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Abstract. The Group Cumulative Scheduling Problem (GCSP) comes
from a real application, i.e., order preparation in food industry. Each
order is composed of jobs which must be scheduled on machines, and the
goal is to minimize the sum of job tardiness. There is an additional con-
straint, called Group Cumulative (GC), which ensures that the number
of active orders never exceeds a given limit, where an order is active if at
least one of its jobs is started and at least one of its jobs is not finished.
In this paper, we first describe a Constraint Programming (CP) model
for the GCSP, where the GC constraint is decomposed using classical
cumulative constraints. We experimentally evaluate IBM CP Optimizer
(CPO) on a benchmark of real industrial instances, and we show that it
is not able to solve efficiently many instances, especially when the GC
constraint is tight. To explain why CPO struggles to solve the GCSP, we
show that it is NP-Complete to decide whether there exist start times
which satisfy the GC constraint given the sequence of jobs on each ma-
chine, even when there is no additional constraint. Finally, we introduce
an hybrid framework where CPO cooperates with an Ant Colony Opti-
mization (ACO) algorithm: ACO is used to learn good solutions which
are given as starting points to CPO, and the solutions improved by CPO
are given back to ACO. We experimentally evaluate this hybrid CPO-
ACO framework and show that it strongly improves CPO performance.

1 Introduction

There exist numerous variants of scheduling problems [23]. In [9], a new schedul-
ing problem is introduced, called the Group Cumulative Scheduling Problem
(GCSP). This problem comes from a real application: order preparation in food
industry. Each order is composed of jobs which must be scheduled on machines,
and the goal is to minimise the sum of job tardiness. There is an additional
constraint, called the Group Cumulative (GC) constraint, which comes from the
fact that a pallet is associated with each order: when starting the first job of an
order is started, a pallet is set on the ground and this pallet is removed when the
last job of the order is ended. As physical space is limited, the number of pallets
on the ground must never exceed a given limit. In other words, jobs are grouped
into orders, and GC ensures that the number of active groups never exceeds a
limit, where a group is active if at least one of its jobs is started and at least one
of its jobs is not finished.
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Beyond the industrial application described in [9], the GC constraint may
have other applications. In particular, it may be used each time a resource is
required by a group of jobs, so that the resource is consumed when the first job
of the group starts and it is released only when the last job of the group ends.

Contributions. In this paper, we describe a Constraint Programming (CP) model
for the GCSP, and we show that GC may be decomposed using classical cumu-
lative constraints. We experimentally evaluate IBM CP Optimizer (CPO), a
state-of-the-art solver for scheduling, on the industrial instances of [9], and we
show that CPO struggle to solve many of them, especially when GC is tight.
To provide insight into CPO performance, we study the complexity of GC: we
show that it is NP-Complete to decide whether there exist start times which
satisfy GC when the sequence of jobs on each machine is known, even if there is
no additional constraint. Finally, we show how to hybridise CPO with the Ant
Colony Optimisation (ACO) algorithm introduced in [9]: ACO is used to learn
good solutions which are given as starting points to CPO, and solutions im-
proved by CPO are given back to ACO. We experimentally evaluate this hybrid
CPO-ACO framework, and show that it strongly improves CPO performance.

Plan. In Section 2, we describe the GCSP and we define GC. In Section 3, we
introduce a CP model for the GCSP, and we report results obtained with CPO.
In Section 4, we study the complexity of GC. In Section 5, we describe the ACO
algorithm of [9]. In Section 6, we introduce and evaluate our hybrid CPO-ACO
framework. Sections 2 and 5 are recalls from [9]. Sections 3, 4 and 6 contain new
contributions with respect to [9].

Notations. We denote sets with calligraphic letters, constants with lowercase
letters, and variables with uppercase letters. #A denotes the cardinality of a set
A. [l, u] denotes the set of all integers ranging from l to u.

2 Description of the GCSP

The GCSP is a classical scheduling problem (referred to as the “basic” schedul-
ing problem and described in Section 2.1) with an additional GC constraint
(described in Section 2.2). In Section 2.3, we describe the benchmark of [9].

