N
N

N

Hackers vs. Security:

HAL

open science

Attack-Defence Trees as

Asynchronous Multi-Agent Systems

Jaime Arias, Carlos E. Budde, Wojciech Penczek, Laure Petrucci, Teofil

Sidoruk, Mariélle Stoelinga,

» To cite this version:

Jaime Arias, Carlos E. Budde, Wojciech Penczek, Laure Petrucci, Teofil Sidoruk, et al.. Hackers
vs. Security: Attack-Defence Trees as Asynchronous Multi-Agent Systems. 22nd International Con-
ference on Formal Engineering Methods (ICFEM 2020), Mar 2021, Singapore, Singapore. pp.3-19,
10.1007/978-3-030-63406-3__1 . hal-02902348

HAL Id: hal-02902348
https://hal.science/hal-02902348
Submitted on 19 Jul 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-02902348
https://hal.archives-ouvertes.fr

Hackers vs. Security: Attack-Defence Trees as
Asynchronous Multi-Agent Systems*

1

)

Jaime Arias'®, Carlos E. Budde?®, Wojciech Penczek3®, Laure Petrucci
Teofil Sidoruk®®®, and Mariélle Stoelinga?**

! LIPN, CNRS UMR 7030, Université Sorbonne Paris Nord, Sorbonne Paris Cité,
Villetaneuse, France
2 Formal Methods and Tools, University of Twente, Enschede, The Netherlands
3 Institute of Computer Science, PAS, Warsaw, Poland
4 Department of Software Science, Radboud University, Nijmegen, The Netherlands
5 Warsaw University of Technology, Warsaw, Poland

Abstract. Attack-Defence Trees (ADTrees) are a well-suited formal-
ism to assess possible attacks to systems and the efficiency of counter-
measures. This paper extends the available ADTree constructs with re-
active patterns that cover further security scenarios, and equips all con-
structs with attributes such as time and cost to allow for quantitative
analyses. We model ADTrees as (an extension of) Asynchronous Multi-
Agents Systems: EAMAS. The ADTree-EAMAS transformation allows
us to quantify the impact of different agents configurations on metrics
such as attack time. Using EAMAS also permits parametric verification:
we derive constraints for property satisfaction, e.g. the maximum time a
defence can take to block an attack. Our approach is exercised on several
case studies using the Uppaal and IMITATOR tools. We developed the
open-source tool adt2amas implementing our transformation.

1 Introduction

Over the past ten years of security analysis, multiple formalisms have been de-
veloped to study interactions between attacker and defender parties [27, 18, 21,
15, 25]. Among these, Attack-Defence Trees (ADTrees [21]) stand out as a graph-
ical, straightforward formalism of great modelling versatility. However, research
is thus far focused on bipartite graph characterisations, where nodes belong to
either the attacker or defender party [22, 21, 7, 13]. This can model interactions
between opposing players, but lacks expressiveness to analyse potential sources
of parallelism when each party is itself formed of multiple agents.

Agents distribution over the tree nodes, i.e. which agent performs which task
for which goal, can determine not only the performance but also the feasibility of
an attack or defence strategy. For instance, a monitored double-locked gate may
require two concurrent burglars, to steal goods before the alerted police arrives.

* This work was partially funded by the NWO project SEQUOTA, the PHC van Gogh
project PAMPAS, the BQR project AMoJAS, and the IEA project PARTIES.
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Likewise, distributed DoS attacks exploit multiplicity to overcome standard DoS
countermeasures. Clearly, studying agents distribution within the operations of
an attack/defence party is crucial to assess attacks and effective countermeasures.
However and to our surprise, we find no literature studies focused in this topic.

To fill this gap we hereby model ADTrees in an agent-aware formalism, and
study the mechanics of different agents distributions. Our approach permits
quantifying performance metrics (e.g. cost and time) of attack/defence strategies
under distinct agents coalitions. Employing modern verification tools—IMITA-
TOR [4] and UPPAAL [10]—we reason about the impact of coalition strategies,
and synthesise the value of the attributes that make them feasible, such as the
maximum time allowed for a defence mechanism to be triggered. In this way, we
make an important step towards the analysis of more complex security scenarios.

Contributions. Concretely, in this paper we introduce: (2) a unified scheme for
ADTree representation with counter- and sequential-operators, including a new
construct to negate sequences; (i3) EAMAS: formal semantics to model ADTrees,
where all nodes have attributes and can be operated by agents; (444) composi-
tional, sound and complete pattern transformation rules from ADTree to EA-
MAS; (iv) the open-source tool adt2amas [1] to translate ADTree models into
EAMAS and generate IMITATOR models; (v) measurements of the impact of
different agents coalitions on attack performance metrics, such as cost, exercised
on several case studies; (vi) synthesis of ADTree attributes such as time—by
encoding them as EAMAS parameters—that enable attack/defence strategies.

Outline. In Secs. 2 and 3 we review the basic notions of ADTrees and AMAS.
Sec. 4 extends AMAS with attributes, to model ADTrees via the graph-based
transformation patterns introduced in Sec. 5. The effectiveness of our approach
is shown in Sec. 6, where we analyse three case studies from the literature, and
demonstrate scalability. We conclude in Sec. 7 and discuss future research.

Related work. Attack-Defence Trees [21] extend Attack Trees with defen-
sive counter-actions. Several analysis frameworks implement this formalism as
Priced Timed Automata (PTA) [13], I/O-IMCs [6], Bayesian Networks (BN) [14],
stochastic games [8], and so on—see surveys [22, 29]. Each framework computes
queries for the underlying semantics: conditional probabilities for BNs, time of
attacks/defences for PTAs, etc. In [24] a model driven approach is proposed to
inter-operate across these frameworks. However, none of them analyses agent
distributions within the attack/defence parties. Such studies are at the core of
this work. Furthermore, most analyses operate on fully described models, where
the attributes of all basic attack and defence nodes are known a priori. Instead
we extend the work of [5] to ADTrees, synthesising (constraints for the) values
of attributes that yield a successful attack or defence. Moreover, our EAMAS
formalism offers a succinct representation amenable to state space reduction
techniques [20]. This deploys lightweight analyses in comparison to other highly
expressive formalisms, such as Attack-Defence Diagrams [15]. Via EAMAS we
extend the work on Attack Trees in [17]: we give formal semantics to sequential
order operators in ADTrees, that keep the order of events but abstract away their
exact occurrence point in time, as usual in the literature [27, 9, 19, 22, 17, 24].



