7, ..., X, are called infinitesimal (linear) generators
in the sense <I>§1) = %, and we pick and fix one such family of vector fields if the
logarithms are not unique.

The following example shows that not all linear integrable diffeomorphisms is in-
finitesimally integrable.

Ezample 1.3. The integrable system ®(z,y) = (—2z,3y), F = 2%y on C? of type
(1,1). The corresponding vector field X = (In2 + (2K; + 1)\/—_17r):178—8m — (In2 +
QKQ\/—_lw)ya% does not admit any homogeneous first integral for all integers Ky, K.
Indeed, if X (2Py?) = 0 for some natural integers p, g, then we would have (In2)(p —
q) + 2/ =17[(K; + 3)p — K»q] = 0. Then vanishing of the real part leads to p = ¢ so
that the vanishing of the imaginary part reads (K; — Ky + %)p = 0; this is not possible.
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2. PRELIMINARIES AND FORMAL NORMAL FORMS

In this section, we introduce some notions and lemmas in order to well organize the
proof of the main theorem. The first lemma is analogue to the Poincaré-Dulac normal
form for commuting vector fields. It requests neither integrability nor non-degeneracy.

Lemma 2.1 (Théoreme 4.3.2 in [5]). Let &1, Do, ..., P, be p commuting diffeomor-
phisms in K" around 0. Let ®3° be the semi-simple part of the Jordan decomposition of

the linear part of ®; at the origin. There exists a formal transformation U such that,
d; o % = <I>850<I> for alli,j = 1,2,...,p, where ®; == UL o ®; 0 . We say the
diﬁeomorphisms are in Pomcaré—Dulac normal form. Moreover, when K = C, let p be
an anti-holomorphic involution. Assume that ®;p = p®; for all i, then ¥ can be well
chosen such that \ifp = p‘if as well, and we call it p-equivariant normalization.

Though the result can be obtained by direct computation, it is easier to understand
[5] via the Jordan decomposition theorem. For completeness, we provide a proof (in
particular, of the p-equivariant case used in section 5) here.

Idea of a proof. For each positive integer ¢, let £ denote the K algebra of ¢-th order
jets (Taylor expansions) jo f at 0 of smooth K functions f on K" and let D be the
group of (-th order jets j§® at 0 of smooth dlffeomorphlsms ® vanishing at 0 € K";
then, the map which sends jZCD € DY to (ji®)* : j5f v j5(f o @) is an 1som0rphlsm
of D(Z onto the group aut(£®) of automorphisms of £¥. We may sometimes abuse
notations of jets as its representative for simplicity.

Thus, (jé®1)*, ..., (j5®,)* are commuting elements of aut(E¢ ) it follows that their
semi-simple parts , as endomorphisms of the K vector space £9), commute pairwise.
Now, it is easy to see that the semi-simple part of an element of aut(€®) lies in aut(£®)
by the Jordan-Chevalley theorem; therefore, there exist pairwise commuting elements
§&S; of DY such that (j§S;)* is the semi-simple part of (j§®;)* for 1 < i < p.

Then, the following two facts are not difficult to establish:

° onehasy S;i=0F for1 <i<p
e as the (j§S;)*’s are commuting elements of aut(£®)), their semi-simplicity im-

plies, essentlally by definition, that the j§S;’s can be simultaneously linearized
by a formal diffeomorphism j{¥ of order /.

Indeed, the diffeomorphism j§¥ can be defined through the transformation (j5W)*
that normalizes the commuting family {(j§51)%, ..., (j§S,)*}: (after complexification
if necessary,) let us take n common eigenvectors Gofis oy 36 fn of (36S1)*, ., (56S,)”
such that jifi,...,jif. form a basis of £M and let us set (j§S )*(jgfm) = ijofm
Let us define (j5¥)* by sending (5§¥)*(j&( (1))) = j§fm for m = 1,... n where £

denotes the linear part of f,,. It follows from the equations (j§S;)*(j5¥ ) <jg ( f},?)) -

Nim (50 ( 7&( a5 ))> that (j§¥)* normalizes (that is, diagonalizes or block-diagonalizes)

(56S;)*’s and therefore j{V linearizes j§S;’s.
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This change of coordinates simultaneously transforms the diffeomorphisms ®;’s into
a Poincaré-Dulac normal form to order ¢, that is, for all 7,5 € {1,...,p},

D3 0 ji; = jg®; 0 B}

Take the inverse limit ¢ tends to co and we get a formal transformation W := IV =

lim jeW after which the above equations hold for all natural number £, i.e., ®; o S
L—00
<I>;?S o ®; in the formal sense.

Now assume that K = C and that the anti-holomorphic involution p commutes with
all ®;’s. As p®;p = ®;, we have p(ji®;)p := ji(p®:p) = jé®; and then < (jf;(i)-)p) =
(jéd;)*. Tt follows from the uniqueness of J ordan—Chevalley decomp081t10n that (pS;p)* =

(S;)* where S; € D and S is the semi-simple part of (j (D))" in Aut(é’ )). Therefore,

for any common eigenvector j&f of the S*’s we set S* J&f = Nijéf. Let ¢ denote the
conjugate of complex vectors. Hence, jO(C f ,0) (G f ) p is also a common eigenvector
of the S *’s with respect to the eigenvalue \;. Indeed on the one hand, we have

S5 (dcfp)) = (pSip) ié(cfp) = js(cfrpSip) = ji(cfSip),
on the other hand, we have
Nido(efp) = jo(ehifp) = ¢ (Nldof)) p = e(S5dof)p = cig(£Si)p = Go(cfSip).

Recall that (j§¥)* is defined with the help of eigenvectors j§fi,...,j5f. such that
Jofiy.. ., jifn are independent. Then one can verify j&(p¥p) = j§¥ directly since

(3§(p¥p))* also sends jgf,(r}) to j§fm form=1,....n as (j§¥)* does: as
Jo(efp®) = (jo®) jo(cfi p) = Jo(cfmp) = ciofmp,
we have

Go(pp)) ot = do(f5) p¥p) = dolect) pp) = cigef p®)p = e(cigfmp)p = Gofm:
Hence we have p¥Up = U by the inverse limit.

O
Assuming that the semi-simple linear part ®;* of ®; is diagonal, we set
O (21, ) = (Hin @1, -y PinTn)-
Let us write the homogeneous part of order ¢ of ®; as <I>§»Z (qu1 yee ¢ ) then we
can express @y) 0®¥ =¥ o @y) in local coordinates, that is, for any m € {1,...,n},

we have
¢§m('uilx1’ ce HuWLZEN) = Mim¢§m(x1> s ,Zlfn)-
It follows that for any j, the indices (71,...,7,) of every monomial term z{*--- )"

in the m-th component ¢;,, of ®; satisfies the following resonant equations with
respect to the m-th component

(2.1) Hum’ i=1,...,p.
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We denote by R, the set of solutions (vi,...,7,) with 7 natural numbers and
Dt Ve = 2.

