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Towards the Automatic Tuning of Linear Controllers Using
Iterative Learning Control Under Repeating Disturbances

Oktay Koçan1, Charles Poussot-Vassal1 and Augustin Manecy1

Abstract— In this paper, iterative learning control (ILC) is
proposed as an alternative approach that can be used to simplify
the design of linear controllers for rejecting repetitive distur-
bances affecting a system. Since ILC is a data-driven method, its
usage allows rejecting repetitive disturbances without a priori
knowledge of their nature. The benefits of ILC appear especially
when a system is subject to complex repetitive disturbances.
This is simply because it would require a control designer to
spend much more efforts to obtain similar results applying a
state augmentation by building models for the same distur-
bances (Internal-Model-Principle based control). Accordingly,
this paper first shows the equivalence of performing state
augmentation and applying ILC in case of a simple sinusoidal
repetitive disturbance. Next, a workflow named Learning Based
Controller Tuning (LBCT) is proposed to simplify the parameter
tuning of linear controllers under repetitive disturbances. The
feasibility of LBCT is analysed by testing the ILC on a system
subject to complex repetitive disturbances in two different
forms: linearly combined sinusoidal signals and non-linearly
combined sinusoidal signals. The results demonstrate that ILC
can successfully learn the required controller parameters to
reach a good rejection performance against the repetitive
disturbances without a need of modelling them. This supports
the fact that the tuning of linear controllers may be automated
by integrating an ILC to the system.

I. INTRODUCTION
In real-life applications, the control performance is an

important issue. The performance of a controller is directly
related to its capability of dealing with uncertainties and
disturbances that the system is subject to. The main source
of system uncertainties can be related to the modelling of
the dynamics. The dynamics of most real-life systems are
usually governed by a set of nonlinear equations whose
modelling depends on the understanding of the system’s
behaviour by the designer. Consequently, it is a common
fact to have some residual uncertainty due to neglected
or non-modelled dynamics. Moreover, it is also possible
for the real system’s dynamics to gradually deviate from
the proposed model as a result of some external effects
during the operation process (e.g. plant aging) such that
the model starts to possess an increased uncertainty over
time. Besides the uncertainties related to system modelling,
another important control problem is to deal with the external
disturbances at the system output. These disturbance issues
have been addressed so far by considering two different
approaches. One can either design a controller that is robust
to some bounded disturbance or diminish the effect of the
disturbance by using the knowledge of the disturbance in the
controller after measuring or estimating it [1].
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The state feedback control is an intuitive and a well
established method for controlling dynamical systems. One
can find it quite natural to build controllers based on the
states of a dynamical system since the state variables can
be used to anticipate the future behaviour of the system
[2]. Accordingly, it is not a suprise that the state feedback
method has been referred to since 70s when analysing
the disturbance rejection problems [3]. Although there are
many more advanced robust methods developed to handle
system disturbances such as Sliding Mode Control (SMC) [4],
Active Disturbance Rejection Control (ADRC) [5] or Input
Load Disturbance Rejection (ILDR) [6], the simplest one
among all can be seen as the pole (or eigenvalue) placement
method that uses state feedback through a linear controller
structure. Furthermore, as a common practice one should
include the disturbance dynamics in the controller tuning
or the controller structure [7]. In order to lessen the effect
of disturbance on the system, one can simply augment the
state-space of the nominal system with the model of the
disturbance and then apply the pole placement method. This
type of approach becomes quite useful when dealing with
periodic disturbances for which the structure is known. Some
examples to these type of disturbances can be seen as a
step signal, a sinusoidal signal at some specific frequency
or a combination of several sinusoidal signals with different
frequencies. Since the dynamics of such disturbances has
periodic behaviours, they have a known structure and can be
eliminated if their structure is utilised in the design of the
controller.

Apart from traditional approaches such as state feedback
control, it is also possible to adress the problem of periodic
disturbances with a completely different perspective called
the Iterative Learning Control (ILC) which can be seen as
a specific version of the Repetitive Control (RC). ILC is a
data-driven method that is based on feedforward update by
means of error filtering. It enables vanishing the repetitive
errors that occur between the system runs (iterations) and it
is traditionally used to ”optimise” the tracking performance
of repetitive trajectories for over a decade. One can obtain
high trajectory tracking performance for motion control
systems via feedforward control and in the case of a system
that repeats the same task, the ILC can be used as the
feedforward method to increase the system performance
[8]. It should be noted that the ILC performance is highly
dependent on the type of the system disturbance. Since ILC
is based on remembering the errors from the previous runs
and compensating for the repeating errors, it becomes a
powerful approach when dealing with repetitive disturbances.