2.1 Basic scheduling problem

Given a set M of machines and a set J of jobs such that, for each job j ∈ J ,
rj denotes its release date, dj its due date, and pj its processing time, the goal
is to find a start time Bj , an end time Ej , and a machine Mj , for each job
j ∈ J . According to the notation introduced in [6], the basic scheduling problem
underlying the GCSP is denoted Rm, 1, 1;MPS|sij ; rj |

∑
Tj :

– Rm, 1, 1 means that M contains several machines working in parallel and
each machine m ∈M can process at most one job at a time;



Solving the Group Cumulative Scheduling Problem with CPO and ACO 3

– MPS stands for Multi-mode Project Scheduling and means that every ma-
chine m ∈ M has its own speed denoted spm (so that the duration of a job
j is pj ∗ spMj );

– si,j indicates that the setup time of a job j ∈ J depends on the job i that
precedes j on the machine (i.e., the time interval between the end time of i
and the start time of j must be larger than or equal to this setup time);

– rj means that a job cannot start before its release date, i.e., ∀j ∈ J , Bj ≥ rj ;
–

∑
Tj indicates that the goal is to minimize the sum of tardiness of every

job, i.e.,
∑
j∈J max(0, Ej − dj).

2.2 GC Constraint

GC is a particular case of cumulative constraint [1, 2, 22, 21], and we show how to
decompose GC using cumulative constraints in Section 3. Cumulative constraints
are used to model the fact that jobs require resources (e.g., human skills or
tools) and that these resources have limited capacities, i.e., the sum of resources
required by all jobs started but not ended must never exceed resource capacities.

In the GCSP, the resource is not directly required by jobs, but by job groups.
More precisely, jobs are partitioned into groups (corresponding to orders in the
industrial application of [9]). The start (resp. end) time of a group is defined as
the smallest start time (resp. largest end time) among all its jobs. A group is
said to be active at a time t if it is started and not ended at time t. The GC
constraint ensures that the number of active groups never exceeds a given limit.
More formally, we define the GC global constraint as follows.

Definition 1. Given a set J of jobs, a partition P of J in #P groups (such
that each job j ∈ J belongs to exactly one group G ∈ P), an integer limit l and,
for each job j ∈ J , an integer variable Bj (resp. Ej) corresponding to the start
time (resp. end time) of j, the constraint GCJ ,P,l({Bj : j ∈ J }, {Ej : j ∈ J })
is satisfied iff #{G ∈ P : minj∈G Bj ≤ t < maxj∈G Ej} ≤ l for any time t.

In Fig. 1, we display two examples of schedules: one that violates GC and one
that satisfies it (we assume that setup times are null in this example).

2.3 Benchmark instances

A benchmark extracted from industrial data is introduced in [9]. It contains
548 instances such that the number of groups (resp. jobs and machines) ranges
from 56 to 406 (resp. from 288 to 2909, and from 1 to 14). For each instance,
an upper bound (denoted x) on the number of active groups is given. It is
computed as follows: first, a greedy algorithm is used to compute a solution s
for the basic scheduling problem (without the GC constraint); then x is assigned
to the maximum number of active groups during the whole time horizon in s.

As our goal is to study the impact of GC on the solution process, we consider
three classes of instances: in the first class, denoted loose, the limit l is set to
l = 0.7 ∗ x, in the second class, denoted medium, l is set to 0.5 ∗ x, and in the
third class, denoted tight, l is set to 0.3 ∗ x.



4 L. Groleaz et al.

Fig. 1. Schedule examples. (a) A set J of 9 jobs and a partition P of J in 4 groups
represented by colours. (b) Example of schedule on 2 machines which violates GC when
l = 2 (there are 3 active groups from time 3 to time 6, as displayed on the bottom of
(b)). (c) Example of schedule on 2 machines which satisfies GC when l = 2 (an iddle
time is added between j3 and j6 to wait the end of the blue group).

Minimize
∑
j∈J

max(0, endOf (Aj)− dj)

subject to Amj = interval(dj ∗ spm) ∀j ∈ J , ∀m ∈M (1)
optional(Amj ) ∀j ∈ J , ∀m ∈M (2)
Aj = alternative({Amj : m ∈M}) ∀j ∈ J (3)
startMin(Amj , rj) ∀j ∈ J , ∀m ∈M (4)
Sm = intervalSequence({Amj : j ∈ J }, jobTypes) ∀m ∈M (5)
noOverlap(Sm, jobTypes, setupTimes) ∀m ∈M (6)

Fig. 2. CPO model for the basic scheduling problem described in Section 2.1. (jobTypes
is an array which associates a type with every job and setupTimes is a transition matrix
which defines the setup times between job types).

