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With an appendix by Felipe Riquelme

Abstract

In the context of geodesic flows of noncompact negatively curved manifolds, we propose three
different definitions of entropy and pressure at infinity, through growth of periodic orbits, critical
exponents of Poincaré series, and entropy (pressure) of invariant measures. We show that these
notions coincide.

Thanks to these entropy and pressure at infinity, we investigate thoroughly the notion of strong
positive recurrence in this geometric context. A potential is said strongly positively recurrent when
its pressure at infinity is strictly smaller than the full topological pressure. We show in particular
that if a potential is strongly positively recurrent, then it admits a finite Gibbs measure. We
also provide easy criteria allowing to build such strong positively recurrent potentials and many
examples.
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1 Introduction

The geodesic flow on a compact negatively curved manifold M is the typical geometrical example
of an Anosov flow. Its chaotic behavior reveals itself in particular through the existence of infinitely
many possible different behaviours of orbits, and even of all imaginable behaviours.

A Gibbs measure is an ergodic invariant (probability) measure associated to a given continuous
map F : T'M — R, with respect to which almost all orbi_tésig%isll spend most of their time in the subsets
of T'M where the potential F is large (see Section Tor the precise definition). In particular, the
existence of a Gibbs measure for all (Hélder) continuous maps is a quantified way to express the above
idea that all possible behaviours of orbits are indeed realized as typical trajectories w.r.t. the Gibbs
measures of all Hélder potentials. b

When the manifold M is not compact anymore, a geometric construction developed in TPPSB]
allows to build good candidates for Gibbs measures. However, due to noncompactness of M and T M,
these gasures are not necessarily finite, and therefore not always extremely useful.

In [PS18], Pit and Schapira ch (éterized the finiteness of these measures in terms of the qQuyer-
gence of some geometric series. In %SEquQ], in the case of the zero potential F' = 0, building on TPSlS],
Schapira and Tapie proposed a criterion, called strong positive recurrence, which implies the finiteness
of the associated measure, known as the Bowen-Margulis-Sullivan measure. This criterion is the fol-
lowing. If T' = 71 (M), recall that the critical exponent of T' is the exponential growth rate of any orbit
of I' acting on the universal cover M of M. By a result of Otalfﬁjgd Peigne [OP04], it also coincides
with the topological entropy of the geodesic flow on T'M. In [STT9], a critical exponent at infinity
0p° is defined, and the authors prove that a critical gap 6° < or implies that the Bowen—l)ﬁ&;gulis—
Sullivan measure is finite. This had been previously shown by Dal’bo, Otal and Peigné in [DOP00)
for geometrically finite manifolds, for which the critical exponent at infinity is the maximum of the
critical exponents among parabolic subgroups. In general, this critical exponent at infinity should be
seel as a kind of entropy at infinity. Other striking applications of this critical gap have been proved
in [CDST19].

The main goal of this pa er is to Odéqu% a ngngete study of strong positive recurrence in negative
curvature. First, in sections E]; E, EE we compare this critical exponent at infinity with other, new and
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uivalent

old, possible definitions of entropy at infinity and show that they all coincide. At the same time,
considering pressures and p GRsupes at infinity instead of entropies, w e:ré%alize this study to all
Gibbs measures studied in »FPPSTSTPSlS]. In a second part (section 7], we give a detailed study
of strong positive recurrence in negative curvature. The appendix by F. Riquelme proves important
properties of entropy, that are classical in the compact case, but need a careful proof in the noncompact
case.

Analogous ggg%tcs’ were k&q\(ysr‘{ siaiigg:es X&ﬁ@uégtg%gg&%%t of symbolic dynamics over a countable

urevil

alphabet, see [Gur6Y, [Gur70, [GSI8, [Sar99, Sar01, Rued3, BBG06, BBG14] .

Let us present our results with more details.

The topological pressure of a (Holder) potential F : T'M — R is a weighted version of entropy. For
a dynami g%tsexsstem on a compact space, there are a lot of different definitions, which all coincide, see for
example [Wals2, ch 9] or %BWTS] I glgfiggnu$ompact setting, some of these definitions are meaningless.
IanePswj, following the works of [Rob03] [OP04] on entropy, three definitions were compared. The
Gurevi¢ Pressure Pouw(F) is the (weighted) exponential growth rate of the periodic orbits of the
geodesic flow. The wvariational pressure Py (F )(E[) is the supremum over all invariant probability
measures of their measure-theoretic pressures, that is a weighted version of their Kolmogorov-Sinai
entropies. The critical pressure dp(F'), a geometric notion specific to geodesic flows, is the (weighted)
exponential growth rate of the orbits of the fundamental group I' of M acting on its universal cover
M. oblin,OP PS

It has been shown in [Rob03[10P04] when F' = 0 and TPPSIS, thm 1.1] for general potentials that
all these pressures coincide.

Theorem 1.1 (Roblin, Otal-Peigné, Paulin-Pollicott-Schapira). Let M be a nonelementary complete
connected negatively curved manifold with pinched negative curvature, and bounded first derivative of
the curvature. Let F : T'M — R be a Holder continuous map. Then we have

6F(F) — Pvar(F) - PGur(F)- (1)

We denote this common value by Piop(F').

We propose here three fmotions of pressure at infinity, whose precise definitions will be given in

i c:pressures-at-infinit ) ) i o
Section %f the Gurevic pressure at infinity P, (F) measures the exponential growth rate of periodic
orbits staying most of the time outside any given compact set. The wvariational pressure at infin-
ity Poo.(F) measures the supremum of measure-theoretic pressures of invariant probability measures
supported mostly outside any given compact set. The critical exponent at infinity 6p°(F) measures
the (weighted) exponential growth rate of those orbits of the fundamental group I' corresponding to
excursions outside any given compact set.

The first main result of this article is the following.

Theorem 1.2. Let M be a nonelementary complete connected negatively curved manifold with pinched
negative curvature, and bounded first derivative of the curvature. Let F : T'M — R be a Holder
continuous map. Then, we have

O (F) = Pay(F) = PGu(F).

var
We denote this common value by Py (F).

In the special case where F is constant af, infinity, the equality 6p°(F") = PG (F) has also been
obtained by con.lplet.el.y distinct m.et.hods in .Ve [9]. | EKLEKP, IRV.Riquelne_Velozo .

As already implicitely or explicitely noticed for example in TEKTZ, EKXPI5) IRVIZ IRV19|, this
pressure at infinity is deeply related to the phenomenon of loss of mass. In the vague topology, on a
noncompact space, a sequence of probability measures (with mass 1) may converge to a finite measure
with smaller total mass. As proven by the above authors, if these probability measures have a larger
entropy than the er.lt.ropy at infinity, then they cann tégggg algglvr\{}%ole mass and converge £o ;anef zero
measure. In this spirit, as a corollary of Theorem we obtain i Corollary e following result.

BDpa

3. It was denoted by Piop(F) in ﬁﬁsw], but it seems to usit%gva?%ta er to spy that the topological pressure is the

common value of all these definitions of pressure, once Theorem {L.1[is known.

eq:Varia



:coro4.8| Theorem 1.3. Let M be a nonelementary complete connected negatively curved manifold with pinched
negative curvature, and bounded first derivative of the curvature. Let F : T'M — R be a Hélder
continuous map with finite pressure. Let (u,) be a sequence of probability measures converging in the
vague topology to a finite measure p, with mass 0 < ||u|| < 1. Then

lim sup hcs (pn) +/qun < (L= lpll) x PG (F) + |l Prop (F7) -

n—o0

In particular, if p, — 0, then

limsup hxs(pn) + /Fd,un < Po,(F).
RV_.Riquelme-Velozo Velozo-phd Velozo
In [IRVIY f RVI9[, in the geometrically finite case, and in Velozo’s phd (hVTIS also hm Thm
1.1]) for general manifolds, they obtained an improvement of the conclusion of the Theorem, with
P,(F) instead of Piop(F) on the right, but only for the particular class of potentials F* which converge
to 0 at infinity for which P2, (F) = Pg,(0). The approach used in these papers is completely different
to ours, and does not work (at the moment) for potential which are non-constant ak, gil(lfiz%ity. It would
be interesting to obtain their sharper inequality under our weaker assumptions (cf [VelT9, Conjecture

5.5)).

lth:-AllPressionEquivalent

Once Theorem [I.2[1s proven, we can say that a potential F' is strongly positively recurrent (SPR)
when the following pressure gap holds:

Pt?)op(F> < Ptop(F) . (2)

c:SP
We refer the reader to Section ﬁ]e—FcTEhe notions of recurrence, positive recurrence, strong positive
recurrence.
An analogous notion of pressure gap for potentials on nonp OCsFi%ively curved manifolds, w.r.t. the set
of singula yggtors instead of infinity, has been introduced in [BCFTIS].
As in |[ST19, Thm 7.1] when F' = 0, we prove the following extremely useful property of SPR
potentials.

plies-PR| Theorem 1.4. Let M be a nonelementary complete connected negatively curved manifold with pinched
negative curvature, and bounded first derivative of the curvature. Let F : T'M — R be a Hélder
continuous map. If F' is strongly positively recurrent, then it admits a finite Gibbs measure.

elozo

For potentials which vanish at infinity, this has also been obtained in hV [9, Theorem 1.3] using a
different strategy. We will show that on any ne g_tlvel)é cRurved manifold, there exist strongly positively
recurrent potentials, see Corollary E: i ﬁ[ This implies the following new result.

Corollary 1.5. Let M be a nonelementary complete connected negatively curved manifold with pinched

negative curvature, and bounded first derivative of the curvature. There exists a Hélder continuous
potential F : T'M — R which admils a finite Gibbs measure.

1
It may worth pointing that in their current proof, all results of ﬁ’Veeol f 90] which we previously quoted
actually rely on the existence of such potential with finite Gibbs measure. Nevertheless to our knowl-
edge, this fact had not been established beyond geometrically finite manifolds.

We also establish other useful properties. Let F : T'M — R be a Holder continuous map which
admits a finite Gibbs measure mp. This measure is automatically ergodic and therefore conservative,
so that almost all orbits come back infinitely often to a set of finite measure. For a given compact set
K C T'M, consider the set Vi, 77(K) of vectors v, such that (g'v)¢>0 leaves K and does not return in
K during the interval of time [T, T]. These sets (Vr, 7(K)) -, decrease when T — +o00. We say that
the measure mp is exponentially recurrent if there exist K, C, «, Ty > 0 such that for all T' > 0,

mp(Vr, 7(K)) < Ce T, (3) |def:exp-:

In Section i?zi]ﬁ;é establish the following theorem.



:exp-rec

Theorem 1.6. Let M be a nonelementary complete connected negatively curved manifold with pinched
negative curvature, and bounded first derivative of the curvature. Let F : T'M — R be a Hélder
continuous map with finite pressure and finite Gibbs measure. Then F' is strongly positively recurrent
off it is exponentially recurrent.

o:indep-compact
We finish this work with Theorem @—sﬁﬁﬁﬁl—aﬁ strong positive recurrence does not really
depend on the chosen compact set K. More precisely, the critical pressure at infinity is defined as the
infimum over all com cto:s%‘glgeK_ é)ofm tggtweighted exponential growth rate of the excursions outside K.
We show in Theorem%TWﬁTﬁeria—ofential F is strongly positively recurrent, then for any compact
set, K, as soon as the interior of K meets a closed geodesic, this exponential growth rate of excursions
outside K is strictly smaller than the full pressure.

ec2 ec:trois
The first two sections ii and i% contain preliminaries, on the one hand on negatively curved geometry

and dynamics, and on the other hand on thermodynamical formalism, in particular all different notions
F

of pressures, and the onslyrucx‘;c ion of of the measure m " .
Sectlonsgfﬁﬁezhe one %mnd Yand Section I? on the other hand can be read mdegendently

sures-at-in
Section onfains three dlﬁerent definitions of pressures at infinity. In section [ we give upper

bounds on the growth of certain sets of periodic orbits in terms of entropy and entropy at infinity. We
deduce aquality of the ge?ometric apd‘Gurevié Pressures. at ipﬁnity O (F) and Péflr(F ). .In section
| we show that geometric and variational pressures at infinity 6p°(F) and Pg5,.(F') coincide. These

var
sections_are ‘%Iégs‘qp%chnical heart of the.paper'.
Section i? is more conceptual. We investigate the nc

in our geometric context, and prove Theorems o
heoreritropies-coincide
The appendix by Felipe Riquelme (Theorem IA-T)) shows that different possible definitions of
measure-theoretic entropy, the Kolmogorov-Sinai entropy, the Brin-Katok entropy, and the Katok
entropy coincide. This result is well known in the compact case, but not obvious at all without com-

pactness.

j o s_‘%)ngly positively recurrent potentials

The authors thank warmly Jerome Buzzi for numerous enlightening discussions about strong
positive recurrence. We acknowledge the support of the Centre Henri Lebesgue ANR-11-LABX- 0020-
01 and ANR grant CCEM (ANR-17-CE40-0034).

2 Negative curvature, geodesic flow

2.1 Geometric preliminaries

PS PS16, ST19
Our assumptions and notations are close to those of TPPSI5 [PSI8, IST19].

Let (M, g) be a smooth complete connected noncompact Riemannian manifold with pinched neg-
ative sectional curvatures —b? < K, < —a?, for some a,b > 0, and bounded first derivative of the
curvature. Let M be its universal cover, ' = 7r1( ) its fundamental group, and pp : M— M=M / r
the quotient map. We assume that M admits at least two distinct closed geodesics, or in other
words, thz%)tW t}{% group I' is nonelementary. In particular it contains at least a free group (see for
instance [Bow95[). We denote by T'M and T'M the unit tangent bundles of M and M and by
7 :T'M — M or w: T*M — M the canonical bundle projection. By abuse of notation, we also write
or: TM — T*M for the differential of pr.

Given any two points x,y € M, the set [z,y] C M will denote the (unique) geodesic segment
between x and y. . -

We fix arbitrarily a point o € M which we call origin. The boundary at infinity OM is the set
of equivalence classes of geodesic rays staying at bounded distance one from another. The % nit, set
Ar C OM is the set of accumulation points Ap = T'o\T'o of the orbit of 0. As shown by Eberlein [Ebe72],
the nonwandering set Q@ C T'M of the geodesic flow is the set of geodesic orbits which admit a hft
whose negative and positive endpoints belong to Ar. The radial limit set A} C Ar is the set of

endpoints of geodesics whose images through pr return infinitely often in some compact set:

AP = {€ € Ap,3C > 0,3(7,) € TN, 70 = &, d(7n0, [0€)) < C}.



apira2.6

We denote by (¢')icr the geodesic flow acting on T'M or T'M. The metric g induces a distance
on M and M that we will simply denote by d. We will also denote by d the distance on T'M (resp.
on T'M) defined as follows: for all v,w € T*M (resp. in T'M), let

d(v,w) = sup d(ng'v, mg'w).
te[—1,1]
This distance is not Riemannian but it is equivalent to the standard Sasaki metric on T*M (resp. on
T'M), see TPPSL’), Chap. 2| for a discussion on the subject. We will often make use of the following
standard lemmas.
The Busemann cocycle is defined by

Pe(z,y) = lim d(z, z) — d(y, 2) (4)

z—¢
We will sometimes also write, for all x,y,z € M,
B(x,y) = d(x, z) — d(y, 2).
The set of oriented geodesics of M can be identified with
&M = (OM x OM)\Diag .

For all v € TIM, denote by viAt/he negative and positive endpoints in OM of the geodesic tangent to
v. The unit tangent bundle 7" M is homeomorphic to 9?M x R via the Hopf parametrization

177 2071
,H:{TM — ?M x R (5)

v = (v, By (0, m))
The geodesic flow acts by translation in these coordinates: for all v = (v—, v, s) and t € R,
g, v, s)= (v ,vT,t+5).
The group I' acts in these coordinates by

- ots) =

’}/(’U yU 8 (’YviafvaruS"_/Bv*(’yilO? 0)) .

In terms of these Hopf coordinates, the nonwandering set § is identified with (A% x R)/T.

Recall that an isometry v € I is hyperbolic when it admits two fixed points in OM. In this case, it
acts by translation on the geodesic joining them. The set P of periodic orbits of the geodesic flow on
T'M is in 1 — 1 correspondence with the set of conJugacy classes of hyperbolic elements of I'. Indeed,
a periodic orbit p can be lifted to a collection pp ( ) of geodesics of TlM and each of them, once
projected on M is the oriented axis of a unique hyperbolic element +,, which acts by translation in
the positive direction on the axis, with translation length equal to ¢(p). By construction, all these
elements are conjugated one to another. 16

Not all elements of I' are hyperbolic. However, the following lemma from TPSlS, lemma 2.6], variant
of the well known point of view, due to Margulis, of counting elements of I" inside cones, will allow us
to consider only hyperbolic elements.

Lemma 2.1. Let M be a Hadamard manifold with sectional curvature bounded from above by a negative
constant. Let K C T'M be a compact set whose interior intersects Q. There exist ﬁmtely many
elements gi1,...,q; depending on K such that for every v € T, there exist g;,g; such that 9; Yygs is

hyperbolic, and its axis intersects K.

Proof. By Lemma Tlfsflsgl& lemma 2.6|, there exists a finite set F' = {g1,...,gx} such that every v €
I' \ S satisfies the conclusion of the lemma with respect to F, where S = {s1,...,s;} is a finite
set of exceptions. Consider a hyperbolic element h whose axis intersects K. Then the set F/ =

{91, 9Ky S15 - - sj, h} works for every v € T'. Indeed, it works for v ¢ S by assumption, and for
v =s; €S then s; 1vh = h has an axis intersecting IC with s;, h € F'. O

eq:Busem:
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Let us point the following elementary lemma, that we will use many times.

Lemma 2.2. Let M be a geodesic metric space. For all x,y,z € M, we have
d(y,l‘) + d(.’ﬁ, Z) - 2d(l‘, [ya Z]) < d(ya Z) < d(ya :E) + d(.fL‘, Z) .

We will often need more precise dist ce estimates, which rely on a negative upperbound of the
curvature. The next lemma follows from [PPS15, Lemma 2.5].

Lemma 2.3. Let M be a Hadamard manifold with sectional curvature pinched between two negative
constants. For all D > 0 and all € > 0, there exists Ty = To(D,e) > 0 such that if x,2',y,y' € T'M
satisfy d(z,2’) < D, d(y,y") < D and d(z,y) > 2Ty, then there exists so € [0,To] such that, if vay
(resp. vgry) denotes the unit tangent vector based at x (resp. x') tangent to the segment [x,y] (resp.

. y')). then for all t € [Ty, d(z.y) — Ty
d(gtvxyv gtJrSOUx’y’) <e.

We will also need the following lemma which allows to approximate broken geodesics by axes of
hyperbolic elements. If x,y € M , let vy, denote the (oriented and unitary) tangent vector of the
geodesic segment [z, y] at z. If v,w € T2 M, set £(v,w) € (0, ) for their geometric angle. If v € T1M
and w € TyIJTJ/, denote by £(v,w) € (0,7) the geometric angle between v and the image of w through
the parallel transport from y to x along [z, y].

