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Incremental Without Replacement Sampling in
Nonconvex Optimization

Edouard Pauwels∗

Abstract

Minibatch decomposition methods for empirical risk minimization are commonly
analysed in a stochastic approximation setting, also known as sampling with
replacement. On the other hands modern implementations of such techniques
are incremental: they rely on sampling without replacement, for which available
analysis are much scarcer. We provide convergence guaranties for the latter variant
by analysing a versatile incremental gradient scheme. For this scheme, we consider
constant, decreasing or adaptive step sizes. In the smooth setting we obtain explicit
complexity estimates in terms of epoch counter. In the nonsmooth setting we prove
that the sequence is attracted by solutions of optimality conditions of the problem.

Keywords. Without Replacement Sampling, Incremental Methods, Nonconvex Optimization, First
order Methods, Stochastic Gradient, Adaptive Methods, Backpropagation, Deep Learning

1 Introduction

1.1 Context and motivation

Training of modern learning architectures is mostly achieved by empirical risk minimization, relying
on minibatch decomposition first order methods [20, 34]. The goal is to solve optimization problems
of the form

F ∗ = inf
x∈Rp

F (x) =
1

n

n∑
i=1

fi(x) (1)

where fi : Rp : → R are Lipschitz functions and the infimum is finite. In this context minibatching
takes advantage of redundancy in large sums and perform steps which only rely on partial sums [18].
The most widely studied variant is the Stochastic Gradient algorithm (also known as SGD), each
step consists in sampling with replacement in {1, . . . , n}, and moving in the direction of the gradient
of F corrupted by centered noise inherent to subsampling. This allows to study such algorithms
in the broader context of stochastic approximation, initiated by Robins and Monro [50] with many
subsequent works [36, 6, 32, 17, 41, 23, 14].

On the other hand most widely used implementations of such learning strategies for deep network
[1, 45] rely on sampling without replacement, an epoch being the result of a single path during
which first order information for each fi is computed exactly once. Although very close to stochastic
approximation, this strategy does not satisfy the “gradient plus centered noise” hypothesis. Therefore
all existing theoretical guaranties relying on stochastic approximation arguments do not hold true
for many practical implementation of learning algorithm. The purpose of this work is to provide
convergence guaranties for such “without replacement minibatch strategies” for problem (1), also
known as incremental methods [10]. The main strategy is to view the algorithmic steps throught the
lenses of pertrubed gradient iterations, see for example [9].
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Algorithm 1: Without replacement descent algorithm
Program data: For i = 1 . . . , n, fi and the corresponding search direction oracle di.
Input: x0 ∈ Rp.

1: Decreasing steps:
2: (αK,i)K∈N,i∈{1,...,n}.
3: for K ∈ N do
4: Set: zK,0 = xK
5: for i = 1, . . . , n do
6: ẑK,i−1 ∈ conv

(
(zK,j)

i−1
j=0

)
.

7: zK,i = zK,i−1 − αK,idi(ẑK,i−1)
8: end for
9: Set: xK+1 = zK,n

10: end for

1: Adaptive steps:
2: v0 = δ > 0, β > 0.
3: for K ∈ N do
4: Set: zK,0 = xK , vK,0 = vK
5: for i = 1, . . . , n do
6: ẑK,i−1 ∈ conv

(
(zK,j)

i−1
j=0

)
.

7: vK,i = vK,i−1 + β‖di(ẑK,i−1)‖2

8: αK,i = v
−1/3
K,i

9: zK,i = zK,i−1 − αK,idi(ẑK,i−1)
10: end for
11: Set: xK+1 = zK,n, vK+1 = vK,n.
12: end for

1.2 Problem setting

We consider problem (1) and assume that for each fi is Lipschitz and that we have access to an oracle
which provides a search direction di : Rp 7→ Rp, i = 1, . . . , n. We consider two settings

Smooth setting: fi are C1 with Lipschitz gradient, in which case we set di = ∇fi, i = 1, . . . , n.

Nonsmooth setting: fi are path differentiable. Such functions constitute a subclass of Lipschitz
functions which enjoy some of the nice properties of nonsmooth convex functions [14] in particular,
an operational chain rule [23]. In this case, di is a selection in a conservative field for fi. Examples
of such objects include convex subgradients if fi is convex, the Clarke subgradient, which is an
extension to the nonconvex setting, as well as the output of automatic differentiation applied to a
nonsmooth program, see [14] for more details.

We consider a class of descent methods described by Algorithm 1. Notice that there is no randomness
specified in the algorithm, all our results are worst case and hold deterministically. Algorithm 1
allows to model:

Gradient descent: Set ẑK,i−1 = zK,0 = xK , for all K ∈ N and i = 1 . . . , n.