3 CPO Model

We describe a CPO model for the basic scheduling problem in Section 3.1, and
a decomposition of GC in Section 3.2. We report results obtained with CPO in
Section 3.3. We refer the reader to [16] for details on CPO.

3.1 Model of the basic scheduling problem

The CPO model associates an interval variable Aj with every job j ∈ J , i.e.,
Aj corresponds to the interval [Bj , Ej ]. Also, an optional interval variable Amj is
associated with every job j ∈ J and every machine m ∈M: if job j is executed
on machine m, then Amj = Aj ; otherwise Amj is assigned to ⊥ (i.e., it is absent).
Finally, an interval sequence variable Sm is associated with every machine m to
represent the total ordering of the present interval variables in {Amj : j ∈ J }.

The objective function and the constraints are described in Fig. 2. Con-
straint (1) defines the interval variable Amj whose length is equal to the process-
ing time of job j multiplied by the speed of machine m; Constraints (2) and
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span(FG , {Amj : m ∈M∧ j ∈ G}) ∀G ∈ P (7)
Active =

∑
G∈P

pulse(FG , 1) (8)

lowerOrEqual(Active, l) (9)

Fig. 3. CPO decomposition of GC.

(3) ensure that every job j is scheduled on exactly one machine; Constraint (4)
ensures that a job does not start before its release date; Constraint (5) defines
the sequence of jobs on machine m; and Constraint (6) ensures that at most
one job is executed at a time on machine m, and states that there are sequence-
dependent setup times between jobs.

3.2 Decomposition of GC

We can easily decompose GC using a classical cumulative constraint. To this
aim, we associate a new interval variable FG with every group G ∈ P. This
variable corresponds to a fictive job which starts with the earliest job of the
group and ends with its latest job, and which consumes one unit of resource.
A simple cumulative constraint on these fictive jobs ensures that the number of
active groups never exceeds l.

More precisely, Fig. 3 describes a CPO model of this decomposition: Con-
straint (7) ensures that, for every group G, the fictive job variable FG spans over
all jobs in the group; Constraint (8) defines the cumul function (denoted Ac-
tive) corresponding to the case where each fictive job consumes one unit of the
resource; and Constraint (9) ensures that Active never exceeds l, thus ensuring
the cumulative constraint on fictive jobs.

3.3 Experimental evaluation of CPO

CPO is a state-of-the-art solver for scheduling problems, as demonstrated in [7]
on the job shop, for example. In this section, we report CPO results with the
model described in Sections 3.1 and 3.2 on instances described in Section 2.3. All
experiments reported in this paper have been performed on a processor Intel(R)
Xeon(R) CPU E5-2650 v4 @ 2.20GHz with 7.2 GB RAM.

CPO provides different levels of filtering, and we have compared results ob-
tained with two different levels: default filtering (based on Timetable [1]) and
extended filtering (based on energy reasoning and edge finding [5, 15, 29, 22, 18]).
For short time limits (less than 100s), CPO with default filtering usually finds
better solutions than CPO with extended filtering. After one hour, for nearly half
of the instances a better solution is found with the extended filtering, whereas
for the other half a better solution is found with the default filtering, and this
happens in all classes (loose, medium, and tight). In most cases, the difference
between the two levels of filtering is rather small. Hence, we have chosen to
report results obtained with the default level of filtering.
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Fig. 4. Evolution of the cumulative number of solved instances with respect to time
for the basic scheduling problem and for the GCSP when l is loose, medium or tight.

In Fig. 4, we display the evolution of the cumulative number of solved in-
stances with respect to time for the basic scheduling problem (we consider that
an instance is solved when CPO has completed its run). In this case, CPO is
able to solve 354 instances (among the 548 instances of the benchmark) within
one hour. We also display results on the same set of instances when adding GC,
for the three classes (which only differ on the value of l). Clearly, GC increases
the hardness of the problem, and increasing the tightness of GC (by decreasing
the limit l) also increases hardness: 319 (resp. 300 and 259) instances are solved
within one hour for the loose (resp. medium and tight) class.