2 Attack-Defence Trees
2.1 The basic ADTree model

Attack Trees are graphical tree-like representations of attack scenarios. They
allow for evaluating the security of complex systems to the desired degree of
refinement. The root of the tree is the goal of the attacker, and the children
of a node represent refinements of the node’s
goal into sub-goals. The tree leaves are (possibly
quantified) basic attack actions. For instance,
Fig. 1a shows a simplistic Attack Tree where the
goal is to Steal Jewels from a museum (SJ), for
which burglars must break in (node bi, an attack
leaf) and force a display (£d). Nodes in the tree @ @ @ @
whose sta.te depends on ojcher nodes are called (a) Attack Tree (b) ADTree
gates: SJ is an AND gate with two children.
Attack-Defence Trees [21] can model counter- Fig. 1: Steal Jewels
actions of a defender: they represent an interplay
between the actions of both attacker and defender. This can model mechanisms
triggered by the occurrence of opposite actions. So for instance in the ADTree
in Fig. 1b, the jewels burglary will succeed (SJS) only if all attack actions are
performed, and the alerted police (node p, a defence leaf) does not stop them.
We define ADTree structures as shown in Table 1. The formal semantics
of each construct will be later given in Sec. 5 in terms of (specialised) Multi-
Agent Systems; here we simply give a natural language interpretation of such
semantics. Since constructs are symmetric for attack and defence goals, Table 1
shows a comprehensive selection of structures. Here D, d,d;,--- ,d, € X4 and
A a,ay,--- ,a, € X,, where Xy and X, are sets of defence and attack nodes,
respectively. Graphically, triangular nodes stand for arbitrary subtrees that are
children of a gate, and circular (resp. rectangular) nodes represent attack (resp.
defence) leaves, i.e. basic actions that are no further refined. Table 1 thus rein-
terprets [21] using a unified gate notation along the lines of [24], including CAND
gates that express counter-attacks or -defences, e.g. counter defence in the table.
Table 1 also introduces operators for a choice between a successful attack and
a failing defence (named no defence), and vice-versa (inhibiting attack). These
constructs, less usual in the literature [22], model realistic scenarios such as
attack goals succeeding by security negligence rather than by performing costly
attack. This is of interest for quantitative analyses of e.g. cost and probability.
Moreover, we consider sequential operators, which lack a standard interpre-
tation for ADTrees. For Attack Trees, [17] proposes a sequentially ordered con-
junction (SAND) where attacks succeed as soon as all children took place in the
required order. This abstracts away the occurrence time point of events, and
describes instead the order in which events must take place. Thus, SAND gates
enforce sequential events and rule out parallel executions: this is a fundamental
construct in multi-agent systems. For instance, Steal Jewels (8J) in Fig. 1 is
modelled with an AND gate. Let break-in (bi) take 10 min and force the display
(£d) 5 min. If two attackers cooperate, an ADTree analysis could conclude that
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attack SJ succeeds after 10 min. But £d depends logically on bi, since the display
can only be forced after breaking in. Using instead a SAND gate for SJ enforces
this sequentiality so that attacks cannot take less than 15 min. We integrate such
SAND gates in our ADTree framework, as the sequential and attack in Table 1.

We further introduce SCAND gates: sequential gates that have attacks and
defences as children. To the best of our knowledge, this is novel in a typed setting
where subtrees (rather than leaves) can be assigned attack/defence goals. This
contribution is conservative: it extends the SAND gates of [17] to coincide with
previous works on sequential operators in defence-aware representations, e.g.
Attack-Defence Diagrams [15]. We distinguish two scenarios: a successful attack
followed by a failed counter defence (failed reactive defence in Table 1), and
vice versa. We disregard the second scenario as uninteresting—it models defence
goals which depend on attacks failing by themselves—and focus on the first one.
SCANDs then model an attack goal that must overcome some counter defence,
triggered only after the incoming attack has been detected.

2.2 Attributes and agents for ADTrees

Attributes (also “parameters” and “gains” [9, 7, 24]) are numeric properties
of attack/defence nodes that allow for quantitative analyses. Typical attributes
include cost and time: in the Steal Jewels example, the 10 min to break in is a
time attribute of this attack leaf. In general, attributes are associated only with
tree leaves, and used to compute e.g. the min/max time required by an attack.

General attributes. We extend attributes, from leaves, to all nodes in ADTrees,
because a node need not be fully described by its children. An attribute is then
given by a node’s intrinsic value, and a computation function. For example, refine



bi to be an AND gate between pick main lock (pml, 7 min) and saw padlock (sp,
2 min). Then it may take an extra minute to enter and locate the correct display,
counted after pml and sp finished. In general, when the goal of a gate is successful,
its attribute value is the result of its computation function applied to its intrinsic
value and to the attributes of its children. For bi, if two burglars cooperate, the
computation function is init_time(bi)+max(init_time(pml), init_time(sp)). This
allows for flexibility in describing different kinds of attributes, and gains special
relevance when considering coalitions of agents, as we will further illustrate in
Sec. 2.3. Moreover, attributes can be parameters as in [5]. We can synthesise
constraints over parameters, such as init_time(bi) < 1 min, e.g. to determine
which attribute values make an attack successful.