Incremental algorithms: Set ẑK,i−1 = zK,i−1, for all K ∈ N and i = 1 . . . , n.

Random permutations: Although not explicitely stated in the algorithm, all our proof argument
hold independantly of the order of query of the indices i = 1, . . . , n for each epoch. Hence our results
actually hold deterministically for “random shuffling” or, “without replacement sampling” strategies.

Mini-batching: Set ẑK,i−1 = ẑK,i−2 = zK,i−2, which results in computation of gradients of fi and
fi−1 at the same point zK,i−2.

Asynchronous computation in a parameter server setting: Consider that (zK,i)K∈N,i=1...n is
stored on a server, accessed by workers which compute di(zK,i−1). Due to communication and
computation delays, di may be evaluated using an outdated estimate of z, called ẑ. In Algorithm
1, asynchronicity and delays between workers may be arbitrary within each epoch. However, we
enforce that the whole system waits for all workers to communicate results before starting a new
epoch, a form of partial synchronization.

1.3 Contributions

We propose a detailed convergence analysis of Algorithm 1 in a nonconvex setting. Our analysis is
worst case and our results hold deterministically. When each fi is smooth with Li-Lipschitz gradient,
setting L = 1

n

∑n
i=1 Li, we obtain the following estimates on the squared norm of the gradient of F

in terms of number of epochs K (all constants are explicit).

• Decreasing step size without knowledge of L: O
(

1√
K

)
.
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• Decreasing step size with knowledge of L: O
(

1
K2/3

)
.

• Adaptive step size without knowledge of L: O
(

1
K2/3

)
.

For genereral nonsmooth objectives, convergence rate do not exist for the simplest subgradient oracle,
see for example [56] with an attempt for more complex oracles. We prove that the sequence (xK)K∈N
is attracted by subsets of Rp which are solutions to optimality condition related to problem (1), for
both step size strategies.

1.4 Relation to existing litterature

Incremental gradient was introduced by Bertsekas in the late 90’s [8], extended with a gradient plus
error analysis [9] and nonsmooth version [42]. An overview is given in [10], see also [11]. Most
convergence analyses are qualitative and limited to convex objectives, only few rates are available.
The prescribed step size strategy in Algorithm 1 is direcly inspired from these works. We analyse the
incremental method as a perturbed gradient method, a view which was exploited in [9, 37] and in
distributed settings, see for example [38, 39, 33, 46].

The idea of the adaptive step size is taken from the Adagrad algorithm introduced in [25]. Analysis
of such algorithms for nonconvex objectives was proposed in [35, 54, 3, 24] in the stochastic and
smooth setting. To our knowledge the combination of adaptive step sizes with incremental methods
has not been considered. We use the “scalar step variant” of the Adagrad, called Adagrad-norm in
[54] or global step size in [35], in contrast with the originally proposed coordinatewise step sizes
analysed in [24]. The original Adagrad algorithm has a power 1/2 in the denominator which we
replaced by 1/3 in order to obtain faster rates, taking advantage of smoothness and the finite sum
structure.

It has been a longstanding open question in machine learning to investigate the advantages of
random permutations compared to vanilla SGD [19, 49]. The main motivation is that random
permutations often outperforms with replacement sampling despite the absence of theory to explain
this observation. The topic is still active and recent progresses has been made in the strongly convex
setting, see [55, 28, 47, 53] and reference therein. Rather than studying the superiority of random
permutations in the nonconvex setting, we consider the more modest goal of proving convergence
guaranties for such strategies. This is achieved by following a perturbed iterate view, a strategy which
provides worst case guaranties which are of a different nature compared to average case or almost
sure guaranties commonly obtained for stochastic approximation algorithms. The obtained rates have
a worse dependency in n compared to SGD but are asymptotically faster than the best known rate for
SGD. Similar complexity estimates were obtained in [44, 40] for prescribed step size strategies. To
our knowledge, the adaptive variant has not been treated.

Our nonsmooth convergence analysis relies on the ODE method, see [36] with many subsequent
developments [6, 32, 7, 17, 3]. In particular we build uppon a nonsmooth ODE formulation, dif-
ferential inclusions [22, 2]. This was used in [23] to analyse the stochastic subgradient algorihtm
in nonconvex settings using the subgradient projection formula [12]. In the nonsmooth world the
backpropagation algorithm [52] used in deep learning suffers from inconsistent behaviors and may
not provide subgradient of any kind [30, 31]. We use the recently introduced tool of conservative
fields and path differentiable function [14] capturing the full complexity of backpropagation oracles.
Our proof essentially relies on the notion of Asymptotic Pseudo Trajectory (APT) for differential
inclusions[5, 7].