Lemma 2.4. For all € (0,7), and all € > 0, there exists C = C(0,e) > 0 such that the following
holds. Let z,y,z,b € M and v € T be such that d(x,y),d(y,z) and d(z,b) are at least 2C, and
d(b,vx) < 1. Assume moreover that the angles £ (Vyz,Vyz), £ (Vay, Vap), and £ (YUsy, vpz) are at least
0. Then ~y is hyperbolic, the piecewise geodesics [x,y|U [y, z]U [z, b] is in the e-neighbourhood of its axis
except in the C-neighbourhood of the points x,y,z and b. Moreover, the period T, of v satisfies

T, — (6C+1) <d(z,y) +d(y,z) +d(z,b) <T,+6C + 1.

Figure 1 — Broken geodesic close to a hyperbolic axis

Sketch of proof. Since the sectional curvature are bounded from above by some —a? < 0, for all e >0
there exists C' > 0 such that if  and b are on the same horosphere H¢(x) centered at some § € dM with
d(z,b) > C, then vy, and vy, are e-close to the inward normal to H¢(z) at their base point. Therefore,
since £ (YVzy,Vp;) > 0 and d(b,yx) < 1, the element v cannot be parabolic as soon as C' > 0 is large
enough (depending on €). Therefore it is hyperbolic. bg

The rest of the proof is an immediate adaptation of the arguments presented in TPPSB, p. 98]. O

2.2 Dynamical properties of the geodesic flow
Given any vector v € T'M, its strong stable manifold is defined by
W*(v) = {w € T*M, d(g'v, g'w) = 0 when t— +oo}

The local strong stable manifold W£*(v) is the e-neighbourhood of v for the induced metric on W**(v)
by the Riemannian metric. The strong unstable manifold W*%(v) (resp. the local strong unstable
manifold W2%(v)) is defined similarly but with ¢ — —oc.

The following result is well knowp, In the non-compact setting, it has been shown by Eberlein in

b96 cou,
fEITe%, Prop. 4.5.15|, see also h(lo’uUZIfCSlO] for details.



dpgkpmop | Proposition 2.5. Let M be a nonelementary complete connected negatively curved manifold with
pinched negative curvature, and bounded first derivative of the curvature.

— The geodesic flow is transitive on the non-wandering set Q) for all open sets U,V C €, there
exists T > 0 such that g7 U NV # 0;

— The geodesic flow admits a local product structure on Q: for all € > 0, there exists n > 0 such
that for all u,v € Q with d(u,v) <n, there exists w € Q and a real number t with |t| < e such
that w € W2 (u) N W2¥(gtv);

— The geodesic flow satisfies the closing lemma: for all € > 0, there exists n > 0, such that for all
v € Q, and t > 0 such that d(gtv,v) < n, there exists a periodic vector p whose period satisfies
|0(p) —t| < e, and for all 0 < s < t, d(g'p, g'v) < e.

We will use several times the following proposition.

nnecting| Proposition 2.6 (Connecting lemma). Let K and K' be compact sets of M whose interior intersects
7(Q), and K C M a compact set such that pr(K) = K. For alle > 0, there ewists To = To(K, K', &) > 0
and Cy = Cy(K,e,Ty) > 0 such that the following holds.

1. (Shadowing) For all T > 2Ty and all v € T'K such that g'v € T K, there ewists a periodic
orbit o = (g'u)ier whose period is in [T, T + Tp), that intersects the interior of T'K', such that
for all t € [Ty, T — To), d(g'v, gtu) < e.

2. (Bounded multiplicity) For every periodic orbit o C TYM obtained in this way, the number of
elements v € T' such that, for some x,y € K, the periodic orbit associated to the unit vector

Uz ~y tangent to the loop pr([x,vy]), with return time T = d(x,vy) is bounded from above by
CoT = Cp x d(z,vy).

:dyn-pro
It would be a standard consequence of Proposition Eng in the case v € (). However, we wish to
apply this proposition tq vectors which may he v&%g%errilgé Therefore we provide a more detailed proof,
using Proposition ogether with Lemma [2.4]

b
Proof. Item 1. The reader may follow the proof on Figure Eﬁ S

nnecting

y ~ gTV gs'\‘/'fnv
X ' z o~
) p b /XQ 2y
-t ti~~
g TN > g Vv /~< /
U———= <;% v
€} prely) = TF P

R —
w
TRV -

Figure 2 — Connecting lemma

We can assume that 2e is smaller than 1 and than the injectivity radius at any point of K'. We
fix once for all a vector w € T*K’ N Q such that B(rw,2e) C K'.

By compactness of K and Ar, there exists § = 0(K) > 0 such that for all y € IN(, and v € Tylf(,
there exists £ € Ar, such that £ (vye,v) > 0. As the geodesic flow is topologically transitive, and the
action of I" on Ar is minimal, we can assume moreover that the geodesic orbit on T'M associated



to (g'vye)i>0 is "dense in Q" iin_ {he sense that it contains () in its closure). Let C' = C(6,¢) be the

constant provided by Lemma y compactness of T'K N and of T'B(w, ), a uniform property
of transitivity holds, in the following sense. There exists 77 > 0 such that the vector v = vy can be
chosen in such a way that gpc ) (vye) intersects B(w,¢e). Similarly, there exists T2 > 0 such that, if
vye is conveniently chosen, gir, 120 7, (vye) intersects once again B(w,¢).

Let v € T'K. Set yo = mv € M and y € T'K such that pr(y) = yo. Let v € Ty1]\7 be such that
pr(v) = v. By the above applied to —v, there exists v’ € Tyll\AJ/ with £ (0,0") < 7 — 0 such that the
half orbit ({g~%v',¢t > 0}) is dense in §2, and at two distincts times t; € [2C,T1] and ts € [T} + 2C, T3],
we have g~ 'v' € B(w,¢), and g~ 20" € B(w,e). We will see below how it will be important. Set
r = mgh2v.

By assumption, g'v € T'K for some T > 0. Set z = mg’v. By the same arguments, there exists
0" € TIM with £ (¢70,7") < 7 — 6 such that, if v” = pp(2"”), the half orbit (¢g'v”)s>0 is dense in ©,
and for some s € (2C,Ty), g°v” € B(w,e). Let b = 7¢®*0” be the base point of v".

Consider now the broken geodesic (g'g~%20")o<t<t, U (9'0)o<t<r U (910" )o<t<s. It starts from z =
7(g~"27"), has an angle at least 6 at y = 7(7), a second angle at least @ at z = (g’ v), and finishes at
b= m(g°v"). Since pr(z) and pr(b) are both in 7B(w, ¢), with € less than the injectivity radius at mw,
there exists v € T such that d(yz,b) < . Moreover, if ¢ is small enough, since g~2v" € B(w,¢) and

g*v” € B(w, ), the angle £ (yg~"20, g*0") is b, most 7 — 0.
Assume that T > 277 + T». By Lemma i%nZ_I, the broken geodesic [z,y] U [y, z] U [z, b] is in the ¢

neighbourhood of the axis g of v, except maybe in the C-neighbourhood of x,y, z,b. But as we chose
v’ so that g7"'0" € B(w, ), the geodesic segment pr([z,y]) intersects K’ far from pr(z) and pr(y). In
particular, since t; € (2C,d(y,z) — 2C) and the periodic orbit p = pr(p) intersects B(w,2¢) C T K.
Moreover, it follows from the previous construction that the period of ~y satisfies

T—6C+1<l(y) <T+2T+To+6C+1.

To conclude, choose some point g on the axis of v which projects to a point ¢’ on [y, z] with d(q,¢’) < e.
Let o > 0 be such that ¢’ = 7g?0. The vector u in the statement of item 1 is defined as u = pr(u),
where © is a tangent vector to the axis of 7 pointing in the same direction as ¢g°v and defined by
7m(9°u) = q and g%u.

Item 2. Let p =C T'M be a closed orbit obtained by the previous construction, with £(p) €
[T, T + Tp]. Assume that 7' > Ty. Let us bound the number of possible 4 € ' such that there exists
T,y € K with d(z,vy) =T and p = P(vgy).

Let Ko C M be the (Th + €)-neighbourhood of IN(, and Ko = pr(Kyp). By construction, for any such
~v € T, the orbit p has a lift p C T*M such that [, vy] belongs to the e-neighbourhood of 7w, except
maybe in the Tp-neighbourhood of x and ~y. In particular, 7o N Ko £ .

Choose such a lift @, which is the axis of some hyperbolic element g € I', Let v € I' be such
that there exist 2,y € K with [z,7y] in the e-neighbourhood of & except in B(z,Ty) U B(yy, Tp).
Note that moving = and y of less than the injectivity radius px of K will not change . Therefore,
if Cy = C’Q(I},To) is the number of balls of radius px needed to cover Ko (or gf(o), the number of
possible v associated to this axis  is at most (C2)?. o

It remains to bound the number of such lifts ¢ of p. This is done in Lemma %&Below, and
concludes the proof of item 2. O

S16 ~
Let us denote as in TPSH%], for every compact set W C M and any periodic orbit p C T M, the
number of axes of hyperbolic elements associated to the closed orbit p that intersect W, by

nip(p) = #{g € 53z € W, d(z, gx) = (p) and pr([z, ga]) = n(p)} -
It is a geometric way of estimating the number of returns of p in W.

Lemma 2.7. For every compact set W c M, there exists Cpy; > 0 such that for every periodic orbit
pCT'M,
g (p) < Cirl(p).

9



Proof. First assume that W= B(z, p), where p < M Then

n () < @ (6)

Indeed, if y, z € B(z, p) belong to two distinct axes, say of g, and g. both projecting to p, there exists
v € T" such that vz is on the axis of g,. Since pr([z,y| U [y,~vz]) is a geodesic bigone ba; ed at pr(y),
each of its sides has length at least inj(y) > 2p. Therefore d([y,yz]) > 2p which implies @i

Now, let W C M be an arbitrary compact set, and py; > 0 be half of the minimal injectivity radius

in W = pp(NgieCover W by a finite number of balls of the form B(x;, py7) with z; € W. The result
follows from [PS18, Lemma 3.2]. O

3 Thermodynamical formalism

Entropy is a well-known measure of the exponential rate of complexity of a dynamical system, and
the measure of maximal entropy is an important tool in the ergodic study of hyperbolic dynamical
systems.

Pressure is a weighted version of entropy, which is particularly useful for the study of perturbations
of hyperbolic systems. The notion of equilibrium state is the weighted analogue of the measure of
maximal entropy.

In this section, for the geod i flow of n (i%mpac’r negatively curved manifolds, we recall some well
known notions and facts from fPPSw] and [PSI8] on pressure and the construction of the equilibrium
state or Gibbs measure associated with a Holder conti uous map F:T'M - ﬁ This construction
has a long sto Y, 1n1tdlated by the wo S, of Patterson P_EYBijd Sullivan TS_WQ when F' = 0, by
Hamenstédt [Ham89] and Ledrappier ]ﬁ%]_We refer to WPP815] for detailed historical ba k&roundz 004
and proofs of the assertions in this paragraph. We follow here mainly [PPS15, Chap 3.] and

3.1 Holder potentials

c2  PPS S16
We follow the notations of Sectionﬁ and TPPSlS] and TP‘SlS]
Let F : T'M — R be a Hélder-continuous map in the following sense: there exist 0 < 8 < 1 and
C > 0 such that for all v,w € T*M with d(v,w) < 1, we have

|F(v) — F(w)| < Cd(v,w)”.

Such a map F will lgg said (B8, C)-Hélder. Let F=F o p be the I'-invariant lift of F' to TIM.
Lemma 3.2 of [PPS15] and the remark (ii) page 34 which follows this lemma give the following
statement.

otential| Lemma 3.1. Let F : T'M — R be a (3,Cr)-Hélder map on T'M, F its T-invariant lift. Let K be
a compact set of M, with diameter D. There exist constants ¢c; > 0 and co > 0 depending only on
the upper bound of the curvature, the Holder constants (B,CF) and the diameter D, such that for all
z,y € K, ally €T and all o',y € 7K, we have

a v
[
z y

where Kp is the D-neighborhood of K.

< 1 D? + 2D max ‘ﬁ' ,
T'Kp

3.2 Pressures of Holder potentials

There are several natural de I]d,ter:)Lng of f pressure, that all coincide, as proven in TPPSlB Theo-
i [ Woe recall h

rems 4.7 and 6.1], see Theorem ere these three definitions.

Pressure

10
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pressure

3.2.1 Geometric pressure as a critical exponent

Recall that some point o € M has been chosen once and for all. The Poincaré series associated to

(I, F') is defined by ~
PF o F(S) _ Z e—sd(o,'yo)-}-fo’w F ]
~yel’

P
The following lemma is elementary, see for instance TPPSE, p. 34-35].

Lemma 3.2 (Geometric pressure). The above series admits o critical exponent op(F) € RU {400}
defined by the fact that for all s > 6p(F) (resp. s < Or(F)), the series Pr, p(s) converges (resp.
diverges). Moreover, ér(F') does not depend on the choice of o and satisfies for any ¢ > 0,

1 o
or(F') = limsup T log Z el
T=reo ~vel, T—c<d(o,70)<T

We call or(F') the critical exponent of (I', F') or the geometric pressure of F.

As T' is nonelementary, one can show, that op(F) > —oo. Moreover, observe that dp(F) is finite as
soon as F' is bounded from above. In [PPS15] thm 4.7], it has been shown that the above limsup is in
fact a true limit. In what follows, we will never require F' to be bounded above, but we will sometimes
assume that ép(F') is finite.

3.2.2 Variational pressure

Let M1 be the set of probability measures invariant by the geodesic flow, and M ¢ the subset
of ergodic probability measures. For a given Hélder potential F' : T'M — R, consider the subsets
M and ./\/lferg of (ergodic) probability measures with [ F'~ du < oo, where F~ = —inf(F,0) is the
negative part of F. Given a probability measure p on 7'M, invariant under the geodesic flow (¢')cr,
we denote by hxs(p) = his(gt, p) its Kolmogorov-Sinai, or measure-theoretic entropy with respect to

g" (see the appendix for the definition).

Definition 3.3. The variational pressure of F' is defined by

PaslF) = sup_hucs(u)+ [ Fdu= swp hucsl) + [ Fdu.
peME uGMﬁerg

3.2.3 Growth of periodic geodesics and Gurevi¢ pressure

We denote by P (resp. P’) the set of periodic (resp. primitive periodic) orbits of the geodesic flow.
Let now K C M be a compact set whose interior intersects at least a closed geodesic, and ¢ > 0 be
fixed. Let us denote by P (t) (resp. Pk (t — c,t)) the set of periodic orbits p C T'M of the geodesic
flow whose projection 7(p) on M intersects K and such that ¢(p) < ¢ (resp. ¢(p) € [t — ¢, t]). The
subsets i Pr(t), P (t — c,t) of P are defined similarly.

By [PPS15, thm 4.7], the definition below makes sense.

Definition 3.4 (Gurevi¢ pressure). For any compact set K C M whose interior intersects a closed
geodesic and any ¢ > 0, the Gurevic pressure of F' is defined by

. 1
PGur(F) = Tl_l)rilooflog Z 6fPF.
pE'PK(ch,T)

It does not depend on K nor c. Moreover, when Pgy(F) > 0, then

1
PGur(F) = Tlﬁil}rlooilog Z efPF.
pEPK(T)

11
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Gurevi¢ was the first, to introduce this definition (for the potential F' = 0) in the,context of
symbolic dynamics, see %GWGQ] he equality Pgy,(F) = Pyar(F) has been proven in TBW?Q] for
compact manifolds and F' = 0, in %R?E{J dg%bci%rrnpact manifolds and Ho6lder potentials. The equality
Or(F) = Pgur(F) is due to Ledrappier [Led95] in t  compact case. .

In the noncompact case, when F' = 0, Sullivan [Sulg4] and Otal-Peigné f()POéL] proved that ér =
P4, and Roblin [Rob03| proved that Pgyr = dr The equality be cen the three notions of pressures

for general Holder potentials on noncompact manifolds is done in [PPS15, Thm. 4.2].

3.3 Patterson-Sullivan-Gibbs construction

Let F: T'M — R be a Halder continuous potential with finite pressure, i.e. op(F) < 400). As
will be seen in Paragraph igi the construction of a good invariant measure associated to F' will use
the product structure Q ~ (A% x R)/T". The main step is the definition of a good measure on Ar, the
so-called Patterson-Sullivan-Gibbs MeqsuTe Ur. ‘{Y;? recall it below with more care than usually done,

. . . : -implique- X . .
because we will need in Sec ion |73 to deal wi echnical points of the construction.

As stated in Lemma e Poincaré series

— Yo
PF707F<S) = Z € Sd(oy’yo)+f0 F
yerl’

admits a critical exponent or(F') € RU {+o00}. We say that (I', F') is divergent if this series diverges
at s = op(F'), and convergent if the series conyerges.

Following the famous Patterson trick, see TPEE?G , when (I", F') is convergent, we choose a positive
increasing map h : Rt — RT with subexponential growth such that for all n > 0, there exist C;, > 0
and 7, > 0 such that

Vr>r,, Yt>0, h(t+7) < Cpelh(r), (7)
and the series ﬁnp(o, s) = Zh(d(o, 70)) =349+ F pas the same critical exponent dp(F'), but
yerl

diverges at the critical exponent dp(F).
Define now for all s > ép(F') a measure on M UOIM by

1 o
s = —— Z h(d(o,~0))e 4o+ £, (8)
PF’F(O, S) ~el
where &, stands for the Dirac mass at z.
By compactness of M UM, we can choose a decreasing sequence s; — dp(F') such that vk
converges to a probability measure v, As Pr . r diverges at s = r r, we deduce that v is supported

on Ar C 8]\7 .
—~ —~ chapira2004
For all x,y € M and £ € OM, recall the following notation from TSCE(@7 sec 2.2.1]:

r z z & &
T,y) = lim /F—/F:”/F—/F.
Pe ( ) z€[x,€), z2—E J Y x y

Observe that pg = 0 and more generall y%%ggmgn = c is constant, p¢ = ¢ X [, where [ is the usual
Busemann cocycle defined in Equation (%i

The measure v satisfies the following crucial properties. For all v € T, and v!-almost all ¢ € OM ,

dry« v
dv¥

A version of this quasi-invariance property holds for the family of measures v¥>*. More precisely, for
all v € T, 0p(F) < s < 20p(F) there exists C' > 0 and T' > 0 such that for all y € T'o with d(o,y) > T,

(é') — eféF(F)ﬂﬁ(ov'Yo)‘i'p?(o”yo) . (9)

F,
lefSBy(ONOHPff (070) « dysv ™
— dvbs

:GammaInvPS . . ohsen
As a consequence of i@i, one gets the following key property, proved in TMEHO?J. Recall that for a
given set A C M, the Shadow O,(A) of A viewed from z is by definition the set of points y € M UIM
such that the geodesic (x,y) intersects the set A.