This may come from the fact that the decomposition of GC is not well prop-
agated by CPO. A possible explanation is that interval variables FG associated
with groups do not have known durations when starting the search. We can only
compute bounds on group durations. For example, the duration of a group is
lower bounded by the greatest duration of its jobs. However, these bounds are
not very tight at the beginning of the search. In this case, energy-based propaga-
tion techniques are not efficient as the energy of a job is defined as its duration
multiplied by its resource consumption.

In Fig. 5, we display the number of jobs and machines of solved and unsolved
instances, for the basic scheduling problem and the tight GCSP. In both cases,
some large instances (with more than 2500 jobs) are solved whereas some small
instances (with less than 300 jobs) are not solved. Most instances with more than
6 machines are solved (only 8 are not solved for the basic scheduling problem)
whereas many instances with one machine are not solved.
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Basic scheduling problem Tight GCSP

Fig. 5. Sizes of solved and unsolved instances for the basic scheduling problem (left)
and the tight GCSP (right): each point (x, y) corresponds to an instance with x jobs
and y machines. Top (green points): instances solved in less than one hour. Bottom
(red points): instances not solved within one hour.

4 Deciding of GC feasibility with list schedules

CPO exploits precedence relations to solve scheduling problems [16]: all temporal
constraints are aggregated in a temporal network whose nodes represent interval
start and end time-points and whose arcs represent precedence relations. Also,
CPO integrates a Large Neighborhood Search (LNS) component which is based
on the initial generation of a directed graph whose nodes are interval variables
and edges are precedence relations between interval variables.

Reasoning on precedence relations often simplifies the solution process of
scheduling problems. In particular, for the basic problem described in Section
2.1 (without GC), given a list schedule (i.e., an ordered list of jobs for each
machine), we can compute optimal start times in polynomial time: for each
machine, we consider jobs according to the order defined by its associated list
and schedule each of them as soon as possible [24, 10]. The basic scheduling
problem is NP-hard because it is hard to find the list schedule which leads to
the optimal solution. However, as optimal start times are easily derived from list
schedules, search can focus on precedence relations.

If we add a classical cumulative constraint to the basic scheduling problem,
the problem of computing optimal start times given a list schedule becomes
NP-hard [21]. However, if we remove the objective function (i.e., we simply
search for a schedule which satisfies the cumulative constraint without having to
minimize the tardiness sum), then we can easily compute start times that satisfy
cumulative constraints given a list schedule: Again, this can be done greedily,
by considering jobs in the order of the lists, and scheduling each job as soon as
possible with respect to cumulative constraints.
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Fig. 6. Example of list schedule with 2 machines for the jobs of Fig. 1.

However, this is no longer true for GC. For example, let us consider the list
schedule displayed in Fig. 6. We cannot find start times that satisfy GC for this
list schedule when l = 2. Indeed, on machine m1, the yellow job j1 is between
two blue jobs j5 and j4, and this implies that we must start the yellow group to
be able to complete the blue group. Similarly, on machine m1, the blue job j5
is between two yellow jobs (j3 and j1) so that we must start the blue group to
be able to complete the yellow group, and on machine m2, the yellow job j2 is
between two pink jobs (j9 and j8) so that we must start the yellow group to be
able to complete the pink group. This implies that both yellow, blue and pink
groups must be active all together at some time.

More precisely, let us denote LS-GC the problem of deciding whether there
exists a solution of GC which is consistent with a given list schedule, where a list
schedule is consistent with a solution of GC iff, for every j1, j2 ∈ J such that j1
occurs before j2 in a same list, we have Ej1 ≤ Bj2 .

Theorem 1. LS-GC is NP-complete.

Proof. LS-GC clearly belongs to NP as we can check in polynomial time if a
given assignment is a solution of GC which is consistent with a list schedule.

Now, let us show that LS-GC is NP-complete by reducing the Pathwidth
problem to it. Given a connected graph G = (N , E) (such that N is a set of nodes
and E a set of edges) and an integer w, Pathwidth aims at deciding whether
there exists a sequence (N1, ...,Nn) of subsets of N such that (i) N =

⋃n
i=1Ni;

(ii) ∀{u, v} ∈ E ,∃i ∈ [1, n], {u, v} ⊆ Ni; (iii) ∀i, j, k ∈ [1, n], i ≤ j ≤ k ⇒
Ni ∩Nk ⊆ Nj ; and (iv) ∀i ∈ [1, n], #Ni ≤ w. Pathwidth is NP-complete [11].