Conversely, it is easy to see that the commuting diffeomorphisms ®; = (¢;1, - - ., Gin)
are formally in the Poincaré-Dulac normal form if the Taylor expansion of ¢;,, contains
only resonant terms with respect to the m-th component, i.e., the indices of every
monomial term lie in R,,.

We now turn to first integrals of a diffeomorphism already in the Poincaré-Dulac
normal form. The second lemma is also a parallel version from the result for vector
fields: A first integral of a vector field in the Poincaré-Dulac normal form is also a
formal first integral of the semi-simple linear part of the vector field [25].

Let us recall first integral relations for linear diffeomorphisms before stating our

lemma. Given a semi-simple linear diffeomorphism ®(xq,...,x,) = (121, ..., fnTn),
the equation

(2.2) e =1

with respect to the non-negative integers (1, ..., /¢, is called the first integral equa-
tion for ®. We denoted by €2 the set of the solutions of the first integral equation :
(2.3) Q:={(lr,....0,) eN": pi' - plr =1}

Hence, {2%' - -zl (¢1,...,£,) € Q} is the set of all monomial first integrals of ® up

to multiplication by constant coefficients. For p commuting linear diffeomorphisms,
we will consider p first integral equations simultaneously and the set of their common
solutions is still denoted by ().

Lemma 2.2. Assume ®1,®,,..., P, are in the Poincaré-Dulac normal form, then
formal first integrals of the diffeomorphisms are formal first integrals of the semi-simple
parts of the diffeomorphisms.

Proof. Write the semi-simple part of ®; as

(I)fs(xb o axn) - (Milzla cee >Minxn)>

then the lemma to prove is that if we consider the Taylor expansion of a first integral
of the diffeomorphisms, then the indices of every monomial term lie in €2 provided that
the diffeomorphisms are in the Poincaré-Dulac normal form.

Assume F is a common first integral of the diffeomorphisms and let F¢*) be the
homogeneous part of lowest degree of F. Consider the homogeneous part of lowest

degree of both sides of the equations Fo®; = F', we have obviously F(low)o®§1) = pllow),
View (135-1) as a linear operator on the space of homogeneous polynomials of degree low

mapping f to f o (I>§-1), then F(°") is in the eigenspace belonging to eigenvalue 1, and
therefore it is in the eigenspace belonging to the eigenvalue 1 of the semi-simple part
®3* e, Flow) o @3 = pllow),

We claim that the homogeneous part of any degree of I’ is also a common first
integral of ®3*. Now assume the claim is true for homogeneous parts of degree less

than ¢, which means that any monomial term cz' - - cxbin Fowith 6 + -+ 4, <
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has indices (¢4, ...,¢,) in Q. Consider the homogeneous part of degree ¢ of both sides
of Flo®; = F, we have

(2.4) FO 4 q)§1> + (FED63,)0 = O,
where F(<9 denotes the part of F with degree less than £. By our inductive hypothesis,
(F<9 0 ®;)® is a common first integral of ®:* since
(F9600,)9 0 @5 = (FEY 0 ®; 0 35%) 0 = (FI<D 0 08 0 0,)D) = (F(<D 6 3,)®,
Therefore, by (2.4) we have
(FO —FOooMyodss = FO - FO o),
equivalently,
(Ff = FO o) oV = Ff — FO o @3,

Considering composition by <I>§-1) on the right as a linear operator on the space of
homogeneous polynomials of degree ¢, we have that F'(©) — () o ®2* lies in the eigenspace
belonging to the eigenvalue 1 of <I>§-1) and then of ®%°. For any 4, j € {1,...,p}, we have

(2.5) (FO - FY o d5")o @ = FO) — FO 0 @3°,

and it implies that F') is also a first integral of ®* for i = 1,...,p. Indeed, assume
on the contrary that a monomial term czt' - - -z in F® is not a first integral of ®3*,
then F©) — F) 0 ®#* contains a non-vanishing term ¢(1— ¢, u) [Ir—, 23, and then
(FO — FO o @3) — (F — F o ®5%) o &% contains a non-vanishing term

ot~ T TT
k=1 k=1

which contradicts with equation (2.5).
U

Definition 2.3. Given a family of p commuting linear vector fields Xi,..., X, on
(K™, 0) and assume their semi-simple liner parts read X = >"" _, Aimzm%, we say
it is weakly resonant with respect to first integrals if there exists integers kq, ..., k,

such that

O EmAms -0 > kmApm) € 2V/=17ZF — {0},
m=1 m=1

We say the family of commuting linear vector fields to be weakly non-resonant if
there do not exist such integers ki, ..., k,.

Given a family of p commuting diffeomorphisms on (K" 0), we say it is weakly
resonant (resp. weakly non-resonant) if the family of infinitesimal generators of their
semi-simple liner parts is (resp. is not).

We emphasize that the family of X3, ..., X, can be weakly non-resonant and resonant
as well since we could have (3" _; kpAim, - -y 2o i kmApm) = 0. We also remark that
our notion of weak resonance with respect to first integrals is slightly different from
that with respect to vector fields: the latter requires the existence of integers kq, ..., k,
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such that they are no less than —1 and there is at most one integer equal to —1, see
[17] for example.

Definition 2.4. Let ®4, ..., ®, be p commuting linear diffeomorphisms on (K", 0) and

assume the eigenvalues of the semi-simple linear part ®;° of ®; are 1, .., ftym. We
say the family of diffeomorphisms is projectively hyperbolic if the p real vectors
(In |gi], - - -, In |pin|) are R-linearly independent.

We recall that the family {®;} is said to be hyperbolic if any p of the n covectors
(In g4l - -+, In|py,|) are linearly independent (which coincides with the usual meaning
if p = 1). By definition, the projection of a projectively hyperbolic family of p linear
diffeomorphisms onto some p-dimensional subspace is hyperbolic : the p by n real
matrix (In |p;,|) has full rank and therefore there exist p columns, say the (my, ..., my,)-
th columns, which are linearly independent, then the projection of the diffeomorphisms
onto the subspace of (2, ...,%m,) form a hyperbolic family of diffeomorphisms in
the sense of definition Particularly, for a single (linear) diffeomorphism, it is
projectively hyperbolic if and only if there exists at least one eigenvalue that does not
lie on the unit circle.

Ezample 2.5. The diffeomorphism (®(x,y) = (e¥~z,e~V~"1y) is not projectively hy-
perbolic.

With the notions above, we can now state our theorem.

