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In a recent manuscript, Gelman & Yao (2020) claim that łthe usual 

rules of conditional probability fail in the quantum realm” and that 

łprobability theory isn’t true (quantum physics)”, and purport to support 

these statements with the example of a quantum double-slit experiment. 

Their statements are false. In fact, opposite statements can be made, from 

two different perspectives: 

• The example given in that manuscript conőrms, rather than inval- 

idates, the probability rules. The probability calculus shows that 

a particular relation between probabilities, to be discussed below, 

cannot a priori be assumed to be an equality or an inequality. In the 

quantum example it turns out to be an inequality, thus conőrming 

what the probability calculus says. 

• But actually the same inequality can be shown to appear in very 

non-quantum examples, such as drawing from an urn. Thus there 

is nothing peculiar to quantum theory in this matter. 

In the present note I will prove the two points above, recalling some 

relevant literature in quantum theory. I shall also correct a couple of 

wrong or imprecise statements that Gelman & Yao make about quantum 

physics in their example. 

Let me point out at the outset that the rules of probability theory 

(product or conditional or conjunction, sum or disjunction, negation) are 

in fact routinely used in quantum theory with full validity, especially 

in problems of state łretrodiction” and measurement reconstruction 

(Jones  1991; Slater 1995; de Muynck  2002 chs 7, 8; Barnett et al. 2003; 

Ziman et al. 2006; D’Ariano et al.  2004; see Månsson et al.  2006  ğ 1 and 

the rest of the present note for many further references). An example is 

the inference of the state of a quantum laser given its output through 

different optical apparatus (Leonhardt 1997). 
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Similar incorrect claims with similar examples have appeared before 

in the quantum literature. Bernard O. Koopman 1 discussed the falsity of 

such claims already in 1957. The Introduction in his work is very clear: 

Ever since the advent of modern quantum mechanics in the late 1920’s, 

the idea has been prevalent  that  the  classical  laws of probability cease,  in 

some sense, to be valid in the new theory. More or less explicit statements to 

this effect have been made in large number and by many of the most eminent 

workers in the new physics [. .  .]. Some authors  have even  gone farther  and 

stated that  the  formal structure  of logic  must be  altered to conform  to  the  

terms of reference of quantum physics [. . .]. 

Such a thesis is surprising, to say the least, to anyone  holding more or 

less conventional views regarding  the  positions of logic, probability, and 

experimental science: many of us have been apt ś perhaps too naively ś to 

assume that experiments can lead to conclusions only when worked up by 

means of logic and probability, whose laws seem to  be on a different level 

from those of physical science. 

The primary  object of this presentation  is  to show that  the  thesis in 

question is entirely without validity and is  the  product of a confused view  

of the laws of probability. 

A more recent claim, somewhat similar to Gelman & Yao’s and with a 

similar supporting example, was made in a work by Brukner & Zeilinger 

(2001) and disproved by Porta Mana (2004a) through a step-by-step 

analysis and calculation. The fallacy in this kind of examples rests in 

the neglect of the experimental setup, leading either to an incorrect 

calculation of conditional probabilities, or to the incorrect claim that 

the probability calculus yields an equality, where it actually does not. 

The same incorrect claims can be obtained with completely non-quantum 

systems , such as drawing from an urn, if the setup is neglected (Porta 

Mana 2004a ğ IV). 

Let us start with such a non-quantum counter-example. 

A non-quantum counter-example Consider an urn with one 𝐵 lue and 

one 𝑅 ed ball. Two possible drawing setups are given: 

𝐷a 

With replacement for blue, without replacement for red. That is, if 

blue is drawn, it is put back before the next draw (and the urn is 

shaken); if red is drawn, it is thrown away before the next draw. 

𝐷b  

With replacement for red, without replacement for blue.

 

1 of the Pitman-Koopman theorem for sufficient statistics, Koopman 1936. 
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These two setups are obviously mutually exclusive. 