Accordingly, the ILC performance can significantly reduce
when the system is subject to non-repetitive disturbances
simply because ILC will also remember the non-repeating
error from the previous run. Due to this drawback, ILC
is usually applied on a pre-designed closed-loop system
which compensates for the non-repetitive characteristics of
the system. Despite this fact, one can still think of many
concepts affected by repeating disturbances where ILC can
be applied such as fluid dynamics, helicopters, circuits etc.

If one considers a closed-loop system with a state feedback
controller and an output repetitive disturbance, it would be
quite natural to expect a similarity between the disturbance
rejections by the state augmentation and the ILC integra-
tion. In this paper, we propose that one can use the ILC
approach to simplify the design of a traditional state feedback
controller for the systems that are subject to repetitive
disturbances with complex forms. In similar words, ILC may
be an easier solution for finding the proper parameters of
a state feedback controller that will attenuate an existing
repetitive disturbance since it requires no modelling of the
disturbance and does not get affected by the complexity of
the structure of the repetitive disturbance. Hence, the analysis
provided in this paper is based on a comparison of both
methods.

The work in this paper hereafter was given in the following
order: in Sec. II, we explain the traditional state feedback
approach for disturbance rejection and show its relation to
ILC; in Sec. III, we give insight to the ILC approach and
compare it to the an augmented state feedback controller; In
Sec. IV we introduce our LBCT workflow; in Sec. V, we
analyse the feasibility of this workflow; in Sec.VI, we give
some conclusions.

II. ILLUSTRATION FOR DISTURBANCE REJECTION

A. Model and disturbance

Let us consider a linear time invariant dynamical system
described by a second order continuous transfer function.
The state-space form of the system is given as:

ẋ(t) = Ax(t) +Bu(t), (1)
y(t) = Cx(t) + d(t). (2)

where x(t), y(t) ∈ R2, u(t) ∈ R1 and

A =

[
−3.5014 −3.0003

1 0

]
, B =

[
0

1

]
, C =

[
1 0

0 1

]
.

Similarly, we consider the repetitive disturbance to be in the
sinusoidal form, i.e d(t) = a · sin(wt) where a and w are
the amplitude and the pulsation of the signal, respectively.

B. Traditional state feedback approach

In order to be able to reject such a repetitive disturbance
d(t), one should augment the state-space of the system with
the disturbance model. Therefore, we define an output z̃(s)
by considering the Laplace transform of d(t) with the system
reference r(t) and the system output y(t):

z̃(s) =
aw

s2 + w2
(r̃(s)− ỹ(s)), (3)

for which the state-space is written as:[
z̈(t)

ż(t)

]
=

[
0 −w2

1 0

][
ż(t)

z(t)

]
+

[
aw

0

]
ε(t) (4)

where ε(t) = r(t)− y(t) is the error. Next, one can use (4)
to augment the system given by (1) and (2) leading to (5).
Assuming that we only focus on the second output at which
the disturbance occurs, i.e C2 = [0 1], the augmented system
is built as follows:ẋz̈
ż

 =

 A 02×1 02×1

−C2w 0 −w2

01×2 1 0


xż
z

+

B0
0

u+

 0

aw

0

 r.
(5)

At this point, one may classically apply the pole placement
method with u = −Kxaug to move the disturbed system’s
poles to the desired locations that will produce the required
tracking and disturbance rejection (xaug = [x ż z]T is the
augmented state vector). In order to see the efficiency of
this method in terms of repetitive disturbance rejection, a
numerical simulation is carried out with r = 0, a = 0.2 and
w = 1rad/s which are the reference input, the disturbance
amplitude and the disturbance frequency, respectively. Fur-
thermore, the new pole locations are chosen to be the ones
given by Bessel poles for a 4th order system which produce
a settling time of 1sec (i.e. p1,2 = −4.016 ± 5.072i and
p3,4 = −5.528 ± 1.655i). The model used for simulation
is composed of an inner loop (state feedback) and an outer
loop (augmented state feedback). The structure of this model
can be seen in Fig. 1. One can observe that it serves both
for simulating the augmented system and the ILC system by
means of a switch. The curves denoted as ’ASFB’ in Fig. 2
show the simulation results with the ILC switched-off (i.e.
’S.1’ in Fig. 1). It can be seen that the augmented system is
capable of perfectly rejecting the sinusoidal disturbance in
about 1.5 seconds.