Theorem 2.6. Let (&1 = @, Dy, ..., P, [1,. .., F,) be a formal non-degenerate discrete
integrable system of type (p,q) on K™ at a common fized point, say the origin 0. Assume

that the linear part of ®;, at the origin reads <I>§”(x1, ey Tp) = (i1, - -y finn), for
alli=1,...,p. If the family {CDZQ)} is either projectively hyperbolic or infinitesimally
integrable with a weakly non-resonant family of generators, then there is formal diffeo-

morphism, tangent to Identity, which conjugates each diffeomorphisms ®;, 1 =1,...,p
to
(2.6) (i% = (pari(1+ @ir), -+ oy HinTn(1 + Pin))-

Here, the @i s are not only common first integrals of ®* (this turns ®; into a Poincaré-
Dulac normal form) but also they satisfy

(27) TI0+ ) =1
k=1

for all (y1,...,7) in the set Q (defined by (2.3)).

We give a remark that the diffeomorphism in example [L.3]is projectively hyperbolic
but has no infinitesimally integrable generator; example provides an example of a
diffeomorphism which is not projectively hyperbolic but which is infinitesimally inte-
grable with a weakly non-resonant generator X = /—1z2 — \/—_1ya%; and the system
in example [3.4] in the next section satisfies none of the two conditions.
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3. PROOF OF THE THEOREM

Lemma 3.1. Let (1, Py, ..., D, Fi, ..., F,) be a non-degenerate integrable system in
which the diffeomorphisms are in the Poincaré-Dulac normal form and their linear
parts read @El)(xl,...,:zn) = (i1 %1, - -+, fhin®y) for i = 1,....p. Let VectxS) be the
vector space spanned by  over K. We have the dimension of Vectx() is no less than
q; if the family {CDZ(I)} is either projectively hyperbolic or infinitesimally integrable with
a weakly non-resonant family of generators, then the dimension is equal to q.

Proof. By the non-degeneracy condition, we have homogeneous polynomials P, ..., F,
which are common first integrals of ®;° and the corresponding vector fields. Then
every monomial term is a common first integral with indices in Q. As Py,..., P,

are functionally independent almost everywhere, i.e., dPy A --- A dP, # 0, there exist

monomial terms G; = 2tz (ignore coefficient) of P; such that dGiA- - -AdG, # 0,
equivalently,

oGy ... 0Gi
Oz, Oz,
E det dl’kl AR dSL’kq 7A 0.
1<k) <...<kq<n 0Gq . 0G4
Oz, Oz,

It implies at least one determinant (as coefficient) in the above inequality is nonzero,
GG glkl glkq

that is, there exist k; < ... < k; such that L et : : # 0. It
xkl e Tp

q
qul quq

follows directly that the g elements (¢;1,...,¢;,) € S are independent, and therefore
the dimension of Vectk(Q is no less than q.

Suppose (¢1,...,4,) € 0, then it satisfies the first integral equations (Z:2]). We have
integers K1, ..., K, such that

(3.1) > I pi, = 2K/ =1, i=1,...,p.
m=1

If the system is infinitesimally integrable and the family of the infinitesimal gener-

ators X; = > " In mema— is weakly non-resonant, then all K; in equation (B.1))
Tm

vanish and we get linear equations
(3.2) > lppim =0, i=1...p.
m=1

It means that €2 is contained in the space of solutions of equations ([B.2]). By the
definition of integrability, we have the p vectors (In i, ...,In u;,) are independent
and therefore the space of solutions of (3:2)) is of dimension n — p = ¢ and therefore
the dimension of Vectg() is no more than ¢g. Hence, under the assumption of weak
non-resonance, the vector space Vectg(2 is exactly the space of solutions of (B.2]) over
K.
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If the system is projectively hyperbolic, we consider the real parts on both sides of
equation ([B1]) and get

(3.3) Z€m1n|uim|:0, i=1,...,p.

It means that €2 is contained in the space of solutions of equations (B.3]). By the very
definition of projective hyperbolicity, the dimension of the space of solutions of (3.3)) is
n — p = q and therefore the dimension of Vectk() is no more than ¢q. Hence, under the
assumption of projective hyperbolicity, the vector space Vectk(l is exactly the space of
solutions of (B3] over K.

O

We remark that the dimension of Vectg() could be bigger than ¢ without weak non-
resonance. for example, the linear diffeomorphism ®(z,y) = (v/—1z, —v/—1y) on C?
have monomial first integrals z*, *, zy and therefore the dimension of Vectx is 2. In
this case, the diffeomorphism is obviously weakly resonant.

Proposition 3.2. Let (O, ®s,...,PQ,, F1,..., F,) be a formal non-degenerate inte-
grable system in which the diffeomorphisms are in the Poincaré-Dulac normal form.
If the family of the linear parts of the diffeomorphisms is either projectively hyperbolic
or infinitesimally integrable with a weakly non-resonant family of generators, then the
common first integrals of the semi-simple parts of the diffeomorphisms are also first
integrals of the (nonlinear) diffeomorphisms.

Proof. According to Lemma [2.2] formal or analytic first integrals of ®1,®,,..., P,
are formal or analytic first integrals of the semi-simple parts of the diffeomorphisms
provided that the diffeomorphisms are in the Poincaré-Dulac normal form. Then any
first integral is a series of finitely many monomial generators Gy, ..., G, which have
exponents in 2. And the Lemma [3.Ilshows that €2 lies in the ¢-dimensional vector space
Vectk(2 if the family of the linear parts of the diffeomorphisms is either projectively
hyperbolic or infinitesimally integrable with a ‘weakly non-resonant famlly of generators

Now we turn to formal integrable system (<I>1, O, .. <I>p, F,... F 2)- We assume by
Ziglin’s lemma [28] that the homogeneous parts F 1(10““), ..., F") of lowest degree of
FI F are functionally independent almost everywhere. For convenience, we use

LCM LCM
lowq

new first integrals F ..,Fqlo“’q where LC'M denotes the least common multiple

of lowy, ..., low, so that thelr lowest degree are all the same. In the following, the new
first integrals are still denoted by Fi,..., F, and their homogeneous parts of lowest
degree are denoted by F} (tow) . i),

Let Hy, = a2l for k = 1,...,7 be all monomial first integrals of <I>§1) such
that the coefﬁcients are 1 and 01 + - - - + {1, = low. Now write

Fj(loﬂi) — leHl _l_ e + CjTHT7

where ¢;;, are constants and the rank of the ¢ by 7 matrix C' = (¢jx) is ¢ < 7 by the
functional independence.
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As ®; = (¢i1,...,0im) is in the normal form, then for any monomial first integral

01

G = xfl o xbn of @gl)(:c) = (a1, . - -, fhinTy), we have G = (ppz1)" -+ - (inz,)™ and

then

2\ o =2\
(34) GO@i:(éfi"' fZ:G<1_'_¢Zl ) _._<1+¢in ) :

Hi1Z1 HinTn

where ¢§§f’ denotes the nonlinear part of ¢;,,. It is easy to see that the homogeneous
part of degree {1 + --- + ¢, of G o ®; is G and the homogeneous part of degree ¢; +
coe b+ 1 s

o o
(3.5) (G o)ttt = G | — g, — )

Hi1T1 HinTn

As Fj od, = 13’]-, their homogeneous parts of degree low + 1 must be the same, i.e.,
(Fj o @;)lowtl) = Fj(lowﬂ). On the other hand, we have