1.5 Preliminary results

It is important to emphasize that in Algorithm 1, the adaptive step strategy is a special case of the
prescribed step strategy. Hence our analysis will start by general considerations for the prescribed
step strategy followed by specific considereations to the adaptive steps. We start with a simple claim
whose proof is given in appendix A and provides a bound on the length of the steps taken by the
algorithm.

Claim 1 For all K ∈ N and all i = 1, . . . , n, we have

max
{
‖zK,i − xK‖2, ‖xK+1 − xK‖2, ‖ẑK,i−1 − xK‖2

}
≤ n

n∑
i=1

α2
K,i‖d (ẑK,i−1) ‖2, (2)
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Throughout this paper, we will work under decreasing step size condition whose meaning is described
in the following assumption. We remark that both step size strategies provided in Algorithm 1 comply
with this constraint.

Assumption 1 The sequence (αK,i)K∈N,i∈{1,...,n} is non increasing with respect to the lexico-
graphic order. That is for all K ∈ N, i = 2, . . . , n, αK,i−1 ≥ αK,i ≥ αK+1,1.

2 Quantitative analysis in the smooth setting

In this section we consider that each fi has Lipschitz gradient, in which case, di is set to be ∇fi.
Note that in this setting,∇F = 1

n

∑n
i=1∇fi and F also has L-Lipschitz gradient.

Assumption 2 For i = 1, . . . , n,

• fi : Rp : → R is an Mi Lipschitz functions and di : Rp 7→ Rp is such that for all x ∈ Rp,

‖di(x)‖ ≤Mi. We let M =
√

1
n

∑n
i=1M

2
i . Note that in this case F is M -Lipschitz using

Lemma 2 in appendix C which allows to bound ‖
∑n
i=1 di‖.

• fi is continuously differentiable with Li Lipschitz gradient and we set di = ∇fi. We set
L = 1

n

∑n
i=1 Li. Note that in this case F has L-Lipschitz gradient as shown in Claim 6.

The technical bulk of our analysis is given by the following claim whose proof is provided in appendix
A. Note that this result holds deterministically and independantly of the considered step size strategy.

Claim 2 Under Assumptions 1 and 2, for all K ∈ N, K ≥ 1, setting αK = αK−1,n and α0 =

δ−1/3 ≥ α0,1, we have

F (xK+1)− F (xK) +
nαK

2
‖∇F (xK)‖2 (3)

≤
(
αKL

2n2 +
Ln

2
− 1

2αK

) n∑
j=1

α2
K,j‖dj(ẑK,j−1)‖2 + αKM

2
n∑
i=1

(
1−

α3
K,i

α3
K

)
.

2.1 Prescribed step size without knowledge of L

The following holds under Assumption for Algorithm 1.

Corollary 1 If the step size is constant, αK,i = α/n for all K ∈ N, i = 1 . . . , n, we have

min
K=0,...,N

‖∇F (xK)‖2 ≤ 2(F (x0)− F ∗)
(N + 1)α

+ 2

(
αL2M2 +

LM2

2

)
α

Corollary 2 If the step size is decreasing αK,i = 1/(n
√
K + 1), for all K ∈ N, i = 1 . . . , n, then

min
K=1,...,N

‖∇F (xK)‖2 ≤ 1√
N + 1− 1

(
F (x0)− F ∗ +

(
L2M2 +

LM2

2

)
(1 + log(N + 1))

)

2.2 Prescribed step sizes based on L

The following hold under Assumption 2 for Algorithm 1.

Corollary 3 If the step size is constant, αK,i = α/n, with α ≤ 1/L, then for allK ∈ N, i = 1 . . . , n,
we have

min
K=0,...,N

‖∇F (xK)‖2 ≤ 2(F (x0)− F ∗)
(N + 1)α

+ 2α2L2M2
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Corollary 4 If the step size is decreasing αK,i = 1/(Ln(K + 1)1/3), for all K ∈ N, i = 1 . . . , n,
then

min
K=1,...,N

‖∇F (xK)‖2 ≤ 2

3((N + 1)2/3 − 1)

(
L(F (x0)− F ∗) +M2 (1 + log(N + 1))

)

2.3 Adaptive step size

The following hold under Assumption 2 for Algorithm 1.