We can easily őnd the unconditional probability for blue at the second 

draw in the setup 𝐷a: 

P ( 𝐵2 | 𝐷a) = 

3

 

4 . (1) 

Note that this probability can be intuitively found by simple enumeration, 

à la Boole, considering łpossible worlds” if you like. Out of four possible 

worlds, half of which has blue at the őrst draw, and the other half has 

red, we can count that three worlds have blue at the second draw. 

The conditional probabilities for blue at the second draw, given the 

őrst draw, are also easily found: 

P ( 𝐵2 | 𝐵1 ∧ 𝐷a) = 

1

 

2 

P ( 𝐵2 | 𝑅1 ∧  𝐷a) = 1 . (2) 

We őnd that 

P ( 𝐵2 | 𝐷a) = P ( 𝐵2 | 𝐵1 ∧ 𝐷a) P ( 𝐵1 | 𝐷a)+ P ( 𝐵2 | 𝑅1 ∧ 𝐷a) P ( 𝑅1 | 𝐷a) , (3) 

which is just the rule of conditional probability. It is in fact just the 

systematization and generalization of the intuitive łpossible worlds” 

reasoning done above. 

Next consider the setup 𝐷b. We easily őnd 

P ( 𝐵2 | 𝐷b) = 

1

 

4 , (4) 

P ( 𝐵2 | 𝐵1 ∧ 𝐷b) = 0 P ( 𝐵2 | 𝑅1 ∧ 𝐷b) = 

1

 

2 , (5) 

P ( 𝐵2 |  𝐷b) = P ( 𝐵2 | 𝐵1 ∧ 𝐷b) P ( 𝐵1 | 𝐷b) + P ( 𝐵2 | 𝑅1 ∧ 𝐷b) P ( 𝑅1 | 𝐷b) . 

(6) 

Now compare the unconditional probability for blue at the second 

draw in the setup  𝐷a, with the conditional probabilities for blue at the 

second draw given the őrst draw in the setup 𝐷b: 

P ( 𝐵2 | 𝐷a) ≠ P ( 𝐵2 | 𝐵1∧ 𝐷b) P ( 𝐵1 | 𝐷b)+ P ( 𝐵2 | 𝑅1∧  𝐷b) P ( 𝑅1 | 𝐷b) . (7) 

This inequality is not surprising ś we are comparing different setups. It is 

not an instance of the conditional-probability rule. In fact the probability 

calculus has nothing to say, a priori, about the relation between the left 

side and right side, which are conditional on different statements or, if 

you like, pertain to two different sample spaces. 
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You can call the inequality above łinterference” if you want; for 

further and more involved examples with urns and decks of cards see 

Kirkpatrick (2003a,b) and Porta Mana (2004a ğ IV). 

Now consider another pair of drawing setups: setup 𝐷c, with replace- 

ment for both colours; and setup 𝐷d, without replacement for either 

colour. You can easily őnd that 

P ( 𝐵2 |  𝐷c) = P ( 𝐵2 | 𝐵1 ∧ 𝐷c) P ( 𝐵1 | 𝐷c) + P ( 𝐵2 | 𝑅1 ∧ 𝐷c) P ( 𝑅1 |  𝐷c) , 

(8) 

P ( 𝐵2 | 𝐷d) = P ( 𝐵2 | 𝐵1 ∧ 𝐷d) P ( 𝐵1 |  𝐷d) + P ( 𝐵2 | 𝑅1 ∧ 𝐷d) P ( 𝑅1 | 𝐷d) , 

(9) 

P ( 𝐵2 | 𝐷c) = P ( 𝐵2 | 𝐵1 ∧  𝐷d) P ( 𝐵1 | 𝐷d) + P ( 𝐵2 | 𝑅1 ∧ 𝐷d) P ( 𝑅1 | 𝐷d) . 