~

(F o (b')(low—l—l) _ (F_(low) o (I)')(low—l—l) + (F(low+l) o (b')(low—l—l)
v J 4 7

J J
o (low) A\ (low+1) (low+1) 1)y (low) A\ (low+1) (low+1)
= (F;"" 0 @;) + (F; 0 ®;) = (F;°" o @) + F; :
Then we get
(Fj(low) o (I)i)(low—i-l) = 0.

low

Substitute Fj( ) by ¢j1Hy + -+ -+ ¢j-H, and use the equation ([B.3]), we get

n

T ¢(2)
Z ZCjkgkak i:0, jZl,...,q.
k=1 K

m—1 imTm

Using matrices, the equations above are equivalent to

Gt
culy -+ ¢ H; b - b m;ml
(3.6) : : : : : = 0.
Cf]lHl e CQTHT gxT 671 o ng X ¢1(;72L)
HinTn nx1
Assume that Hy,..., H, are functionally independent almost everywhere and then
for any k in {1,...,7} we can write H, = H*' --- Hy**. Equivalently, the ¢ vectors

(Cr1, .. lin)s ooy (g1, - - -, £gn) are linearly independent and for any & in {1,...,7} we

have (g1, .., k) = Z;I.:l agi(l1,- .., ). Write the 7 by ¢ matrix (ay;) = (ng)
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with B the submatrix consisting of the last 7 — ¢ rows, then we have

cuily -+ o H; by oo Uy
: : Id, 0 Id, 0 . :
: : B Id._, -B Id,_, :
Cq1H1 s CqTHT axT 71 gTTL <n
T T {1y AT
Zaklclka e Z apgCreHy crgpiHegpr -+ c Hy :
k=1 k=1
_ lp - A
T ) T 0 0
Z apiCopHy - -+ Z QpqCoeHy  CqqriHgpr -+ corHr : :
k=1 k=1 qxT 0 U 0 XN
and we get from equation (3.0) that
T T ¢(2)
Z apicigHy - Z achlka il
k=1 k=1 Ell e Eln Mi1Z1
T T Cop o Uy (2)
S apcqi S angegHy | / gn | Din_
k=1 k=1 2%q HinTn /" nx1

Now let us compute the explicit expression of dF\™) A -+ A dF™,

low low
dF) A A dE)

Clky " Cik,
= E det de1/\"'/\deq
1<k < <kg<T cq SR Cq kq
Clky " Cilkg Coymy - gklmq
. ) ) Hy, -+ Hy,
= E det| : : E det ——————dTyy N NdTpy,
:I;ml ... :I;mq
1<k1<---<kq<T Cq Ky e Cq k‘q 1<m1<~--<mq<n Ekqml e Ekqmq
Cip Hyy - Clqukq Coymy - gklmq
‘ ‘ ‘ ATy N+ N dapy,
= ) Y det{ : : }
‘(ljml “ .. :L’m
1<my <--<mg<n 1<ky < <kg<T Cop Hyy + Cqny Hi, Chygmy  Crymy a
_ N4
Remember (Ckm,, .- lem,) = D51 @i (Ljmys -+ Ljm, ), We have
£k1m1 o Eklmq (077 alﬁq El mp gl mq
) ) _ ) ) ) ’
ekqml U ekqmq akq 1 " aqu eq mp " eqmq
and therefore we can split the two summations on 1 < m; < --- < m, < n and

1 <k < -+ <k, <7 in the expression of qu(low) A A qu(low). Concretely,
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dF) Ao AdF™ s the product of

1 gl myp gl my
Z ———det : : ATy N+ N dTpy,
xml [N xmq

1<mi<-<mg<n eqm1 gqm
q

and the homogeneous polynomial function

Z det{

1<k < <kg<T qulHkl e ququq akq R aqu

e Hyy -+ cip,Hy, Qpy1 "0 Qg

This polynomial function cannot be zero since dFy ™ A- - -AdF™™) £ 0, and it equals
to the determinant of the leftmost matrix M (Hy, ..., H;) in equation ([B.1). In fact, as

the determinant is a linear function of each column, we write det M (Hy, ..., H,) as a
sum over all ky,...,k, from 1 to 7 of 79 determinants
ap1Cri Hey oo aigqCri, Hi, Clk, **° Clk,
det : : = Q1+ Qg det : : Hy, - Hy,
Oy1Cahy iy - QhggCory Hi, Cakr """ Cqky

which must vanish if two indices k; and k;; happen to be equal; fix ¢ pairwise distinct
indices {ki,...,k,} in {1,...,7} and suppose k; < --- < k, , then there are ¢! terms
similar to Hy, --- Hy, and the sum of them is just

Cik,  Cik,
P(Hkla---aHkq) = E Oékfll"'Oék&qdet Hk1"'Hkq
ki, G} Cort e o
qk qk
:{klv"'vkq} 1 q
Clkl “ .. Clkq
/ / . X
- Z gy g (K, k) det | D | Hy, - Hy,
(K] ek} P,
qr1 qkq
:{klv---vkq}
Qg1 - Okyg Clk, **° Clk,
=der] | det | | He o,
akq1 aqu Cqky - quq

in which e(ky, ..., k;) = £1 is the sign of the permutation (ky,... k) = (ki,..., k).
Hence det M(Hx, ..., Hr) =3 cp cocpyer P (Hprs - - - Hiy)-

Back to equation (B.7), as the matrix M (H, ..., H,) is invertible almost everywhere,
it follows that, almost everywhere, we have

o
gll e gl" Hi1T1
: : : = 0.
2
£q1 T eqn (z)z('n)

gxn
HinTn /7 nx1
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It follows by Lemma 3] that, as polynomial functions,

(2) (2)
Hi1T1 HinTn

(3.8) G<€1 ) =0, VG =2zl .2l with (¢1,...,0,) € Q.
In other words, the homogeneous part of degree ly+---+/4,+1 of Go®,; vanishes for
any common monomial first integral G = %' - - - zlr of <I>§1) by equation (3.3]).

We will show by induction that the homogeneous part of G o ®; with degree larger
than £, + - - - 4 £, also vanishes for G = 2!* ... z/» then we can say that any monomial
first mtegral of @Z(- is a first integral of ®;. Assume the statement is true up to degree
li+---+4,+ 0,0 > 0; it follows naturally that for any homogeneous polynomial first
integral F), the homogeneous parts up to degree ¢ + o of FY) o ®; all vanish.

¢(>2) (>2) o ¢(_>2) ’
Let &, = ln(1+M'L) andn =1In|( (1+ o 1:(:1) (1T m) m) =064 F6.

