
HAL Id: hal-02899123
https://hal.science/hal-02899123

Preprint submitted on 15 Jul 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Process, Systems and Tests: Three Layers in Concurrent
Computation (Short Paper)

Clément Aubert, Daniele Varacca

To cite this version:
Clément Aubert, Daniele Varacca. Process, Systems and Tests: Three Layers in Concurrent Compu-
tation (Short Paper). 2020. �hal-02899123�

https://hal.science/hal-02899123
https://hal.archives-ouvertes.fr

Submitted to:
EXPRESS/SOS 2020

c© C. Aubert & D. Varacca
This work is licensed under the
Creative Commons Attribution License.

Process, Systems and Tests: Three Layers in Concurrent
Computation (Short Paper)

Clément Aubert
School of Computer and Cyber Sciences, Augusta University, Georgia, USA

caubert@augusta.edu

Daniele Varacca
LACL, Universit Paris-Est Crteil, France

daniele.varacca@u-pec.fr

In this short position paper, we would like to offer a new template to study process algebras for
concurrent computation. We believe our template will clarify the distinction that is too often left
implicit between user and programmer, and that it enlightens pre-existing ambiguities that have been
running across process algebras as diverse as the calculus of communicating systems (CCS), the
π-calculus—also in its distributed version—or mobile ambients. Our distinction starts by subdividing
the notion of process itself in three conceptually separated entities, and shapes future improvements—
both technically and organizationally—as well as it captures recent and diverse progresses in process
algebras.

While the role of what can be observed and the subtleties in the definitions of congruences have
been intensively studied, the fact that not all the comparisons serve the same purpose and should not
be made in the same context is curiously left over, or at least not formally discussed. We argue that this
blind spot comes from the under-specification of contexts—environments in which the comparison
takes place—that supposedly “stay the same” no matter the nature of the process, who is testing it, or
for what. We illustrate our statement with the “usual” concurrent languages, but also back it up with
λ -calculus and existing implementations of concurrent languages as well.

1 Introduction: An Apparently Tightwad Godfather

Theoretical languages for concurrent computation often take λ -calculus as a model or a comparison
basis1: one wish concurrent computation could have a language as mature and as stable as this functional
language,2 and “achieve the same economy” [30, p. 86]. As β -normal terms cannot reduce, to study their
behaviour, one needs first to make them interact with an “environment”, represented by the notion of
context. However, being careless when defining the notion of context can lead to e.g. losing confluence [6,
pp. 40–41, Example 2.2.1], even in the presence of a typing system [20]. When λ -calculus is enriched
with e.g. quantum or probabilistic features, then contexts are narrowed down to term [37, p. 1126] or
surface [18, pp. 4, 10] contexts respectively. In resource sensitive extensions of the λ -calculus was
implemented a more drastic separation, as λ -terms were split between terms and tests [9], a separation
that was later on naturally extended to contexts [8, p. 73, Figure 2.4].

It seems ironic that λ -calculists took inspiration from a concurrent language to split their syntax in two
right at its core [9, p. 97], or to study formally the communication between a context and its expression,
while concurrent languages apparently tried to maintain the “purity” and indistinguishability of their
contexts—i.e. “a context is a term, period”—as we will discuss below.

1That the “λ -calculus is to sequential programs what the π-calculus is to concurrent programs” is a common trope [12, 38].
2This common belief actually needs some revision [2], but that’s not our point here.

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Process, Systems and Tests (Short Paper)

2 Contexts

In this section, we would like to discuss how, under their apparent monolithic status, contexts in concurent
calculi are actually multifaceted due to their different purposes.

2.1 Open and Closed Terms

Most of the time, and since the origin of the calculus of communicating systems, the theory starts by
considering only programs—“closed behaviour expression[s], i.e. ones with no free variable” [28, p. 73]—
when comparing terms, as—exactly like in λ -calculus—they correspond to self-sufficient, well-rounded
programs: it is generally agreed upon that open terms should not be released “into the wild”, as they
are not able to remain in control of their internal variables, to prevent e.g. undesirable or uncontrolled
interferences. Additionally, closed terms are also the only ones to have a reduction semantics, which
means that they can evolve without interacting with the environment. For contexts, this means that we
are actually interested only in closing contexts, a.k.a. “completing context” [11, p. 466], contexts that
guarantee that the term under study is closed.