(10) 

The őrst two equalities above are expressions of the conditional- 

probability rule. The third is not , however. It is simply a peculiar equality 

contingent on the two speciőc setups. 

The probability calculus therefore correctly handles situations leading 

to inequalities such as (7), and to equalities such as (10). 

The explicit presence of ‘ 𝐷... 

’, which represents given information, 

is necessary discussions involving different setups, such as the above. If 

I ask you łwhat’s the probability of blue at the second draw?”, you will 

ask me łin which drawing setup?”. The probability is conditional on the 

information about the drawing scheme. 

The inequality (7) is what Gelman & Yao (2020 p. 2) complain about, 

but in the context of a pair of quantum setups. I do not see how one 

can complain about it, or claim inconsistencies. It is obviously correct 

even from an intuitive analysis of the two setups. And the probability 

calculus correctly leads to it, too. The probability calculus correctly leads 

also to the equality (10) . As already said, given two mutually exclusive 

setups, the probability calculus a priori neither commits to an equality 

nor to an inequality. 

I will now show that the simple example above is in fact conceptually 

quite close to the quantum experiment mentioned by Gelman & Yao. The 

closeness is especially clear from the experimental and mathematical 

developments of quantum theory of the past 40 years (at the very least), 

as the literature cited below shows. 
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The quantum two-slit experiments The basic argument of Gelman & 

Yao is that, in a given setup of the quantum two-slit experiment, we have 

a speciőc probability distribution for the appearance of an emulsion or 

excitation on some point of the screen. We can call this a łscreen detec- 

tion”, but please keep in mind that in so doing we are adding an extra 

interpretation that modern quantum theory does not actually commit to 

(see discussion and references below). In a different experimental setup 

we have conditional probabilities for screen detection conditional on 

slit detection. Now, the probability of the őrst setup is not equal to the 

combination of the conditional probabilities of the second setup. 

But this is exactly what happened in our urn example above, eq. (7) . 

In the present quantum case we do not have a violation of the conditional 

probability rule either ś if anything it is a conőrmation. 

To see the analogy more clearly, let me present some additional facts 

from quantum theory. 

The experimental setup without detectors at the slits and the setup 

with slit detectors are actually limit cases of a continuum of experimental 

setups (Wootters & Zurek 1979; for a recent review and further references 

see Banaszek et al. 2013). In the general case, such a setup has slit detectors 

of varying efficiency, denoted by a parameter 𝑞 ∈ [ 0 , 1 ] that can be chosen 

in the setup. The possible degrees of efficiency are of course mutually 

exclusive, so these setups are mutually exclusive. 

The slit detector has a given efficiency in the following sense: 

Let us call 𝑦 the detection position on the screen, and 𝑋1 

is the 

statement that detection occurs at slit #1 (you can translate to random- 

variable jargon if you prefer). When we prepare the electromagnetic őeld 

in a quantum state 𝑆 , and use ideal detectors with perfect efficiency, the 

probability of detection at slit #1 is, say 𝑝𝑆, and 1 − 𝑝𝑆 

for slit #2. 

If we use the setup with detectors having efficiency 𝑞 ś denote it by 

𝐷𝑞 

ś then the probability of detection at slit #1 is 

p ( 𝑋1 | 𝐷𝑞 , 𝑆 ) = 

1

 

2 ( 1 − 𝑞 ) + 𝑞 𝑝𝑆 , (11) 

and 

1

 

2 ( 1 + 𝑞 ) − 𝑞 𝑝𝑆 

for slit #2. 

The setup with perfect detectors is the limit case 𝑞 = 1 . In the case of 

zero efficiency, 𝑞 = 0 , there is no relation between the light states and 

the őring of the slit detectors; that is, we are always fully uncertain as 

to which detector would őre, no matter how the light state is prepared. 
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These kinds of setup ś and many other interesting ones ś are quite 

easy to prepare with the statistically analogous quantum Mach-Zehnder 

interferometers (see the textbooks in footnote 2 below; Leonhardt 1997  

ğ 4.2; Yuen & Shapiro  1978). 