(©
HimTm
n=n"+n® +... where n®) denotes the homogeneous part of degree s with respect
to z. Rewrite equation (B4) as G o ®; = Ge" = G(1+n+ in* + - - +) for those n with
In| < oo, that is when x does not belong to the union of hyperplane coordinates.By
our assumption, we get that every homogeneous part of degree no more than ¢ in
(7] +1n*+---) must vanish. Then we have n™ = n® = ... = yl®) = 0 because for any

1 s ES: § : S s
(77+_27I2+)( ) = 031---St77( 1)77( t)v

t=1 s1+--+st=s

Use the convention that the degree with respect to x of is s — 1 and rewrite

in which cs, ...;, are constants; and therefore the degree of the first possibly nonvanishing
homogeneous part of (n + %772 + - -+) must larger than o.
For degree o + 1, we have

o+1

1 S S o
(nt5n’ + )T =30 Y e =,
t=1 s1++st=oc+1

We get that the homogeneous part of degree ¢, + --- + ¢, + 0 + 1 of G o ®; is just
GtV which reads
(3.9)

(G o ®y)(tttntot) — (g, <ln<1+ >> e (ln( —>> )

Hi1Z1 HinTn

:G(€1§§0+1)_‘_‘_‘_‘_gngﬁa—i—l))‘

Now consider the homogeneous part (Fjo®;)@+o+1) of degree low+ o + 1 of Fjo®;,
which is

(310> (Fj(low) o (I)Z,)(low—l—o-l-l) + Z(Fj(low—l—S) o (I)i)(low—l—o-l-l) + (Fj(low—l—o-l-l) o (I)i>(low+o+1)'
s=1
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We recall that, by 2.2 Fj(lowJ’s) is a common homogeneous polynomial first integral
of the <I>§»1)’s. By our inductive hypothesis, the o terms (Fj(low“) o @;)lewtotl) ip
the middle of equation (BI0) vanish; the last term (Fj(lomeH) o @;)lewtotl) s just

(Fj(loerUH) o <I>Z(.1)) = Fj(loerUH). Hence we get from (13’] o @) lewtotl) — Fj(loerUH) that

the first term in equation (B.I0) vanishes, i.e.,

(F,j(low) o (I)i)(low-‘ra—i-l) = 0.

Substitute Fj(low) by ¢j1Hy + -+ -+ ¢;-H, and use equation (8.9)), we have
le(Hl o (I)i)(low-i-a—i-l) I CjT(HT o cbi)(low-i-a—i-l)
= e Hy (&7 + o+ 07+ e H (G &7 4 L E0TY) = 0,
that is,

i (i Cjkgkak> 5,(,‘;“) =0, 7=1,...,q.

m=1 \k=1
Using matrix and similar to equation (3.0]), the above equations
o+1
cuHy -+ ¢ H; by e Ay 55 V
(3.11) ; : : : : =0.
caHy - cyH, s b o o) (o+1) -

Apply the same argument from equation (3.6]) to equation (3.8)), we can get by equation

(B.11)) that
(3.12) G 4 40,69 =0, forall (64,...,0,) € 9.

Take equation (BI2)) back to equation (B.9), we get that the homogeneous part of
degree /1 4+ ---+ {, + o + 1 of G o ®; vanishes. We finish our inductive step.
O

Lemma 3.3 (Division Lemma). Let (®1, Py, ..., ®,, F1,..., F,) be a non-degenerate
integrable system of type (p,q) such that the diffeomorphisms are in Poincaré-Dulac
normal form. Write ®; = (¢, ..., ¢m) fori=1,...,p. If the family {@Z(-l)} is either
projectively hyperbolic or infinitesimally integrable with a weakly non-resonant family
of generators, then we have ¢y, is divisible by x,, form =1,... n.

Proof. There are two cases according to different positions of the vector space Vectk().

Case 1: the vector space Vectk() is not contained in any hyperplane. In this case,
for any m, there exists an element (¢1,...,¢,) € € such that ¢,, # 0. The equation
[T, o = 2% ...zl implies that [[}_, ¢ is divisible by ‘7. On the other hand,
as the linear part of ¢y, is pzi, we get [], 4m ¢ir 1s not divisible by x,, since its
homogeneous part of lowest degree is [ ], 2m MikTr- Hence, L, 4m gbf,’; is not divisible by
T, neither. Hence ¢;, is divisible by z,,.

Case 2: the vector space Vectg() is contained in a hyperplane. Assume for any
(ly,...,0,) € Q we have £,, = 0 and and x]" --- 2" is a term of ¢;,,, with v, = 0. we
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have the indices (71, . ..,7,) lie in R,, which satisfy the resonant equations (2.I]). Then
We have integers K1, ..., K, such that

(3.13) In fli = > W pg + 2KmV/=1, i=1,...,p.
k=1

If the system is infinitesimally integrable and the family of the infinitesimal gener-
ators X; = 22:1 In uimzm% is weakly non-resonant, then we have K; = 0 for all ¢
and

(717 <o Ym—1s _177m+17 B 77”)
is an integer solution of the equations

(3.14) > wlnpg =0, i=1,...,p.
k=1

As its m-th component is nonzero and therefore it cannot be expressed by a linear
combination of elements in 2, then we can get ¢ + 1 independent solutions of (B.14))
which contradicts with that the dimension of Vectk(2 equals to q.

If the system is projectively hyperbolic, then we consider the real parts on both sides

of equation (B.13))

1n|uzm|_zf}/kln|uzk|:0> Zzlaap

k=1
We can see that (1, ..., Ym-1, —1, Ym+1,- - -, Va) 1S an integer solution of the equations
k=1

Then the dimension of solutions of (B.15]) is larger than ¢ and so is that of Vectx(2,
which contradicts with that the dimension of Vectx(2 equals to q.

Hence, under the assumption of weak non-resonance or projective hyperbolicity, we
have for every term z]* - - - 20" of ¢;,,, its m-th exponent ~,, > 0. U

We point out that our hypothesis is necessary.
Ezample 3.4. Consider two commuting diffeomorphisms on (C2,0)
Oy (z,y) = 22,4y + %) and Py(x,y) = (—3x,9y).

The commuting diffeomorphisms are in the Poincaré-Dulac normal forms but they
can not be put into normal forms stated in theorem 2.6l In this case, the integrable
system without common first integrals is neither weakly non-resonant nor projectively
hyperbolic.

We also note that if € admits, say, only the first p’ entries are nonzero, which

means the last n — p’ elements ¢,;1,..., ¢, must be zero, then the first integrals are
independent of x4, ..., 2, by lemma 2.2l Moreover, we have all ¢;,, with m < p’ are
independent of x,41,...,2,. In fact, we just proved that such ¢;,, is divisible by z,,,

then by equation (2.1]), the indices of the quotients of monomial terms in ¢;,, and z,,
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also lie in €2, hence, the last n —p’ indices of every monomial term in ¢;,, must be zero.
Hence, consider projections of ®1,..., P, to the plane of first p’ coordinates, then any
p" independent of them as diffeomorphisms on the coordinate plane together with the
q first integrals as functions on the coordinate plane form an integrable system of type
', q)-
End of the proof of theorem

By the division lemma [3.3] there exist functions ¢;,, such that ¢, = timTm(1+ @im)
for all ¢ and all m. By proposition 3.2 we have (z]"---2)*) o ®; = z]* - - -z}~ for every
(Y15 -+, 7n) In Q, and after substitutions of ¢, and a reduction, we get []i_,(1 +
i) = 1.