Corollary 5 If we consider the adaptive step size strategy with β = n2 and δ = n3, then
min

K=0,...,N
‖∇F (xK)‖2

≤ 2(M2 + 1)1/3
F (x0)− F ∗ +

(
L5 + L4

2

)
+
(
L2

2 (1 +M)1/3 +M2
)

log
(
1 +M2(N + 1)

)
(N + 1)2/3

.

2.4 Discussion on the obtained convergence rates

All the complexity estimates decribed in Section 2.2 are given in terms of K, which is the number of
epochs. In particular, there is no dependency in the size of the sum n or in the dimension p beyond
problem constants L and M . The work presented in [29], see also Theorem 1 in [48], ensures that the
convergence rate of “with replacement” SGD applied to problem 1 is of order O(1/

√
k) under the

same assumptions as ours, where k is the number of stochastic iteration (typically n times bigger than
the numer of epochs). From this perspective, the dependency in n is unfavorable as our rates are in
terms of number of epochs rather than number of iterations which is customary in stochastic settings
[18, 41, 20]. One element of explaination is the nature of our perturbed analysis, which is worst
case and blind to the order in which elements are chosen, in contrast with average case stochastic
analysis usually performed when considering “with replacement” strategies. This is an important
issue, since in practice, for example for deep learning problems, only a few epochs are performed on
large datasets. Furthermore, SGD naturally accomodates stochastic data augmentation commonly
used in deep learning contexts, a property which is not shared by incremental algorithms.

On the other hand, for prescribed step size and adaptive step size, the convergence rate is of the order
of K−2/3 which is asymptotically faster than SGD which would be of the order (nK)−1/2. This
result is only based on comparison of upper bounds and holds only asymptotically since the proposed
rate gets better for K ≥ n3 which is a regime not considered in practical applications. It constitutes
an advantage of the proposed incremental scheme but not a proof of its superiority compared to
SGD. Similar rates were obtained in [44] and in [40], with an improved dependency in n and weaker
boundedness assumptions. In both cases, it is required to know the Lipschitz constant L which
is hardly accessible in practice. The adaptive variant removes this requirement while maintaining
a similar rate, showing the advantage of adaptive step sizes in this context. Finally the proposed
numerical scheme is more versatile than algorithms in [44, 40] as it allows for a unified treatment of
certain form of delays such as minibatching or limited asynchronicity.

Regarding our assumptions, Lipschicity and boundedness of gradients in Assumption 2 are common
in the analysis of stochastic gradient schemes in a nonconvex context, see for examle [48, Theorem
1] for SGD and more recently for adaptive variants [24] and incremental variants [44, 40]. Note that
in the stochastic approximation context, proxies are often used for these assumptions, requiring them
only to hold on the whole sum in (1) rather than on each element. This is often complemented by
a uniformly bounded variance assumption, see for example [54]. In finite sum contexts, all these
assumptions are very close in nature, as smoothness of the sum directly relates to smoothness of its
components. It is worth mentioning that these boundedness assumptions could be relaxed to hold
only locally if it is assumed that the sequence remains bounded.

2.5 Proofs for the obtained complexity estimates

Proof of Corollary 1: The considered step size complies with Assumption 2 so that Claim 2 applies.

Fix K ∈ N, fix αK,i = αK for all i = 1, . . . , n, we have 1 − α3
K,i

α3
K

= 0. Combining with Claim 2,
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using αK ≤ α0, for all K ∈ N, we have

nαK
2
‖∇F (xK)‖2 ≤ F (xK)− F (xK+1) +

(
α0L

2M2n+
LM2

2

)
n2α2

K .

Summing for K = 0, . . . , N and dividing by
∑N
K=0 nαK , we obtain

min
K=0,...,N

‖∇F (xK)‖2 ≤ 2∑N
K=0 nαK

(
F (x0)− F ∗ +

(
α0L

2M2n+
LM2

2

) N∑
K=0

n2α2
K

)
(4)

Choosing constant step α/n for α > 0, we obtain

min
K=0,...,N

‖∇F (xK)‖2 ≤ 2(F (x0)− F ∗)
(N + 1)α

+ 2

(
αL2M2 +

LM2

2

)
α

�

Proof of Corollary 2: The considered step size complies with Assumption 2 so that Claim 2 applies.
In this setting (4) is still valid. Choosing αK = 1

n
√
K+1

, we have

N∑
K=0

nαK ≥
∫ t=N+1

t=0

1√
t+ 1

dt ≥ 2
(√

N + 1− 1
)

N∑
K=0

n2α2
K ≤

(
1 +

N∑
K=1

1

K + 1

)
≤

(
1 +

∫ t=N

t=0

dt

t+ 1

)
=

1

n2
(1 + log(N + 1))

and we obtain in (4)

min
K=1,...,N

‖∇F (xK)‖2 ≤ 1√
N + 1− 1

(
F (x0)− F ∗ +

(
L2M2 +

LM2

2

)
(1 + log(N + 1))

)
�

Proof of Corollary 3: The considered step size complies with Assumption 2 so that Claim 2 applies.