However, in concurrent calculi, the central notions of binders and of variables have been changing,
and still seem sometimes “up in the air”. For instance, in the original CCS, restriction was not a binder [28,
p. 68], and by “refusing to admit channels as entities distinct from agents” [29, p. 16] and defining two
different notions of scopes [29, p. 18], everything was set-up to produce a long and recurring confusion as
to what a “closed” term meant in CCS. In the original definition of π-calculus [32, 33], there is no notion
of closed terms, as every (input) binding on a channel introduce a new and free occurrence of a variable.
However, the language they build upon—ECCS [17]—made this distinction clear.

Adding to the confusion, and taking inspiration from the claimed “monotheism” of the actor
model [22], notions such as values, variables, or channels have been united under the common ter-
minology of “names”, making it even harder to decide what “close” would refer to. Finally, let us note
that extensions of π-calculus sometimes include different binders, as e.g. output binders in the private
π-calculus [36, p. 113].

2.2 Not All Contexts Are Equal

In addition to this original, common, restriction, contexts are routinely modified and altered, to ease
the study of particular relations or to preserve interesting properties. We would like to briefly list some
examples. In the Calculus of Communicating Systems, notions as central as contextual bisimulation [3,
pp. 223-224, Definition 421] and barbed equivalence [3, p. 224, Definition 424] considers only static
contexts [3, p. 223, Definition 420], which are composed only of parallel composition with arbitrary
term and restriction. There is no justification—other than technical, i.e. because they “they persist after a
transition” [3, p. 223]—as to why should only some contexts being considered in contextual equivalences.
In the π-calculus, despite their liberal definition [14, p. 19, Definition 1.2.1], contexts like e.g. [�]+0 are
completely excluded. The notion of congruence [14, p. 19, Definition 1.2.1] is refined with non-input
congruence [14, p. 62, Definition 2.1.23] thanks to a modified notion of context [14, p. 62, Definition
2.1.22]. In the distributed π-calculus, contexts are restricted to particular operators [21, Definition 2.6],
and then restricted to static contexts [21, Definition 2.6], which contains only parallel composition with
arbitrary terms and name binding,3 deemed “sufficient for our purpose” [21, p. 37].

3Such contexts have been called “configuration context” [24, p. 375] or “harness” in the ambient calculus [19, p. 372].

C. Aubert & D. Varacca 3

2.3 Purposes of Congruences

As we just saw, contexts are often “tuned” when a particular relation is under study, and shrunken by
need, to bypass some of the difficulties they raise, or to preserve some notions. This variety of refinements
on the notion of context is justified by the central roles of congruences in concurrent calculii, which
captures the idea that a comparison is deemed of interest only if its results are valid in every possible
context. However, we argue that there are two different perspectives in the use of congruence, depending
on whether one would like to know

1. if an incomplete portion of a process can be substituted for another,

2. if a tested system will behave as another in any environment.

Roughly speaking, 1 is to be understood from a programmer’s point of view (i.e. “can I replace this
piece of code by this other one and still obtain the same behavior?”). The usage at 2 should be understood
from the point of view of the users in an external environment, or, in a security setting, of an attacker (i.e.
“will they be able to tell whenever a program or the other is running?”).

That different congruences capture different dimensions is witnessed e.g. by the treatment made to
“silent” transitions, seen as an “unobservable internal activity” [21, p. 6]. It is indeed routine to consider
strong and a weak versions of a congruence, the later focusing on the “externally observable actions” [13,
p. 230]. While we agree that “[t]his abstraction from internal differences is essential for any tractable
theory of processes” [29, p. 3], we would like to stress that both can and should be accommodated, and
that “internal” transition should be treated as invisible to the user, but accessible to the programmer.