In each setup 𝐷𝑞 

(and given the light state 𝑆 ) we also have the 

conditional probability distribution p ( 𝑦 | 𝐷𝑞 , 𝑆 ) for detection at 𝑦 on the 

screen, and the conditional probability distributions p ( 𝑦 | 𝑋, 𝐷𝑞 , 𝑆 ) for 

detection at 𝑦 on the screen, given detection 𝑋 at the slits. We have 

p ( 𝑦 | 𝐷𝑞 , 𝑆 ) = 

p ( 𝑦 | 𝑋1 , 𝐷𝑞 , 𝑆 ) p ( 𝑋1 | 𝐷𝑞 , 𝑆 ) + p ( 𝑦 | 𝑋2 , 𝐷𝑞 , 𝑆 ) p ( 𝑋2 | 𝐷𝑞 , 𝑆 ) . (12) 

This is an instance of the conditional-probability rule, which is of course 

valid. This equality also holds for long-run frequencies (see point  ( iii ) 

below). Note that such conditional and unconditional frequencies are 

experimentally observed. I would like you to convince yourself, though, 

that the equality above (not the speciőc values of the frequencies) is not 

really an experimental fact, since it rests on the very way we measure 

conditional frequencies. 

The conditional and unconditional distributions above will of course 

be different depending on the setup 𝐷𝑞 

and the light state 𝑆 . But in 

each instance the rule of conditional probability holds. For example, if  

𝑞′ ≠ 𝑞′′, 

p ( 𝑦 | 𝐷𝑞′ , 𝑆 ) = 

p ( 𝑦 | 𝑋1 , 𝐷𝑞′ , 𝑆 ) p ( 𝑋1 | 𝐷𝑞′ , 𝑆 ) + p ( 𝑦 | 𝑋2 , 𝐷𝑞′ , 𝑆 ) p ( 𝑋2 |  𝐷𝑞′ , 𝑆 ) , 

(13) 

p ( 𝑦 | 𝐷𝑞′′ , 𝑆 ) = 

p ( 𝑦 | 𝑋1 , 𝐷𝑞′′ , 𝑆 ) p ( 𝑋1 | 𝐷𝑞′′ , 𝑆 ) + p ( 𝑦 | 𝑋2 , 𝐷𝑞′′ , 𝑆 ) p ( 𝑋2 | 𝐷𝑞′′ , 𝑆 ) , 

(14) 

p ( 𝑦 | 𝐷𝑞′ , 𝑆 ) ≠ 

p ( 𝑦 | 𝑋1 , 𝐷𝑞′′ , 𝑆 ) p ( 𝑋1 | 𝐷𝑞′′ , 𝑆 ) + p ( 𝑦 | 𝑋2 , 𝐷𝑞′′ , 𝑆 ) p ( 𝑋2 | 𝐷𝑞′′ , 𝑆 ) . 

(15) 

The last inequality, analogous to eq. (7) , comes from experimental 

observations (see the brief discussion below about the relation with 

de Finetti’s theorem), and was not in fact not ruled out a priori by the 

probability calculus. 
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Now let me discuss a couple of very interesting experimental facts 

about this collection of setups: 

First, both the conditional 𝑦 | 𝑋 and unconditional probability distributions 

for the screen detection 𝑦 generally have an oscillatory profile, typical of 

interference (Wootters & Zurek 1979; Banaszek et al.  2013; see also Chiao 

et al. 1995 for other experimental variations). The oscillatory character is 

maximal for the zero-efficiency setup 𝑞 = 0 and decreases as 𝑞 increases. 

For the perfect-detector setup 𝑞 = 1 there is no interference. But we can 

have quite a lot of interference even when the detection efficiency is 

quite high, so that for some light states we are almost certain about slit 

detection; see references above. (The proőle depends on the speciőc light 

state, of course, which we are assuming őxed.) 