(y) < CesBu(eno)tpy (o0) (10)

12

eq:Crois

eq:PSG-d

eq: Gamma

eq:Gamma



Proposition 3.5 (Shadow Lemma). There exists Ry > 0 such that for every given R > Ry, there
exists a constant C' > 0 such that for all v € T,

lefér(F)d(o,’Yo)+fowﬁ < l/f(OO(B(’}/O, R)) < CefJF(F)d 0,70)+ fw

Observe that the measure v* ¢ %structed above is not unique a priori, but it will be unique in all

C:
interesting cases, see Section ﬁT—cletalls.

In fact, we will need a shadow lemma for the family of measures v/ for s > 0p(F). As the
uniformity of the constants in the statements w.r.t. s > ép(F') will be crucial, we provide a detailed
proof. .

For A, B C M two sets, introduce the enlarged shadow Op(A) = UzepOz(A) as the set of points
Y€ M UOM such that there exists some z € B such that the geodesic (x,y) intersects A.

ow-lemma | Lemma 3.6 (Orbltal Shadow Lemma). There exist Ry > 0 and 7 > 0 such that for every R > Ry,
every compact set K C M which contains the ball B(o, R), and every n > 0, there exist r, >0, C >0,
such that for all ép(F) < s < op(F') + 7 and for all v € T with d(o,v0) > ry + 2D, we have

éefsd(O,’YO)Jrf»:—loﬁ < I/F’S(OO("}/[?)) < Cef(sfn)d(o,'yo)Jrf;’_loﬁ

:NegCury4Points .
Proof. Observe first that by Lemma é“gﬁ for all D >0 there exists € > 0 such that for every compact
set K with diameter at most D, we have the following inclusion:

Ou(1K) C O (1K) C O,(1K.).

We follow the classical proof of the Shadow lemma, with v on M instead of v on M. By definition,
for all y € M we have

d(g.v"*)
dI/F75

D‘
—
S
—
Q

0, ))e—s(d(go,y)—d(Ovy))+f$o ﬁ‘fjﬁ'

W) = Td(o,y))

We deduce that

~ ~ hd(y Yo, y)) —s(dyoy)—dlow)+[Y, F—[YF
VF,S Oo 7K —’}’*1 FSO—OK :/ e Y Y Y v—1o ° dI/F’S.
CX) OvoEN = [ & hdlo.)

The triangylar inequality gives d(vYo,y) < d(v o, 0)+d(0,y). Moreover, aso € K and y € 07_10(1?),
by Lemma%lm%éo, y) > d(y to,0)+d(0,y)—2D. By construction, the map h is increasing
and for all n > 0, there exists r, > 0 such that for » > r,, t > 0, h(t + r) < Cpe"h(r). Thus, if
d(yto,0) > r, + 2D, then d(y to,y) > r,, so that independently of s > dr(F), we have

hd(y~'o,y)) _ h(d(y"'o,0) + d(o,y))

< Cnend(flw) )

1<

IN

h(d(o,y)) h(d(o,y))
—~ . egCurvTrian
As the curvature of M § ncled fi ot%ggvelby a negative constant, triangles are thin, see Lemmal%?i
Thus, by Lemmas w an ere exists a positive constant C(F K,¢e), such that uniformly in

y € O,(yK.) and s > 6p(F), we have

ld(y Yo,y) — d(o,y) — d(y '0,0)| < 2D +2¢ and

Y ~ Yy o ~ ~
/ F—/ F—/ F‘gC(F,K,s).
v~ 1o o vy~ 1o

phos (Oo(’Y—fQ» < Cnesce_Sd(flo’o)HvO*loﬁ X VF’S(Ov—lo(.f(a)) < Cne%r(F)Ce_Sd(flO’oni*loﬁ.

We deduce that for some positive constant C' > 0,

For the lower bound, we have

VF’S(OO (’}/I})) > e—sCe—Sd(771070)+f$—1oﬁ % VF’S(O,Y—IO(I?)) )

13
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The crucial point is to get a lower bound of this measure. We write

F.s % s s . Fs 7% S . F.s
v (Oy=1,(K) ) > liminf  inf v"°(Oy(K) > liminf inf v"7(O,(K).
<( 7ol )) s—0r (F) ye MuaM (Oy(K) s—0r (F) ye MUOM (Oy(K)

Let us show that if K is large enough, this infimum is positive. The usual argument which concludes
the proof of the classical Shadow Lemma is as follows. Imagine that it is not the case. Assume that
K is a ball B(o, R), for R arbitrarily large, so that

vE5(0,-1,(B(o,R)) > liminf  inf v"*(O,(B(o,R)).
s=6r(F) ye MuoM

As vf has support the full limit set Ar, it is not a purely atomic measure. In particular, for all y € OM ,
vI'(0,(B(o, R)) — v (OM \ {y}) > 1 — «, where a is the largest mass of an atom of v*". Therefore,
there exists Ry > 0 such that for R > R large enough, uniformly in y, we have v (O, (B(0, R)) > 1—%.

Suppose by contradiction that for all R > 0, the above liminf is zero. It would mean that there
exists s, — Op(F), Ry, — 00 and y, — Yoo € OM such that v (0O, (B(0, Ry)) — 0. The sequence
s, is not necessarily the sequence along which v converges to v but we don’t care. There exists a
subsequence s,, such that vFsni converges to some measure v/ on the limit set which is also supported
on the full limit set. The above classical argument gives a contradiction. O

3.4 Gibbs measures

Let F : T'M — R be a Holder potential with finite pressure, and let v¥" be a Patterson-Sullivan
measure associated to F', as constructed in the previous paragraph.

Denote by ¢ : T'M — T'M the involution v — —v, and let v be a Patterson-Sullivan measure
associated to F o . Hopf coordinates allow us to define a Radon measure on 7'M by the formula,

dm’ (v) = GO (F)B,— (0:m(v))=p 2 (0,m(v)) +0r (F)B 4 (0,7 (v)) —py, (0,7 (v)) dvEor (o) dvl (v ) dt (11)
o - o °
R U X . . :GammaInvPS X
By construction, mf is invariant under the geodesic flow and it follows from 1@) that 1t 1s invariant
under the action of I' on T' M, so that it indyces a Radon measure m T'M.

The following crucial result was shown in [OP04] for F' = 0 and in [PPS15, Chap. 6] in general.

Theorem 3.7 (%Poqfﬁ%sm). Let M be a nonelementary complete connected negatively curved
manifold with sectional curvatures pinched between two negative constants and bounded first derivative
of the curvature. Let F : T'M — R be a Hélder-continuous potential with finite pressure. Then the
following alternative holds. If a measure m* on TYM given by the Patterson-Sullivan-Gibbs construc-
tion is finite, then (once normalized into a probability measure) it is the unique probability measure
realizing the supremum in the variational principle:

P(F) = sup th(,u) + Fd,u = th(mF) —|—/ deF .
peME T'M TiM

F

If such o measure m* is infinite, then there is no probability measure realizing this supremum.

PS
We will also need the following result, called Hopf-Tsuji-Sullivan-Roblin Theorem, see TPPSlS,
Theorem 5.3| for a more complete statement and a proof.

Ps
Theorem 3.8 (Hopf-Tsuji-Sullivan theorem, TPPS%]). Let M be a nonelementary complete connected
negatively curved manifold with sectional curvatures pinched between two negative constants and bounded
first derivative of the curvature. The following assertions are equivalent.

1. The pair (I', F') is divergent, i.e., the Poincaré series Pr, p(s) diverges at the critical exponent
5F(F)z'

2. the measure v gives positive measure to the radial limit set VF(A§ad) > 0y

14
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compacts

ST19-7.7

3. the measure v gives full measure to the radial limit set v (A}d) = 1;

4. the measure mt is conservative for the action of the geodesic flow on TYM ;

F

5. the measure m* is ergodic and conservative for the action of the geodesic flow on T M.

Together with the above Hopf-Tsuji-Sullivan Theorem, the Poincaré recurrence Theorem implies
the following crucial observation:
When the measure m® is finite, it is ergodic and conservative.

4 Pressures at infinity

6this section, we recall first the notion of fundamental group outside a compaet. ésselllfrientroduced
in TP818] Then, to each of the three notions of pressures recalled in section We assoclate now a
natural notion of pressure at infinity.

4.1 Fundamental group outside a given compact set

~ —~  PSiB, ST19. CDST .
For any compact set K C M, as in TF’S 8, ST19, ICDST19| we define the fundamental group outside

I?, denoted by 'z as
Iy = {VEF,Bx,yEf(, [m,yy]ﬂFf(Cf(U'yf(} :

Considering the last point on such a geodesic segment in K , and the first point in 'yf( , it follows that
this set can equivalently be written as

Ff{ = {’761—‘73%’3/6 I?a [xa’Yy]ﬂFI?: {x,vy}} .

This subset of I' corresponds to long cyrsions of geodesics outside of K. We stress that this is not a
subgroup in ge JI:%, see examples in S’_I,_Pily9, Section 7).
Recall from [[ST19, Prop. 7.9] and [ST19, prop 7.7] the following results.

Proposition 4.1. Let M be a nonelementary complete connected Riemannian manifold with pinched
negative curvature.

1. Let K C M be a compact set, and « € I'. Then T = Osz(ofl.

2. If I?l and I?Q are compact sels 0f]\7 such that I?l 15 included in the interior of I?g, then there
k
; ; -1
exist finitely many a1, ...,ar € I' such that FI~<2 C U O‘irf(laj .
ij=1
In some circumstances, it may be useful to consider different Riemannian structures (M, go) and
(M, g) on the same manifold, and compare their fundamental groups outside a given compact set,
denoted F"}? and I‘% to avoid confusions.

Proposition 4.2. Let (M, go) be a nonelementary complete Riemannian manifold with pinched neg-
atiwe curvature. Let K C M be a compact set. Let g be another complete Riemannian metric which
coincides with go outside pr(K). Then
e =1%
K K’
4.2 Critical exponent at infinity
Consider the associated restricted Poincaré series

PF}N((S,F) _ Z e—sd(o,'\/o)-&-fgt?}?_
’YEFR
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Its critical exponent, denoted by 5F}~((F), satisfies for all ¢ > 0

1 o
or. (F') = limsup - log Z el T
K t——+o0 t
V€T g t—c<d(0,y0)<t

We call it the critical exponent or geometric pressure of F' outside K. By construction,

S (F) < 8p(F).

K =

Definition 4.3. The critical exponent at infinity or geometric pressure at infinity of F' is defined as

5°(F) = inf or_ (F),
K

where the infimum is taken over all compact sets K C M.

:comparison-fund-group-outside-compacts
An immediate corollary of Proposition E is the following.

Corollary 4.4. Let M be a nonelementary complete connected Riemannian manifold with pinched
negative curvature.

1. Let K C M be a compact set, and oo € T'. Then or - (F) = or.(F).
2. If I?l and I?Q are compact sels ofM such that I?l 18 included in the interior of 1?2, then

lcoro:comparison-crit-expo-outside- comp_acts
Corollary B.4] implies for any Holder potential F the very convenient following fact:

5 (F) = lim bry, 5 (F). (12)

—+00

It is worth noting that this critical exponent at infinity can be equal to —oo, in particular in
the trivial situations described in the following lemma, where all potentials have critical exponent at
infinity equal to —oo

Lemma 4.5. Let M be a compact or convex-cocompact Riemannian manifold with pinched negative
curvature. Then, for every Hélder potential F : T'M — R,

0 (F) = —o0.
T19 -
Proof. By TS*TIQ, Prop. 7.17], for K C M large enough, the set I'z; is finite. Tt immediately implies
o (F) < ér.(F) = —oo.

O

:exposant-infini X .
We refer to Corollary |_]tor more interesting situations where 62°(0) > 0 and there exists a Holder

map F : T'M — R with 62°(F) = —o0.

4.3 Variational pressure at infinity

Recall that the vague topology on the space of Radon measures on T'M is the weak-* topology
on the space of Radon measures viewed as the dual of the space C.(T'M) of continuous maps with
compact support on T'M. A sequence of probability measures (fin)nen converges to 0 for the vague

topology if and only if for every map ¢ € C.(T'M), it satisfies liI}_l wdu, = 0. We write this
n——+0oo

trn — 0. This provides the following other natural notion of pressure at infinity.

16
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Definition 4.6. Let F be a Hoélder potential with finite pressure on T'M. The variational pressure at
infinity of F' s

- . N
Pvar(F) = sup {nll}_}_loo hKS(Nn) +/T Fdpp ; (,un)neN € (Mf) s.t. pp — 0}

M

=1 inf h Fdp; Fst w(T'K) <
E%KCAI,%compactsup{ KS(M) + /TlM i mE Ml s M( ) - 8}

= inf lim sup {th(,u) +/ Fdu; pe M st w(T'K) < 5} .

KCM,K compacte—0 T1M
It is a standard exercise to check that these three definitions coincide:

Proof. The limit in ¢ in the last two lines is a decreasing limit, i.e., an infimum, so it commutes with
the infimum over K. Hence, it suffices to show that the quantity on the first line, say A, coincides with
the quantity on the second line, say B. If a sequence pu, realizes the supremum in A, then for any £ > 0
and for any compact set K, one has eventually ju,(T'K) < ¢ by definition of the vague convergence
to 0. Therefore, A < B. Conversely, consider sequences €, and K, realizing the infimum in B. Since
decreasing €, and increasing K, can only make the infimum smaller, it follows that €/, = min(e,, 1/n)
and K! = K, U B(o,n) also realize the infimum in B. We get a sequence of measures u, € MI" with
pn(THK}) < €, and hgs(pin) + [71,, F dpn — B. Since TTK], increases to cover the whole space and
el tends to 0, we have p,, — 0. Therefore, B < A. O

From a dynamical point of view, it would be more natural, and apparently more general to consider
all compact sets IC of T' M, instead of restricting to unit tangent bundles K = T' K of compact sets of
M. However, the equality between the three above quantities shows that it would not bring anything
to the definition.

In the case F' = 0, i%&h%&g&iﬁ?ﬁ%gg g_)ég}}aolic dynamics, this definition already appeared in different
works, see for example h , Rue03, BBGO6, BBG14].

One can consider a variation around the above definition, requiring additionally that all th e mea-
SUTES Lin are ergodic. We will denote this pressure by Pg;, oo (F) M\Q/Aelﬂlrlelzsssei% i qgi%g(ilelggy 6.12[that 1t
coincides with Py (F'), as a byproduct of the proof of Theorem [I.2]

var

4.4 Gurevic pressure at infinity

To the Gurevi¢ pressure is naturally associated a notion of Gurevic¢ pressure at infinity, when
considering only periodic orbits that spend an arbitrarily small proportion of their period in a given
compact set. This only makes sense for compact sets on 7'M whose interior intersects the non-
wandering set ). As in the preceding sections, we consider only compact sets K on M or M, so that

we require that the interior of K, denoted by K, intersects the projection 7(£2) of the nonwandering
set on M.

Definition 4.7. Let F be a Hélder potential on T'M. For any ¢ > 0, the Gurevi¢ pressure at infinity
of F is

1 F
PL(F) = inf lim i —1 J
Gur( ) KC]\/[,}?compact ocg% ’}Ii—si_lig T ©8 P (T—oT ;ﬁTlK ’ “r
]()(ﬂﬂ(Q);ém pe K( —¢, ) ) (p )<Oé (p)
1
= lim inf lim sup — log g el

a—0 KCM,K compact T_s 1
o P (T—c,T) ; L(pNTIK)<ak
Frm(@)2£0 PEPK( )5 £(p )<al(p)

It does not depend on c.

It is not completely obvious from the definition what happens when one increases a compact set K’
to a larger compact set K. Since one may consider orbits that intersect K but not K’, one is allowed
more orbits. However, the condition £(p N T'K) < al(p) becomes more restrictive for K than for K,
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allowing less orbits. These two effects pull in different directions. It turns out that the latter effect,
allowing less orbits, is stronger. We formulate this statement with a third compact set K” as we will
need it later on in this form, but for the previous discussion you may take K' = K”.

c_subset | Proposition 4.8. Consider three compact sets K", K', K of M such that the interior of K" intersects
a closed geodesic, and K' is contained in the interior of K. Then, for a > 0,

1
lim sup T log Z el ¥
T=o0 pEPK (T—e,T) 5 UpnT K)<ak(p)
1
< limsup T log Z el
T=reo PEP i (T—c,T) ; L(pNTTK")<2al(p)

Therefore, the infimum in the definition of t Gurev1c pressure may. be redahzed bc}é taking an
. comparison-crit-expo-outside-compa
increasing sequence of balls, just like in Corollary f. }

Proof. Consider a periodic orbit p of length £(p) starting from x € T!'K, parametrized by [0,4(p)]. Let
also € > 0. By the Connecting Lemma (Proposition Eg) Eﬁere 1s another periodic orbit p’ starting close

to x, of length £(p') € [¢(p), {(p) + C] for a constant C' depending on K and K" and ¢, parametrized by, ..
[0, £(p")], following p within ¢ during the interval of time [0, ¢(p)], and intersecting T*K”. Lemma ﬁql
shows that there exists a constant C” such that | [ F — [, F| < C".

Moreover, still by Proposition Corg}%cggsts C" = C”(K C) > 0 such that the number of closed
orbits p with length less than T and Wthh gives the same orbit p’ is at most C'T

If € is such that the e-neighborhood of K’ is included in K, then the times at which p’ belongs to
T'K' are of two kind: either they are in [¢(p), £(p')], or they are in [0, £(p)] and then the corresponding

point on p belongs to T' K. Hence, £(p"NT'K") < C+£(pNT'K). Taking into account the multiplicity,

we obtain
’
Z eprgC”T Z BC+IP,F.
pEPK (T—c,T) ; ((pNTTK)<al(p) P EPyi(T—c,T+C) ;5 £(p""NTIK")<C+al(p’)

When T is large enough, we have ol(p’) + C < 2al(p’). We obtain

limsup — T log Z el ¥
T=rto0 pEPK (T—e,T) 5 UpnT K)<ak(p)
1
< limsup — log ¥ O
T—+o0

p' €P i (T—c, T+C) ; L(pNTTK')<2al(p’)

4.5 All pressures at infinity coincide

. c:cij@c:ErgoPressure i:l:_h_.,AllPre551onEqu1va1ent
In Sections p[an we will show Theorem [I.2] that is that the three notions of pressure at infinity

coincide:

o (F) = Py (F) = P (F) -

var

4.6 Pressure at infinity is invariant under compact perturbations

In this paragraph, we will show that the critical exponent at infinity is invariant under any compact
perturbation of the potential or of the underlying metric.

otential | Proposition 4.9. Let M be a nonelementary complete connected Riemannian manifold with pinched
negative curvature and bounded first derivative of the metric. Let F :IIM — R be a Hélder map with
finite pressure, let A : le — R be a Holder map, and let K C M be a compact set such that A
vanishes outside of pr(T'K). Then

5F1?(F + A) = 5F[~<(F).
In particular,

S (F+A) =0 (F).
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Proof. Set D = diam(f(). By definition, for all v € 'z, there exist z,y € K such that the geodesic
segment [z,7yy] spends at most a time 2D in I'K. We deduce that

Y - Y L
/ F—I—A—/ F‘<2D||A|Oo.
x T

;hold-potential
By Lemma %I , we deduce that

Yo

Yo
F+A—/ F‘ < 2D||A|lx + 2C(F, D, A).

o

By definition of dr_ (F) and dr . (F' + A), the result follows immediately. O

In the next proposition, we consider two negatively curved Riemannian metrics go and g on M,
and still denote by go and g their lifts to M. For a given potential F': TM — R, denote by 5p}~(,go(F),

Or ., g(F), 055, (F), 05, (F) the associated critical exponents.

rbMetric| Proposition 4.10. Let (M, go) be a Riemannian manifold with pinched negative curvature, and g be
another negatively curved metric on M. Let F : T'M — R be a Hélder potential. Let K C M be a

compact set such that g and go coincide outside of pr(K). Then

or

K

790(F) = 5F;~(79(F)-

In particular, 67°, (F) = 63, (F).