Notice the relation between R,, and Q given by (21) and (2.2) respectively, every
term of ¢;,, whose indices lie in R,, is a product of x,, and a term of ;,, whose indices
lie in €, s0 @;y, are first integrals of ®3°.

4. CASES IN ANALYTIC AND SMOOTH CATEGORY

Analytic case. For analytic integrable diffeomorphisms, we pay attention to the
systems of the Poincaré type.

Definition 4.1. ([I1][Definition 4.11]) Let ®4, ..., ®, be p commuting diffeomorphisms
and (1, ..., i) be the eigenvalues of the linear part of ®;. We say that the family
of the diffeomorphisms (or their linear part) is of the Poincaré type if there exist
d > 1 and ¢ > 0 such that, for each (si,...,s,) &€ Ry, there exists (¢, (s],...,s),)) €

{1,...,p} xN" such that ufiluf;j =i i foralll <4 §p,,ufi1~-~ufﬁj—ui/m # 0,
and

max (

By a theorem of X. Gong and L. Stolovitch [I1][Theorem 4.13], which says that if a
commutative family of finitely many germs of biholomorphisms of the Poincaré type is
formally conjugate to the normal form (2] satisfying (2.7)), then it is holomorphically
conjugate to the normal form, we get the following theorem.

-1
s} s; —1 78" +-ts! / /
R T ) > ¢ttt (s —sy,. .., 8, —s,) € N'U(=N").

s’ s!
1 n
Fory = Hirg

Y

Theorem 4.2. Let (®y,...,P,, F1,..., F,) be a non-degenerate analytic integrable sys-
tem of type (p,q) on K" around 0 satisfying the condition in theorem[2.0. If the family
of diffeomorphisms is of Poincaré type, then the system is analytically conjugate to
the mormal form together with [2.7] as in theorem [2.0., i.e., the normalization is
convergent.

We remark that for integrable systems of type (1,n — 1), any diffeomorphism satis-
fying the assumption that at least one eigenvalue does not lie on the unit circle in [27]
is projectively hyperbolic and of the Poincaré type :

Proposition 4.3. Let ® be an integrable diffeomorphism on K" in the Poincaré-
Dulac normal form formally. Suppose its linear part is diagonal written as ®Y(x) =
(121, - - -, pnTy) and at least one of its eigenvalues does not lie on the unit circle, then
® s of the Poincaré type.
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Proof. Suppose a:ijl x -xf{",j =1,...,n—1 are n — 1 independent first integrals of
®M . Then then equation (3.3)) in this particular case becomes

1n|u1| Ell gln ln|u1|
(4.1) L : = : : : =0.

ln‘:un| gn—ll e en—ln ln|,un\

As the n — 1 by n matrix L has rank n — 1 by independence, the dimension of the
space of its solutions is one. Then the hypothesis that there exists at least one of the
eigenvalues does not lie on the unit circle implies that (In |y, ..., In|u,|) is a nonzero
solution of equation (&1II); on the other hand, as L := ({j;)(n—1)xn is an integer matrix,
equation (1)) has integer solutions. Thus there exists an integer solution (ki,...,k,)
and a real number ¢ > 0 such that (In|g|,...,In|u,|) = c(k1, ..., k,). Then we get
In |j1;] = ck; and then |p;| = (e¢)ki = ki,

Now write p; = e*ieV=TA%1 where 0 < Argp; < 2m denotes the principal value
of the argument of p;, then by the property ,ufjl ™ = 1, there exist integers
K, ..., K,_1 such that

(4.2) CirArg g + -+ U Arg p, =2Km, j=1,...,n—1.

This is a (non-homogeneous if K; # 0) linear system and its real solutions form a
one dimensional affine space: the difference of any two solutions is a solution of (41]).
Then, by the same argument as above, we can take a special solution 27 (6, ...,0,)
such that 6;’s are rational numbers and therefore there exists a real number ¢ such
that (Argu, ..., Argu,) =216, ...,0,) + (b1, .., kn).
L = 6ckiem2wﬁiemc’ki _ €(C+\/jld)kie\/jl27r6i _ dkie\/jl%rgi,

in which d = e“tV=1 with |d| = e¢ > 1.

For any j; with |;;] = 1 or equivalently k; = 0, j1; = e¥~'2™%_ Then there exists
a natural number «; such that p;* = 1 since 6; is rational and therefore z7" is a first
integral of ®*°. For any pair yp; and p; with |p;| < 1 and |p;| > 1, we have k; < 0 < k;
and therefore there exist a pair of natural numbers 3; and 3; such that §;k; + 3;k; =0
and f;0; + 5;0; € Z. Then ,uii,ufj =1 and therefore xflz]ﬁj is a first integral of ®%°.

We now claim that for any (sq,...,s,) € N there exists (s],...,s),) € N such that

o Uy = st
e cither {s; : 7 satisfies |u;| < 1} or {s : j satisfies ;| > 1} is bounded.

In fact, let M be a natural number bigger than all possible «;, §;, 3;, then for s; with
i satisfies ;| = 1, set s, to be the remainder of s; divided by ;. In the same spirit,
for s; > M and s; > M with i € I := {i: || < 1} and j € J := {j : |p;| > 1}, we
take the maximal integer m such that (s;, s;) —m(5;, 5;) is nonnegative and take this
vector to replace (s;,s;), then the new s; and s; satisfy s; < 5; < M or s; < §; < M;
continue the operation for the other (s;,s;)’s with ¢ € I,5 € J and s; > M,s; > M
and obviously the operation will stop in finite steps; set s; with ¢ € I U J to be the

/

final s; after reductions. Then (s,..., s),) satisfies the second request. It satisfies the

first request since each operation holds the property.
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Now assume s; < M for all i € {3 : |p;| < 1}. Remember |u;| > d > 1 for j € J, we

have
= II Tl

ef{i:|pi|<1} jeJ

= H 1%

il <1}

DI () s T () e
d"" - '

i€ {itluil <1} iefitluil <1}

!
s s’
l’l‘l . e ILLn’!L

SQdeeJ 33

Hence @ is of the Poincaré type. One can get the same conclusion by a similar estimate

, ;-1
on ‘uil---,ui" if s < M forall j € {j:|u] =1} O

With the help of a lemma (Lemma 2.5 in [27]) which claim that the linear part of
the integrable diffeomorphism on (C",0) of type (1,n — 1) is diagonalizable, it follows
that

Corollary 4.4. [27] An analytic integrable diffeomorphism of type (1,n—1) on (C™,0)
such that at least one of its eigenvalues does not lie on the unit circle is analytically
conjugate to the normal form together with[2.7 as in theorem [2.0.