Second, the unconditional (frequency) distribution observed in the 

setup 𝐷0 

with zero-efficiency slit detectors is experimentally equal to 

the distribution for screen detection observed in the setup without slit 

detectors (note that in the latter setup we cannot speak of conditional or 

unconditional probability, since slit detection does not exist). 

Third, one conditional distribution observed in the setup with one 

slit closed is experimentally equal to one in the setup 𝐷1 

with perfect slit 

detectors. (Here we must be careful, because there is no slit detection in 

the second setup; rather, we speak of appearance or non-appearance at 

the screen, and in the latter case no conditional distribution is deőned.) 

The equalities in the last two cases should a priori not be expected, 

because the setups are physically different. Of course one can look for 

physical, łhidden variables” explanations of such equalities. Experi- 

mental quantum optics simply acknowledges the fact that two setups are 

equivalent for such detection purposes, and incorporates this informa- 

tion into its mathematical formalism, by means of appropriately deőned 

‘ povm s ’, discussed below. 

Note the statistical analogy between the cases above and the cases 

with the setups of the urn examples previously discussed. In each setup, 

the rule of conditional probability holds (and in the quantum case we 

can have distributions, conditional and unconditional, with oscillatory 

proőles). Across different setups, probability theory says that such a rule 

cannot be applied; and indeed we őnd inequalities across some setups 

and equalities across others, both in the quantum and non-quantum 

case, eqs (7) , (10) . Even more striking statistical analogies appear in 
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the already cited non-quantum counter-examples (Kirkpatrick 2003a,b; 

Porta Mana 2004a ğ IV). 

It is also possible to consider situations in which we are uncertain 

about which measurement setup applies. For example we may not know 

whether there were slit detectors, or the value 𝑞 of the detector efficiency. 

In such situations we introduce probabilities p ( 𝐷...) for the possible 

setups and the conditional-probability rule applies, yielding for example 

p ( 𝑦 | 𝑆 ) = 

∑ 

𝑞 

p ( 𝑦 | 𝐷𝑞 , 𝑆 ) p ( 𝐷𝑞) (16) 

(here our knowledge of the state was assumed to be irrelevant to our 

inference about the setup). Then, given the measurement outcome, we 

can make inferences about the setup (Barnett et al. 2003; Ziman et al. 

2006; D’Ariano et al.  2004; see also Rigo et al. 1998) ś for example 

whether a slit detector was present or not ś again using the conditional- 

probability rule in the guise of Bayes’s theorem. This kind of inference is 

especially important in quantum key distribution (Nielsen & Chuang 

2010), where we try to infer whether a third party was eavesdropping, 

that is, performing a covert measurement. Again no violations of the 

probability rules in the quantum realm: quite the opposite, those rules 

allow us to make important inferences. 

Further remarks and curiosities about quantum two-slits experiments I 

would like to mention a couple more experimental facts ś which are, 

besides, statistically very interesting ś to correct some statements by 

Gelman & Yao in relation to the two-slit experiment. 

( i ) It does matter whether many photons are sent at once, or one 

at a time (cf. Gelman & Yao  2020 ğ 2 point 1); as well as their 

wavelength, temporal spread, and so on (strictly speaking, the 

spatio-temporal dependence of the őeld mode). These details are 

part of the speciőcation of the light state 𝑆 mentioned above, and 

lead to different probabilities distributions of screen detection. 

For example, in some setups and for some states we can have 

a detection probability density p ( 𝑦1) for the őrst photon, and a 

different density for the second photon p ( 𝑦2 | 𝑦1) , conditional on the 

detection of the őrst ś both being different from the cumulative 

density of detections. See e.g. the phenomena of higher-order 
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coherence, bunching, anti-bunching, and many other interesting 

ones 2 . Interference phenomena can also be observed in time, not 

only in space. The rules of the probability calculus also apply in all 

such situations. We can infer, for example, the position of the őrst 

photon detection given the second from the conditional probability 

rule p ( 𝑦1 | 𝑦2) ∝ p ( 𝑦2 | 𝑦1) p ( 𝑦1) . 