Proof. When necessary, denote b [alglrgig% L;L, b9 the geodesic segment of the metric g (resp. go)
between a and b. By Proposition #.2[ we have Fig = F%. Let v € I'z. There exist z,y € K such that
[z,7y]* NTK = {x,vy}.

Outside I' K, the metrics go and g coincide, so that the segments [z,vy]? and [z,yy]? are the same,
and the integrals of F' coincide: f[ac,'yy]g F = f[zﬁy]go F.

Moreover, by compactness, there exists D > 0 depending on f(, go and g, such that for bgtg old-potentis
metrics, d¥°(x,0) < D, d¥(z,0) < D, d(y,0) < D, and d?(y,0) < D. Therefore, using Lemma J3.1]
there exists a constant C' depending on D and supz(F) such that for both metrics, we have

[ [ .
[0,70]9 [x,vy]9 [0,70]90 [x,yy]90

The result follows by definition of the critical pressure. O

<C and <C.

Compact perturbations of a given potential do not change the critical exponent at infinity, but
modify the critical pressure, as shown in the next proposition. This kind of statement, very useful, is
relatively classical, and similar statements in symbolic dynamics or on %nﬁtricaillg_g(ﬁi;ugomanifolds,

laue.Lmi
or for potentials converging to 0 at infinity can be found for example in [IRVIS]

sureBump | Proposition 4.11. Let M be a nonelementary complete connected Riemannian manifold with pinched
negative curvature and bounded first derivative of the curvature. Let F : T'M — R be a Hélder
continuous potential, and A : T*M — [0,+00) a non-negative Hélder map with compact support. The
map
A€ER = op(F + N\A)

is continuous, Lipschitz, convex, nondecreasing, and as soon as the interior of A intersects the non-
wandering set €1, we have /\lim Or(F 4+ AA) = +o0.
—00

Proof. The fact that it is Lipschitz-continuous is an immediate consequence of the definition, and Eg%ariationnel
it is nondecreasing is obvious as A > 0. Convexity follows from the variational principle (Theorem [I.T])
because it is a supremum of affine maps.
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pressure

Now, if the interior of A intersects (2, there will be at least an invariant probability measure p with
compact support (supported by a periodic orbit intersecting A for example) such that [Adu > 0. By
the variational principle,

or(F 4+ MA) > hgs(p) + /Fd,u—i—)\/Ad,u,
and the latter quantity goes to 400 when A — +o0. The result follows. O

The combinatiog Q:fs]ggopositions

relevant in Section [/

prop : Comiparoi

1.9 and I

PriesshiteBempial . . X
provides the following corollary, which will become

Corollary 4.12. Let F and A : T'M — R be two Hélder continuous potentials. Assume that A is
non-negative, compactly supported, and not everywhere zero on the non-wandering set. Then for A >0
large enough, we have

Or(F 4 AA) > 02°(F + AA).

4.7 Infinite pressure

In this paragraph, we prove that if the pressure of a potential is infinite, then its pressure at infinity
is also infinite. This is not surprising: everything coming from a compact set is finite, so if the pressure
is infinite the major contribution has to come from the complement of compact sets, and therefore the
pressure outside any compact set should also be infinite. However, the proof is not completely trivial.
It will involve careful splittings of orbits and subadditivity, two themes that will also show up in later
proofs. One may think of this proof as a warm-up for the next sections.

Proposition 4.13. Let M be a nonelementary complete connected Riemannian manifold with pinched
negative curvature and bounded first derivative of the curvature. Let F : T'M — R be a Hélder
continuous potential with ér(F) = +oo. Then 6°(F) = +o0.

Proof. We will prove the contrapositive, namely, if there exists a compact set K of M with 5pf< (F) < >
then 0p(F) < co. Adding o to K if necessary, we can assume o € K. Fix some s > or (F). Let D be

the diameter of K. _
Let u, = Zy:d(o,fyo)e(nﬂ,n] elo”F . We claim that there exists C > 0 such that, for all n,

u, < C Z uqup + Ce". (13)

1<a,b<n—1
la+b—n|<C

Let us prove the result assuming this inequality, by a subadditivity argument. Extend u, by 0 on

(—00, —1], and define a new sequence v,, = ZZJ_rg u;. It satisfies the inequality

v, < Cq Z vy + C1e°", (14)
1<a,b<n—1
a+b=n
. . . . . . -un—le .
for some C. To get this inequality, bound each u; appearing in v, using @m notice that the
a’, b’ in the upper bound satisfy n — 2C < a’ + V' < n + 2C and will therefore appear in one of the
products v,vp for a + b = n. We will prove that this sequence v, grows at most exponentially fast,

from which the same result follows for w,, as desired. For small z > 0, define B(z) = ), -, C1e*"2"
N . . :vn_le =
and Vn(z) = >, _; vn2". The inequality (i %i gives
Vn(z) < B(z) 4+ C1Vn_1(2)>. (15)

The function B is smooth at 0. Let ¢ be strictly larger than its derivative at 0. Fix z positive and small
enough so that B(z)+ C1(tz)? < tz, which is possible since the function on the left has derivative < t.
We claim that Vi (z) < tz for all N. This is obvious for N = 0 as Vp = 0, and the choice of z and the
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sec:cinqg

. . ‘vnz—le . . . . . .
inequality 1' 5) imply that, if it holds at N — 1, then it holds at N, concluding the proof by induction.
In particular, v,2" < V,,(z) < tz. This proves that v,, grows at most exponentially.

. :un_le .

It remains to show (il%), using geometry. Let A > 0 be large enough (A > D + 1 will suffice). Take
v with d(o,y0) € (n — 1,n]. We consider two different cases: either [0,70] \ (B(0, A) U B(vyo0, A)) does
intersect 'K (we say that v is recurrent — this icerminology is local to this proof), or it does not. The

.un_.le

former will give rise to the first term in @W latter to the second term.

We start with the non-recurrent 7’s. Consider the last point x on [0,0] N B(o, A) N I'K, and the
first point 5 on [0,v0] N B(y0, A)NTK. Take v, such that z € 7, K, and vy such that y € wny Note
that v, and v, belong to a finite set J-"A (depending on A), made of these elements of I" that move o

by at most A + D. Moreove&‘ v = ) 157y belongs to L'z since [z, y] N K = {z,y} by construction.
fEmrahol otenti’
Applying Lemma B-1to the compact set | J gEFA gK we obtain a constant C' such that

o YVyO __ “/ON
/ F</ F+C:/ F+C.
Yz O o

Finally, the contribution of the non-recurrent ~+’s to u, is bounded by

) > oS

Ve, Yy EFA v el
d(o,y'0)€(n—1—2A—2D,n+2A+2D]

The sum over v, and 7, gives a finite multiplicity, and the sum over v’ is boynded }_)Q/‘ C(A)e™ since
s > 6p (F'). This is compatible with the second term in the upper bound of @7

We turn to the contribution to u, of the recurrent 7’s. For such a <, there is a point = in
[0,70] NTK \ (B(o,A) U B(y0, A)). Write x = 7'z’ with 2/ € K. Consider the integer a such that
d(o,~v'0) € (a —1,a]. It satisfies A — D < a, so if A is large enough one has a > 0. Let 7/ =+, so
that v = 4’9", The integer b such that d(o,~"0) € (b — 1, b] satisfies also b > A — D > 0. Moreover,

a+b=d(0,7'0) +d(0,7"0) £2 = d(0,7'0) + d(7'0,70) £ 2
=d(o,z) + d(z,vy0) £ (2+2D) =d(o,7v0) £ (2+2D) =n £ (3+2D).
:hold-potential
This shows that |a +b — n| < 3+ 2D. Finally, applying twice Lemma I%'] l ! We obtain the existence of

a constant C such that
Vo Yo _ Vo _
/ Fo / Fo / Fl<c
o (0] o

Altogether, this shows utglfite the contribution of recurrent v’s to wu, is bounded by the first term of the
right hand side of . O

5 Excursions outside compact sets

In this section, we will study and count the possible excursions of periodic orbits outside large
compact sets, and deduce the inequalities

Pou(F) < 0p°(F) and  Pgu(F) < 6p°(F).

var
fth-AllPressionEquivalent .

These inequalities are the heart of Theorem [I The Teyerse mngqua itie F) > 6°(F) and

PX(F) > 500(% F) are simpler, and will be proven'E}Sectlons%ljj ands% Spreggﬁg "
var

Let us explain why the above inequalities are the most surprising and difficult. A major difference
between the definition of 0p°(F") and the two others is that PZ, (F) and Pog.(F') take into account
trajectories (respectively periodic / typical) that spend most of the time outside a given large com-
pact set, but can however come back inside this compact set several times, whereas d°(F") consider
trajectories that start and finish in a given compact set, but never come back in the meantime. Thus,
there are apparently much more trajectories cor%%iadle%e% qmnlqe ﬁr%a tv%o definitions. However, in the
next two sections, culminating in Corollaries and 6. 11| we prove that the above inequalities hold.

The strategy developed below is to cut a given trajectory, which comes back several times inside a
given compact set, but spends a small proportion of time inside, into several excursions, and to prove

precise upper bounds presented below.
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5.1 Excursion of closed geodesics outside compact sets

In this section, we study periodic orbits that intersect (the unit tangent bundle of) a fixed compact
K C M, but which spend most of their time away from the R-neighborhood Kp of K.
For all compact sets K1 C Ko C M and 0 < a < 1, we define

P(K1, K2, a) = {p periodic orbit ; pNTYK; # 0, L(pNT'Ky) < aﬁ(p)} (16) |eq:Perio

P(K1, K2, 05T, T") = {p € P(K1,Ka,a), T < l(p) <T'}. (17) [eq:Perio
Given a Holder potential F', we define for all T,T" > 0,

[eq:Perio
and
[eq:Perio

Ne(Ky, Ko, o T, T') = Z e T
pEP(K1,K2,a,T,T")

It turns out that it is more efficient for subsequent estimates to bound a slightly 1 ger sum, where
the orbit p is weighted by th nqr(%lgggc(%g I‘Eimes it meets K1, defined as follows. As in [PS18| and as in
the proof of our Proposition i%é, we define

ng, (p) = #{y € ;32 € Ky, d(w,vz) = {(p) and pr([z,yz]) = 7(p)} .

516 ~ ~ ~ —
As shown in TPSlS], ng, depends on the choice of K but if K} and K| C M are two compact preimages
nz (p)

1
Tlf{l p

of K1 by pr, the ratio is uniformly bounded from above and below independently of p. As

S16
in [PS18], we consider
ng, (p) = infng (p),

the infimum being taken on all compact sets I?l with pp(f(l) = K;. We think to this quantity as a
kind of “number of returns” of p in K. Indeed, if K 1 is a closed ball of radius less than the injectivity
radius, then n 7 is the number of connected components of the closed geodesic on M associated to p
n Kl.
We define
NF(K1,K2,()4; T,T') = Z nKl(p)efPF. (18) |eq:SumPe:
peEP(K1,K2,a)
T<t(p)<T’

xcursion| Theorem 5.1. Let M be a nonelementary complete connected negatively curved manifold with pinched
negative curvature, and bounded first derivative of the curvature. Let K C M be a compact set, and
K C M be a compact set such that pr(K) = K. Let Ty > 0. Let F : T' — R be a Hélder potential
with o (F) > —oo. Let n > 0. For all 0 < o < 1 and R > 2, there ewists a positive number

Y= ¢(I~(,F,7],oz/R) such that

1 N
limsup — log N (K, Kg,; T, T + Tp) < (1 — a)dr . (F) + adr(F) +n + 1.
T—+o00 T

Moreover, when I?, F and n are fized, w(I?, F,n,a/R) tends monotonically to 0 when o/ R tends to 0.

_neg_inf| Remark 5.2. When 5Ff<(F) = —o0, the statement should be modified, replacing on the right hand
side O . (F') with an arbitrary real number d, and allowing ¢ to depend on d. The same proof applies.

-theorem| Remark 5.3. It would be interesting to get a lower bound in the above theorem, of the form lim sup >
(1 —a)dr . (F) + adr(F) —n — 1. 1t is likely that some version in this spirit could hold. However, the

attentive reader will observe that most inequalities involved in the proof below, up to some constants, . )
. R K ‘majoration-seulement R . %ﬂam,:’majoratlon—s
work in both directions, except where a lower bound could easily be obtained) and Lemma [5.5[

Letting R — +o00, n — 0 and at last K exhaust M and o — 0, we deduce the following corollary.
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Gur-geom| Corollary 5.4. Under the same assumptions on M and F, we have

P (F) < op°(F).
:infinite_pressure

Proof. If or(F) is infinite, then 0p°(F) is also infinite by Proposition | an e result is obvious.
We can therefore assume p(F) < oo. We will 2189% assuie Op O (F) > —o0, as the case 6p°(F) = —o0
can be proved similarly using Remark ﬁ _

Let n > 0. We have to find a compact set L whose interior intersects 7(£2), and o > 0, such that

the exponential growth rate of > cp, (7741, (prTI L)<at(p) el» ¥ is at most O°(F) + 3n. Fix a large

compact set K with or, < 6R°(F) +n. We will use L = K3, the neighborhood of size 3 of K.

There is a dlfﬁculty tha ogn(éﬁl?ggon of the Gurevi¢ pressure involves all periodic orbits going

through L, while Theorem .1 only. egaulkces 1nfo account those that, additionally, enter K. This difficulty
is solved using Propositionﬁ%é applied to K" = K, K' = K5 and K = K3: the exponential growth rate

F.
of ZpePKS(T,TH) : 0(pNT K3)<al(p) el is bo}%ﬂgg&ﬁ }fgf}tsff D pePy (TT+1) ; €(pNT" K2)<2at(p) € el»". The
latter can be estimated thanks to Theorem p.1[applied to 7o = 1 and 2a: this growth rate is bounded
by (1 —2a)dr . (F) + 2adr(F) +n + 9 (a), where ¢(a) tends to 0 with a. This quantity converges to
or - (F) +mn < 0p°(F) + 21 when o tends to 0, so for some a > 0 it is < 0p°(F') + 3n. O

Ith:CountExcursion

The strategy of the proof of Theorem p |_] 1S as follows. A periodic orbit will be cut into two kinds
of segments, those which stay in a given compact set K, and the excursions outside this compact set.
The weighted growth of the excursions should be controlled by the exponent dr, (F) multiplied by
the proportion of time spent outside K, and the weighted growth of the segments inside K should be
controlled by ér(F') multiplied by the proportion of time spent in K. However, to succeed to get such a
control, we need to avoid the situation with several very short excursions in a very close neighborhood
of K. For this reason, we need to play with two compact sets, K and its R-neighborhood Kpg.

CountExcursien-
Proof of Tlheoremiﬁ—@t_}?ﬁw be a compact set and KR C M be its R-neighborhood, and set
K = pr(K), Kr = pr(Kgr). Let D be the diameter of K. The diameter of Kr is D + 2R, so that
a geodesic segment joining the boundary of K and the boundary of Kp has length at least R and at
most D + 2R. Let also D' = D'(K,Tp) be larger than the diameter of K U {o}, 1 and Tj.

Consider a periodic orbit p € P(K, Kg,a) with ¢(p) € [T, T + Tp]. By assumption, 7(p) N K # 0.
We will divide it into long excursions, i.e., those excursions outside both K and Kg, of total length at
least (1 — a)¢(p) and periods of time of total length at most af(p) where it stays inside K.

The closed geodesic 7(p) of M associated to p admits finitely many lifts ¢1,..., ¢, (in pfl(w(p)))
that intersect IN(, with n = ngz(p). For each of these geodesics ci,...,cp, let g; be the hyperbolic
isometry whose axis is ¢;, and whose translation length is ¢(p), and which translates in the direction
given by the orientation of p.

The sequel of the proof concerns each of these axes ¢; and isometries g;. We will omit the index j,
and work on the axis ¢ of the isometry g. B

Define inductively points a;,b; on ¢ as follows. Choose first a point ag on c¢ inside K. Consider
on the geodesm segment [ag, g.ag] of ¢ the first points bg,a; € FOK with (bo,a1) N I'K = () and
(bo,a1) N M \T'Kp # 0. The interval (by,a1) projects through pr into a long ezcursion, i.e., an
excursion outside K which also goes outside K. Inductively, we define (b1, az),...,(bn—1,an) by the
properties that b;, a;+1 are the first points of [a;, g.ap] which lie in I'OK and satisfy (b;, a;11) NTK =0
and (b;, a;41) OJ\AJ\FI?R # (). In other terms, the intervals (b;, a;+1), 0 < i < N — 1, are the connected
components of [ag, g.aq] \I‘I? that intersect M \T K R, whereas the segments (a;, b;) are included in
I'KR. Finally, set by = g.ayp.

For all 0 < ¢ < N, choose elements %-i € I' such that a; € W;f( and b; € V:FIN( As K is compact
and the action of I' is proper, for each 4, there are only finitely many choices of such elements fyii.
Without loss of generality, set v, = Id and VE =g.

Choose some € > 0. The following elementary observations are crucial for the sequel.
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Figure 3 — Long excursions outside K and Kg

L. As Up<icnlai bi] C I'Kg, by definition of P(K, Kg, a) and since T < {(p) < T + Tp, we have

((pNT'K) d(ai, b)) < a(T +Ty) < aT + D'

Mz

=0

2. Foralli € {0,..., N—1}, we have (b;,a;+1) C M\I‘IN( Moreover, the length of (b;, ai1)NTKR
is at least 2R and U;[b;, a;+1] does not intersect the interior of 'K, so that by definition of
P(K, Kg,a),

N—
(1—a)T +2RN < Z (biyais1) <T+To <T+ D', (19) [eqn:esti
i=0
and therefore 1
N < IR (aT + D,) =v. (20) |egn:nb-e
3. Write ¢; = (v, )"lv € T foralli = 0,..., N, we have |d(o,1;0) — d(a;, b;)| < 2D’, so that

N
d(0,%0) < a(T +Tp) +2(N +1)D' < aT +5ND’.
0

Let s; be the unique integer such that d(o,1;0) < s; < d(0,%;0) + 1. Then
so+-+sy<alT+5ND'+ N+1<aT +T7ND'. (21) |eq:sum_s

4. By definition of I'z, for all i = 0,..., N — 1, we have ¢p; = (’yf)_l'yill € I'zz. Moreover,
|d(0, pio)—d(b;,a;4+1)| < 2D'. Let t; be the unique integer such that d(o, ¢;0) < t; < d(o, p;0)+1.