C. Iterative Learning Control based approach
We suggest that integrating an ILC into an unaugmented

state feedback system would produce a similar behaviour to
the one of the augmented state feedback system in terms
of the repetitive disturbance rejection. This is due to the
fact that ILC has an integral action as a result of its update
equation (7). The following section provides details for the
ILC algorithm utilised in our approach and the corresponding
disturbance rejection results are demonstrated in Fig. 2.

III. ILC APPROACH FOR DISTURBANCE REJECTION

A. Algorithm overview
The ILC technique we apply in this work belongs to the

norm-optimal ILC (NO-ILC) class and it is based on the
minimization of a quadratic cost function (J) using Lagrange
multipliers. Even though other selections for J are also
possible considering different requirements, we define J for
our case as below:

J(ui+1) = eTi+1Weei+1 + uTi+1Wuui+1

+ λ[(ui+1 − ui)T (ui+1 − ui)],
(6)
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Fig. 1: Simulation model

where i is the iteration index of ILC; ei+1 ∈ RN is the
system’s current tracking error; ui+1 ∈ RN is the system’s
current input; ui ∈ RN is the system’s previous input; λ ∈
R1 is the Lagrange multiplier; We = ρI ∈ RN×N and Wu =
I ∈ RN×N are the respective weighting matrices where I is
the identity matrix. Consider that N is a variable depending
on the simulation time that determines the size for the given
vectors and matrices.

The NO-ILC used hereafter was adapted from [9]. In
brief, the followed procedure develops through finding the
optimizing ILC filters via analytically solving a cost func-
tion. The cost function (6) is written by considering the
system’s current output tracking error (ei+1), the current
input (ui+1) and the input difference (ui+1 − ui) to avoid
chattering. Then, the optimization is done via the method of
Lagrange multipliers. Furthermore, the convergence of the
ILC algorithm is determined by the tuning of two scalar
parameters: ρ > 0 and λ > 0 which are the input weight
and the Lagrange multiplier, respectively. The tuning of these
parameters is a heuristic process done under the convergence
conditions of ||Q||2 < 1 and ||QL||2 ≤ 0.5/

√
ρ+ λ. As in

LQ-control, from the performance viewpoint, there exists a
trade-off between ρ and λ (see [9] for details).

The ILC update equation (7) has two filters named learning
filter (L ∈ RN×N ) and Q-filter (Q ∈ RN×N ) given by (8)
and (9), respectively.

ui+1 = Qui +QLei, (7)

Q = ((λ+ ρ)I +GTG)−1(λI +GTG), (8)

L = (λI +GTG)−1GT , (9)

where G is the lifted-matrix (see [10]) of the internal system
in Fig. 1.

B. Simulation example
The same model in Fig. 1 is used for the ILC simulation.

However, this time the augmented state feedback loop in the
model is switched off such that the system is only composed
of the ILC input and the inner state feedback system for
which the gain values stay the same as in the augmented
state feedback system (i.e. ’S.2’ is ’ON’ in Fig. 1). The ILC
input, uILC is calculated off-line and updated after each run
of the model. The disturbance parameters remain the same

as before (a = 0.2, w = 1rad/s) and the initialization of
the ILC is performed with the parameters shown on Table I
where ρ, λ and M are selected by trial-and-error.

TABLE I. NO-ILC initialisation
Sample time, Ts 0.01 sec.
Simulation time, Tsim 50 sec.
Initial states, x [0 0]T ∈ R2×1

Initial ILC input, uILC 0
Number of ILC iterations, M 1000
Weight on the error, We ρI ∈ RN×N

Weight on the system input, We I ∈ RN×N

ρ 0.001
λ 0.1

It is expected from ILC to learn the control signal of the
augmented state feedback system as the iterations continue.
Theoretically, such an expectation is rather normal since for
a linear system there exists only one single solution. Fig. 2
compares the control and output signals of the augmented
state feedback system to the ones of ILC at 1000th iteration.
It can clearly be observed that both methods successfully
reject the given disturbance. The only difference, however,
is that ILC is capable of handling the transients that are
inevitable for the augmented state feedback system at the
beginning of the simulation. This is simply because of
the fact that ILC can detect the repeating error patterns
between system runs and anticipate for them. Furthermore,
the augmented state feedback system can completely reject
the disturbance making the output exactly zero while the
system with ILC still has some remaining oscillations in
its output whose magnitude is less than 0.00074 (%0.37 of
the original disturbed output). Yet, these oscillations can be
considered as insignificant.