( ii ) The details about the light source and the setup are not łlatent 

variables”: they specify the quantum state of light and the meas- 

urement performed on it. They are like the initial and boundary 

conditions necessary for the speciőcation of the behaviour of any 

physical system. 

( iii ) In view of point ( i ) above, it is important not to conŕate the probab- 

ility distributions for single-photon detections, those for cumulative 

photon detection, and the frequency distributions of a long-run of 

such detections (Gelman & Yao 2020 ğ 2, seem to conŕate the two). 

Such distinction is always important from a Bayesian point of view. 

I may add that the idea and parlance of łphotons passing through 

slits” are used today only out of tradition; maybe a little poetically. The 

technical parlance, as routinely used in quantum-optics labs for example 

(Leonhardt 1997; Bachor & Ralph 2004), has a different underlying 

picture. The ‘ system ’ in a quantum-optics experiment is not photons, 

but the modes of the őeld-conőguration operator  2 (note that this is 

not yet Quantum ElectroDynamics). łPhoton numbers” denote the 

discrete outcomes of a speciőc energy-measurement operator; łphoton 

states” denote speciőc states of the őeld operators. As another example, 

łentanglement” is strictly speaking not among photons, but among 

modes of the őeld operator (van Enk 2003). Several quantum physicists 

indeed oppose the idea and parlance of łphotons”, owing to the confusion 

they lead to. Lamb 3  wrote in 1995: 

the author does not like the  use of the  word łphoton”, which dates from 

1926. In his view, there is no such thing as a photon. Only a comedy of errors 

and historical accidents  led to its  popularity  among  physicists and optical 

scientists.

 

2 for example Mandel & Wolf  1965; Morgan & Mandel 1966; Paul 1982; Jacobson et al. 

1995; and textbooks  such as Loudon 2000; Mandel & Wolf 2008; Scully  & Zubairy 2001; 

Bachor & Ralph 2004; Walls & Milburn 1994 

3 of the Lamb shift, Lamb & Retherford 

1947. 
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Wald (1994) warns: 

standard treatments of quantum őeld theory in ŕat spacetime rely heavily 

on Poincaré symmetry (usually entering the  analysis implicitly via plane- 

wave expansions) and interpret  the  theory primarily in terms of a notion 

of łparticles”. Neither Poincaré (or other) symmetry nor a useful notion of 

łparticles” exists in a general, curved spacetime, so a number of the familiar 

tools and concepts of őeld theory must be  łunlearned” in order to have  a 

clear grasp of quantum őeld theory in curved  spacetime. [p. ix]  [.  . .] the  

notion of łparticles” plays no fundamental role  either in the formulation  or 

interpretation of the theory. [p. 2] 

See also Davies’s Particles do not exist (1984). 

A summary of the modern formalism of quantum theory It may be use- 

ful to give a summary of how probability enters the modern formalism 

of quantum theory. See textbooks such as Holevo (2011), Busch et al. 

(1995), Peres (1995 especially ch. 12), de Muynck (2002 especially ch. 3), 

and the excellent text by Bengtsson & Życzkowski (2017). 