5. As N s d(ai, b)) + SN (b, aigy) = d(ag, by) = £(p) € [T, T + Tp), we get

N N-1
> d(o,wi0) + Y d(o,pi0) — T| < Ty + (AN +2)D/
=0 i=0

and therefore

N N-1
Ysi+ Y ti—T|<To+ (AN +2)D'+ (2N +1) < 10ND'.
i=0 i=0
:estimate-on-time
6. By ,as d(ag, b)) — D' <t; <d(a;,b;) + D'+ 1, we get

— _ S tz‘S + . eq:sum_t
1 T —-2ND' T+4ND' 22

. X . . . -hold-potential
7. Since M has pinched negative curvatures and F is (3,CF)-Hélder, by Lemma iqlé;] applied to
the compact set K U ~{0} there exists a constant C'(F, K) depending only on the upper bound

of the curvature, on K and the Holder constant of F' such that for all i =0,..., N,

pio ~
F| < C(F,K).
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8. Similarly, for alli=0,...,N — 1,

ai+1 __ pio _
[
b; o

9. As pr = f(f’oao F, and bounding 2N + 1 with 3v, we deduce

ZNg/w f+2/ FKV</F<Z/ / F+3C(F,K)v. (23) [eq:int_p

For all t € N| set

< C(F,K).

L(t—1,t)={yel;d(o,y)€t—-1¢t} and Tr({t-1,t)=T(~-1,t)NTx.
We also write

Qrr(t—1,t)= Y l°Fand  Qpr,(t—1,0) = S o F

yel(t—1,t) YET  (t—1,t)

To each periodic orbit p € P(K, Kg,a) with £(p) € [T, T + Tp], we have associated a family of
hyperbolic isometries g1,...,9, € T', with n = nz(p), those whose axis intersects K and projects
through pr on 7(p) and with translation length equal to £(p). Moreover, for each such g;,1 < j < n,
the associated periodic orbit is unique.

Then, to each such element g we have associated by the previous construction finite sequences
©0,.--,pN—1 In ' and ¥y, ...,y € I'. As one can recover g from these sequences by the formula
g = Yoo - - - eN—1¥N, this association is injective.

Let us now bound ./\A/F(K, KR, o; T, T+Tp). Bounding ng (p) with nz(p), we have for each periodic
orbit p the inequality

nz(p)
F < Z efPF, (24) |egn:majo:
=1

t_pF_le
where each term el» ¥ can be bounded using the decomposition of g; as in 1|§3 imSummlng over all the
periodic orbits, we get the inequality

_ v(a,TTo,R)
Np (K Ky o T,T 4 Ty) < OB S >
R T (25) [eq:Comnt

S t:>(1—a)T—2ND'
Qrr(so) - Qrrz(to) - Qrr(s1) - Qrrk(t1) - Qrry(tn-1) - Qrr(sn).
The following lemma is a straightforward consequence of the definition of the critical exponents
(5F(F) and 5Ff{ (F)
eulement | Lemma 5.5. For alln > 0, there exists Cp, = C’n(IN(, F,n) > 1 such that for all t > 0, we have

Qrr(t) < Cneér(F)Hm and  Qpr(t) < Cne(srg(F)t*"t

We can write the second bound as Qrr . (t) < el g (F)=or (F))it o (F)itnt

. Multiplying these bounds,
we get

Qrr(so) - Qrr.(to) - Qrr(s1) - Qrry(t1)- ”QFF~(t ~1) - Qrr(sn)

§C§N+1exp( Fy+m)(>si+ Y t) + F) — 6p(F Zt,)

<3N exp<(5F(F) + )T + (|60 (F)| + n)lOND’ + (5FR(F) —op(F)((1 = )T — 2ND’))

= eXp((aap(F) + (1= a)or_(F) +n)T + (|6r(F)| + 1+ (6r(F) — or . (F)))2ND’>.
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. . : CountExcursionl
Note that this bound does not depend anymore on the choice of the s; and ¢;. To bound 1@%5, one
should take into account a multiplicity given by the number of possible choices for these integers.
The following combinatorial standard estimate will control the number of possible choices.

m:Combil| Lemma 5.6. Let 7,k € N be integers with k < 7. The number of ordered integer decompositions of T
of length kK, i.e., the number of (ui,...,us) € N* such that u; > 0 and uy + - - - + u,, < 7, is equal to

Then (sg, to, $1,--.,5n) forms an ordered partition of 7 = T+ 10N D’. From the monotonicity
. . . . . . T+10ND'+2N+1 :nb-excursion
properties of binomial coefficients, their number is bounded by ( ONI1 ) Recall that by

we have N < v, which is bounded by T'/2 for large T, we have T + 10ND' + 2N + 1 < 8D'T and

2N +1 < 3v < 8D'v, we get (Tﬂogjj\?:f]v“) < (2853?1) < (2%,3) thanks to monotonicity properties

of binomial coefficients. Summing over all the values of N, we obtain the estimate

/C/’ K K T T 4+TH) < 8D'T 3C(F,K)v o3
F( ) R,O; L, + 0)_V' SD/V € . n

exp((adr(F) + (1 = a)or (F) + )T + (Jor(F)| + 0 + (50 (F) = op . (F)))20D') .

To conclude the proof, we should estimate the exponential growth rate of the various terms in this

expression when 7" tends to infinity. Note that v < oT'/R. Stirling’s formula n! ~ v/27n(n/e)™ implies

that the exponential growth rate of (igl,f) < (BDS,Q a/R) is bounded by —plog p — (1 — p) log(1 — p) for

p = a/R. Finally, the exponential growth rate of NF(K, Kgr,a; T, T 4+ Tp) is bounded by

adp(F) + (1 = a)dr. (F) +n — plogp — (1 — p)log(1 — p)
+ (3C(F, K) + 3108 Cy + 20D/ (60 (F) | + 0 + (60 (F) — o1 (F))) )

= e

This concludes the proof of the theorem. O

5.2 Gurevi¢ and geometric pressures at infinity coincide

Pressure Ith:Al1PressionEquivalent
This paragraph is devoted to the proof of the following part of Theorem [I.2]

sureGeod | Theorem 5.7. Let M be a nonelementary complete connected negatively curved manifold with pinched
negative curvature, and bounded first derivative of the curvature. For all Hélder continuous potentials
F :T'M — R with finite pressure, we have
PG (F) = 6r° (F).
lcor:half-thm-Gur-geom

By Corollary p.4[ it is enough to prove the inequality PSS, (F) > 0p°(F).

Proof. The set of periodic orbits of the geodesic flow is in 1—1 correspondence with the set of conjugacy
classes of hyperbolic elements of I'. Let us recall how. Given a periodic orbit p C T'M, its preimage
pr Y(p) T'M is a countable union of orbits of the geodesic flow on T'M. Each of these orbits
projects on M to the axis of a hyperbolic element of I', which is unique when requiring that this
element translates along the axis with translation length equal to ¢(p), and in the direction given by
the direction of (g);~o on this orbit. The hyperbolic elements associated to p in this way are all
conjugated.

Let K C M be a compact set whose interior intersects a closed geodesic, and containing the
projection pr(o). Let K be a compact set of M which contains o and such that pp(K) K. Let N

be the maximal multiplicity of pr OE I%erlo 1c2}?e 1ts diameter. Let KR be the R-neighborhood of K.

Recall that we have defined in e fo owmg Sets of periodic orbits:

P(K,a):=P(K,K,a) = {p periodic orbit ; 0 <l(pNK) < al(p)}
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and
P(K,o,T,T") :=P(K,K,o, T,T') = {pe P(K,o) € ; T < {(p) <T'}.

. Pit-Schapira2.6
First, by Lemma ﬁ there exist finitely many elements g1,---,9k € G, such that, for all v € 'z,

there exist g;, g; (not necessarily unique) such that g, ygj is hyperbolic with an axis which intersects

K. Let D be the assoaated perlodlc orbit (it depends on the choice of g;, g; but it is not a problem).
As the axis of g, vg] intersects K we deduce that

[€(py) — d(0, g vgj0)| < 2D.
By the triangular inequality, we deduce that

|d(0,v0) — £(py)| < 2D + 2max(d(o, g;0)) .

fEmhold-potential
Similarly, thanks to Lemma M, and using the fact that F is bounded on the d-neighborhood of FK

with § = max(d(o, g;0)), we deduce that there exists a constant C = C(F, K, g1,...,gx) such that

Yo

F| <C.

Py

Choose now some R > 1, and let I~(R be the R-neighborhood of K. Observe that, for v € Ff(R’ the
time spent by the geodesic segment [0,v0] in I?R is bounded by 2D + 2R. Using the above notations,
we assume that g, 1'ygj is hyperbolic with associated periodic orbit p,. The point g;o is at bounded
distance_d Eog&rgﬁrrzglrgi 1tehe point gjo is at bounded distance at most ¢ from ~ygjo. Therefore, by
Lemma ere exists a constant Ty > 0 depending on § and the bounds on the curvature, such that,
when removing segments of length Tp at the beginning and the end of [g;0,7vg;0], the middle segment
is in a neighborhood of radius less than 1/2 from the geodesic segment [0,v0].

On the other hand, the periodic orbit p, associated to 91 fyg] admits an axis which mtersects K
and g, 'ygj LecturanK be a point on this axis and g; yg]x € 9g; ngK its image by g, vgj

le
By Lemma when I‘eI?anVIDg segments of length Tj at the beginning and the end of the segment
[w,g;lvgjx], the middle segment is in a neighborhood of size less than 1/2 of the geodesic segment
[0,9; 'v9;0).

Triangular inequality implies that, after removing segments of length 27y at the beginning and at
the end of the geodesic segment [g;x, vg;x], this segment is at distance at most 1/2 of [g;0,7vg;0], and
therefore, at distance at most 1 from [0,70]. In particular, as v € T R and R > 1, after removing
segments of length 27y + D + R at the beginning and the end of [z, g{l'ygjx}, this segment spends the
rest of the time outside K.

We deduce that the time spent by p, inside K is at most 47y + 2D + 2R. In particular, when
l(py) > W, the periodic orbit p, spends a proportion of time at most a inside K. As |d(o0,v0)—
U(py)| < 2D+ 26, it implies that as soon as d(o,y0) > 2D+ 26 + W, P~ belongs to P(K, a). In
particular, when T > 1+2D+26+W, the above considerations show that for vy € FIN{R (T-1,T),
the associated periodic orbit p, belongs to P(K,a,T —1—2D — 25, T + 2D + 20).

Now, it remains to control the multiplicity of the above map v — p,. As the cardinality of G is
finite, and the group I' acts properly discontinuously on M , up to some multiplicative constants, the
lack of injectivity of this map comes from the number of hyperbolic elements g with length roughly
{(~) whose axis stays at bounded distance from a given axis of p,. This number is at most linear in
U(py). ~

All the above considerations imply that there exist constants depending on K, K, D, «, I’ such that
for T' > 0 large enough, and all R > 1,

Z efgoﬁé(#g)QxCxTx Z et
¥€l g ., T—1<d(0,70)<T peP(K,a,T—1—7,T+7)
Taking %bg of the above inequality, and letting 7' — o0, and then letting R — 400 and o — 0
gives P& (F) > 0 (F). O
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6 Variational and geometric pressures at infinity coincide

This section is devoted to the proof of the equality between geometric and variational pressures at
infinity.

Theorem 6.1. Let M be a nonelementary complete connected negatively curved manifold with pinched
negative curvature, and bounded first derivative of the curvature. Let F : T'M — R be a Hélder
potential. Then

o (F) = P (F).

var

The first paragraph contains the proof of the easier inequality Jp° gF < PR(F).
The 1neqlﬂ:ahté/l£m(lFQna§le5sﬁo F) will follow from Section a er some reductions. First,

Section [6.2], we 1ntrod ce g potion of pressure, that we call Katok pressure in reference to the Katok
entropy introduced in K at80]. We show that the variational pressure is boggc%)eed grom above by this

new pressure, involving spanning sets. Using closing lemma, in Section [6.3] we study escape of mass of
sequences of probablhty measures, and relate this new pressure to the Gurevi¢ pressure (which involves
weighted gro&% of xréggllcogrbits), and conclude the proof of the inequality Pgs.(F) < dp°(F') thanks
to Theorem B.II

6.1 The first inequality

This paragraph is devoted to the proof of the easier inequality 6p°(F) < Poo.(F). We deal first
with the exceptional situation where dr(F') = oc.

: P
Lemma 6.2. Under the assumptions of Theorem i% ?Erz%owreezzgz%e or(F) = oo, then for any compact
set K in T'M and any C,e > 0, there exists ju € Mferg such that (K) < e and hgs(p)+ [ Fdp > C.

[th:Variationnel

Proof. By Theorem [T u, we have Py (F) = oco. For any invariant measure p, the entropy hxg(p) is
bounded from below by 0 and from above uniformly thanks to the curvature bounds. Therefore, we
can forget about the entropy in the statement, and it suffices to make sure [ F'dy > C.

Choose R = R(C,K) be large enough, and then ¢/ = C'(C,K) large enough. The equality
Puar(F) = oo ensures the existence of a measure v € MY with [Fdv > C’. Taking an ergodic
component of v if necessary, we can assume that v is ergodic. If v(T'K) = 0, we are done taking

p = v. Otherwise, consider a v-typical vector v in T'K. Then 1/T fOT F(g'v) dt converges to [ Fdv,
hence it is > C’ for large enough 7. Consider such a large T with, additionally, ¢’ v € K: it exists by
Poincaré recurrence.

Let K7 be the neighborhood of size 1 of K. Consider the points ¢ € [0,7] for which g'v ¢ K
(this is an open set), and among them the connected components on which g'v does not always remain
in Kg, the neighborhood of size R of K. These components are of length at least 2R, so there
are finitely many of them. If C’ is large enough so that |F| < C’ on Kpg, then there exists such
a component (a,b) on which ff F(g'v) > C'(b — a): otherwise, one would get fOT F(g'v) < C'T by
summing the contributions of these big connected components, and integrating the bound |F| < C’ on
the remaining points. Restricting the orbit to the interval [a,b] and setting w = g'a, we have found a
piece of orbit of length 7 > 2R starting and ending in 0K, remaining outside of K in between, and
with [ F(g'w)dt > 7C". . commectin

Let us close this orbit using the connecting lemma @'—m—ﬁm%npact set K1: we get a closed
orbit (g'w’)o<i<r+s, which stays at distance at most 1/2 of the orbit of w for 0 < ¢t < 7, and with
s < 19 depending only on Kj. The measure p we are looking for will be the uniform measure along
this periodic orbit. The only times the orbit of w’ can belong to K is for 7 < t < 7+ s. It follows that,
if R is large enough compared to 7p, the relative mass given by p to K is smaller than €. Let us now

check that [ Fdu is large. Pl‘(iirst,tL QT F(g'w')dt — [ F(g'w)| is bounded by a constant Cy depending
[¢] -po
only on K, by Lemma 3.1} Second, | F(g w ) is bounded below by a constant —C7 depending only

on K, as s is bounded by 79 and F' is bounded on the 79 4+ 2-neighborhood of K. We get
/ F(gtw/)dtZ/ F(gtw)dt—Co—Cl ZC/T—C()—Cl.
0 0

28



If C" = C'(K,C) is large enough, this is at least C(7 + s), as desired. O

. . :ErgoPressure .
equality| Proposition 6.3. Under the assumptions of Theorem %E ZE let Fbe a Holder continuous map. Then
op (F) < PR(F).

var

:Pvar_infty_inft F
Proof. If or(F) = oo, then Lemma I%ﬁ shows that one can find a sequence of measures p, € Mj
tending weakly to 0 such that hgs(tn) + [71,, F dpn tends to infinity. Therefore, Pog.(F) = oo, and

var
the result is obvious.

Assume now dp(F') < oco. Choose for every R € N a Holder continuous map 0 < xp < 1 which
approximates 1pi, o gy 0n T"M: xg =1 on T (prB(o, R — 1)) and xr = 0 outside T" (prB(o, R)).
Define F,, p = F—nxg, for all n € N, and note that F,, g = F outside T pr B(o, R) so that OT ooty (F) =
5FB(0,R)(anR)' As a consequence,

or(Fn,r) = O, 5y (Fn,R) = 01 g, 5 (F7) = 07 (F) .

PS
By the variational principle TPPSlS, Thm 1.1], we can find for all € > 0 a measure ji, p € Mf”’R,
such that

hics (tinr2) + / Foondiin e > 052°(F) — .
TIM

Since Fj, r = F' outside of a compact set, ui, s also belongs to MY Therefore,

Fd,UJn,R,E > nﬂn,R,s(TlprB(07 R — 1)) + hKS(Hn,R,e) + / Fn,R dHn,R,z—:

5F(F) > hKS(Mn,R,s) +/
TM

T'M
> npin re (T prB(o, R — 1)) + 62(F) — €.

Choose any sequence €, — 0, Ry — 00, ng — 00, and fig, = fin, Ry e, As Op(F) < 0o, we get from
the above on the one hand that for all R > 0,

lim sup i (T"pr (o, R)) = 0,

and on the other hand that
imint hics(ae) + [ F e = 57°(F).
— 00

This proves that
Py (F) > 6°(F) . O

var

:Pvarerg| Remark 6.4. Since the proof only uses ergodic measures, it even proves the slightly stronger result

X (F) < Py,

var,erg

(F) < Py

var

(F) -

6.2 Katok pressure

minaries ;PressureMassInft

The proof of Theorem will rely on the followi a&?{%ié)n of pressure, extending to general
potentials a notion of entropy introduced by A. Katok in [Kat80] in the case F' = 0.
For all v € T*M and ¢, T > 0, the dynamical ball B(v,e; —T,T) is defined by

B(v,&;—T,T) = {w € T'M ; Vt € [T, T), d(g'v, gtw) < €}.