Agents. Each action described by an ADTree construct can be performed by a
particular agent. Different attacks/defences could be handled by one or multiple
agents, which allows to express properties on agents coalitions. For instance, in
the Steal Jewels example of Fig. 1b, the minimal number of burglars required
to minimise the SJS attack time is two: one to do bi and another to parallelly
perform fd. If the SJ gate is changed to a SAND, then one burglar suffices, since
bi and £d cannot be parallelised. Upon using the refinement bi = AND(pml, sp),
then again a coalition of two burglars minimises the attack time, since pml
and sp can be parallelised. Each node in the ADTree will thus be assigned to
an agent, and a single agent can handle multiple nodes. In the general case,
the only constraint is that no agent handles both attack and defence nodes.
Notice that even modern formalisms for ADTrees such as [12] are oblivious of
agents distributions: encoding them requires modifying the tree structure, e.g.
changing an AND for a SAND to enforce the sequential occurrence of actions (i.e.
they are carried out by the same agent). As we show in Sec. 4 and demonstrate
empirically in Sec. 6, our semantics decouples the attack structure from the
agent distribution. This permits to analyse and synthesise which distribution
optimises a goal, e.g. achieve the fastest attack, without tampering with the
ADTree model. Users can thus focus exclusively on the relevant studies of agent
coalitions: this entails less error-prone and shorter computation times than in
formalisms where agent distributions must be hacked into the ADTree structure.

Conditional counter measures. It may happen that a countering node has
a successful or unsuccessful outcome depending on the attributes of its children.
We therefore associate conditions with countering nodes, which are Boolean
functions over the attributes of the ADTree. When present, the condition then
comes as an additional constraint for the node operation to be successful.

2.3 Example: Treasure hunters

Our simple running example in Fig. 2 features thieves that try to steal a treasure
in a museum. To achieve their goal, they first must access the treasure room,
which involves bribing a guard (b), and forcing the secure door (£). Both actions
are costly and take some time. Two coalitions are possible: either a single thief
has to carry out both actions, or a second thief could be hired to parallelise b and
f. After these actions succeed the attacker/s can steal the treasure (ST), which



takes a little time for opening its display stand and putting it in a bag. If the
two-thieves coalition is used, we encode in ST an extra € 90 to hire the second
thief—the computation function of the gate can handle this plurality—else ST
incurs no extra cost. Then the thieves are ready to flee (TF), choosing an escape
route to get away (GA): this can be a spectacular escape in a helicopter (h),
or a mundane one via the emergency exit (e). The helicopter is expensive but
fast while the emergency exit is slower but at no cost. Furthermore, the time to
perform a successful escape could depend on the number of agents involved in
the robbery. Again, this can be encoded via computation functions in gate GA.
As soon as the treasure room is pene-
trated (i.e. after b and £ but before ST) an
alarm goes off at the police station, so while
the thieves flee the police hurries to inter-
vene (p). The treasure is then successfully
stolen iff the thieves have fled and the police
failed to arrive or does so too late. This last
possibility is captured by the condition as-
sociated with the treasure stolen gate (TS),
which states that the arrival time of the po-
lice must be greater than the time for the
thieves to steal the treasure and go away.

Time

TS (treasure stolen)

p (police) €100 10 min
TF (thieves fleeing)
ST (steal treasure) €{0,90} 2 min
3 AMAS b (bribe gatekeeper) €500 1h
f (force arm. door) €100 2h
Asynchronous Multi-Agent Systems (AMAS GA (get away)
[16]) are a modern semantic model for the h (helicopter) €500 3 min
e (emergency exit) 10 min

study of agents’ strategies in asynchronous
systems. They provide an analysis frame-
work with efficient reachability checks even
on non-trivial models. Technically, AMAS (b) Attributes of nodes

are similar to networks of automata that Fig.2: The treasure hunters
synchronise on shared actions, and inter-

leave local transitions to execute asynchronously [11, 26, 16]. However, to deal
with agents coalitions, automata semantics (e.g. for ADTrees) must resort to
algorithms and additional attributes. In contrast, by linking protocols to agents,
AMAS are a natural compositional formalism to analyse multi-agent systems.

Condition for TS:
ingt_time(p) > init_time(ST) + time(GA)

Definition 1 (Asynchronous Multi-Agent Systems [16]). An asynchronous
multi-agent system (AMAS) consists of n agents A = {1,...,n}, where each
agent has an associated tuple A; = (L, 1;, Act;, P, T;) including (i) a set of lo-
cal states L; = {I},12,...,1}; (ii) an initial state ¢; € L;; (#i) a set of actions
Act; = {a},a?,...,al"}; (iv) a local protocol P;: L; — 24 which selects the

actions available at each local state; and (v) a (partial) local transition function
T; € L; x Act; x L; s.t. (I;,a,1}) € T; for somel} € L; iff a € P;(1;).

Sets Act; need not be disjoint. Act = | J,. 4 Act; and Loc = | J;c 4 Li are resp.
the set of all actions and all local states. For each action a € Act, set Agent(a) =



{i € A|ae Act;} has all agents that can perform action a. The parallel composi-
tion of AMAS is given by Interleaved Interpreted Systems, which extend AMAS
with propositional variables and define global-states and -transitions.

Definition 2 (Interleaved Interpreted System [16]). Let PV be a set of
propositional variables. An interleaved interpreted system (IIS) is an AMAS
extended with (i) a set of global states S < [, L;; (ii) an initial state ¢ € S;
(#i) a (partial) global transition function T: S x Act — S s.t. Vi € Agent(a),
T(s1,a) = sz iff T;(s%,a) = sb, whereas Vi € A\Agent(a), st = sk, where s} is
the i-th local state of s1; and (iv) a valuation function V: § — 2FV,

4 Extending the AMAS model

As defined in [16], AMAS do not include attributes. Therefore, to model ADTrees
we now define Fxtended AMAS, associating attributes with local transitions.

Definition 3 (Extended Asynchronous Multi-Agent Systems). An Ex-
tended Asynchronous Multi-Agent System (EAMAS) is an AMAS where each
local transition function t € LT =|J,. 4 Ti has a finite set of variables ATy =
{vi,...,vF} (attributes) over a domain Dy = d} x --- x dF.

Let AT = Ujeq ATt and D = [[,op Di. Let Guards be the set of formule
of the form B ~ 0, where 8 is a linear expression over attributes of AT and
~e{<,<,=,>=,>}. Let M be the set of all messages, FUN be all functions taking
arguments in AT, and EXP(AT, FUN) be linear expressions over AT and FUN .
Each transition t € LT has associated: (i) a message far(t) € ({1,?7} x M)u{Ll};
(i) a guard fo(t) € Guards; (iii) an update function fy: ATy — EXP(AT, FUN).