IV. LEARNING BASED CONTROLLER TUNING (LBCT)

The simulation results so far has shown that the ILC can
interchangeably be used with the traditional state feedback in
case of a single sinusoidal repetitive disturbance. Although
one can argue about the necessity of replacing a well
understood traditional method with a data-driven one, the
benefits of ILC arise when the complexity of the disturbance
increases. Since the state augmentation method is grounded
on the exact knowledge of disturbance model, it requires



Fig. 2: Augmented state feedback system vs. ILC system

carefully acquiring all the frequencies inside the disturbance
signal for proper attenuation. Accordingly, the designer’s
work gets more complicated and is open to errors as the
number of frequencies in the disturbance signal becomes
larger. In order to easily deal with complex repetitive dis-
turbances without needing to build their models, we propose
a Learning Based Controller Tuning (LBCT) procedure that
combines ILC with model identification (see Workflow 1).

Workflow 1 first uses the ILC to find an optimal system
input u∗i=M (t) that rejects a repeating disturbance d(t)
(Steps 1-3). Next, it applies FFT to obtain the corresponding
frequency data set {ωj , φj}Nf

j=1 where j ∈ N+, ωj ∈ R+,
φj ∈ C1×1 and Nf ∈ N+ are the frequency data index,
the frequency at j, the frequency response at ωj and the
number of frequency samples, respectively (Step 4). Then,
the workflow includes a Loewner framework ( [11] and [12])
based method to make an approximate fit on this data with
a rational function H(s) ∈ H∞ (Step 5). Finally, it is
proposed that the properties of the transfer function H(s) can
be used for designing linear controllers via state feedback,
loop shaping etc. (Step 6).

V. LBCT UNDER COMPLEX DISTURBANCES

Let us now assess the feasibility of LBCT approach
by showing that the ILC is capable of detecting all the
repeating frequencies for two different complex repetitive
disturbances. Thus, we first consider a linear combination of
repetitive disturbance signals and second extend the analysis
to a non-linear combination of repetitive disturbance signals.
However, we limit our analysis in this work to a curve
fitting application on the frequency data of the ILC. Hence,
we leave the process of obtaining the corresponding linear
controller transfer functions for a future work related to a
real life problem.

A. Linearly combined disturbance signals
The ILC’s ability of rejecting more complex disturbances

can be tested by considering a repetitive disturbance that is a
linear combination of three sinusoidal signals with different
frequencies but same amplitudes. Using the same form given
in Section II for the sinusoidal signals, one can write the
corresponding complex disturbance d(t) as:

a(sin(w1t) + sin(w2t) + sin(w3t) + sin(w4t)) (10)

where a = 0.2, w1 = 0.25rad/s ≈ 0.04Hz, w2 =
0.5rad/s ≈ 0.08Hz, w3 = 0.75rad/s ≈ 0.12Hz and
w4 = 1rad/s ≈ 0.16Hz. One can view this signal in Fig.
3. Furthermore, the desired reference signal of the system
which is also the initial ILC signal was set to zero and
the initialisation of the ILC algorithm was done under the
same simulation parameters previously given on Table I. The
simulation results are given in Fig. 4 and 5 which show
the variation of system inputs and the corresponding system
outputs in the iteration axis, respectively. The system inputs
in Fig. 4 can be seen as the ILC signals for the corresponding
iterations since each new ILC signal was defined as the new
system input. It can clearly be seen from the results in Fig.
5 that the ILC algorithm was able to gradually attenuate the
disturbance effect to a huge degree such that the magnitude
of the output at the last iteration reached below 0.00242.
Moreover, one can observe in Fig. 4 how the ILC signal
tended towards a signal which is the close approximation of
the inverse of the disturbed system.

It is also possible to portray the efficiency of the ILC
by analysing the frequency components {ωj , φj}Nf

j=1 of the
last ILC signal. For this purpose, we estimate the frequency
response of the ILC system at last iteration supposing an
impulse signal as its input and the last ILC signal as its
output. Then, we use a method based on the Loewner
framework detailed in [11] and [12] to apply an approximate
fit on the frequency data with a rational function H(s). The
resulting fit and the frequency response data of the ILC
system can be reviewed in Fig. 6. Expectedly, the ILC system
has peaks nearly at the frequencies of the disturbance (10)
which proves its capability of singling out each repetitive
component in the disturbance.