Let us first show how to construct an instance of LS-GC given an instance
of Pathwidth defined by a graph G = (N , E) and an integer w. We assume that
nodes of N are numbered from 1 to #N . For each edge {u, v} ∈ E , we define
three jobs denoted j1uv, j

2
uv, and j3uv such that every job has a processing time

equal to 1. The partition P associates one group Gu with every vertex u such
that Gu = {j1uv, j3uv : {u, v} ∈ E ∧ u < v} ∪ {j2uv : {u, v} ∈ E ∧ u > v}. In other
words, for each edge {u, v} ∈ E such that u < v, j1uv and j3uv belong to group Gu
whereas j2uv belongs to group Gv. There are #E machines, and the list schedule
associates the list (j1uv, j

2
uv, j

3
uv) with every edge {u, v} ∈ E such that u < v.

Finally, we set the limit l to w. Fig. 7 gives an example of this reduction.
Now, let us show that every solution (N1, ...,Nn) of an instance of Pathwidth

corresponds to a solution of the corresponding instance of LS-GC. To this aim, we
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Fig. 7. Reduction from Pathwidth to LS-GC. (a): Example of instance of Pathwidth.
(b): Example of solution of (a). (c): List schedule of the instance of LS-GC correspond-
ing to (a). (d): Solution of (c) corresponding to (b).

show how to define the start time Bjiuv of every job jiuv associated with an edge
{u, v} ∈ E , with i ∈ {1, 2, 3}: let a be the index of the first subset in (N1, ...,Nn)
which contains both u and v (i.e., a = min{b ∈ [1, n] : {u, v} ⊆ Nb}); we define
Bj1uv = 3∗a−3, Bj2uv = 3∗a−2, and Bj3uv = 3∗a−1; end times are computed by
adding the processing time 1 to every start time. In Fig. 7(d), we display start
and end times computed for a solution of the Pathwidth instance of Fig. 7(a). We
can easily check that start and end times are consistent with the list schedule.
To show that start and end times satisfy GC, we have to show that the number
of active groups never exceeds l, and this is a consequence of the fact that the
number of vertices in a set Nb never exceeds w = l. Indeed if we consider a time
t with 3 ∗ a − 3 ≤ t ≤ 3 ∗ a − 1 (a ∈ [1, n]), then the only groups that can be
active at time t are those associated with nodes in Na and #Na ≤ w = l.

Finally, let us show that every solution of the instance of LS-GC built from
an instance of Pathwidth corresponds to a solution of this Pathwidth instance.
A solution of an instance of LS-GC is an assignment of values to Bj and Ej
for every job j ∈ J (defining start and end times of j). For each node u ∈ N ,
we have a group of jobs Gu, and the start time Bu of this group is the smallest
start time of its jobs (i.e., Bu = min{Bj : j ∈ Gu}) whereas the end time Eu of
this group is the largest end time of its jobs (i.e., Eu = max{Ej : j ∈ Gu}). Let
T = {Bu : u ∈ N} be the set of all group start times, and let (t1, . . . , t#T ) be
the ordered sequence of values in T . The solution of the Pathwidth instance is
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(N1, . . . ,N#T ) such that for each i ∈ [1,#T ], Ni = {u ∈ N : Bu ≤ ti < Eu}.
We can check that (N1, . . . ,N#T ) is a solution. Indeed, for each edge {u, v} ∈ E
with u < v, the list (j1uv, j

2
uv, j

3
uv) ensures that when j2uv starts both Gu and Gv

are active groups. Hence, ∀i ∈ [1,#T ] such that ti = max(Bu, Bv), {u, v} ∈ Ni.
Now if we have i, j, k ∈ [1,#T ] with i ≤ j ≤ k, u ∈ Ni and u ∈ Nk then
Bu ≤ ti ≤ tj ≤ tk < Eu. Hence u ∈ Nj , and so Ni ∩ Nk ⊆ Nj . Finally,
∀i ∈ [1,#T ], all groups of Ni are active at time ti. So #Ni ≤ l = w