Item (i) indicates whether transition ¢ does not synchronise (L), or sends
(marked with !) or receives (?) a message m. For ADTrees, m € M = {ok, nok}.
Guards in item (ii) constrain transitions. Item (iii) states how taking a transition
modifies the associated attributes. To model ADTrees we further extend IIS.

Definition 4 (Extended Interleaved Interpreted System). Let PV be
a set of propositional variables, v: AT — D a valuation of the attributes, and
vo an initial valuation. An extended interleaved interpreted system (EIIS), or a
model, is an EAMAS extended with (i) a set of global states S € Ly x-- XLy XxD;
(#) an initial state so = {(¢1,...,tn),Voy € S; (iii) a global transition rela-
tion '€ S x Act x S s.t. {(l1,...,ln, V) a,(4,...,0,,v")y € T iff: either A):
|Agent(a)| =1 A 3t; = (l;,a,l}) € T; forie Agent(a) A Vk e A\{i} 1 =1, A
v = fa(t)) A v =v[AT:,]; or B): (a) 3i,j € Agent(a) A Ft; = (I;,a,l}) € T; A
Sty = (I, a,15) € Ty sit. far(ts) = (Lm)afar(ty) = (2,m); (b) Vh € AL j} Iy = Ly
(c) vE falti) A fa(t;); (d) v/ = v[AT,][AT, ], where ATy, and ATy; are dis-
joint; and () a valuation function V' : S — 28V In item (d), v[AT,][ATy,]
indicates the substitution of attributes in the valuation v according to transitions

t; and t;, that is v/ = v[ A vy, 1= fti(vti)][ A v, = fi, (vt].)].

vtiEATti vt eAth



In the definition of the global transition relation T, item (a) specifies the
synchronisation of transition ¢; (with a sending action) and ¢; (with a receiving
action) that share the message m. Item (b) ensures that agents other than ¢ and
j do not change their states in such a synchronisation. Item (c) guarantees that
the guards of ¢; and ¢; hold for the valuation v. Finally, item (d) indicates how
v’ is obtained by updating v with the attributes values modified by t; and ¢;.

5 EAMAS transformation of ADTrees

We give formal semantics to ADTrees as EIIS. For that, we model ADTree nodes
as EAMAS via transformation patterns. The resulting EAMAS synchronise with
each other via shared actions. Note that unlike formalisms such as Timed Au-
tomata where clocks let time elapse, time in EAMAS is an attribute.

We show that this compositional approach is correct, i.e. complete—all rele-
vant ADTree paths are captured by the model—and sound—mno new paths are
introduced leading to a node’s goal. Moreover, these semantics are amenable to
state-space reductions [20], and trivially support shared sub-trees in the ADTree,
all of which favours its use in practical scenarios.

5.1 Transformation patterns

Table 2 shows each ADTree construct transformed into one agent (sub-) model.
In this compositional modelling approach, agents communicate via the blue tran-
sitions. Transformations are symmetrical for attack and defence nodes: Table 2
shows attack patterns. A leaf signals action a iff it succeeds. Self-loops in states
la,ln synchronise with all nodes that depend on this node (leaf or gate). Thus
our semantics can model ADTrees where gates share children. An AND gate suc-
ceeds when all actions occur, in any order. Then attack A occurs, followed by a
broadcast of signal !A_ok by the AND gate. The AND fails if any action of a child
fails. OR, CAND, and COR operate in the expected analogous way. Models for SAND
and SCAND enforce the absence of parallelism, as per their semantics in Sec. 2.1.

To go from the initial to a final state, EAMAS patterns in Table 2 use one
order of actions. We now show that this order represents all orderings of actions
that make the attack/defence succeed. That is, our semantics is complete, in
that it captures all paths of successful attacks/defences—see also Appendix A.

Theorem 1 (Completeness). Let ay,...,a, be the children of the ADTree
gate A with EAMAS models M,,, ..., M,, , M resp. Let A succeed when a;, - - - a;,,
finalise (succeeding or failing) in that order. If the EAMAS models M,, finalise

in the same order, then M4 transits from its initial state ly to its ﬁnal]state la.

Proof. First note that if node z finalises, its EAMAS model will send either
lz_ok or !z_nok. Moreover, due to the self-loops in the end states, this happens
infinitely often. Thus, if nodes a;, a;, - - - a;,, finalise, actions !a,, ok, la,, ok,. ..,
la;, ok (or the corresponding !a,_nok) will be signaled infinitely often. By hy-
pothesis, gate A succeeds when a;,- - - a,,, finalise in that order. All patterns in
Table 2 have (at least) one sequence of actions ?a;, _ok - -- ?a; _ok (or ?a,_-nok)



[ADTree construct] Reduced Model (EAMAS) | Full Model (2 children only) |

Leaf node
Q = QDD'(LOA
A
0,
g 0- la_nok

Conjunction/disjunction nodes

Taz-ok

?as_nok

?a; _nok

o A
a0y _nok

az_nok

7d_nok
—()

Ja_ok

?d_nok

?a_nok

1A ok

A _nok

Table 2: ADTree nodes and corresponding agent models

that take it from [y to [4. By the first argument, all actions in the sequence of
M are signaled infinitely often. M4 will then transit from Iy to 4.

This covers expected actions that a parent must receive from its children to
achieve its goal. For unexpected sequences of signals, a parent may not react
to all information from its children—e.g. a CAND gate that after 7a_ok receives
(unexpectedly) ?d_ok. In such scenarios the model cannot reach its final state,



entering a deadlock. This means that the model of A cannot signal its | A_ok ac-
tion. Notice that this is exactly what should happen, because such unexpected
sequences actually inhibit the goal of node A. To formally complete this argu-
ment, we now prove that the transformations of Table 2 are sound. That is, that
all paths (of actions) that make the model of a node A signal !A_ok, correspond
to an ordered sequence of finalising children of A that make it reach its goal.