Sometimes is asked the question “to what extent should one identify processes differing only in their
internal or silent actions?” [5, p. 6], but the question is treated as a property of the process algebra,4 and
not as something that can internally be tuned as needed, and in that particular example, this distinction is
later on simply discarded [5, p. 6]! We argue that the answer to that question is “it depends who is asking”,
and that different types of tests should be available to highlight or hide those features, based on the needs.

3 Our Proposal

In the λ -calculus, being closed is what makes a term “ready to be executed in an external environment”.
But in concurrent calculi, being a closed term is often not enough, as it is routine to exclude e.g. terms
with un-guarded operators like sum [14, p. 416] or recursion [29, p. 166]. In our opinion, the right
distinction is not about binders of free variables, but about the role played by the syntactic objects in
the theory. As “being closed” is 1. not always well-defined, or at least changing, 2. sometimes not the
only condition, 3. sometimes not required to test a term5, we would like to use the slightly more generic
adjectives incomplete and complete.

With this in mind, we argue that concurrent languages would benefit from being articulated as follows:

I. Define processes The first step is to select a set of operators called construction operators. The
programmer will use those to write terms, and they should be expressive, easy to combine, and
with light constraints. To ease their usage, a “meta-syntax” can be used, something that is generally
represented by the structural equivalence.

4More precisely, as a property of concurrency semantics.
5In distributed programming, when “one often wants to send a piece of code to a remote site and execute it there. [] [T]his

feature will greatly enhance the expressive power of distributed programming[by] send[ing] an open term and to make the
necessary binding at the remote site.” [20, p. 250].

4 Process, Systems and Tests (Short Paper)

II. Define deployment criteria The programmer should define how can a process become a system
thanks to a series of restrictions that can include condition on the binding of variables, the presence
or absence of some construction operators at top-level, and even the addition of deployment
operators, marking that the process is ready to be deployed in an external environment—complete.
Having a set of operators for systems that restrict,6 expand or intersect with the set of construction
operators is perfectly acceptable.

III. Define tests The last step defines 1. a set of observables, i.e. a function from systems to a subset of a
set of atomic proposition (like “emits barb a”, “terminates”, “contains recursion operator”, etc.),
2. a notion of context, that should come with its own set of testing operators and reduction rules.

Tests would be key in defining notions of congruence, that would be “reduction-closed”, “obser-
vational” “contextually-closed” relations. Note that we propose a refined version of how a concurrent
language is generally defined along two axis: 1. every step allows the introduction of operators, 2. multiple
notions of systems or tests can and should co-exist in the same process algebra, one being targeted to e.g.
programmers, and another for e.g. users. As in most calculus, one cannot decide which set of observations
is more basic [23, p. 444], this is again conforming to the existing yet unspoken “tradition”.

4 Benefits and Perspectives

4.1 A Pre-Existing Distinction

We believe the distinction we offer is already used, and maybe in the mind of most of the experts is our
proposal obvious. However, if this is the case, we believe that it is “folklore” and has never been written,
we are to remain in darkness.

Let us highlight two places where our distinction is already used. The mismatch operator has been
introduced to provide “reasonable” testing equivalences [7, p. 280], and is considered across languages [1,
p. 24] to provide finer-grained equivalences. But for technical reasons [14, p. 13], this operator is
generally not part of the “core” of π-calculus, and is added by need to obtain better equivalences. A
similar reasoning guided the introduction of a special ◦ operator [27, p. 971, Definition 3.1] in mobile
ambients, but symmetrically, as the equivalences studied did not consider this additional constructor.
We defend a liberal use of this fruitful technics, by making a clear separation between the construction
operators—added for their expressivity—and the testing operators–added to improve the testing capacities.

There is also an on-going debate between which to enrich—observations or contexts? For instance, at
its origin, the barb was a predicate [31, p. 690], whose definition was purely syntactic. Probably inspired
by the notion of observer for testing equivalences [15, p. 91], an alternative definition was made in terms
of parallel composition with a tester process [26, p. 10, Definition 2.1.3]. This example perfectly illustrates
how the set of observables and the notion of context are inter-dependent, and that tests should always
come with a definition of observable and a notion of context.