5 ACO algorithm for the GCSP

Many different ACO algorithms have been proposed for solving scheduling prob-
lems, and a review of 54 of these algorithms may be found in [27]. ACO algo-
rithms use pheromone trails to learn promising solution components and pro-
gressively intensify the search around them. The two most widely considered
definitions of pheromone trails for scheduling problems are: Job trails, where a
trail τ(j, j′) is associated with every couple of jobs (j, j′) ∈ J 2 to learn the
desirability of scheduling j′ just after j on a same machine; and Position trails,
where a trail τ(j,m, n) is associated with each triple (j,m, n) ∈ J ×M× [1,#J ]
to learn the desirability of scheduling job j at position n on machine m.

Most ACO algorithms for scheduling problems follow the basic template dis-
played in Algo. 1. At each iteration of the loop lines 1-9, nants solutions are
constructed in a greedy randomised way, where nants is a parameter which is
used to control exploration (the larger nants, the stronger the exploration). At
each iteration of the greedy construction (lines 4-8), a machine m and a job j
are chosen, and j is scheduled on m, until all jobs have been scheduled. The
choice of m is done according to some heuristics which depend on the scheduling
problem. The choice of j is done in a randomised way, according to a probabil-
ity p(j) which depends on two factors. The pheromone factor fτ (j) represents
the learned desirability of scheduling j on m and its definition depends on the
pheromone trail definition: for Job trails, fτ (j) = τ(j′, j) where j′ is the last job
scheduled on m; for Position trails, fτ (j) = τ(j,m, k) where k is the number of
jobs scheduled on m. The heuristic factor η(j) evaluates the interest of schedul-
ing j on m and its exact definition depends on the scheduling problem. α and β
are two parameters which are used to balance these two factors.

At the end of each cycle (line 9), pheromone trails are updated in two steps.
First, every pheromone trail is decreased by multiplying it with 1 − ρ where
ρ ∈ [0, 1] is a parameter which controls the speed of intensification: the larger
ρ, the quicker search is intensified towards the best solutions found so far. In
a second step, pheromone trails associated with the best solution among the
nants last computed solutions are increased in order to increase the probability
of selecting the components of this solution in the next constructions.

In [9], Algo. 1 is adapted to solve GCSPs as follows. Line 5, m is the machine
which minimizes the end time of the last job assigned to it. Line 6, the heuristic
factor η(j) is set to 0 whenever the current number of active groups is equal to
the limit l and j belongs to a group which is not yet active. In this case, the



Solving the Group Cumulative Scheduling Problem with CPO and ACO 11

Algorithm 1: ACO algorithm for scheduling problems

1 while time limit not reached do
2 for i in [1, nants] do

/* Greedy randomised construction of one solution */

3 Cand ← J
4 while Cand 6= ∅ do
5 choose a machine m ∈M according to some heuristic

6 choose j ∈ Cand w.r.t. probability p(j) = [fτ (j)]
α·[η(j)]β∑

j′∈Cand

[fτ (j′)]α·[η(j′)]β

7 assign m to Mj , and assign values to Bj and Ej
8 remove j from Cand

9 update pheromone trails

10 return the best constructed solution

probability p(j) of selecting j is equal to 0, thus ensuring that solutions always
satisfy GC. When j can be scheduled without violating GC (i.e., the number
of active groups is smaller than l, or it is equal to l and j belongs to an active
group), the heuristic factor η(j) is defined as the ATCS (Apparent Tardiness
Cost with Setup-times) score defined in [23]. Line 9, before updating pheromone
trails, the best solution (among the last nants constructed solutions) is improved
by applying a local search step. Also, pheromone trails are updated according
to the MMAS framework of [26], i.e., every pheromone trail is bounded between
two parameters τmin and τmax . Also, every pheromone trail is initialised to τmax

at the beginning of the search process (before line 1).
This ACO algorithm has one hyper-parameter, which is used to choose the

pheromone trail definition (i.e., Job trails, Position trails, or a new definition
introduced in [9] and called Time trails). The algorithm also has the following
parameters: nants, α, β, ρ, τmin and τmax, plus two parameters for the local
search step. In [9], a portfolio of nine complementary parameter configurations
are identified, and the per-instance algorithm selector Llama [14] is used to
select from this portfolio the configuration expected to perform best for every
new instance to solve.