Theorem 2 (Soundness). Letay,...,a, be the children of the ADTree gate A
with EAMAS models M, , ..., M,,, Ma respectively. Let the sequence of actions

Ta;,-8i, T, -5, -+ Ta;, _s;, take M4 from its initial state ly to its final state l4,
where s; € {ok,nok}. Then the corresponding ordered success or failure of the
children a;,, . ..,a;, make the ADTree gate A succeed.

Proof. First, observe that the reduced models in Table 2 are subsets of the full
models—which consider all possible interleavings of synchronisation messages
from child nodes. Thus, any path 7 in a reduced model also appears in the
corresponding full model. Moreover, inspecting Tables 1 and 2 shows that, in
the full model M4 of gate A, a path of actions ?a,_s; (from children a; of A) that
transit from Iy to [ 4, encodes the ordered finalisation of these children that make
the ADTree A succeed. Our hypothesis is the existence of a path 7 of actions
in (the reduced model) M4, that take this EAMAS from Iy to [4. By the first
argument, 7 is also a path in (the full model) M,4. By the second argument, 7
encodes the ordered finalisation of children ¢ of A that make this gate succeed.

5.2 Adding node attributes

Transformation patterns in Table 2 concern only an ADTree structure. To take
the value of attributes into account, a child must transmit these to all parents.

Attributes and computation functions. Attributes attached to a node are
given by the intrinsic value and computation function of the node—see Sec. 2.2
and the EAMAS update function in item (iii) of Def. 3. For example, the cost of
an AND gate is typically its own cost_plus those of all children. Attributes values
are computed only after all the preconditions of the node are satisfied. OR gates
involve a choice among children: here, computation happens upon receiving the
message from one child. Conditions associated with ADTree countering nodes
(e.g. TS in Fig. 2) are added as guards to the corresponding action transition.

Distribution of agents over nodes. Computation functions are a versatile
solution to analyse agents coalitions. For instance, the attack time of an AND gate
can depend on the number of agents (within the attack party) that cooperate
to execute its children. This can be different for the attack cost of the same AND
gate, and for the attack time of a SAND gate. We illustrate this in the following.

Example 1. In our running example—Fig. 2—the computation function for the
attack time of the gate ST = AND(Db, f) can be generically expressed with binary
functions f and g as f(init_time(ST), g(init_time(b), init_time(£))), where:

» f = +, since ST depends logically on the completion of both children nodes;

10



» g depends on the agent coalition: if we use a single thief for b and £ then
g = +, if we use two thieves then g = max.

This duality of g is precisely the kind of analyses that our approach enables. ¢

In the general case, the children of a binary gate will be subtrees L and R
rather than leaves, which allows for more complex computations of potential
parallelism between the agents in L and R. For example, to model a worst-case
scenario in an AND gate with a set of agents A, let A, € A (resp. Ax € A) be all
agents from subtree L (resp. R). Then let the attack time of the AND be either:

» the sum of the times of L and R if Ay n Ay # &, because then some agent is
used in both children and thus full parallelism cannot be ensured;
» the maximum between these times otherwise, since L and R are independent.

Notice that these considerations also cover cases where gates share children,
e.g. Ar n Ag # @ above. The main advantage of computations functions—and
our semantics in general—w.r.t. other approaches in the literature is that agents
coalitions that are internal to an attack or defence party can be modelled in
any desired way. In Appendix B and https://up13.fr/?VvxUgNCK we give more
examples.

6 Experiments

Two state-of-the-art verification tools are used to exercise our approach and
provide an empirical demonstration of its capabilities:

— UppPAAL [10] is a model-checker for real-time systems. Automata templates
are declared in its GUI and given semantics as Priced Time Automata. A full
model is an automata network built from the instantiation of the templates,
which can be queried using PCTL-like formulee.

— IMITATOR [4] is a model-checker for Parametric Timed Automata [3], that
implements full-synchronisation semantics on the shared transition labels of
the automata in the model. Moreover, IMITATOR can synthesise parameter
constraints e.g. to find the values of attributes so that an attack is feasible.

The GUI of UPPAAL permits
straightforward implementations " @
of our transformation patterns:
compare the pattern for the SCAND  nokehlid1]?
gate (last row in Table 2) with its
corresponding UPPAAL template
(Fig. 3). Furthermore, the instan-
tiation of templates to define the full model (aka system declarations) makes it
easy to describe the ADTree structure as well as agents distribution.

In turn, the open source tool IMITATOR [2] can use symbolic computations
to find out the values of attributes that permit or prevent an attack. So for
instance, instead of stating that the police takes 10 min to arrive, our running
example could have the time ¢, set as a parameter variable. Checking when the
attack fails results in IMITATOR outputting a set of constraints, e.g. {t, < 5}.

okch[id1]? 7\ _nokch[idn]? _ ™\ okchlid]! O
“\_/ scand_ok()
ok

scand_nok()

okch[idn]? nok

nokchlid]! O

Fig. 3: UrPPAAL template for SCAND pattern
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We implemented the tool adt2amas [1] to execute our transformation process
automatically. The tool receives as input the ADTree model and recursively
applies the transformation rules. Then, it compiles the generated EAMAS model
into the format of the tool IMITATOR. Our tool also generates a PDF file with
the EAMAS model, like the one shown in Fig. 5 in Appendix B.

6.1 Case studies

These tools were used to analyse 3 literature case studies, detailed in https:
//upl3.fr/?VvxUgNCK and Appendix D. These case studies were chosen so
that their ADTree structures are easy to present and grasp by readers. Notice
that our approach can scale to much larger state spaces as shown in [20].

Forestalling a software release is based on a real-world attack to the
intellectual property of a company from a competitor that wants to be “the first
to market” [9]. We follow [23] where software extraction and deployment by the
competitor must occur before the lawful company deploys its own product.

Compromise IoT device describes an attack to an Internet-of-Things de-
vice via wireless or wired LAN. The attacker accesses the LAN, acquires creden-
tials, and then exploits software vulnerabilities to run a malicious script. Our
ADTree adds defence nodes on top of the attack trees used in [24].