Smooth case. In the smooth category, we only consider the weakly hyperbolic sys-
tems, which were firstly introduced and studied by M. Chaperon.

Definition 4.5. ([sectionl.2] in [6]) Let ®4,...,®, be p commuting diffeomorphisms
on (K" 0). Suppose the eigenvalues of the semi-simple part ®* of the linear part
of ®; are 1, ..., y,. For any k € {1,...,n}, we can get a linear form ¢ in (RP)*
defined by mapping (¢1,...,%,) € R? to >7_ In|p|t;. The ZP-action generated by the
diffeomorphisms is called

e hyperbolic if any p linear forms in {c;,...,¢c,} are linearly independent in
(RP)";
e weakly hyperbolic if the convex hull of any p linear forms in {cy, ..., ¢, } does

not contain the origin of (R”)*.

Obviously, hyperbolicity implies weak hyperbolicity.

We remark if K = C and the diffeomorphisms are viewed as real diffeomorphisms

from (R?)" to itself, then the eigenvalues of ®5 are i1, fli1, - - - , fin, flin- Then we can
get 2n linear forms ¢, k =1,2,...,2n with cop. = cop_1,k = 1, ..., n, and therefore the
property that the convex hull of any p linear forms in {c,...,c,} does not contain

the origin of (RP)* coincides with the previous one.

Theorem 4.6. Let (&, = O, Do,...,D,, Fi, ..., F,) be a non-degenerate smooth inte-
grable system of type (p,q) on K™ around 0 satisfying the condition of theorem [2.4. If

the system is weakly hyperbolic, then the diffeomorphisms are smoothly conjugate to a
smooth normal form of the form together with [2.7 as in theorem [2.0.
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Proof. The idea of the proof is to construct another smooth integrable system which
is formally conjugate to the original system and then we can apply Chaperon’s theo-
rem [6], which asserts that two weakly hyperbolic smooth Z* x R™-action germs are
smoothly conjugate if and only if they are formally conjugate.

By theorem [2.6] the system is formally conjugate to

(I)i = (u,1x1(1 + @il)a e ,uma?n(l + Qﬁm)), 1= 1, oy Py

where ¢;;’s are formal series of finitely many generators, say Gy, G, ..., G, which are
monomial first integrals of ®7°’s. Moreover, these formal series satisfy the first integral
relations [[;_,(1 + ¢%)" = 1 in the formal sense for all (vi,...,7,) in the set  of
common solutions of resonance equations (2.2]).

By the Borel’s theorem, there exist smooth functions ¢;;’s which are indeed smooth
functions of G1, G, ..., G, whose formal Taylor power series expansion at the origin
are just ¢;.’s respectively. Define

(I)i = (/Llll’l(l + (,52‘1), e ,,umxn(l + Qbm)), 1= 1, .o P,

A priori, this new family of smooth dffeomorphisms do not commute any longer. In
order to retrieve the commutativity property, it is sufficient to replace functions @;;’s by
smooth functions p;;,’s such that ¢;;,’s satisfy [[}_; (1 + @)™ =1 for (y1,...,7,) € Q.
This replacement can by realized by only adjusting the flat parts of p;;’s as follows.

Take ¢ = n—p Q-linearly independent elements in €2, denoted by w; := (w1, ..., w;jn),
j=12,...,q. Fixiand assume [[,_, (14 @i)“* = 1+ flat;; for j =1,..., ¢ in which
flat;;’s are flat functions i.e., their infinite jets at O are zero. Take logarithm of the
equations, we get

(43) Wj1 11’1(1 + @11) + -+ Win 11’1(1 + (ﬁm) = 111(1 + flatij), j = 1, 2, .o q.
Remember the functions ;. we are searching for satisfy
(4.4) wipln(l+@q)+--+wip,n(l+¢,) =0, 7=1,2,....q.

Assume without loss of generality the first ¢ columns of the matrix (wj;) are indepen-
dent and let p;, = @i for k = ¢+ 1,...,n. For k = 1,...,q, let v; be the unique
solution the linear equations obtained by (4.3]) minus (4.4)

q
Z Wim (III(]. + @zm) - ln(l + (pzm)) = lIl(]. + flatij)a ] = 1a 27 < q.

m=1

We get immediately that [[}_; (1 + )% =1 for j =1,...,¢, and it is also easy to

verify @i — @ is flat since In P is flat. By Lemma Bl any element (vq,...,7,)
Pie
in Q is a Q-linear combination of wy, ..., w,. Hence, we get [[;_, (14 i) =1 for all

(Y1, -y Yn) in Q.
Let us define the family of diffeomorphisms

Uiz, 7)) = (parr (L 4+ @), -« s inTn(L+ @), i=1,...,p.

Due to the property [];_,(1 4+ ¢u)** = 1, it is commutative. As the infinite jets at 0
of @ir and p;; are the same, the original family of diffeomorphisms @, ..., ®, is still



COMPLETE INTEGRABILITY OF DIFFEOMORPHISMS AND THEIR LOCAL NORMAL FORM21

formally conjugate to the family of ¥q,..., ¥, and it follows by Chaperon’s theorem
that they are smoothly conjugate. 0

Observe that hyperbolic systems are projectively hyperbolic and weakly hyperbolic,
it follows naturally that

Corollary 4.7. Let (1 = ®,Do,...,P,, F,..., F,) be a non-degenerate smooth in-
tegrable system of type (p,q) on K" around 0. If the system is hyperbolic, then the
diffeomorphisms are smoothly conjugate to a smooth normal form of the form (2.0)
together with (20) as in theorem [2.0.

5. REAL CASE

In this section, we consider families of real commuting diffeomorphisms ®4,...,®,
on (R™ 0). The coefficients of the Taylor expansion of ®;(x)’s at the origin are real

numbers. If the linear parts (IDZ(l) is diagonalizable over R, then all preceding results
hold true with the same proof.

Here we are concerned with cases where (132(1) = A, are not diagonalizable over R but
merely C. By the commutativity, one can decompose R" = 692-:11/} ®R" 2 where each
Vj is a real plane left invariant by all A;’s and such that at least one of the AZ-|Vj’s is
diagonalizable over C but not over R. Under a basis of vectors from eigenspaces, each
A; becomes a block diagonal matrix consisting of [ two by two blocks and n — 2[ real
numbers. Suppose the eigenvalues of Ai|vj are ft;; = U;j + \/—_1vij, flij = Wij — \/—_11),~j,
Yij Y5 ) if the basis is well chosen.