P P
As in TPPS%], it is more convenient to deal with symmetric dynamical balls. Recall from TPPSB,
Lemma 3.14] that for all 0 < ¢ < €', there exists 7. . > 0, such that for all v € T'M and T > 0, we

have
B(v,e';—T — Tee, T+1T..) C Bv,e;=T,T) C B(w, ey =T, T) (26) |eqn:PPS3

T19
As in TSTIQ, Rem 3.1], on T'M, we define two kinds of dynamical balls, the small dynamical ball
Br(v,e; =T,T) = pr(B(v,e; —T,T)) and the big dynamical ball

Bayn(v,6; =T, T) = {w € T*M ; ¥t € [-T,T),d(g"v, g'w) < e} D Br(v,e; =T, T). (27) [eqn:dyn-
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Both balls coincide as soon as the injectivity radius of M is bounded from below and ¢ is small enough.
More generally, if along the geodesic (g'v)_r<i<7, the injectivity radius at the point 7(g'v) is larger
than ¢, then

Bayn(v,e;=T,T) = Br(v,e; =T,T) . (28) |eqn:equa

We will mainly use the small dynamical balls, that are more convenient in our geometric context,
but less natural from the dynamical point of view.

Given a probability measure p on T'M, § € (0,1) and ,7 > 0, we will say that a set V C T'M
is (u,0,e; =T, T)-spanning (respectively dynamically-(u,d,e; —T,T)-spanning) if

7 <U Br(v,e; =T, T)) >0, respectively u (U Bayn(v,e; =T, T)) >0

veV veV

Of course, a (u, d,e; —T, T)-spanning set is also dynamically-(u, d, e; =T, T')-spanning.
Let F : T'M — R be a Hélder potential. Let p € Mferg be an ergodic probability measure on
T'M, invariant under the geodesic flow, such that JF~du < oco.

Definition 6.5. Set -
Sp(p, 6,e;—T,T) = inf Z el-r g dt
veV
where the infimum is taken over all V. C T'M that are (u,d,e;—T,T)-spanning. Similarly define
S;l;y"(u, 0,e;=T,T) as the infimum of the same quantity over all dynamically- (p,0,e; =T, T)-spanning
sets.
The Katok pressure of F' with respect to u at level § is defined by

1
PIEatok(Ma F, 6) = I;miup oT log SF(F7 w,0,e; =T, T) .
—+00

Similarly, define

d . 1 d
Piato(p F,0) = limsup g log ™ (1, 0,2 =T, 7).

The Katok pressure of F' with respect to p (respectively the dynamical Katok pressure) is

L 1
Piarox (1, F) = sk limsup 57 log Sk (u, 8,6 —T,T),

respeclively
d . . 1 d
Pl (s F) = sduf lim SUD o log Sg" (1, 0,65 =T, T).

:PPS3.14 |
By (ﬁ%;, the quantity Pf;atok(u., F,§) does no_t depend O £ 4yn-ball ‘
Comparison between the two kinds of dynamical balls in (iﬁ? ; implies that we have the comparison:

d
PKi?ok(M? F) < PII(‘atok(Mv F) .

.. . L. :EntropyKatok [Katok80
The first a gtﬁ%gl inequality of Proposition was shown in [Kat80]. Compactness was assumed,

but his proof [Kat80, (1.4) p. 144] does not use the compactness of the underlying manifold. The
second inequality follows obviously from the above considerations.

tok80
opyKatok | Proposition 6.6 (Katok W(Ka :;ESUJ ). Let f: X — X be a homeomorphism of a metric space (X,d),
and v be an f-invariant ergodic probability measure. Then for all 6 > 0,

hKS(:U’) < hKat<f7 /J,) = P}(gl?ok(u7 O) < PIEatok(:u’ 0) .
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We provide an appendix by F, queuelme which Shgws that these entropies coincide, even in our
roples colncil
non-compact setting, ¢f Theorem
In the sequel, we will always Work with small dynamical balls and the associated Katok pressure
PL . (u, F). Assume that u is ergodic.
For all AC T'M, all 6 € (0,1) and all €, T > 0, we define

Sk, 6,6 —T,T) = in Z Jor Py
VCA (u,0,e;—T,T) spannlng

and

PKatok(,ua F, 5) = limsup — T log SFA(,U, 5 € T)
T—+o0

The following lemma is elementary but crucial in the sequel.

+ErgoPressure
treintad | Lemma 6.7. Under the assumptions of Theorem I% ZE let n e }7V111 erg b€ an ergodic invariant measure.

As soon as p(A) > 6 we have
PIEatok(:“’a F,6) < Pf?atok(% F,0). (29) |eq:PKato!
Moreover, if p(A) >1— %, and F is bounded on A, then

0
Pllgatok(ﬂv F, 5) 2 Pféatok(ﬂa F, 5) (30) eq:PKato!

Proof. The first inequality is immediate from the definition.

For the second one, let A’ = Ang TANgTA. Tt satisfies u(A4’) > 1 — 6/2. Consider V a
(1, 6,6; =T, T)-spanning set. As (U, ey B(v,e; =T,T)) > 6, we get M(A’OUUE‘/ (v,e;=T,T)) > /2.
For each v € V such that pu(A’ N B(v,e;—T,T)) > 0, choose an element v’ in the intersection A’ N
B(v,e;—T,T), and let V' be the union of all such v’. By construction, V' C A is a (u,8/2,2¢;—T,T)-
spanning set.

As F is Holder continuous, for v € V such that pu(A’ N B(v,e;=T,T)) > 0 and v/ € A'N
B(v,&; =T, T), the integrals fT Fogtvdt and fT F o gtv' dt differ by an additive constant depending
on the Holder ¢o; so‘rﬂnt%g)ef I fimd its L*°-norm on the 5 neighborhood of A, but not on T". This follows
from Lemma %ﬁ)@ﬁt—ﬁﬁe points g~ Lo/ and ¢~ Tv on the one hand (Where g~ Tv" belongs to A
thanks to the definition of A’, and therefore g~7v belongs to the e-neighborhood of A), and to g7
and ¢g7v (with the same argument).

Therefore, up to a multiplicative constant, > ellr Flgt)dt i greater than ), - el2r Flg'dt,
Up to this multiplicative constant, Sp(u,d,e;—T,T) is greater than Spa(p,0/2,2¢;—T,T). Taking
the limsup of 1/(27T) log of these quantities leads to the second inequality. O]

Since the Katok pressure is defined by taking an infimum over all (u, §,e; =T, T')-spanning sets, we
deduce the following useful statement.

+ErgoPressure

akPKatok | Lemma 6.8. Under the assumptions of Theorem et p € My, be an ergodic invariant measure.
Let § > 0 be fized, and for all T > 0, let Ay C T'M be a set such that u(Ar) > 5. Then

. 1
Pllgatok(lu’a F) < 1’}11'1 iUP ﬁ log SF,AT (:ua 67 &, T)
— 400

. X . :EntropyKatok X
We will use the following analogue of Proposition iglé for general potentials.

: P
ureKatok | Proposition 6.9. Under the assumptions of Theorem 'g 2Erleof FTIM — R be a Holder-continuous
map, and [ € Mferg an ergodic probability measure on T'M such that J F~dp < oo. Then

hrs (i) + / Fdp < Pyor(p, F) .
TIM
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Proof. Let u be an ergodic probability measure and F' a Holder potential. Let § € (0,1) be fixed.

For all n > 0 and T > 0, set
1 t
/ F(gsv)ds—/Fd,u' gn}.
2t J_,

lim p(Gry,(F)) = 1. Therefore there
T=too 5  PKatokTypical2
exist Tp > 0 and a compact set As, C Gr,,(F) such that u(As,) > 1 — g. Therefore, by ﬁ?fi,

A o . 1 . T F(gtv)dt
PL JF8) > P2 (u, F, =) = limsup — log inf E e/-rFlgv)dt (31 eq:PKato!
Katok(u ) Katok('u’ 2) T—+00 2T VCAs, (u,é,s;—T,T)—Spanning = ( )

Gry(F) = {v cT'M; vt >T,

Birkhoff ergodic theorem implies that for all 7 > 0, we have

T
Let S¢ C As, be a finite (u,0,e; =T, T)-spanning set which minimizes Z eJ-r Flgrv)dt

veV
(i, 0,e; =T, T)-spanning sets V' C As,. Such a set Sy exists by compactness of As,. Moreover, by

definition of As,, we have

among all

Z effT F(gtv)dt eQT(deu—n)#ST > 2T(f Fdu=n) ¢ HV,

vEST

the mﬁmu{n.bel taken over all (p, 0,2, T')-9panning sets V' C Agpy.
Proposition and Equation ead to

PIEatok(l‘LvF75) Z/Fdﬂn+hKS(/‘L)7

. . :PressureKato . .
which concludes the proof of Proposition since 0 € (0, 1) and > 0 can be arbitrarily small. O

6.3 Escape of mass and pressure at infinity
-of-mass

This paragraph is gedicateﬁi to, tpe proof of the followi reslylt of independent interest, which
i . :PressureMassInft rgoPressure
implies Corollary | a key step 1n the proof of Theorem Iéz [

assInfty| Theorem 6.10. Lei M be a nonelementary complete connected negatively curved manifold with pinched
negalive curvature, and bounded first derivalive of the curvature. Let K C M be a compact set whose
interior intersects w82, and let K C M bea compact set such that pp(f() =K. Let F: T" - R be a
Holder potential with (SFI}(F) > —00. Letn > 0. Forall0 < a <1 and R > 4, there exists a pos-
itive number ¢ = w(f?, F,n,a/R) with the following property. For every invariant ergodic probability

measure [ € /\/lferg (i.e., such that [ F~dp < oo) with w(T'Kg) < a, we have

th(,U) + /TIMFd,U, < (1 —a)érf((F) +045F(F) +7]+¢.

Moreover, when K, F and 1 are fized, ¥(K, F,n,a/R) tends monotonically to 0 when o/ R tends to 0.

Making ow_to exhaust M, we deduce the following corollary, which provides the econ(ti.half ) .
3 oPressure . . . . :first-inequality
of Theorem e first mnequality 0°(F) < P, nfty(F) has been proved in proposition i%d;

var

assInfty| Corollary 6.11. Let M be a nonelementary complete connected negatively curved manifold with pinched
negative curvature, and bounded first derivative of the curvature. Let F' be a Hélder potential with finite
pressure on T'M. Let (j1n)n>0 € (MI)N be a sequence of probability measures which converges in the
vague topology to a measure . Then

lim sup hyes(pn) + /Fdﬂn < (L= [plDor (F) + llpllor (F).

n—-+0o

In particular, when p, — 0, then limsup hxs(pn) + /Fd,un < 0 (F), so that

n—-+o00

P (F) < o7 (F).

var
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L :infinite_pressure .
Proof. When r(F) = oo, then 6°(F) = oo by Proposition and the resulf is obvious. We can

therefore assume that 0p°(F') < co. We will deal with the case 6p°(F) > —oo, as the case 0p°(F) = —o0
can be treated similarly.

Let ¢ > 0. Let K be a large compact set in M, with a compact lift K to M satisfying or . (F) <
6°(F) + e and ||u|| < w(T'K) + e. There are only countably many values of r for which ,u(@T K )
has positive measure as these sets are disjoint. Therefore, we can pick r such that pu(0T'K,) =
Replacing K with KT,M%%S%% aSSI,ugaTlK = 0.

We apply Theorem 6. 10[fo ) = €, obtalnlng a function 1. Let R be large enough so that ¥(1/R) < e.
We can also ensure u(0T'Kg) = 0. For large enough n, we have p,(T'K) > pu(T'K) — & and
pn(T KR) < w(T'Kg) + ¢ < ||ul| +&. In particular, p,(T'Kgr) > pun(T*K) > ||u|| — 2e. Let us
estimate hxg(un) + f F du, for such an n, fixed from now on.

We can write u, as an average of ergodic measures: u, fQ dv, dP(w), where all the v, are
invariant probability measures for g;. Since co > [ }tFl;-.-P(p:.léLsT%ureM! { SfIn ftydz/w) dP(w), almost all the
measures v, belong to M¥ crg- We can apply Theorem [6.10[to each of them (with o = 1, (T'KR)) and
then average with respect to P, yielding

bucs(un) + [ £ = [ (st + [ Fa) ae

< /((1 — v (T K)o (F) + vo(T Kg)or(F) + & + ¢(1/R)) dP(w)
= (1= pn(T'KR))or . (F) + pn(T" KR)or(F) + £ + 1(1/R)

K

< (U= [l +28)(0F°(F) + &) + ([lull + £)or (F) + 2e.

As ¢ is arbitrary, this gives the conclusion. O

. . :PressureMas
Let us gﬁ};othat when F' = 0, under the same hypotheses, a stronger version of Corollary iﬁii I
appears in [VelI9, Thm. 1.1]:

limsup hres(pn) < (1 — [[ul))6p°(0) + [|pl|hrs (H H)

n—-+o0o

Velozo Velozo

In his PhD hV“ITS also hvm]) using a different strategy, Velozo obtains an analogous inequality for
pressure in the case of potentials going to 0 at infinity. Our approach is valid for all Hélder potentials,
but gives a weaker inequality. Howeygﬁ zlg provides enough information for our purpose. It is not clear
whether the strategy developed in hVejTQ] could be adapted to potentials which are not constant at
infinity. Our approach could maybe be refined to get his stronger inequality: we will not do it here.

rg_infty| Corollary 6.12. The pressures Py, (F) and its modification Pgy, ... (F) are equal.

Proo W%Iheas\é%r(éggégygg the inequality PC3 0 (F) < P (F). Moreover, P3(F) < 6p°(F) by Corol-
lary nally, Remar gives the 1nequahty O (F) < P ore(F). Together, these inequalities

var,erg

show that all these quantities coincide. O
essureMassInfty . . .

Proof of Theorem . As the result is obvious if dp(F) = oo, we may assume op(F) < oo. Let

K C T'M be a compact set, R > 0, and K the R-neighborhood of K. Let F: T*M — R be a Hélder
potential with finite pressure of F. Let n > 0.

Let u € MY erg D€ an ergodic probability measure on T'M, and 0 < o < 1 such that u(Kg) < «
Let € > 0 be small enough (how small exactly will be prescribed at the end of the proof).

Let A a large compact set containing K and Kr, with u(T'A) > 1 — . Define

Ap = {w eTA,

I 17
2T/TFogtwdt—/Fd,u’ge andﬂ/TlKR(gtw)dt§a+5}'

By Birkhoff ergodic Theorem, there exists 77 > 0 such that for ' > Ty, u(Ar) > 1 —e. Then

wArngtAng TA) >1—3¢.
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Let F : T'M — R be Holder continuous. The strategy is to bound

th(u)Jr/qu

. Lo R : CountExcursion ;PressureMassInft
from above, in terms of periodic orbits, and use Theorem 0 prove Theorem [

Consider a maximal subset V of A7 = Ap N g7’ AN g~ TA in which all points are at distance at
least e from each other for the dynamical distance (in the universal cover as we are dealing with small
dynamical balls) given by dr(v,w) = inf, @)=y, pr(@)=w SUPp <7 d(9'V, g'w). Then any point in Ar
is within dp-distance at most € of a point in V, ie., A7 C U,cy Br(v,e; =T, T). Therefore

v i:ﬁ’raessurel{atok
(p, 0,65 =T %:Iza%}g%nning set for any § < 1/2, which is additionally e-separated. Proposition iglﬁ and
Lemma ensure that hxg(p) + leM F du is bounded by the exponential growth rate of the sums

> pev el-r ¥ (where V' depends implicitly on T').

Now, to each v € V, we will associate a periodic orbit and bound the above sum in terms of
./\A/]r:(K7 Kp,a,T — 1,T + 1) for some constant 7 > 0.

Take v € V. As it belongs to A, both points g”v and g~7v belong to T*A. By the connecting
lemma and the compactness of A, we deduce the existence of a periodic vector v,, and associated
periodic orbit p(v), with [((p(v)) — 2T| < To = Tp(A, ), and d(g'vy, g'v) < /3 for all 0 < ¢ < 2T,
Since the interior of K intersects the nonwandering set, we can also make sure that the orbit p(v)
intersects K. hold-bobential -

By Lemma 3.1}, |, g'vp) dt is equal to fo F(g'(g_7v))dt up to a constant depending only
on A. Since v € Ap, the latter integral is close to 2T [ F'du, up to 2T. Altogether, we get

L(p(v))
| Pt at =) [ Pau < o+ o),

for some Cp depending only on A. In particular, there exists T3 such that for T' > T, ¢(p(v)) is also
large, so that this inequality becomes

L(p(v))
m@»ﬂ F@W“‘/F@

Similarly, we obtain, for T' large enough,

< 2e.

U(p(v) N KRy2) < o+ 2,

starting from the same properties for the orbit of v due to the definition of A7, and using the fact that
the orbits of g~Tv and vp remain close to each other up to €, so the orbit of v, can be in Kp/y only at
times when the orbit of g~ is in Kp.

Moreover, as the set V' is (e; =1, T') separated, and the periodic orbit p(v) associated to each v € V
is £/3-close to it, the number of vectors v € V associated to the same periodic orbit p is bounded by

some multiplicative constant times ng (p)¢(p).

T
Therefore, up to some multiplicative constants, >, .y, el—r Fo9'vdt i 1 hunded by

~

TN(K,KR/Q,OZ+2E,T—T,T+T),

. . CountExcursion -~ .
for some 7 > 0 independent of T'. Applying Theorem Ig with 777HZ and K and R/2, we get that its
exponential growth rate is bounded by

(1 — o= 2e)0p (F) + (a + 28)0p(F) +1/2 + 9 ((a + 2) /(R/2))

where 1) is a function tending to 0 at 0. If € is small enough, say € < €p, then the error term
2e0r . (F) +2edr(F) is bounded by 7/2, and we get a bound

(1 —a)or (F) + adr(F) +n+P((a + 2¢)/(R/2)).

Finally, we choose € = agy, so that (a + 2¢)/(R/2) is a function of o/R that tends to 0 when a/R
tends to 0. This is the desired bound. O
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7 Strong positive recurrence

In symbolic dynamics, the notion of sj{goné% PCOEI'DIVQ ECHITENCE gy&eﬁmred mB%%v%r% ajvorks as men-

urevic uette
tioned in the introduction, see for example

Gurb9; 1Gur70; (GSIS,, S’ﬁQ%SSﬁOT Rue(3;, BBG06, BBG14].
In our geometric context, when F' = 0, the notion appeared in fSTTQ CDST19] under the terminology
of "strongly positively recurrent manifold" or strongly positively recurrent action". Independently, it
appear QT £§tm iR 1’E)he case F' = 0) among people interested by geometric group theory, see for ex-
ample fKCTTS Yanl4l [Yanl9|, under the name of "actions with a growth gap" or later "statistically
convex-cocompact manifolds". We follow t 181’g0d10 terminology of strong positive recurrence below,
extending the point of view developped in [ST19)|, in the spirit of the works of symbolic dynamics.

7.1 Different notions of recurrence

Recall some definitions which ar ggssgclailg in symbolic dynamics, and were introduced for the
geodesic flow in negative curvature in [PS 8 ST19]. Let K C M be a compact set, K C M a compact
set such that pp(K) = K.

For all T' > 0 large enough, as in TS'T19] we define UT( ) M I as the open set
Ur(K)={ye MUOM, 3z € K, [z,y)rNTK C K},

where [z,y)r denotes the geodesic segment of length T starting from x on [z,y). In other words,
y € UT(IN( ) if there exists some geodesic [z,y) starting in K and arriving at y, which does not meet
I'K \ K until time 7.