Obtain admin privileges models a hacker trying to escalate privileges
in a UNIX system, via physical access to an already logged-in CLI or remote
access (attacking SysAdmin). This well known case study [28, 18, 22, 23] has
a branching structure: all gates but one are OR in the original tree of [28]. We
enrich this with the SAND gates of [23], and further add reactive defences.

6.2 Experimentation setup

We computed the cost and time of attacks of four ADTrees: one corresponding to
our running example, plus one for each case study. Each tree was implemented:
1) in IMITATOR using the patterns of Table 2 (we call this “EAMAS”); 2) in
UPPAAL using the same patterns (also “EAMAS”); and 3) in UPPAAL using the
original templates of [23, 24] that employ clocks and time constraints, extended
to fit Sec. 6.1 (“ORIGIN”). Such triple implementation pursues two goals:

(a) werify correctness, checking that the results of reachability (“can the attack
succeed?”) and quantitative queries (“what is the time of the fastest possible
attack?”, “what is the lowest cost incurred?”) coincides between the ORIGIN
and EAMAS implementations, regardless of the tool used;

(b) demonstrate our contributions: studying the impact of agent coalitions on
quantitative metrics such as minimal attack time/cost; and synthesising the
parameter valuations rendering an attack feasible.

6.3 Verifying correctness

To achieve goal (a) we queried the min/max time and cost of attacks for each
ADTree: Table 3 summarises our results. For all ADTrees, all queries on the
EAMAS implementations in IMITATOR and in UPPAAL yielded the same values,
thus the joint name “EAMAS.” In the running example, adding the constraint on
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Time of an attack Cost of an attack

min max min max
Number of attack agents: 1 2 1 2 1 2 1 2

treasure hunters ORIGIN - 125 min - 132 min - €690 - €1190
EAMAS | 185 min 125 min 185 min 125 min |[€1100 €1190 €1100 €1190

forestall ORIGIN - 43 days - 55 days - €4k - €10.5k

EAMAS | 43 days 43 days 55 days 55 days | €4k €4k €7.5k €7.5k

iot-dey ORIGIN - 694 min - 695 min - €270 - €380

EAMAS | 784 min 694 min 1114 min 694 min | €270 €270 €320 €320
gain-admin ORIGIN - 2942 min - 23070 min| - €100 - €15820
EAMAS (2942 min 2942 min 23070 min 23070 min| €100 €100 €6000 € 6000

Table 3: Quantitative results for ADTrees implementations: ORIGIN vs. EAMAS

the police (associated with TS) would impact the structure of the ORIGIN model
too much, and thus this constraint was only implemented in the EAMAS versions.

Six values in Table 3 differ between the EAMAS and ORIGIN implementations
of an ADTree. This is because ORIGIN models consider all possible actions for
maximisation, unnecessary for e.g. OR gates. EAMAS models consider instead a
single order of actions, yielding smaller maximums w.r.t. the ORIGIN model.
An EAMAS model yields the same max value than ORIGIN if the execution of
all attacks (even for OR gates) is enforced. The single exception to this is iot-
dev, when two agents operate in parallel. The correct value is the one for EAMAS:
694 min, achieved via the attacks CPN, GVC, esv, and rms. In fact, operating with
two agents (in a time-optimal distribution over the leaves) makes the min and
max time coincide. We suspect that the ORIGIN UPPAAL implementation yields
an imprecise result due to the use of non-discrete clocks and our remark i) on
UPPAAL’s time abstractions when clock variables are used.

Table 3 also shows initial experiments with agents: we used one or two at-
tackers, in the latter case setting the time-optimal agent distribution. This dis-
tribution was chosen according to the structure of the tree; so for instance when
two attackers are used in the iot-dev case study, we set different agents for the
leaves of gate APN, allowing attacks CPN and GVC to run in parallel.

Such agents coalitions were easily encoded (as arrays) in the EAMAS models.
In contrast, the ORIGIN ADTree implementations use clock variables and con-
straints to encode the duration of attacks/defences. This approach—standard in
verification of real time systems—has two drawbacks when analysing ADTrees:

i) UPPAAL uses abstractions and approximations for time zones that rule out
decidability in the general case. Thus, queries (e.g. “is an attack feasible?”)
result in “may be true/false.” In contrast, EAMAS transformations are un-
timed and verification is exact. The price to pay is a larger state space (which
we did not reduce but see [20]) and approx. thrice-longer computation times.

i1) Unless explicitly encoded in each gate, time elapses simultaneously for all
clocks. This is equivalent to having an agent for each tree node. Thus, mod-
elling dependent node executions requires e.g. using a SAND gate rather than
an AND gate. This contaminates the structure of the ADTree with the dis-
tribution of the agents that perform the actions. In contrast, EAMAS can
keep the ADTree structure unmodified while studying agents coalitions.
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Remark 4i) makes it impossible to analyse one-agent coalitions in the ORIGIN
implementations. Therefore, for each ADTree of Table 3, ORIGIN entries only
have results for the maximum number of time-parallelisable agents in that tree.

6.4 Playing with agents coalitions

In the running example, the min/max times differ for one and two agents, and
an extra cost (€90) is incurred when the second agent is used. In contrast, the
forestall and gain-admin case studies are intrinsically sequential, hence attack times
(and cost) are unaffected by the number of agents.

The iot-dev case study behaves similar to the running example when adding
an extra agent. However, the minimal time decreases when an agent handles the
CPN subtree while the other one is assigned to gc. Since gc has a longer duration
than any option in the CPN subtree, the choice it makes does not change the
operation time. With one agent, both gc and an option of CPN are achieved by
the same agent, leading to different min and max times, depending on the choice.
Fig. 4 shows attack times for
a different ADTree (that can u
be found in https://upl3.fr/
?VvxUgNCK and also in Ap-

—o— slowest
fastest

attack time
oo

pendix C) where changing the ¢

agents coalition has a larger 2

. . . 0+ . . . . . T T T T T - - - - 9
impact in attack metrics. The L e 3 4 s 6 7 s 0 1012 s
chart shows the fastest and number of agents

slowest attack times achieved
with different assignments of
agents to nodes, where all nodes take 1 time unit to complete.