Fix K ∈ N, fix αK,i = αK for all i = 1, . . . , n, we have 1 − α3
K,i

α3
K

= 0. Combining with Claim 2,
we have, using the fact that αK ≤ 1/(Ln),

nαK
2
‖∇F (xK)‖2 ≤ F (xK)− F (xK+1) + L2M2n3α3

K .

Summing for K = 0, . . . , N and dividing by
∑N
K=0 nαK , we obtain

min
K=0,...,N

‖∇F (xK)‖2 ≤ 2∑N
K=0 nαK

(
F (x0)− F ∗ + L2M2

N∑
K=0

n3α3
K

)
(5)

Choosing constant step α/n for α > 0, we obtain

min
K=0,...,N

‖∇F (xK)‖2 ≤ 2(F (x0)− F ∗)
(N + 1)α

+ 2α2L2M2

�

Proof of Corollary 4: The considered step size complies with Assumption 2 so that Claim 2 applies.
In this setting (5) is still valid. Indeed, choosing αK = 1

Ln(K+1)1/3
, we have αK ≤ 1/(Ln) for all

K ∈ N. Furthermore,
N∑
K=0

nαK ≥
∫ t=N+1

t=0

1

L(t+ 1)1/3
dt ≥ 3

2L

(
(N + 1)2/3 − 1

)
N∑
K=0

n3α3
K ≤

1

L3

(
1 +

N∑
K=1

1

K + 1

)
≤ 1

L3

(
1 +

∫ t=N

t=0

dt

t+ 1

)
=

1

L3
(1 + log(N + 1))
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and we obtain in (5)

min
K=1,...,N

‖∇F (xK)‖2 ≤ 2

3((N + 1)2/3 − 1)

(
L(F (x0)− F ∗) +M2 (1 + log(N + 1))

)
�

Proof of Corollary 5: The considered step size complies with Assumption 2 so that Claim 2 applies.
We write for all K ∈ N and all i = 1, . . . , n, αK = v

−1/3
K . Let us start with the following.

Claim 3 For all K ∈ N and all i = 1, . . . , n

1−
α3
K,i

α3
K

≤ β
n∑
j=1

‖dj(ẑK,j−1)‖2

vK,j
(6)

Proof of claim 3: Fix K ∈ N and i in 1, . . . , n, we have

vK ≤ vK,i = vK + β

i∑
j=1

‖dj(ẑK,j−1)‖2.

From this we deduce, using the fact that vK,j is non decreasing in j,

1−
α3
K,i

α3
K

=
vK,i − vK
vK,i

=
β
∑i
j=1 ‖dj(ẑK,j−1)‖2

vK,i
≤ β

i∑
j=1

‖dj(ẑK,j−1)‖2

vK,j
≤ β

n∑
j=1

‖dj(ẑK,j−1)‖2

vK,j
,

�

Combining Claim 2 and Claim 3, we have for all K ∈ N, using δ−1/3 ≥ αK

nαK
2
‖∇F (xK)‖2 ≤ F (xK)− F (xK+1) +

(
αKL

2n2 +
Ln

2
− 1

2αK

) n∑
j=1

α2
K,j‖dj(ẑK,j−1)‖2

+M2n
β

δ1/3

n∑
j=1

α3
K,j‖dj(ẑK,j−1)‖2 (7)

We will consider the following notation ᾱ = 1
Ln , we have(

αKL
2n2 +

Ln

2
− 1

2αK

)
≤ αKL2n2

if and only if αK ≤ ᾱ. Set K̄, the first index K such that αK ≤ ᾱ. For all K ≤ K̄ − 1, we have
1/δ1/3 ≥ αK = v

−1/3
K > ᾱ. Fix N ≤ K̄ − 1, summing the second term of (7) for K = 0 . . . N , we

have

N∑
K=0

(
αKL

2n2 +
Ln

2
− 1

2αK

) n∑
j=1

α2
K,j‖dj(ẑK,j−1)‖2

≤
(
L2n2

δ
+

Ln

2δ2/3

) N∑
K=0

n∑
j=1

‖dj(ẑK,j−1)‖2

≤
(
L2n2

βδ
+

Ln

2βδ2/3

)
vK̄

≤
(
L2n2

βδ
+

Ln

2βδ2/3

)
1

ᾱ3
(8)
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Now, choosing N ≥ K̄, summing the same quantity for K ≥ K̄, we have using the definition of ᾱ