For technical reasons, we will need to work with the following slightly larger sets:

UT(),T(I?) = {y S MU 8]\7, dz € I?, [.I',y)[TmT] ml“l? C I?},

where [x, y) 7, 71 denotes the geodesic segment of length 7'— T starting at distance Tp from x on [z, y).

In other words, y € Ug, (K) if there exists some geodesic [, y) starting in K and arriving at y, which
does not meet 'K \ K between times Ty and T'.
Let us define Vi (K) C T'K (resp. Vg, 7(K) C T'K) as the set of unit vectors tangent to K which

are images through pr of the unit vector tangent to a geodesic segment [x,y), for some y € UTO,T(I?)
and x associated to y as above. B N

By definition, the sequences (Ur(K))r>o (Ury,7(K))1r>0, (Vry,7(K))1r>0 and (Vr(K))rso are de-
creasing when T' — oo.

Definition 7.1. A Hélder potential F : T'M — R is said

1. recurrent if there exists a compact set K C M whose interior intersects the projection w(€)) of
the nonwandering set,
ZnK f(F op(F)) = too;
peEP

2. positively recurrent if it is recurrent w.r.t. some compact set K C M whose interior intersects
©(Q) , and for some N > 1,

Z g(p)efp(F—ér(F)) < too:

pEP, nk (p)<N
3. strongly positively recurrent of its pressure at infinity satisfies

P (F) < Pop(F);

CDST —
4. In h(ll)ST19], the definition has been slightly modified to guarantee that it remains open when M is a Gromov-
hyperbolic metric space
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4. exponentially recurrent w.r.t. an invariant measure BE My of there exist a compact set K C M
whose interior intersects m(S)), some compact lift K of K with pr(K ) K, Ty >0,C >0 and
a > 0 such that for T > Ty,
1(Vry 7(K)) < Cexp(—aT).

516 . o:HTS
In fPS“lS, Thms 1.2, 1.4 and 1.6], the following result, reformulated here thanks to Theorem ig:g) 1S
proven.

it-Schap| Theorem 7.2 (Pit-Schapira). Let M be a nonelementary complete connected Riemannian manifold
with pinched negative curvature and bounded first derivative of the curvature. Let F : T'M — R be a
Hélder continuous map.

1. The potential F is recurrent iff (', F) is divergent, iff m*" is ergodic and conservative
2. The potential F is positively recurrent iff m¥ is finite.

3. The potential F' is positively recurrent iff it 1s recurrent and there evists a compact set K C M
which intersects at least a closed geodesic, and K C M with pr(K) K, such that

Z d(o, yo)e_ér(F)d(O’70)+fgoﬁ < +400.
’YGFf{

. SPR-implique-PR
In Section ﬁ we will prove the following result.

lies-PR’| Theorem 7.3. Let M be o nonelementary complete connected Riemannian manifold with pinched
negative curvature and bounded first derivative of the curvature. Let F : T'M — R be a Holder
continuous map. If F : T'M — R is strongly positively recurrent, then it is positively recurrent.

This Theorem has been proven in %%919] in the case F' = 0, and the proof is almost the same. We
provide it here for the sake of completion and the comfort of the reader.
The contrapositive reformulation is extremely useful:
If the measure m! is infinite, then 62°(F) = ép(F).
It has the following corollary.

oisCover | Corollary 7.4. Let M be a nonelementary complete connected Riemannian manifold with pinched
negative curvature and bounded first derivative of the curvature. Let F' : T'M — R be a Holder

continuous map. Let p: M — M be an infinite Riemannian Galois cover of M, and H = 7y (M) <T =
7 (M). Let F = Fodp:T'M — R be the lift of F to T'M. Then

03 (F) = o (F) < 67°(F).

Proof. The inequality Su(F) < 02 (F) is immediate since / C I'. By contradiction, assume that . . .
5?(% ) < Gé’élo F). Then the potential F' would be strongly positively recurrent. By Theorems '

and , the associated equilibrium measure mp is finite and unique. By uniqueness, the measure
mp is invariant under the action of the deck group G = I'/H. As G is infinite by hypothesis, it is a
contradiction with the finiteness of mp. O

Remark 7.5. This corollary does not apply to non-regular cover, even for the zero potential. For
example, consider the following construction. Given Y1 = H?/I" a compact genus 2 hyperbolic surface,
there exists H < I' a non-normal subgroup such that Y5 = H?/H is a punctured torus with infinite
volume. The (non-regular) covering p : ¥y = H?/H — Yr does not satisfy the conclusion of the above
corollary. Indeed, X is convex cocompact, non elementary, with infinite volume. In particular, there
exists a large compact set K C H2 such that H is finite, so that

07 (0) > 0 and 6% (0) = —oc.

t-infini| Corollary 7.6. There exists a complete hyperbolic surface M, with 0°(0) > 0, and a Hélder potential
F:T'M — R such that 6°(F) = —cc.
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V-exprec

-compact

-compact

t-SPRbis

1all-bump

Observe that if 0p°(0) > —oo, then it is non-negative and every Hoélder-continuous potential F
which is bounded f{gorilo below by .some constant —K satisfies op° (F) > —K. Therefore examples

sexXposan

satisfying Corollary [7.6[must be unbounded from below.

:GaloisCover

Proof. Let M = H?/T be a Z-cover of a compact hyperbolic surface r]%%/l_)Co1r0113u1ry , O F 0) >
0. It is well known that 6p(0) = 1 (it follows for instance from fBr—d85], see for instance W:CﬁSTw]
for details on critical exponents of covers). Choose some compact fundamental domain D C M with
piecewise smooth boundary for the action of the deck group G =< g ; n € Z >. For all n € Z, set
D, = g"D. Build a Holder continuous map F : T*M — R such that for all n € Z\{0} and v € T'D,,
we have —|n| < F(v) < —(|n| — 1). Considering compact sets Ky with pp(Ky) = Upn|<N Dn, we have
(5pf(N (F) = 5pf(N (0) — N, so that 6p°(F) = —oo0. O

The following result is new.

Theorem 7.7. Let M be a nonelementary complete connected Riemannian manifold with pinched
negative curvature and bounded first derivative of the curvature. Let F : T'M — R be a Holder
continuous map. The potential F' is strongly positively recurrent iff it is exponentially recurrent w.r.1.
the measure m*" given by the Patterson-Sullivan-Gibbs construction.

The last result that we shall prove provides a very satisfying information on strongly positively
recurrent potentials. We will not use it in this paper.

Theorem 7.8. Let M be a nonelementary complete connected Riemannian manifold with pinched
negative curvature and bounded first derivative of the curvature. Let F : T'M — R be a_Holder
continuous map. If F : T'M — R is strongly positively recurrent, then for every compact set K C M,
whose interior intersects w(§2), we have

5F~(F) < (5F(F)

K

It has the following corollary.

Corollary 7.9. Let M be a nonelementary complete connected Riemannian manifold with pinched
negative curvature and bounded first derivative of the curvature. Let F : T'M — R be a Hélder
continuous map with finite Gibbs measure mp. Then the geodesic flow is exponentially recurrent with
respect to mp if and only if for all compact set K C M whose interior intersects w(2) and all compact
lift K of K with pp(f() = K, there exists To > 0, C > 0 and « > 0 such that for T > Ty,

u(Viy 2 (K)) < Cexp(—aT).

Before proving these results about strong positive recurrence, we provide in the next paragraph
ways of construction of strongly positively recurrent potentials.

7.2 Strong positive recurrence through bumps and wells

Adding a bump AA to a potential F', With:é{ a &%rclg_eﬁz}ct_ ézp%compactly supported Holder map and

A — 400, we already proved in Corollary e existence of strongly positively recurrent potentials.
We restate it below with this terminology.

Corollary 7.10. On any negatively curved manifold with pinched negative curvature and bounded first
derivative of the curvature, there exist Hélder continuous potentials that are strongly positively recur-
rent.

It will be convenient to add to a given potential F' large bumps of arbitrarily small height. It is
what we do in the next proposition.

Proposition 7.11. Let M be a nonelementary complete connected Riemannian manifold with pinched
negative curvature and bounded first derivative of the curvature. Let F : T'M — R be a Hélder
potential with finite pressure. For all € > 0, there exists a compactly supported Hélder map 0 < A <1,
such that

I (F+eA) =02 (F) <op(F) < or(F+eA).
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Proof. For a given € > 0, by the variational principle for Pop(F), there exists a measure m. € M,
such that Pyop(F) = op(F) = SUD e M F hixs(m)+ [ Fdm < hgs(me)+ [ Fdm. + §.

Choose some compact set K. such that m.(T'K.) > 1—e. Now, choose some Holder map 0 < A < 1
with compact support such that A =1 on T'K.. Observe that as soon as 0 < € < 1/2, we have

Se(F +2A) > his(ma) + /dee em(K2) > 0p(F) — 5 +<(1—2) > dn(F).

The result follows. O

Adding a bump does not modify the pressure at infinity, and increases the pressure to produce
strongly positively recurrent potentials. At the contrary, subtracting a bump, i.e., adding a well, does
not modify the pressure at infinity and decreases the pressure towards the pressure at infinity, as shown
in the next statement.

Proposition 7.12. Let M be a nonelementary complete connected Riemannian manifold with pinched
negative curvature and bounded first derivative of the curvature. Let F : T'M — R be a Hélder
potential with finite pressure. Then for all n > 0 there exists a compact set K, C M and a real A\, > 0
such that for every Holder map A : T'M — R with compact support, such that A > 1k, and all
A > \,we have

Oop (F) = Pay(F) < Piop(F — AA) < PL(F) +n = op (F) + 1.

Proof. By definition of PJ.(F), given n > 0, there exists a compact set K, C M and a real A, > 0
such that

57 (F) = P5(F) < sup {hmm +

Tl

Fdu; pe M st. u(TlKn)Sn}<Pv°§r(F)+77.

L. prop: CompactPerturbPotential
By Proposition @.9]

52 (F) = 62°(F — M) < Po(F — M) — sup <h1<s(u) + [P du> .
pemE

We study this supremum by distinguishing measures p with ,u(TlKn) greater or smaller than 7. On
the one hand, we have

sup (th(,u) + /(F —A\A) du) < Poar(F) — M.
peME, W(T1Kyy)>n
If X > A, is large enough, this quantity is arbitrarily negative. On the other hand, as A > 0, we have
sup (hmu) + [ P- AAdu) < swp (thw) +f qu) < PX(F) +1.
pEMT, (T K y)<n REMT, (T Kn) <1y

We deduce the desired result for A large enough:

O (F) < Ppar(F — AA) < max(Pyar(F) — An, Pou(F) +1n) = P (F) + 1.

var var

7.3 Strong positive recurrence implies positive recurrence

. . 0:SPR-implies-PR’ T19 .
In this section, we shall prove Theorem i?tg We follow the proof of TS*T19] in the case F' = 0.
Assume that I is strongly positively recurrent. By definition, there exists a compact set K C M

whose interior intersects at least a closed geodesic, and a compact set K C M with pr (K ) = K, such
that

5{‘}?(}7) < (5F(F) .
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An elementary computation shows that this strict inequality implies the convergence of the series

Z d(o, ’}/0)6_6F(F yd(oyo)+ [ F Therefore, to prove that strong positive recurrence implies positive
el o:Pit-Schap, . o :HTS
recurrence, by Theorem i?tﬁ (point Z%), it is enough to show that F'is recurrent. By Theorem 1T 1S
equivalent to show that vl gives full measure to the radial limit set Afad.

As observed in [ST19], we have

Ap\ AR T, (ﬂ UT(f{)> .

T>0

The following variant also holds:

Ar \ A%ad cT. m U’]“()7T(I?) = U m UT@,T([?) .
T>Ty To>0T>Ty

Indeed, both sets on the right represent points y € OM such that for some z € K , the geodesic [z, )
stays a bounded amount of time in I'. K, whereas the set on the left is the set of y € Ar such that the
geodesic [ry) eventually lm%s: é%\ﬁqri%p(‘lolrensgggt set. . B

Jhe proof of Theorem [7.3[consists i proving that for some Ty > 0, we have v, (Np>oUr,r(K)) = 0.
In [ST19, Eq.29|, we used the inclusion

TonUp(K) C U Or(K).
vel'g ,d(0,y0)>T—2D

We need a refinement of_trl%ics inclusion. The following lemma is a key step of the proof, and will be
useful also in Section

) :SPR-implies-PR’ . )
t-GammaK | Lemma 7.13. Under the assumptions of Theoremi:ff nﬁj for alle >0, There exist a finite set {g1,...,gn}

of elements of T' and some Ty > 0 such that for all T > Ty + 2D + ¢, we have

N
U O,(vK) < Upr(K) < |J U 9.0z (VK).
V€T & _, d(0,y0)>T+2D+To i=1~€l'z,d(o,70)>T—2D—Tp

T19
Proof. The first inclusion uses the same kind of arguments as for fSTlQ, Eq29]. Ify €T B the
~ ~ ~ 4Point
geodesic segment [o,v0| does not intersect I'K. outside K. and 7K.. And by Lemma E’gﬁ Tor e‘\lfergfm :

€ > 0, there exists Ty > 0 depending on € and on the diameter D of K, such that if y € (’)C,(7[~()7 then
the geodesic segments [0, y] and [0, v0] stay e-close during a time at least d(o,~yo0) — Tp. In particular,
if d(o,v0) > T + 2D + Ty, then the geodesic segment [0, y|7 cannot intersect I'K outside K.. It could
happen that [0, y]r intersects 'K N K. \ K. But this can happen only on a segment of length at most
D + ¢ starting from o. The conclusion follows. .
:NegCurv4Points
For the right inclusion, let Ty > 0 be the constant associated to € and D by Lemma W
introduce the family (g;)1<i<n of isometries such that the Tp-neighborhood K7, of K is included in
U;g; K. Consider a point y € UTO,T(f(). Consider on the segment [o, y|7, the last copy ¢, K intersected
by this short segment, and the first copy hK intersected by the segment [o,y|r, 7. By definition,

9; lher 7> 80 that h € g;I'z. The inclusion follows easily. O
. ombre oGk - shadow-1emma
Lemmas and 3.6] have the Tollowing corollary.

:SPR-implies-PR’
Corollary 7.14. Under the assumptions of Theorem'?%f for all U< n < or(F)— ory (F), there exists
T1 > 0 such that for T > T1, we have

I/F(UT T([N()) < Ce*(5F(F)*5FI~((F)*77)T
b, < .

In particulor

VF(QT>TO UTO,T(K)) =0.
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exp-rec

T19 CDST
Similar statements appeared in KSS'T19] and hCT)ST19], but it appears that some details are welcome
on the limit process. We include therefore a detailed (short) argument.

: GammaInvPS- : ombresiiemn:GaimaK]l -shadow-1lemm
Proof. Choose some 0 < 1 < 6r(F) — dr.(F). By property 1ilii), Lemmas i“d and B.6] Tor all
sp, > 0r(F') close enough to or(F'), and T > Ty large enough, we have

N
v (Ug, 1 (K)) = ™" (Do Uy p(K)) < > v (9. O (VK))
i=1 v€l z,d(0,y0)>T—2D—-To
<N xC x 3 e~ snd(070)+[] F

7€l z,d(0,70)>2T—2D Ty
or - (F —sn)T
< Constant x e( rg (E)+n-=sn) .

F Fisn
o .

Now, v is the weak hﬁﬁﬂﬁ T limy, 00 v Recall that any Borel probability measure on a

. . sle .
metric space is regular, see [Bil99, Thm 1.1]. In particular, we have

VF(UTO,T([N()) = sup {/(pduF,go € C.(MUOM),0< ¢ <1, supp(p) C UTO,T(I?)} .

For such a map ¢, we have

/gpduF = lim edv™ < liminf v (Ug, (K)) < Constant x Org () Fn=or(ENT
sn—dr(F) sn—s0r(F) ’

Regularity of v¥" leads to
I/F(UTojT(k)) < Constant x org F)Fn=or ()T (32) |Eq:exp-r

The result follows. O

o:SPR-implies-PR’
Theorem % follows.

7.4 Strong positive recurrence and exponential recurrence

Let us prove Theorem ﬁo:

ey . S . i
Proof. The implication "strong positive recurrence grgp&l_ei% £ 112(S)ppe&1t1al recurrencE Wérx't;r@ Lp' was es

sentially shown in the above proof of Theorem [7.3] and in particular Equation . Indeed, the set
Vo, r(K) is so small that for T large enough, it admits a lift Vy, 7(K) such that mp(Vy, 7(K)) =

~ ~ bs-product

mp(Vr,r(K)). And on TIM, the product structure mp ~ v x vt x dt, see Equation , 10 the
Hopf coordinates, see Equation (B[], shows that up to some constant c,

SPR-equiv-exprec

"

mp(Vr,r(K)) = i (Ve r(K)) < af (M) x v* (U, p(K)) -
4 - :indep- t : - -ind
Equation (E%ie(}:{on]z:ehcldes. Note that this proof, combined with Theorem i%%gflrlrlllpelesco(mlo?(c) ary @o B E—

Conversely, suppose that mp is exponentially recurrent, so that for some compact set K C M
whose interior intersects 7(§2), some Tp > 0 and a > 0, we have

mp(Vry r(K)) = mp(Vr, 7(K)) < exp(—aT).
The first step consists in showing that for all T > Ty, we have
v (Up,r(K)) < e, (33) [exp-deca
By definition, if v € ‘7T0, (1)_, tll% yh e UTO’T(I?), and v~ € O+ (f() Recall that mp is supported
(i: ; and (i%) h

in Q. As above, Equation show that up to some constant c,

mp (V1 (K)) = ip(Ve,r(K)) > ! inf V(O (K) x vF (Up, 1 (K)).
CveQNT K
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In the above infimum, the vector v varies in the compact §ggc§2 [Lz“rldf( , and v has full support in the
limit set, so that this infimum is positive. Therefore, (i%ébs proven.