These times coincide when there is a single agent, or one agent per node, since
then there is only one way to assign agents to nodes. Instead, in the middle cases,
the difference between fastest and slowest attack varies substantially for different
agents coalitions. Such difference would be exacerbated by more heterogeneous
time attributes in the nodes. The analyses enabled by our approach show that
the fastest attack can be achieved using only 6 agents.

Fig.4: Scaling w.r.t. the assignment of agents

6.5 Parameter synthesis
We also experimented with the parametric capabilities offered by IMITATOR:

Treasure hunters: “To catch the thieves, what is the maximum time the police
can take to arrive?” Answering this question requires synthesising a value for
the time attribute of the p node, which becomes a model parameter. IMITATOR
computed that the police can take at most 5 minutes to prevent the burglary.

Case studies: an attack is successful if its associated defence was slower. (i) for
forestall, id should take at most 1 day to block NA—since NAS is a failed reactive
defence, id is triggered as soon as heb succeeds, and must finish faster than the
intrinsic time of NA; (i) for iot-dev, inc is effective iff it takes at most 3 min;
(i41) for gain-admin we proved that whatever the time for t1a, an attack is feasible
(as GSAP is a disjunction), hence the other defences are required.
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7 Conclusion and future work

We revisited Attack-Defence Trees under a unified syntax, extending the usual
constructs with a new sequential counter-operator (SCAND). More importantly,
we introduced EAMAS to model ADTrees in an agent-aware formalism, provid-
ing transformation patterns from ADTrees to agent models. Our transformation
is sound and complete, and it preserves the compositional system description of
ADTrees. The impact of different agent coalitions on attack time and cost was
evaluated using UPPAAL and IMITATOR. Finally, feasibility of an attack was
evaluated through parameter synthesis with IMITATOR to obtain the attribute
values of ADTree nodes so that an attack is successful. Our experiments show
that (and how) different agent distributions affect the time of attacks/defence
strategies, possibly rendering some infeasible. We expect this will open the gate
to richer studies of security scenarios, with multiple agents that can collaborate.

Our next goals include logics to express properties in EAMAS, and adapting
the partial order reduction from [16] as well as the state space reduction for
tree topologies of [20] to agent strategies in EAMAS, including extensions to
parametric timing information. This will allow for studying the strategic abilities
of agents, ultimately in a parametric setting. Finally, we will add support for
agents assignment to our tool adt2amas that transforms ADTrees into EAMAS.
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Appendix A EAMAS transformations are complete

The EAMAS transformation patterns introduced in Sec. 4 use a single order
of actions to go from the initial state to a final state in the EAMAS model.
Theorem 1 shows that this order is representative of all paths of successful at-
tacks/defences, and therefore that our transformation patterns are complete.

Essentially, the reason is that other orderings of actions are shufflings of the
sequences shown in Table 2. To aid this intuition we provide Table 4, where ‘¢’
denotes children and ‘A’ the parent gate. Table 4 shows the paths for each node
type—in the reduced EAMAS models of Table 2—that encode the finalisation
of the children that make gate A succeed.

ADT node Input Path

leaf n/a lo 5 la

AND Ver:cok |lo 2=y o,y oty Ay,
OR Jc: cok lo <=2 0 A0,

CAND Ca -0k A cq-nok lo Caok, |, Lanok, lo 2514
COR Ca_0k v cq_nok lo a0k, 15 A, la

SAND Ve : c.ok lo 10k, I = Doy 22285 1, A5y

SCAND Ca_0k A cq_nok lo Lazok, I Za-nok, lo 4, la

Table 4: Reduced models preserve paths 7 € I, of correct input from children

Appendix B ADTree attributes and comp. functions

In Sec. 5.2 we discussed how to consider attributes in ADTree nodes (both leaves
and gates) via computation functions, to enrich the analysis of performance met-
rics for attacks and defences. Here we provide further examples that illustrate
how considering agent coalitions—internally to an attack or defence party—
enables analyses which are otherwise unattainable. These examples are also
available in the repository permanently hosted in https://up13.fr/?VvxUgNCK.

Ezample 2. Consider the (DAG) ADTree
AND(SAND; (a4, a,), SAND; (as, a3)) (1)

where aj,ap,az are attack leaves and SANDq,SAND; are sequential and gates
(SANDs). Due to the sequential operation of these gates, the computation function
for the time attribute of SAND; must be:

time(SAND; ) = init_time(SAND; ) + init_time(ay) + init_time(ay)

and analogously for SANDy. However, the time of the full AND attack depends on
the agent configuration. To encode this compositionally via computation func-
tions, one must operate at the level of the parent(s) that close the DAG loop,
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e.g. the AND in the DAG of equation (1). This is because only at those nodes the
sharing of children: (i) can be realised, and (i7) may alter computations. Thus,
we can define the computation function for the AND gate with only one agent as:

3 2
time(AND) = ) init_time(as) + Y. init_time(SAND;)
i=1 j=1
A two-agents coalition (i.e. two attackers cooperating) enables further op-
tions. For instance, if a;, a; and SAND; are carried out by the first agent, while
the second agent handles az and SAND,, then the computation function becomes:

time(AND) = init_time(ay) + init_time(ay) + - - -
-+ + max (init_time(SAND, ), init_time(as) + init_time(SAND;))

Notice that whichever the number of agents, init_time(ay) must be counted
only once: namely because when SAND; finished, then a; has already been com-
pleted for SANDy as well. ¢