4.2 A Fruitful Lens

In the literature, processes and systems often have the same structure as tests and are—at least on the
surface—indistinguishable from what they are supposed to test. We believe that exploiting a distinction
between them could lead to fruitfully revisit some results and explore new possibilities.

6Even if it may seem weird to remove operators before deploying a process, we believe that this is generally what happen
when one suddenly decide that recursion or sum should be guarded when terms are compared.

C. Aubert & D. Varacca 5

For instance, one could treat conservative extensions of processes algebras as completion strategies for
the same construction operators. Indeed, reversible [25] or timed [39] extensions of CCS could be seen
as different completion strategies—different conditions for a process to become a system—for the same
class of processes, inspired from the usual CCS syntax [3, Chapter 28.1]. Those completion strategies
would be suited for different needs, as one could e.g. complete a CSS process as a RCCS [10] system to
test for relations such as hereditary history-preserving bisimulation [4], and then complete it with time
markers as a safety-critical system. This would correspond to having multiple compilation, or deployment,
strategies, based on the need, similar to “debug” and “real-time”7 versions of the same piece of software.

Auto-concurrency (a.k.a. auto-parallelism) is when a system have two different transitions labeled
with the same action [34, p. 391, Definition 5]. Systems with auto-concurrency do not fare well with
back and forth bisimulation, and are sometimes excluded as non-valid terms [16, p. 155] or simply not
considered in particular models [35, p. 531]. While not being able to distinguish between those two terms
may make sense from an “external” point of view, we argue that a programmer should have access to an
internal test that could answer the question “Can this process perform two barbs with the same label at
the same time?”. Such an observation would allow to distinguish between e.g. !a.P |!a.P and !a.P, and
would re-integrate auto-concurrent systems in the realm of comparable systems.

5 Concluding Remarks on the Diversity of Concurrent Calculi

Before daring to submit a non-technical paper, we tried to conceive a technical construction that could
convey our ideas. In particular we tried to build a syntactic (even categorical) meta-theory of processes,
systems and tests, to answer the question: “what could be the minimal requirements on contexts and
operators to prove a generic form of context lemma8 for concurrent languages?”.

However, as the technical work unfolded, we realized that the definitions of contexts, observations,
and operators, were so deeply interwoven that it was nearly impossible to extract any general or useful
principle. Context lemmas use specific features of languages, and we could not yet find a unifying
framework. This also suggests that context lemmas are often fit for particular process algebras by chance,
and dependent to the extreme of the language considered, for no deep reasons.

It seems indeed to us that there is nothing but benefits in altering the notion of context, as it is actually
routine to do so, and that clearly stating the variation(s) used will only improve the expressiveness of the
testing capacities and the clarity of the exposition. It is a common trope to observe the immense variety of
process calculi, and to sometimes wish there could be a common formalism to capture them all—to this
end, the π-calculus is often considered an excellent candidate. Acknowledging this diversity is already
being one step ahead of the λ -calculus—that keeps forgetting that there is more than one λ -calculus,
depending on the evaluation strategy and on features such as sharing [2]—and this proposal encourages
to push the decomposition into smaller languages even further, as well as it encourages to see whole
theories as simple “completion” of standard languages. As we defended, breaking the monolithic status of
context will actually make the theory and presentation follow more closely the technical developments,
and liberate from the goal of having to find the process algebra with its unique observation technique that
would capture all possible needs.

7Similar to Debian’s DebugPackage which enables generation of stack traces for any package, or of the CONFIG_PREEMPT_RT
patch that converts a kernel into a real-time micro-kernel: both uses the same source code as their “casual” versions.

8In a nutshell, this lemma is actually a series of results stating that considering all the operators when constructing the context
for a congruence may not be needed.

https://wiki.debian.org/DebugPackage
https://rt.wiki.kernel.org/index.php/CONFIG_PREEMPT_RT_Patch

6 Process, Systems and Tests (Short Paper)

References

[1] Martı́n Abadi & Andrew D. Gordon (1999): A Calculus for Cryptographic Protocols: The spi Calculus.
Information and Computation 148(1), pp. 1–70, doi:10.1006/inco.1998.2740.