N∑
K=K̄

(
αKL

2n2 +
Ln

2
− 1

2αK

) n∑
j=1

α2
K,j‖dj(ẑK,j−1)‖2

≤
N∑

K=K̄

αKL
2n2

n∑
j=1

α2
K,j‖dj(ẑK,j−1)‖2

≤ L2n2
n∑
j=1

N∑
K=0

αK
αK,j

α3
K,j‖dj(ẑK,j−1)‖2

≤ L2n2(1 + βnM/δ)1/3
n∑
j=1

N∑
K=0

α3
K,j‖dj(ẑK,j−1)‖2

(9)

where the last identity follows because for all K ∈ N and j = 1 . . . n,

α3
K

α3
K,j

=
vK,j
vK

=
vK + β

∑j
i=1 ‖dj(ẑK,j−1)‖2

vK
≤ 1 +

βnM

δ

Combining (8) and (9), for any N ∈ N, independently of its position relative to K̄ (and even if
K̄ = +∞), we have

N∑
K=0

(
αKL

2n2 +
Ln

2
− 1

2αK

) n∑
j=1

α2
K,j‖dj(ẑK,j−1)‖2

≤
(
L2n2

βδ
+

Ln

2βδ2/3

)
1

ᾱ3
+ L2n2(1 + βnM/δ)1/3

n∑
j=1

N∑
K=0

α3
K,j‖dj(ẑK,j−1)‖2 (10)

Given N ∈ N, we may sum (7) for K = 0 . . . , N combined with (10) to obtain

N∑
K=0

nαK
2
‖∇F (xK)‖2 ≤ F (x0)− F (xN ) +

(
L2n2

βδ
+

Ln

2βδ2/3

)
1

ᾱ3

+

(
L2n2(1 + βnM/δ)1/3 +M2n

β

δ1/3

) n∑
j=1

N∑
K=0

α3
K,j‖dj(ẑK,j−1)‖2

(11)

Now, we use the lexicographic order on pairs of integers, (a, b) ≤ (c, d) if a < c or a = c and b ≤ d.
From Lemma 3 in appendix C, we have

N∑
K=0

n∑
i=1

α3
K,i‖di(ẑK,i−1)‖2 =

∑
(K,i)≤(N,n)

‖di(ẑK,i−1)‖2

δ + β
∑

(k,j)≤(K,i) ‖dj(ẑk,j−1)‖2

≤ 1

β
log

(
1 +

β
∑

(K,i)≤(N,n) ‖di(ẑK,i−1)‖2

δ

)
≤ 1

β
log

(
1 +

βnM2(N + 1)

δ

)
, (12)

where the first inequality follows by applying Lemma 3, noticing that we sum over (N+1)n instances
and that

∑n
i=1 ‖di‖2 ≤ nM2. We remark that for allK ∈ N, αK ≥ (KnβM2 +δ)−1/3. Combining

(11) and (12), we obtain

n(N + 1)(NnβM2 + δ)−1/3

2
min

K=0,...,N
‖∇F (xK)‖2

≤ F (x0)− F ∗ +

(
L2n2

βδ
+

Ln

2βδ2/3

)
1

ᾱ3
+

(
L2n2

β
(1 + βnM/δ)1/3 +

M2n

δ1/3

)
log

(
1 +

βnM2(N + 1)

δ

)
.

(13)
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Combining (13) with ᾱ = 1/(Ln), and choosing β = n2 and δ = n3, we obtain

(N + 1)

2(NM2 + 1)1/3
min

K=0,...,N
‖∇F (xK)‖2

≤ F (x0)− F ∗ +

(
L5 +

L4

2

)
+

(
L2

2
(1 +M)1/3 +M2

)
log
(
1 +M2(N + 1)

)
.

The reslt follows by noticing that (N+1)
2(NM2+1)1/3

≥ (N+1)
2((N+1)(M2+1))1/3

= (N+1)2/3

2(M2+1)1/3
�

3 Qualitative analysis for nonsmooth objectives

In this section we consider nonsmooth objectives such as typical losses arising when training deep
networks. Our analysis will be performed under the following standing assumption.

Assumption 3 In addition to Assumption 1, assume that
∞∑
K=0

αK,1 = +∞, and αK,1 →
K→∞

0, and
αK,1
αK,n

→
K→∞

1. (14)

We follow the ODE approach, our arguments closely follow those developped in [7]. We start by
defining a continuous time piecewise affine interpolant of the sequence.