Ezample 3. Applying the transformation patterns to our running example (see
Fig. 2) gives the EAMAS shown in Fig. 5. Green labels indicate cost and time of

cst = costC(cy, cp) CcrF = CsT + Cga
tsr = 2+ timeC(ty, tp) trr :=tst +tga

2ok ?f_ok ST IST ok 28T ok 2GA_ok |'TF _ok
L DD ® <

cp := 500
ty := 60
b

1b_ok
O=
%
RAO=

b_nok

same for h, f, e
( fre) CGA = Chytaa 1= th

- tea + 2 ?h_ok
TS TS _ok

Fig.5: EAMAS network (EIIS) for the ADTree shown in Fig. 2

each operation. The computation for the OR gate GA depends on the child from
which the message is received. The condition associated with T'S is depicted in
orange. It checks whether the attack succeeds, but does not modify its cost nor its
time. Time computation for the AND gate ST uses function timeC', which returns
the sum of its arguments if the children are handled by the same agent (there is
one thief) and their maximum otherwise (two or more thieves collaborate). The
cost of this gate is calculated by function costC, which returns the sum of its
children’s cost plus possible extra costs, e.g. for hiring one or more thieves. Note
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that sequential gates like SAND enforce the (sequentially) dependent execution of
its children regardless of agents distributions. This models situations of logical
dependencies based on the nature of the attack/defence instead of the resources
available. In our example the thieves must complete stealing the treasure before
going away, irrespective of the number of thieves. Hence the time for the thieves
to flee is tpp = tgr + toa. ¢

Appendix C Playing with agents coalitions

In Sec. 6.4 we illustrate the impact that different agent coalitions can have in the
minimum time to perform an attack. In Fig. 6 we present the ADTree structure
used to generate the results shown in Fig. 4. This information is also available
in the repository permanently hosted in https://upl3.fr/?VvxUgNCK.

These experiments illustrate the importance of agents distribution over the
ADTree nodes, as shown by the difference between the optimal and worst-case
scenarios (see Fig. 4). When there is one agent per node, parallelism is maximal,
thus leading to the optimal time for the attack to happen: 5 time units for
15 agents. However, we observe that this optimality can be achieved with a
lesser number of agents, namely 6. In other words, the fastest successful attack
requires the participation of 6 attackers, with the appropriate assignment. This
assignment can be identified using our approach.

Fig. 6: ADTree to play with agents coalitions

Appendix D Case studies used for experimentation

For each case study used in the experiments of Sec. 6, here we provide the cor-
responding ADTree structure and all nodes attributes. This information is also
available in the permanent repository hosted in https://up13.fr/?VvxUgNCK.
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D.1 Forestall a software release

This ADTree (Fig. 7) is based on a real-world instance [9]. It models an attack to
the intellectual property of a company C, by an unlawful competitor company U
aiming at being “first to the market.” Following [23], software extraction from C
must take place before U builds it into its own product, and U must furthermore
deploy to market before C, which takes place after U has integrated the stolen
software into its product.

Name Cost Time
FS : forestalling of softw. €0 10d
SC : steal code €0 0d
PRS : physical robbery succ. €0 0d
PR : physical robbery €0 0d
NAS : network attack succ. €0 0d
NA : network attack €0 1d
BRB: bribe €0 3d
icp: integr. code in prod. €2k 15d
dtm: deploy to market €1k 5d
scr: secure coding rooms € 5k 0d
rfc: rob. finds code €0 0d
reb: rob. enters building €500 3d
hr : hire robber €4k 10d
id :intrusion detection €200 1d
heb : hacker exploits bug €0 3d
sb :system has a bug €0 0d
hh : hire hacker €1k 20d
psc: progr. steals code €0 7d

bp : bribe programmer €2k 15d

Fig. 7: Forestall a software release (forestall)

D.2 Compromise IoT device

This ADTree (Fig. 8) describes an attack to an Internet-of-Things (IoT) de-
vice either via wireless or wired LAN. Once the attacker gains access to the
private network and has acquired the corresponding credentials, it can exploit
software vulnerabilities in the IoT device to run a malicious script. This model
was extended in [24] from an original attack tree introduced by M. Steiner and
P. Liggesmeyer. We further enrich the modelling with defence mechanisms.

D.3 Obtain admin privileges

This ADTree (Fig. 9) models an attacker trying to gain administrative privileges
on a UNIX system CLI, which requires either physical access to an already
logged-in console—entering the computer centre or corrupting an operator—or
remote access via privilege escalation—attacking the SysAdmin. This case study
is well known in the literature [28, 18, 22, 23] and unlike the previous ones it
shows a mostly branching structure: all gates but one are disjunctions in the
original tree from [28]. We enrich this scenario with the SAND from [23], and
further add reactive defences for some of the attacks
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Fig.8: Compromise IoT device (iot-dev)

Name Cost Time

CIOTD: compromise IoT device €0 Oh

APNS : access private net. succ. €0 1m

APN : access private net. €0 3m

GVC : get valid credentials €0 0h

CPN :connect to private net. €0 Oh

AW :access WLAN €0 0h

AL : access LAN €0 Oh

rms :run malicious script €100 30 m

esv :exploit soft. vulnerab. €10 1h

inc :inform of new connect. €5 1m

tla :two-level authentic. €5 1m

gc  :get credentials €100 10h

bwk : break WPA keys €100 2h

fw  :find WLAN €10 5h

sma :spoof MAC address €50 30m

flp :find LAN port €10 1h
Name Cost Time
0AP : obtain admin privileges €0 0Om
GSAP: get SA password €0 0m
ACLI: access c.c. CLI €0 2m
TSA : trojan horse for SA €0 0m
DTH : defence against trojans €0 0m
LSAS: LSA successful €0 0m
LSA :look over SA shoulder €0 0m
GAPS : GAP successful €0 2m
GAP : get admin password €0 10 m
ECCS: enter c.c. successful €0 1h
ECC : enter computer centre €0 0d
csa :corrupt Sys. Admin. €5k 5d
efw : E-Mail firewall €3k 0m
wd : watchdog sys. daemon €2k 5 m
th :trojan horse SA €100 3d
nv :no-visits policy €0 0d
sat :spy SA terminal €0 30 m
vsa :visit SA at work €20 2d
bsa : befriend Sys. Admin. €500 14d
tla :two-level authentic. €5 1m
fgp : find guessable pass. €0 1d
opf :obtain password file €100 3d
scr :secure coding rooms €5k 0d
ccg :c.c. guest unwatched €100 5d
bee : break-in comp. centre €6k 2d
co :corrupt operator €4k 4d

Fig.9: Obtain admin privileges (gain-admin)
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