[2] Beniamino Accattoli (2019): A Fresh Look at the lambda-Calculus (Invited Talk). In Herman Geuvers,
editor: CSL, Leibniz International Proceedings in Informatics 131, Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, pp. 1:1–1:20, doi:10.4230/LIPIcs.FSCD.2019.1.

[3] Roberto M. Amadio (2016): Operational methods in semantics. draft of lecture notes, Universit Paris Denis
Diderot. Available at https://hal.archives-ouvertes.fr/cel-01422101.

[4] Clment Aubert & Ioana Cristescu (2020): How Reversibility Can Solve Traditional Questions: The Example of
Hereditary History-Preserving Bisimulation. In Igor Konnov & Laura Kovács, editors: CONCUR, LIPIcs 2017,
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 13:1–13:23, doi:10.4230/LIPIcs.CONCUR.2020.13.

[5] J.A. Bergstra, A. Ponse & S.A. Smolka, editors (2001): Handbook of Process Algebra. Elsevier Science,
Amsterdam, doi:10.1016/B978-044482830-9/50017-5.

[6] Mirna Bognar (2002): Contexts in Lambda Calculus. Ph.D. thesis, Vrije Universiteit Amsterdam. Available at
https://www.cs.vu.nl/en/Images/bognar_thesis_tcm210-92584.pdf.

[7] Michele Boreale & Rocco De Nicola (1995): Testing Equivalence for Mobile Processes. Information and
Computation 120(2), pp. 279–303, doi:10.1006/inco.1995.1114.

[8] Flavien Breuvart (2015): Dissecting denotational semantics. Ph.D. thesis, Universit Paris Diderot Paris VII.
Available at https://www.lipn.univ-paris13.fr/~breuvart/These_breuvart.pdf.

[9] Antonio Bucciarelli, Alberto Carraro, Thomas Ehrhard & Giulio Manzonetto (2011): Full Abstraction
for Resource Calculus with Tests. In Marc Bezem, editor: CSL, Leibniz International Proceedings in
Informatics (LIPIcs) 12, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, pp. 97–111,
doi:10.4230/LIPIcs.CSL.2011.97.

[10] Vincent Danos & Jean Krivine (2004): Reversible Communicating Systems. In Philippa Gardner &
Nobuko Yoshida, editors: CONCUR, Lecture Notes in Computer Science 3170, Springer, pp. 292–307,
doi:10.1007/978-3-540-28644-8 19.

[11] Sangiorgi Davide (1999): The Name Discipline of Uniform Receptiveness. Theoretical Computer Science
221(1-2), pp. 457–493, doi:10.1016/S0304-3975(99)00040-7.

[12] Sangiorgi Davide (2011): Pi-Calculus. In David A. Padua, editor: Encyclopedia of Parallel Computing,
Springer, pp. 1554–1562, doi:10.1007/978-0-387-09766-4 202.

[13] Sangiorgi Davide & Jan Rutten, editors (2011): Advanced Topics in Bisimulation and Coinduction. Cambridge
Tracts in Theoretical Computer Science, Cambridge University Press, doi:10.1017/CBO9780511792588.

[14] Sangiorgi Davide & David Walker (2001): The Pi-calculus. Cambridge University Press.

[15] Matthew De Nicola, Roccoand Hennessy (1984): Testing Equivalences for Processes. Theoretical Computer
Science 34, pp. 83–133, doi:10.1016/0304-3975(84)90113-0.

[16] Rocco De Nicola, Ugo Montanari & Frits W. Vaandrager (1990): Back and Forth Bisimulations. In Jos C. M.
Baeten & Jan Willem Klop, editors: CONCUR ’90, Lecture Notes in Computer Science 458, Springer, pp.
152–165, doi:10.1007/BFb0039058.

[17] Uffe Engberg & Mogens Nielsen (2000): A calculus of communicating systems with label passing - ten years
after. In Gordon D. Plotkin, Colin Stirling & Mads Tofte, editors: Proof, Language, and Interaction, Essays in
Honour of Robin Milner, The MIT Press, pp. 599–622.