Definition 1 For all K ∈ N, we let τK =
∑K
k=0

∑n
i=1 αk,i. We fix the sequence given by Algorithm

(1) and consider the associated Lipschitz interpolant such that w : R+ 7→ Rp , such that w(τK) = xK
for all K ∈ N and the interpolation is affine on (τK , τK+1) for all K ∈ N.

3.1 Differential inclusion setting

The main argument in this Section is connecting the continuous time interpolant in Definition 1 and
continuous dynamics. The continuous time counterpart of Algorithm 1, is ẋ = −1

n

∑n
i=1 di(x), for

which the right hand side is not continuous, classical Cauchy-Lipschitz type theorems for existence of
solutions cannot be applied. We need to resort to a continuous extension of the right hand side, which
becomes set valued, providing a weaker notion of solution. We use the recently introduced notion of
conservativity [14] which captures the complexity of automatic differentiation oracles in nonsmooth
settings [15]. Recall that the set valued map D is conservative for the locally Lipschitz function f , if
it has a closed graph and for any locally Lipschitz curve x : [0, 1] 7→ Rp and almost all t ∈ [0, 1]

d

dt
f(x(t)) = 〈v, ẋ(t)〉 , ∀v ∈ D(x(t)). (15)

This is the counterpart to d
dtf(x(t)) = 〈∇f(x(t)), ẋ(t)〉 for any C1 function f and any C1 curve x.

This property is known as the chain rule of subdifferential inclusions, see for example [23]. The main
specificity is that the property holds for almost all t due to the fact that we have nondifferentiable
objects, and for all possible choices in D which is set valued, again due to nondifferentiability. As
shown in [14], this ensures that for any such curve, one has

f(x(1))− f(x(0)) =

∫
max

v∈D(x(t))
〈v, ẋ(t)〉 dt =

∫
min

v∈D(x(t))
〈v, ẋ(t)〉 dt,

where the integral is understood in the Lebesgue sense.

Assumption 4 For i = 1, . . . , n, we let Di be a conservative field for fi with maxv∈Di(x) ‖v‖ ≤M
for all x ∈ Rp and di : Rp 7→ Rp is measurable such that for all x ∈ Rp, di(x) ∈ Di(x). We set
D = conv

(
1
n

∑n
i=1Di

)
. Since conservativity is preserved under addition [14, Corollary 4] D is

conservative for F , furthermore it has convex compact values and a closed graph. We set critF to be
the set of x ∈ Rp such that 0 ∈ D(x).

Main examples in deep learning: If each fi, i = 1, . . . , n is the loss associated to a sample
point and a neural network architecture, assuming that fi is defined using a compositional formula
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involving piecewise polynomials, logarithms and exponentials (which covers most of deep network
architectures), then the Clarke subgradient [22] is a conservative field for fi. Recall that the Clarke
subgradient extends the notion of convex subgradient to nonconvex locally Lipschitz functions. This
was proved in [23] using the projection formula in [14, 15], see also [21, 14]. In deep learning context,
backpropagation may fail to provide Clarke subgradients in nonsmooth contexts [30, 31]. Nontheless,
it was shown in [14] that backpropagation computes a conservative field. Hence our analysis applies
to training of deep networks using a backpropagation oracle such as the ones implemented in [1, 45].

Definition 2 A solution to the differential inclusion

ẋ ∈ −D(x)

with inital point x ∈ Rp is a locally Lipschitz mapping x : R 7→ Rp such that x(0) = x and for
almost all t ∈ R, ẋ(t) ∈ −D(x(t)). We denote by Sx the set of such solutions.

Standard results in this field [2, Chapter 2, Theorem 3] ensure that, since D has closed graph and
compact convex values, for any x ∈ Rp the set Sx is nonempty, note that it could be non unique.

3.2 Main result

The following notion was introduced in [7], see also [5]. It captures the fact that a continuous
trajectory is a solution to the differential inclusion in Definition 2 asymptotically.

Definition 3 (Asymptotic pseudo trajectory) A continuous function z : R+ 7→ Rp is an asymptotic
pseudotrajectory (APT), if for all T > 0,

lim
t→∞

inf
x∈Sz(t)

sup
0≤s≤T

‖z(t+ s)− x(s)‖ = 0.

Claim 4 Under Assumptions 1, 3 and 4, assume that (xK)K∈N produced by Algorithm 1 with
prescribed step size is bounded. Then the interpolant w given in Definition 1 is an asymptotic pseudo
trajectory as described in Definition 3.