A quantum system is deőned by its sets of possible states and 

possible measurements. A state 𝜌 is represented by an Hermitean, 

positive-deőnite, unit-trace matrix 𝝆 (which satisőes additional math- 

ematical properties: Jakóbczyk & Siennicki 2001; Kimura  2003; Kimura 

& Kossakowski 2005; Bengtsson & Życzkowski 2017), called ‘ density 

matrix ’. States traditionally represented by kets | 𝜓 ⟩ are just special cases 

of density matrices. A measurement setup 𝑀 is represented by a set 

of Hermitean, positive-deőnite matrices { M𝒓 } (of the same order as 

the density matrices) adding up to the identity matrix. They are called 

‘ positive-operator-valued measures ’, usually abbreviated povm s. Tra- 

ditional von Neumann projection operators {| 𝜙𝑟⟩⟨ 𝜙𝑟 |} are just special 

cases of povm s. Each matrix M𝒓 

is associated with an outcome 𝒓 of the 

measurement. These outcomes are mutually exclusive. An outcome can 

actually represent a combination of simpler outcomes, 𝒓 ≡ ( 𝑥, 𝑦, 𝑧, . . . ) , 

such as the intensities or őrings at two or more detectors. 

The probability of observing outcome 𝒓 ≡ ( 𝑥, 𝑦, . . . ) given the meas- 

urement setup 𝑀 and the state 𝑆 is encoded in the trace-product of the 

respective matrices: 

p ( 𝑥, 𝑦, . . . | 𝑀 ∧ 𝑆 ) ≡ tr ( M𝑥,𝑦,... 𝝆 ) , (17) 
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These probabilities for all 𝒓 form a probability distribution. The tradi- 

tional Born-rule expression ‘ |⟨ 𝜙𝑟 | 𝜓 ⟩|2 ’ is just a special case of the above 

formula. The probabilities in the formula come from repeated measure- 

ment observations in the same experimental conditions: we can invoke 

de Finetti’s (1937; 1938) theorem here ś the partial-exchangeability 

variant ś and some quantum physicists indeed do (Caves et al. 2002; 

van Enk & Fuchs 2002; Fuchs et al.  2004). The trace-product above is 

just a scalar product in a particular space. How a set of probability or 

frequency distributions can be encoded in scalar products is explained 

in a down-to-earth way in Porta Mana (2003;  2004b). 

Once the probability distribution above is given we can use the 

full-ŕedged probability calculus for our inferences. We can for example 

sum (or integrate) over detector outcomes 𝑦, . . . , obtaining the marginal 

probability for detector outcome 𝑥 ; or calculate the probability of outcome 

𝑦 conditional on 𝑥 ; or make inferences about the measurement setup 

or the state. Again, there are no violations of the probability rules. The 

formalism (17) is neat in this respect because it allows us to represent 

such situations through new povm s and density matrices. You can easily 

check, for example, that the marginal probability for 𝑥 from eq. (17) can be 

encoded in the povm { M
′ 

𝑥} ≡ { 

∑ 

𝑦,... 

M𝑥,𝑦,...} . A situation of uncertainty 

between setups 𝑀′ and 𝑀′′, as in eq. (16) , can be encoded in the povm
{

p ( 𝑀′) M
′ 

𝒓
+ p ( 𝑀′′) M

′′ 

𝒓 

}

. And so on, and similarly for states and their 

density operators. 

For systems with inőnite degrees of freedom such as electromagnetic 

őelds or electrons (Fermionic őelds), the matrices above are replaced by 

operators deőned in particular algebras. A povm element can actually be 

a space-time-indexed operator. The computational details can become 

quite complicated, but the same basic ideas apply. 

This formalism obviously also includes the speciőcation of post- 

measurement states (if the system still exists afterwards), transformations, 

evolutions. I shall not discuss these; see the textbooks cited above. 

Conclusions I hope that the above discussion and bibliography clearly 

show that: 

• the rules of probability theory, including the conditional-probability 

rule, are fully valid in quantum theory and essential in its modern 

applications; 
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• some peculiar equalities or inequalities across different experi- 

mental conditions do not contradict the conditional-probability 

rule, and they appear just as well in quantum as in non-quantum 

situations, such as drawing from an urn. 

Quantum theory already has its physically conceptual difficulties and 

computational difficulties, as should be clear from the portrait sketched 

in the present note. I do not see the point in making it seem even more 

difficult with false claims of non-validity of probability theory or with 

distorted pictures of its experimental content. 
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