6 New Hybrid CPO-ACO approach

Many hybrid approaches combine exhaustive solvers (such as CP or Integer
Linear Programming, for example) with meta-heuristics [4]. Some of these hybrid
approaches are referred to as matheuristics [17]. A well known example of hybrid
approach is LNS [25] which uses CP to explore the neighborhood of a local search.

Different hybrid CP-ACO approaches have been proposed such as, for ex-
ample, [20, 19, 12, 13, 28, 8]. Some approaches use constraint propagation during
the construction of solutions by ACO (lines 3-8 of Algo. 1), to filter the set of
candidate components and remove those that do not satisfy constraints [19, 12].
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Some other approaches use ACO to learn ordering heuristics which are used by
CP [20, 13]. In [8], a bi-level hybrid process is introduced where ACO is used to
assign a subset of variables, and the remaining variables are assigned by CP.

6.1 Description of the hybrid approach

In this section, we introduce a new hybrid CPO-ACO approach where ACO and
CPO are alternatively executed and exchange solutions: solutions found by ACO
are used as starting points for CPO, whereas solutions found by CPO are used
to update pheromone trails. More precisely, we modify Algo. 1 as follows: every
k iterations of the loop lines 1-9, we call CPO. When calling CPO, we supply it
with the best solution constructed during the k last iterations of ACO, and this
solution is used by CPO as a starting point. Each call to CPO is limited to a
given number of backtracks. Once CPO has reached this limit, we get the best
solution found by CPO and update pheromone trails according to this solution.

The limit on the number of backtracks follows a geometric progression, as
often done in classical restart strategies: the first limit is equal to b, and after
each call to CPO, this limit is multiplied by g. Hence, our hybrid CPO-ACO
approach may be viewed as a particular case of restart where ACO is run before
each restart in order to provide a new initial solution, and the best solution after
each restart is given back to ACO to reinforce its pheromone trails.

Our hybrid CPO-ACO algorithm has three parameters: the number k of
ACO cycles which are executed before each call to CPO, and the values b and
g which are used to fix the limit on the number of backtracks of CPO. In all
our experiments, these parameters are set to k = 5, b = 1000, and g = 20. With
these values, the number of calls to CPO (within a time limit of one hour) ranges
from 3 for the smallest instances to 4 for the largest ones.

For the ACO algorithm used in CPO-ACO, we use a parameter setting which
favors a quick convergence, as only k = 5 cycles of ACO are run before each CPO
restart, and only 3 or 4 restarts are done: α = 5, β = 10, ρ = 0.2, nants = 40,
τmin = 0.1, τmax = 4, and the pheromone definition is Position trails.

In CPO-ACO, CPO is run with its default setting so that CPO performs
restarts during each of its runs. We have made experiments with other settings
(including the DepthFirst search mode of CPO, which performs a single search),
and the best results were obtained with the default setting of CPO.

6.2 Experimental evaluation

Compared approaches. We compare CPO-ACO with CPO in its default setting
(which is the best performing setting for the GCSP). We also report results ob-
tained with the ACO algorithm introduced in [9] (we consider the ACO variant
which uses Llama to select ACO parameters for each instance as this variant
obtains the best results).

Finally, we report results obtained with Solution-Guided Multi-Point Con-
structive Search (SGMPCS) [3], which is a constructive search technique that
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performs a series of resource-limited tree searches where each search begins either
from an empty solution (as in randomized restart) or from an “elite” solution.
SGMPCS has some similarities with our approach, as it provides initial elite
solutions to the CP solver. Hence, the comparison with SGMPCS allows us to
evaluate the interest of using pheromone to learn good solution components that
are exploited to compute new starting points. For SGMPCS, we use CPO as CP
solver, and we build elite solutions with the same greedy randomised algorithm
as the one used in CPO-ACO, except that we ignore the pheromone factor fτ
when computing the probability of selecting a job. The parameters of SGMPCS
are set as in [3], i.e. the probability of starting from an empty solution is 0.25
and the size of the elite list is 4.