Workflow 1: Learning Based Controller Tuning (LCBT)
Data: An internal closed-loop system G ∈ H∞ (the

open-loop plant plus a feedback controller) that
is stable (see Fig. 1) and subject to repetitive
disturbance d(t); a desired reference input r(t);
values for {ρ, λ} ∈ R+ and M ∈ N+ on Table I.

Result: A linear controller rejecting a non-modelled
repeating disturbance, d(t).

1 ρ, λ and M can be chosen as suggested in [9];
2 Consider the switch is at ’S.2’ position in Fig. 1;
3 Run ILC to find the system input that will attenuate the

unwanted repeating frequencies (see Sec. III-A);
4 Obtain the frequency data {ωj , φj}Lj=1 of the converged

input signal, u∗i=M (t), from the last iteration;
5 Approximate a stable linear model H(s) ∈ H∞ making

a fit to this frequency data utilising [11] and [12];
6 Design a controller based on H(s) properties;

B. Nonlinearly combined disturbance signals

After observing a satisfactory attenuation performance
against three linearly combined repetitive sinusoidal distur-
bance signals, we extend our analysis this time assuming that



Fig. 3: Linearly combined disturbance signal

Fig. 4: System input along iterations

Fig. 5: System output along iterations

the disturbance signal is a non-linear combination of three
repetitive sinusoidal signals with different frequencies. Thus,
the disturbance d(t) is considered as follows:

0.25((0.7(0.15− 0.8sin(w1t))
2 − 0.6sin(w2t))

3...

...− 0.35(sin(w3t))
2)

(11)

w3= 0.1205 Hz

w4= 0.1602 Hz

w2= 0.0794 Hz

w1= 0.0397 Hz

Fig. 6: Frequency response of the ILC system and its
approximated model, H(s)

where w1 = 0.25rad/s ≈ 0.04Hz, w2 = 0.75rad/s ≈
0.12Hz and w3 = 1rad/s ≈ 0.16Hz. Again, the ILC was
initialised using Table I and the desired system reference
was set to zero. It should be noted that the ILC algorithm
used here is the same as the one of the previous analysis
and the only difference comes from the disturbance signal.
Accordingly, the ILC can be seen as a model free approach
from the point of disturbance rejection since the ILC filters
(i.e. (8) and (9)) use only the information of the existing
closed-loop system G. This type of data-based approach
converts a difficult modelling problem to a simple filtering
operation.

0
0.04

0.08

0.12

0.198

0.16

0.238

0.278

0.318

0.358

Fig. 7: (Top) Non-linearly combined disturbance signal;
(Bottom) Fast Fourier transform of the disturbance signal
showing the main frequencies (L: frequency data length).

The disturbance signal (11) and its frequency components
are depicted in Fig. 7. The results from the ILC analysis are
provided in Fig. 8 and Fig. 9 which show the evolutions of
the system inputs and outputs, respectively. One can notice
that the system output converges towards the desired refer-
ence as the ILC gradually calculates the proper inverse of
the disturbed system. Moreover, analogically to the previous
subsection, a frequency response data analysis was done for
the converged ILC system and a model was obtained again
by applying an approximated fit on the corresponding data



following [11] and [12]. The result was given in Fig. 10
where one can observe nearly the same frequencies as those
found in the disturbance signal in Fig. 7. Hence, we can
clearly conclude that the ILC algorithm successfully detects
the disturbance frequencies to be attenuated in order to reach
the desired reference and it can be used for augmented state
feedback control tuning.

Fig. 8: System input along iterations

Fig. 9: System output along iterations

VI. CONCLUSION

The augmented state feedback control and ILC were found
to be equivalent in rejecting a simple sinusoidal repetitive
disturbance. According to the results, the ILC demonstrated
a rather successful rejection performance and it can be
considered as superior to state feedback control since it was
able to gradually remove the repeating errors and anticipate
for the transients in the response. Hence, instead of trying to
correctly model the repetitive disturbances, one can utilise
ILC to learn the required system inputs that will reject the
existing repetitive disturbances. Then, these learned signals
can be utilised for automatically tuning the parameters of
linear controllers.

0.0397 Hz

0.0015 Hz

0.0794 Hz

0.1205 Hz

0.1602 Hz

0.2808 Hz

0.1999 Hz

0.3601 Hz

0.3204 Hz0.2396 Hz

Fig. 10: Frequency response of the ILC system and its
approximated model, H(s)

Our LBCT workflow puts the presented ideas in compact
form and as a future work, we consider implementing this
tuning approach on a real life problem.
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