[18] Claudia Faggian & Simona Ronchi Della Rocca (2019): Lambda Calculus and Probabilistic Computation. In:
LICS, IEEE, pp. 1–13, doi:10.1109/LICS.2019.8785699.

[19] Andrew D. Gordon & Luca Cardelli (2003): Equational Properties Of Mobile Ambients. Mathematical
Structures in Computer Science 13(3), pp. 371–408, doi:10.1017/S0960129502003742.

http://dx.doi.org/10.1006/inco.1998.2740
http://dx.doi.org/10.4230/LIPIcs.FSCD.2019.1
https://hal.archives-ouvertes.fr/cel-01422101
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2020.13
http://dx.doi.org/10.1016/B978-044482830-9/50017-5
https://www.cs.vu.nl/en/Images/bognar_thesis_tcm210- 92584.pdf
http://dx.doi.org/10.1006/inco.1995.1114
https://www.lipn.univ-paris13.fr/~breuvart/ These_breuvart.pdf
http://dx.doi.org/10.4230/LIPIcs.CSL.2011.97
http://dx.doi.org/10.1007/978-3-540-28644-8_19
http://dx.doi.org/10.1016/S0304-3975(99)00040-7
http://dx.doi.org/10.1007/978-0-387-09766-4_202
http://dx.doi.org/10.1017/CBO9780511792588
http://dx.doi.org/10.1016/0304-3975(84)90113-0
http://dx.doi.org/10.1007/BFb0039058
http://dx.doi.org/10.1109/LICS.2019.8785699
http://dx.doi.org/10.1017/S0960129502003742

C. Aubert & D. Varacca 7

[20] Masatomo Hashimoto & Atsushi Ohori (2001): A typed context calculus. Theoretical Computer Science
266(1-2), pp. 249–272, doi:10.1016/S0304-3975(00)00174-2.

[21] Matthew Hennessy (2007): A distributed Pi-calculus. Cambridge University Press,
doi:10.1017/CBO9780511611063.

[22] Carl Hewitt, Peter Boehler Bishop, Irene Greif, Brian Cantwell Smith, Todd Matson & Richard Steiger (1973):
Actor Induction and Meta-Evaluation. In Patrick C. Fischer & Jeffrey D. Ullman, editors: POPL, ACM Press,
pp. 153–168, doi:10.1145/512927.512942. Available at http://dl.acm.org/citation.cfm?id=512927.

[23] Kohei Honda & Nobuko Yoshida (1995): On Reduction-Based Process Semantics. Theoretical Computer
Science 151(2), pp. 437–486, doi:10.1016/0304-3975(95)00074-7.

[24] Ivan Lanese, Michael Lienhardt, Claudio Antares Mezzina, Alan Schmitt & Jean-Bernard Stefani (2013):
Concurrent Flexible Reversibility. In Matthias Felleisen & Philippa Gardner, editors: ESOP, Lecture Notes in
Computer Science 7792, Springer, pp. 370–390, doi:10.1007/978-3-642-37036-6 21.

[25] Ivan Lanese, Doriana Medić & Claudio Antares Mezzina (2019): Static versus dynamic reversibility in CCS.
Acta Informatica, doi:10.1007/s00236-019-00346-6.

[26] Jean-Marie Madiot (2015): Higher-order languages: dualities and bisimulation enhancements. Ph.D. thesis,
cole Normale Suprieure de Lyon, Universit di Bologna. Available at https://hal.archives-ouvertes.
fr/tel-01141067.

[27] Massimo Merro & Francesco Zappa Nardelli (2005): Behavioral theory for mobile ambients. Journal of the
ACM 52(6), pp. 961–1023, doi:10.1145/1101821.1101825.

[28] Robin Milner (1980): A Calculus of Communicating Systems. Lecture Notes in Computer Science, Springer-
Verlag, doi:10.1007/3-540-10235-3.

[29] Robin Milner (1989): Communication and Concurrency. PHI Series in computer science, Prentice-Hall.

[30] Robin Milner (1993): Elements of Interaction: Turing Award Lecture. Communications of the ACM 36(1), p.
7889, doi:10.1145/151233.151240.