(%7 Usj

Denote by &; := V;@&+/—1V; the complexification of V}, it is natural to get a canonical
linear map A;|g,. The complex vector e = (3, —3+/—1) in &; is a common eigenvector
belonging to u; of Ajle,, i.e., Ailg,e = pge fori =1,...,p. Then & = (%,% —1) is
a common eigenvector of ji;; and &; is isomorphic to the C-vector space generated by

1

. 1 1
e,e. Define D;; := (’uéj ﬂO) and P := ( 1% 1\;_1) Then fori=1,...,p and
i) 3Vl gvo
7 =1,...,1, we have

then the j-th block of A; can be of the form

Aile; Py = PiDij.
Let P be the linear transformation on C” given by the block diagonal matrix consisting

1
of [ copies of (

formation on C" given by the block diagonal matrix consisting of blocks D;q,..., Dy

1
2 2 ; ; _ : i .

_% Ve % \/_71) and Identity of size n — 2] and D; be the linear trans
and Identity of size n — 2[. Define p to be the following involution

p(zla B2y v ey R2U—1, 2205 R2U41y -+ - » Zn) = (22a 217 ceey 22l7 22l—la 22l+17 ceey Zn)a
and denote by c¢ the complex conjugate c(z1,...,2,) = (Z1,...,2,). We easily have
D;op=poD;fori=1,...,pand
(5.1) Pp = cP.

Now let us consider the family {®;(z) := P~'®;(P(z))}; of transformations of C”.

Obviously, ®;(2)’s commute pairwise. If the family of ®;(z)’s is non-degenerate, weakly
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non-resonant, (projectively, weakly) hyperbolic, then the family of ®;(z)’s keeps these
properties defined according to the eigenvalues which are the same of ®;’s and ®;’s.

If ®;’s have ¢ = n — p first integrals I3, ..., F, functionally independent almost
everywhere, then Fj(z) := Fj(Pz)’s are first integrals of the ®;’s since

Fy(®:(2)) = Fj(PP™'®,(Pz)) = Fj(Pz) = Fj(2).

We also have Fi,..., Fq are functionally independent almost everywhere since P is
invertible. . o .
Hence, we get an integrable system (®q,...,®,, Fi,..., F,) on C" of type (p, q).
Notice the coefficients of the Taylor series at the origin of ®;’s are real, we have
co®; 0c = &; formally. With the help of the equations (51I) and its equivalent
equation P~tc = p~'P~! = pP~!, we have formally
d;0p=P1®;(Pp) =P lococod;(cP)
:P_lo(coCI)i)oP:poP_loCI)ioP:pofi)i.
This is the formal p-equivariant normal form theory (see lemma 2.1]): there exists a
formal transformation W(z), tangent to identity at the origin, such that
(1) Vop=poV¥
(2) d; := U1 o, 0¥ is in the Poincaré-Dulac normal form, i.e., ®; o D; = Djéf)i.
Now the proof of theorem works and we get the complexified integrable dif-
feomorphisms @;’s deduced from a real integrable system (®y,...,®,, Fi,..., F,) are

formally conjugated by ¥ to ®;’s which are of the form (Z8) together with (Z7) as in
theorem if the family is either projectively hyperbolic or infinitesimally integrable
with a weakly non-resonant family of generators.

Lemma 5.1. The formal transformation PY P~ is real in the sense that its coefficients
are all real.

Proof. The equation cPUYP~'c = PpUpP~! = PUp? P! = PUP~! holds. O

Observe that P®; P! = PU 1o ®, 0 WP~ ! = (PUP)"lod;0(PoWP "), we have
a version of theorem for real diffeomorphisms having a linear part which is diagonal
over C but not necessarily over R.
Theorem 5.2. Let (O = @, Dy, ..., Py, [1,. .., F,) be a formal non-degenerate discrete
integrable system of type (p,q) on R™ at a common fized point, say the origin 0. If the
family {@El)} is either projectively hyperbolic or infinitesimally integrable with a weakly
non-resonant family of generators, then the family of real diffeomorphisms {®;} is
formally conjugated by the real formal transformation PY P~ tangent to Identity to a
real normal form {P@-P‘l} which is of the form

Dy + By Dy — Dy qA)i(2l—1) + Dy ci>i(2l—1) — Qi - -
5.2 y geeey y ,(I)i ,...,(I)m Z),
52) (P S . S by )2
where ®;,, denotes the m-th component of ®; which is the complex normal form of
®; as in theorem and z = (z1,...,2,) is defined as zj_1 = Toj_1 + Tojv/—1,
Z9j = Xgj—1 — T/ —1 for g =1,..., 1 and z; = x; for 7 > 2L.
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Proof. From the expression above, we can see (fi(gj_l)(z) and (fi(gj)(z) have conjugate

values. Indeed, according to the properties of ¥ and ®; above, we have
(5.3) pDip = pUd, U p = Vpd,pl~" = VP, 0! = P,

Therefore, by composition by P on the left and by P~! on the right of the previous
equation and by using (5.0I), we obtain

Ppd,pP~' = ¢cP®;P'c = PO, P,
so that P®; P! is real. Let o be the permutation mapping 27 — 1 to 25 and vice

versa for j < [ and fixing all integers from 21 + 1 to n. As p;, and piiem) for m < 21
are a pair of conjugate eigenvalues and i, are real for m > 2[, any element v :=

(Y15 -,Mm) € Ry (cf. ZT)), we have 77 := (Y1), -- -+ Vo)) € Rowm)- It follows

that if <i>,~mﬁw“’ is a resonant term in éim(w), then éimﬁaw'yg is a term in (iDiU(m) by
(5.3). Hence, for m < 21, @, and P, are a pair of conjugate functions of variables

(21,22 = Z1,.. ., 2011, 220 = Zo1—1, 22141, - - -, 2n) and for m > 2l the values (not the
functions) ®;,,, (21, 21, - - -, 22121, Z21-1, 22141, - - - » Zn) are real since
Qi (Z2, 21, - - -y 2oty 22115 221415 - - -5 2n) = Pim(21, 22, - -+, 22-1, 2205 220415 - - - » Zn)
- ¢im(21a227"'7221—1a22l722l+17"'7Zn)'
U

Let (&3 = @,®y,...,D,, F1,..., F,) be a formal non-degenerate discrete integrable
system of type (p,q) on R at a common fixed point, say the origin 0. We assume that
the family of its linear parts { Az} is either projectively hyperbolic or infinitesimally in-
tegrable with a weakly non-resonant family of generators. Assume furthermore that the
commuting family of real diffeomorphisms {®;} satisfies A;®; = ®;A;, for all 4, j. Here
we assume that the matrices A; = PD;P~! are simultaneously diagonalizable over C
but not necessarily over R. Then, we have (P~'A;P)(P~'®,P) = (P~'®,P)(P~'A;P).
Hence, the family { P~'®; P} is in Poincaré-Dulac normal form as it commutes with the
family of its linear part { D, }Since the family (P~'®,P,..., P~'®,P,FioP,...,F,0P)
satisfies assumption of Theorem 2.6, then P~'®;P is of the form (2.6) with (2.7), for
all i. Therefore, ®; is of the form (5.2) in which ®; have to be replaced by P~1®,P.
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