We separate instances in two classes for analysing results: the closed class
contains every instance for which the optimal solution is known (either because
the objective function is equal to 0, or because an approach has been able to
prove optimality); the open class contains all other instances. For the loose (resp.
medium and tight) class, there are 361 (resp. 356 and 339) closed instances, and
187 (resp. 192 and 209) open instances.

Results for closed instances. On the left part of Fig. 8, we display the cumulative
number of solved instances with respect to time, for closed instances. After one
hour of CPU time, CPO-ACO clearly outperforms all other approaches for the
three classes, and it has been able to solve nearly all closed instances. More
precisely, the number of loose, medium and tight instances solved by CPO-ACO
in one hour is equal to 356, 352, and 329, respectively, whereas it is equal to 344,
332, and 297 for SGMPCS, to 344, 318, and 242 for ACO, and to 324, 306, and
261 for CPO. We observe that the gap between CPO-ACO and other approaches
increases when increasing the tightness of GC.

However, for short time limits (smaller than 10 seconds), conclusions are dif-
ferent. In particular, after 1 second, the best approach is SGMPCS: The number
of loose, medium and tight instances solved by SGMPCS in 1 second is equal
to 122, 100, and 48, respectively, whereas it is equal to 92, 78, and 35 for CPO-
ACO. This shows that good starting points allow CPO to quickly find better
solutions. However, after 10 seconds, ACO is able to build better starting points
by exploiting good solutions previously constructed by ACO or CPO.

Results for open instances. We evaluate the quality of a solution of an open
instance by computing its ratio to the best known solution: if this ratio is equal
to 1, the solution is the best known solution; if it is equal to r > 1, the solution
is r times as large as the best known solution.

On the right part of Fig. 8, we display the evolution of the average ratio to
best known solutions with respect to time. After one hour, CPO-ACO clearly
outperforms all other approaches for the three classes. Its average ratio is rather
close to 1, meaning that in many cases it has found the best known solution. More
precisely, for loose, medium, and tight instances this ratio is equal to 1.37, 1.38,
and 1.60, respectively, for CPO-ACO, whereas it is equal to 2.18, 2.51, and 3.24
for ACO, to 2.95, 3.06, and 5.50 for SGMPCS, and to 3.86, 5.95, and 13.44 for
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Fig. 8. Results of CPO-ACO, CPO, ACO, and SGMPCS. Left: Evolution of the cumu-
lative number of solved instances for closed instances. Right: Evolution of the average
ratio to the best known solution for open instances. Top: Loose instances. Middle:
Medium instances. Bottom: Tight instances.
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Fig. 9. Distribution of ratios to best known solutions after one hour on open instances.

CPO. Like for closed instances, the gap between CPO-ACO and other approaches
increases when increasing the tightness of the constraint. This is particularly true
for CPO which has very poor performance on tight instances. SGMPCS finds
better solutions than CPO, and this shows us the interest of giving good starting
points to CPO. However, like for open instances, we observe that the starting
points learned by ACO allow CPO to find much better solutions.

In Fig. 9, we display ratio distributions. CPO-ACO has much smaller median
ratios and inter-quartile ranges. For loose (resp. medium and tight) instances it
finds the best known solution for 115 (resp.106 and 114) instances, whereas
ACO finds it for 9 (resp. 21 and 14) instances, SGMPCS for 48 (resp. 44 and
34) instances and CPO for 27 (resp. 25 and 37) instances.

7 Conclusion

We have shown that GC is a challenging constraint for CP solvers such as
CPO. In particular, reasoning on precedence relations (which is classical to solve
scheduling problems) may be misleading as it is NP-complete to find starting
times that satisfy GC when a list schedule is provided. We have introduced an
hybrid framework which drastically improves CPO performance by providing
good starting points. These starting points are computed by an ACO algorithm
which uses pheromone trails to learn good solution components.

This hybrid framework introduces new parameters: parameters to define the
progression of the limit used to trigger restarts, and classical ACO parameters. In
all experiments reported in this paper, we have used the same parameter setting.
However, it could be interesting to use a per-instance algorithm selector such as
Llama to dynamically choose the best parameter setting within a portfolio
of representative and complementary settings. Other further work will concern
the study of the GCSP: Fig. 5 shows us that some small instances are much
harder than some large instances, and it would be interesting to identify instance
parameters that characterize hardness.
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