[31] Robin Milner & Sangiorgi Davide (1992): Barbed Bisimulation. In Werner Kuich, editor: ICALP, Lecture
Notes in Computer Science 623, Springer, pp. 685–695, doi:10.1007/3-540-55719-9 114.

[32] Robin Milner, Joachim Parrow & David Walker (1992): A Calculus of Mobile Processes, I. Information and
Computation 100(1), pp. 1–40, doi:10.1016/0890-5401(92)90008-4.

[33] Robin Milner, Joachim Parrow & David Walker (1992): A Calculus of Mobile Processes, II. Information and
Computation 100(1), pp. 41–77, doi:10.1016/0890-5401(92)90009-5.

[34] Mogens Nielsen & Christian Clausen (1994): Bisimulation for Models in Concurrency. In Bengt Jonsson
& Joachim Parrow, editors: CONCUR ’94, Lecture Notes in Computer Science 836, Springer, pp. 385–400,
doi:10.1007/BFb0015021.

[35] Mogens Nielsen, Uffe Engberg & Kim S. Larsen (1989): Fully abstract models for a process language with
refinement. In J. W. de Bakker, Willem P. de Roever & Grzegorz Rozenberg, editors: Linear Time, Branching
Time and Partial Order in Logics and Models for Concurrency, School/Workshop, Noordwijkerhout, The
Netherlands, May 30 - June 3, 1988, Proceedings, Lecture Notes in Computer Science 354, Springer, pp.
523–548, doi:10.1007/BFb0013034.

[36] Catuscia Palamidessi & Frank D. Valencia (2005): Recursion vs Replication in Process Calculi: Expressiveness.
Bulletin of the European Association for Theoretical Computer Science 87, pp. 105–125. Available at
http://eatcs.org/images/bulletin/beatcs87.pdf.

[37] Andr van Tondervan (2004): A Lambda Calculus for Quantum Computation. SIAM Journal on Computing
33(5), pp. 1109–1135, doi:10.1137/S0097539703432165.

[38] Carlos A. Varela (2013): Programming Distributed Computing Systems: A Foundational Approach. The MIT
Press.

http://dx.doi.org/10.1016/S0304-3975(00)00174-2
http://dx.doi.org/10.1017/CBO9780511611063
http://dx.doi.org/10.1145/512927.512942
http://dl.acm.org/citation.cfm?id=512927
http://dx.doi.org/10.1016/0304-3975(95)00074-7
http://dx.doi.org/10.1007/978-3-642-37036-6_21
http://dx.doi.org/10.1007/s00236-019-00346-6
https://hal.archives-ouvertes.fr/tel-01141067
https://hal.archives-ouvertes.fr/tel-01141067
http://dx.doi.org/10.1145/1101821.1101825
http://dx.doi.org/10.1007/3-540-10235-3
http://dx.doi.org/10.1145/151233.151240
http://dx.doi.org/10.1007/3-540-55719-9_114
http://dx.doi.org/10.1016/0890-5401(92)90008-4
http://dx.doi.org/10.1016/0890-5401(92)90009-5
http://dx.doi.org/10.1007/BFb0015021
http://dx.doi.org/10.1007/BFb0013034
http://eatcs.org/images/bulletin/beatcs87.pdf
http://dx.doi.org/10.1137/S0097539703432165

8 Process, Systems and Tests (Short Paper)

[39] Wang Yi (1991): CCS + Time = An Interleaving Model for Real Time Systems. In Javier Leach Albert,
Burkhard Monien & Mario Rodrı́guez-Artalejo, editors: ICALP, Lecture Notes in Computer Science 510,
Springer, pp. 217–228, doi:10.1007/3-540-54233-7 136.

http://dx.doi.org/10.1007/3-540-54233-7_136

	Introduction: An Apparently Tightwad Godfather
	Contexts
	Open and Closed Terms
	Not All Contexts Are Equal
	Purposes of Congruences

	Our Proposal
	Benefits and Perspectives
	A Pre-Existing Distinction
	A Fruitful Lens

	Concluding Remarks on the Diversity of Concurrent Calculi