In t&gms:%ggietlélvyghgv l)lwpleeengin fo consider a ;ompact set sL large e.nough to satisfy the l.ovyver bound in
lemma j3.6] By a standard use of lemma [2.3] Tor all € >0 there exists 7 > 0, such that if L D K. D K
contains an e-neighbourhood of K, uniformly in T° > Ty + 27, we have

UT07T(E) C UTo+T,T77(K)

. . . ~ . -decay-bord .
In particular, up to changing shghtl'y To and «, the cgmpa.ct set L also satisfies Igg . We 1f: c}ﬁglﬁ-sha dow- Lem
sequel to change the constant, and just assume that K satlsﬁ_ease ;celgle_tl)g%er bound in lemma [3.6]

As vl = limg, _5.(F) vFsn we deduce from Equation ig? that Tor some 0 < B <« and all s, close

Fempmbres-et-GammaK

enough to dp(F'), we have VF’S"(UTO,T([?)) < e T, Now, lemma [T 13 gives

U OO(PYI?) - Uﬂ)7T(IA€) )
'YEFRE ,d(0,y0)>T+2D+Ty

so that, as v*» is supported on To,

v [ Ton U O,(vK) | <ePT.
vl %, d(o,y0)>T+2D+Ty

As the group I acts properly discontinuously on M and K is compact, the intersections of shadows in
the above union have a bounded multiplicity, say M. Therefore, we deduce that

> Vs (0,(vK)) < e PT.
'yel"f(s ,d(0,70)>T+2D+Tp

. :orbital-shadow-lemma Lo . . .
The orbital shadow lemma @ implies that up to some multiplicative constant, uniformly in s, for all

T > Ty large enough, we have

S o g o 30 [ozom

vel'z,, d(0,y0)>T+2D+Ty

o
The series on the left is comparable to the series Z e onk Z el F. By
k=[T+2D+1Tp] VEL &1, d(0,y0) €k, k+1]
definition, the critical pressure satisfies
. 1 fw}?
5p}~(é (F) = lim sup z log Z elo .
k—o00

’YGFf{é ,d(o,y0)€(k,k+1][

By contradiction, assume that dr, (F)) = dp(F). Let us fix € € (0, g) Then there would exists a

sequence k; — oo, for k; large enough, g el F > Or()=2)K;  This would imply,
'YEFR/ ’ d(O,’yO)E[k’]’,kj+1[
€ : expo-decay-min

for dr(F') < sp < dr(F) + ¢, that the left hand side in 15 bounded from below by se~27, which
is a contradiction. Therefore dr_, (F) < 6r(F) and exponential recurrence implies strong positive

recurrence. O

Remark 7.15. Following carefully the proof shows that, if there exists C,a > 0 such that for all T
large enough, we have mp(V, 7(K) < Ce™T | then

St (F) < 6p(F) — a.
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|-compact

ou-lisse

i

ou-Gibbs

7.5 SPR is independent of the compact set

0:indep-compact

This paragraph is devoted to the proof of Theorem € : — R be a strongly positively

o ~ —~
recurrent Holder potential. Let K C M be a compact set whose interior K intersects (), and K C M
a compact set such that pp(K) = K. Our proof relies on the following proposition, which provides a
convenient upperbound for the growth of I'.

Proposition 7.16. Let A : T'M — [0,+0c0) be a non-negative Holder potential whose support is
contained in the interior of K. Then

or . (F) < or(F — A).

Proof. Tet K' C K be a compact set containing 7(Supp(A)) and € > 0 such that the 2e-neighbourhood
of K’ is contained in K. By definition, for all 7> 0 and v € I'z(T' — 1, T), there exist x,y € K such

=~ : ti
that [z,vy] NI - K C {x,vy} and d(z,~vy) € [T — 1,T]. By the Connecting Lemma E%, Fhere exists
Ty > 0 depending only on K and ¢, a periodic orbit p, C T*M of length ¢(p,) € [T —1,T + Ty] with a

lift p, C T'M such that the geodesic segment [z,~y] is contained in the e-neighbourhood of D~ except
maybe inside B(x,Ty) U B(yy,To). In particular, we have

{(pyNK') < 5Ty.

:connectin ~
Moreover, still by Lemma ﬁgl; there exists Cp > 0 depending only on K such that the number of
7 € I';; leading as above to the same periodic orbit p, is at most CoT'. Set

| F||oo, 1, = max{|F(v) ; d(mv, K) <Tp} and |[A|e = max{|A(v)|,v e TIM}.

Am-hold-potential .
By lemma B-1} we deduce that there exists C' > 0 such that for all s € wrk(F)’ 26p(F)], we have

yo vy
Z efsd(o,'yo)Jrfo F <C Z efsTJrfac F

~vel  (T—1,T) ~vel  (T—1,T)
< COT06_8T65TO||F”OC,T0 Z 6fp F
VEPK (T—1,T+Tp), L(pnK')<5Tp
las A = 0 outside K] < CoTCe 5T M0l Flloe,m Z eJp(F=A)
YEPK (T—1,T+Tp), £(pNK')<5Tp
< CoTCe™ 5T ST Flloo p +[Alloe) Z efp(F—A)7

YEPK (T—1,T+Tp)

where Py (T — 1,Tp) is the set of periodic orbits with length in [T"— 1,Tj] whose projection intersects

K. Ith:Al1PressionEquivalent
By Theorem |I.Z]

1
lim sup T log Z el F=4) = 5. (F—A).
T—+o0
YEPK (T—1,T+Tp)

Therefore, r . (F) < or(F — A). O
We will also need the following proposition.

Proposition 7.17. Let Fi, Fy : T'M — R be two Hélder potentials with finite pressure that satisfy
Fy, < Fy and Fy(w) < Fi(w) for some w € Q. IF Fy admits a finite Gibbs measure mp,, then their

pressures satisfy
Prop(F2) < Prop(F1) -

Proof. For i = 1,2, we have

Priop(Fi) = Pear(F;) sup{/ Fidm+hgs(m) ; m invariant probability measure with /Fi_dui < +o0}.
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As Fy < Fi, we have [ F; dm < [ F; dm for any invariant probability measure m. Therefore, when
m=mpg,,

Pior(Fo) = /FQdeQ + hrgs(mp,) < /Fldeg + hrgs(mp,) = Poar(F1).

Assume by contradiction that Pyay(F1) = Pyar(F2). Then by the previous inequalities,

/Flde2 = /ngmF2.

It implies that Fy = F» mp,-almost surely. As Fy < F} and F» < F} on a neighbourhood of w, this
contradicts the fact that mp, has full support in Q. Therefore Py (F2) < Pyar(F1). O

o:indep-compact
Let us conclude the proof of Theorem i?té

indep-compact
Proof of Theorem%m w € QNT'K and ¢ > 0 such that B(w,2) C T'K. Let A :
T'M — [0,+00) be a.non-negative Holder continuous potential supported in B(w,¢) with A(w) > 0.
By Proposition or all n > D (F —nA) = 6°(F). Moreover, the map n — op(F — nA) is
Lipschitz continuous As Fis strongly positively recurrent, for p > 0 1§]nnaull enou}g&j the map F' — nA
is still strongly positivel recurre: In I'paI‘tGleL{_)laI‘ by Theorem % it admits a finite Gibbs measure.

DYoD :t upn x-o:'-
Therefore, Propositions [7.19] an I T give

e inequalities
6F1~((F) < (5F(F — 77A) < 5F(F)

o:indep-compact
Theoremi%% follows. O

A Entropies for geodesic flows, by Felipe Riquelme

In this appendix, we prove that three important notions of entropies of an invariant probability
measure for the dynamic of the geodesic flow coincide, namely the Kolmogorov-Sinai, the Katok and
the Brin-Katok e gtOoEx)(jB%S' The (ﬁg%esults were firstly proved for dynamical systems defined on compact
m {(i]oRs ages gg d Kat&0] and fBK83], and generalized for Lipschitz maps on noncompact manifolds
in [RiqI8[ faking only in consideration ergodic measures. This appendix treats the case of non-ergodic
measures as well as the one of Katok and local (Brin-Katok) entropies relative to small dynamical
balls.

A.1 Different notions of entropy

Let (M g) be a smooth Riemannian manifold with pinched negative sectional curvatures —b* <
K, < —a?, for some 0 < a < b. Let M be its universal cover, I' = m1(M) its fundamental group, and

: TIM — T'M the differential of the quotient map M — M. Using abuse of notation, we will
denote by (g*) the geodesic flow on T'M and the corresponding one on T'M.

For all definitions of entropy, the entropy of the geodesic flow (g!) with respect to an invariant
probability measure p on 7'M is defined as the entropy of its time 1-map g := ¢! with respect to pu.
If u is ergodic w.r.t. the flow, it is not necessarily ergodic w.r.t. this time one map ¢'. However, in
this case, a.e. time 7 € R is ergodic, so that the relation h(g™) = |7|h(g!) allows us to assume, without
loss of generality, that u is ergodic w.r.t. g'.

A.1.1 The Kolmogorov-Sinai entropy

Let 1 € M be an invariant probability measure on T'M. Let P be a finite or countable measurable
partition of T'M. The entropy of P is defined by

H(p,P) ==Y u(P)log u(P).

Pep
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The join P =\, g~ VP is the partition whose atoms are of the form Pyng='P, N---g " P,, where
the sets P; are in P. The entropy of p w.r.t. P is the limit

1 n
The Kolmogorov-Sinai entropy of u is the supremum

his(p) = Sup h(p, P)

over all partitions P with finite entropy.

A.1.2 The Katok entropies

For completeness, let us recall the following definitions. Let d be any metric on M equivalent
to the Sasaki metric. Using abuse of notation, we will denote d the corresponding induced metric on
T'M.

Let v € T'M and &,T > 0. The dynamical ball B(v,e;T) on the universal cover is defined by

B(@,e;T) ={w e T'M ; ¥Vt € [0,T),d(¢'7, g'w) < e}
T19
As in fST"lQ, Rem 3.1|, we consider on 7'M the small dynamical ball Br(v,e;T) = pr(B(v,¢; T) and
the big dynamical ball
Bayn(v,6;T) = {w € T*M ; ¥t € [0,T),d(g'v, g'w) < e} D Br(v,&;T). (35)

Both balls coincide as soon as the injectivity radius of M is bounded from below away from zero and ¢
small enough uniformly on T'M. More generally, if along the orbit (g'v)o<i<7, the injectivity radius
at the point 7(g'v) is larger than e, then

Bayn(v,&;T) = Br(v,&;T) . (36)

Given a probability measure g on T'M, 6 € (0,1) and &, 7 > 0, a set V. C T'M is (u,d,&;7T)-
spanning (respectively dynamically-(p,0,¢e;T)-spanning) if

1 (U Bp(v,e;T)> >4, respectively pu (U den(’u,s;T)> > 0.

veV veV
Of course, a (u, d,e;T)-spanning set is also dynamically-(u, 0, €; T)-spanning.
Let Sr(u,d,&;T) (resp. Sgyn(it,0,€;T)) be the minimal cardinality of a (u,0,e;T)-spanning set
(resp. of a dynamically-(u, d,e; T)-spanning set).
The Katok entropy of ,u w.r.t the small (resp. big) dynamical balls is defined as
Pl (1) = égg h;n_)s;l)p T log St(u,d,e;T), resp. hKat( ) = 12%11;Iljotipflog Sayn (1, 6,6;T).

No Sthat, in both definitions above, the supremum limits are independent of & (see for in-
stance [PPS15, Lemma 3.14]).

A.1.3 The Brin-Katok entropies

Given a compact set K C T'M, we define the local entropies on K relative respectively to small
and big dynamical balls as

= 1
hi (1, K) = supess limsup —— log u(Br(v,e;T)),
veK  T—o0, gTvek
and

1
h?gc”( ,IKC) =supess limsup -7 10g fu( Bayn (v, &;T)) .
veK T—o0, gT'UEIC

Taking the supremum over compact sets I leads to the definition of the upper Brin-Katok local
entropies

loc

B%Km):s%pﬁfocm,fo and RS (u >—suphdy”< K).

As in the case of the Katok entropies, the supremum limits above do not depend on e.
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coincide

rop:part

A.2 All entropies coincide

The main result of this appendix is stated below. Des thl% of being expected, the relevance of
it lies on its many potential applications. For example, in [ST19, Theorem 1.4|, a formula relating
local entropies of invariant measures through a change of the Riemannian metric has been established,
which brings as consequence such a formula for Kolmogorov-Sinai entropies. In particular, it also
gives a relation between topological entropies of geodesic flows coming from perturbations of a given
Riemannian metric by the use of measures of maximal entropies on the corresponding dynamics.

Theorem A.1. Let (M,g) be a Riemannian manifold with pinched negative curvatures —b? < K, <
—a®? < 0. Let p € My be an ergodic invariant probability measure for the geodesic flow on TYM. Then

T T dyn dyn
hics(p) = hpk () = Rk (1) = hica (1) = Bt (1) -
:entropies-coincide

We will prove Theorem @m two steps. The first step is to prove that the Kolmogorov-Sinai
entropy coincides with the local entropies, and the second one is the analogue with the Katok entropies.

Step 1. Note that inequality hrs(p) < h%%(u) is due to Brin-Katok %%%83]. In this reference,
equality is proved on a compact mani oldg db}llﬁbgﬂg inequality does not use compactness. Inequality
h%yg(u) < hY () is immediate from 1%% . herefore, we just need to prove that hl(u) < hrs(p).
The proof relies on a crucial geometric property: as the curvature is bounded from below, the
injectivity radius along a geodesic decays at most exponentially. More precisely, for every compact set
C C M, there exists a positive constant ¢ > 0 such that for all vectors w € T'C, and all t € R, we
have
Tin(gtw) > el (37)

CCGITKLKY
7

GT > ;
This geometric inequality follows from fCGTSZ, Thm 4. 7], see also ﬁ‘( "CGT07, Prop 4.19].
Observe now that if riy;(m(g'v)) > e for all 0 <t < T, then

Br(v,&;T) = Bayn(v,6;T) = {w € TM, Y0 <t <T, d(g'v,g'w) < e}.

For the next proposition we do not need the ergodicity of pu. In particular, the corollary stated
after its proof is satisfied for any invariant probability measure.

Proposition A.2. For every compact set K C T M with u(K) > 0, for every 0 < ¢ < 1 small enough,
there exists a partition Px of K with finite entropy such that, if P = P UT'M \ K, for p-a.e.v € K,
the sequence of return times ng — o0 of (¢"v)nen satisfies

P (v) C Br(v,&;ng).-

In particular, for every compact set I € T'M, for p-a.e. v € K,

1 1
limsup ——logu(Br(v,e;n)) < limsup - log o (P"(z)) . (38)

n—00,g"veK n—00,g"veK

jig-these

Proof. By ijjroposition 1.34], for every compact set K C T'M, for all § > 0, there exists a
partition Ps of K such that diam(Ps(v)) < &, u(9Ps(v)) = 0, and #Ps < C5~9. As u(K) > 0, by
Poincaré recurrence Theorem, we know that for p-a.e. v € IC, infinitely often g"v € K. Divide the set
K into the return time partition: for all £ > 1, let

Ay ={vekK,gfveK,and ¢gv¢ K forall 1<i<k—1}.

£

eqn:rayo:

egn:part

For all k£ > 1, set § = T where L is the Lipschitz-constant for the time one map g = g! of the
:rayon-in
(i%?; For

geodesic flow, ¢ > 0 is the constant associated to the compact set m(K) C M from equation
v € Ay, define P(v) as P(v) :== Ps, (v) N Ag. For v ¢ K, set P(v) =T'M \ K.

Thanks to the choice of ¢ an im edi te ve ification shows that for v € Ag, we have P(v) C
Bayn (v, -3 k) . By equations (i%%;'ang ;%? ;, in fac%, we have in this case
€

g
B =
73(1]) C F(U, ook

pr k) = Bayn (v, k).
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Recall the notation

P"(v) =P(v) Ng 'Plgv) N+ g~ " DP(g" M),

Now, let ny — oo be the sequence of return times of (¢"v),>¢ inside K (with ng = 0). By construction
of P, and by the above, we have

P CPLING PNy P
k—

€

C g_ninyn(gmU, m; Nj41 — nz)
i=0
k—1 .
= g " Br(g"v, mS Nit1 — ;)
i=0
k—1
C () g ™ Br(g™v, &nip — i)
i=0
k—1
=) g "pr (B(g"¥,&nit1 —ni))
i=0
k—1
= () pr (g ™ B(g" 0, &5 ni01 — n3))
i=0

k—1
= pr (ﬂ g " B(g"v,&nip — ni))

= pr (B(v, ;1))
= Br(v,&;ny) .

It remains to prove that P is a partition of finite entropy.

H,(P) ==Y u(P)logu(P)

PeP
—u(K°) log u(K°) — Z > u(P)log u(P)
k=1 PePnAg
(& C . 1
—u(K°) log u(K°) ;MAk ) log 1u(Ag) +Z,uAk IOg#PﬂAk
—u(K) log p(K%) = > u(Ag) log u(Ap)
k=1
+ (Z M(Ak)> xlogr? + 3 u(Ag) x klog(Le®)d
k=1 k=1
The first term is some finite constant. The third term is bounded from above by a constant times p(K)
and is therefore finite. By Kac lemma, the last term, up to a co fant, is equal to > poq ku(Ar) = p(K)
which is finite. The second term is finite since Lemma 1.35 1nnﬂ§ ei—‘ﬁogether Wlth Zk ku(Ag) < oo
imply >, u(Ag)log pu(Ay) < co. Therefore, P has finite entropy. O]

: t : t
Integrating ig%; over K on the left, and over T'M on the right, Proposition @‘fpe%fs to the
following corollary.

-entropy| Corollary A.3. Under the same assumptions, we have

1 1
/ limsup ——logu(Br(v,n,e))du < / limsup ——logP"(z)du(z) < hgs(p). (39)
K T

n—oo, gnvekl T LM n—oo,gmvell T
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. . . . : art . .
If we consider the essential supremum on the left and on the right in (igg ;, using the ergodicity of
i and Shannon-McMillan-Breiman Theorem, we get

hloc(lu’v IC) < h(,u, P)

This already implies hl . (1) < hxs(u) since the RHS of the inequality is less than hxs(u) and
K C T'M is arbitrary.

Step 2. The goal now is to prove equality be Weeﬂlggatok entropies and the Kolmogorov-Sinai entropy.
Inequality hxs(u) < hfiy;;( ) is due to Katok [Kat80]. In this reference, equality is proved on a compact

manifold, but the_proof of this inequality does not use compactness. Inequality hKat( ) < bk (w) is
1@%; Hence: b

immediate from y Step 1 we just need to prove that k. (1) < hL ().
Let h == h (). By definition of local entropy, there exists a compact set K C T*M such that
pu(K) > 4/5 and for p-a.e. v € K, we have

1
limsup —=logu(Br(v,e/2;T)) < h.
T—o0, gTvek r

Fix p > 0 and set
K, ={veK:uBr(v,e/2;T)) >exp(~T(h+p)), VT >, g'v e K}.

Then there exists 79 > 0 such that u(XC;)) > 3/4. Note that u(Yr) > 1/2 for every T" > 79, where
Yr =KNg Ty Let 0< 6 < 1/2. Then

hhcae (1) < hmsup T log St(u,d,e;T) < limsup Tlog Sr(Yr,&;T),

T—oo T—oo

where Sp(Yp,e,T) is the minimal cardinality of a (&, T)-spanning set of Yr.
Choose a maximal (¢/2,T')-separated set € in Y7, and denote by Xp(Yr,e/2,T) its cardinality. By
maximality, £ is also (e, T)-spanning, so that Sp(Yp,e,T) < Xp(Yr,e/2,T). By construction, we have

—T(h+p)EF(YT,5/2,T) < Z,u(Br(y,é?/Q;T)) <1
yel

With the above inequalities, we deduce that
hKat( ) < h+ p-

As p is arbitrary, the result follows.
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