The proof relies on Lemma 1 which shows that the iterates produced by the algorithm satisfy a
perturbed differential inclusion. The technical bulk of the proof is in Theorem 1 which shows that
perturbed differential inclusions are aymptotic pseudo trajectories. These results are described in
Section 3.3, the presentation and main arguments follow the ideas presented in [7]. In order to deduce
convergence of Algorithm 1 from the Asymptotic pseudo trajectory property, we need the following
Morse-Sard assumption. We stress that for deep network involving piecewise polynomials, logarithms
and exponentials, this assumption is satisfied for both the Clarke subgradient and the backpropagation
oracle [12, 23, 14].

Assumption 5 The function F and D are such that F (critF ), does not contain any open interval,
where critF is given in Assumption 4 and contains all x ∈ Rp, with 0 ∈ D(x).

Corollary 6 Under Assumptions 1, 3 and 4, assume that (xK)K∈N produced by Algorithm 1 with
prescribed step size is bounded and that Assumption 5 holds. Then F (xK) converges to a critical
value of F as K →∞ and all accumulation points of the sequence are critcal points for D.

Proof : Let x : Rp 7→ R be a solution to the differential inclusion described in Definition 2. Then
using conservativity in (15), for almost all t ∈ R+, we have

d

dt
F (x(t)) = − min

v∈D(x(t))
‖v‖2

Hence F is a Lyapunov function for the system: it decreases along trajectory, strictly outside critF .
Using Claim 4, w is an APT. Combining Assumption 5 with Proposition 3.27 and Theorem 4.3 in [7],
all limit points of w are contained in critF and F is constant on this set, that is F (w(t)) converges
as t→∞. �

Corollary 7 Under Assumption 4, assume that (xK)K∈N produced by Algorithm 1 with adaptive
step size is bounded and that Assumption 5 holds. Then F (xK) converges to a critical value of F as
K →∞ and all accumulation points of the sequence are critcal points for D.
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Proof : If vK converges, this means that all di go to 0, and all partial increments also vanish
asymptotically due to Claim 1. Call the set of accumulation points Ω ⊂ Rp. Ω forms a compact
connected subset of critF , see [13, Lemma 3.5, (iii)] for details. By continuity of F , the F (Ω) is a
connected subset of R, that is an interval. By Morse-Sard assumption 5 it is a singleton which proves
the claim. Assume otherwise that vK diverges to +∞ as K →∞, in this case, the step size goes to
0. We have

vK ≤ vK+1 ≤ vK + nM

which shows that vK+1/vK → 1 as K →∞, and
∑
K∈N αK,1 = +∞ so that Assumptions 1 and 3

are valid and Corollary 7 applies. �

3.3 Proof of the main result

We extend and adapt the arguments of [7].

Definition 4 (Local extension) For any γ > 0, and any x ∈ Rp, we let Dγ be the following local
extension of D

Dγ(x) =

{
y ∈ Rp, y ∈ 1

n

n∑
i=1

λiDi(xi), ‖x− xi‖ ≤ γ, |λi − 1| ≤ γ, i = 1, . . . , n

}
.

Note that limγ→0D
γ(x) = 1

n

∑n
i=1Di(x) by graph closedness of each Di in Assumption 4.

Definition 5 (Perturbed differential inclusion) A locally Lipschitz path x : R+ 7→ Rp satisfies the
perturbed differential inclusion if there exists a function γ : R+ 7→ R+ with limt→∞ γ(t) = 0, such
that for almost all t ≥ 0

ẋ(t) ∈ −Dγ(t)(x(t))

Lemma 1 The interpolated trajectory w given in Definition 1 satisfies the perturbed differential
inclusion in Definition 5.

Proof : The interpolated trajectory is piecewise affine so it is locally Lipschitz and differentiable
almost everywhere. For each K ∈ N and i = 1, . . . , n, we have using Claim 1

‖xK − ẑK,i−1‖ ≤ nαK,1M. (16)

Furthermore, for all t ∈ (τK , τK+1),

ẇ(t) = −
n∑
i=1

αK,idi(ẑK,i−1)/(τK+1 − τK) = − 1

n

n∑
i=1

λidi(ẑK,i−1), (17)

where for all i = 1, . . . , n, using αK,i ≤ αK,1 and τK+1 − τK =
∑n
i=1 αK,i ≥ nαK,n,

λi =
nαK,i

τK+1 − τK
≤ n αK,1

nαK,n
=
αK,1
αK,n

. (18)

Hence combining (16) and (17), we may consider γ(t) = max
{
nαK,1M,

∣∣∣1− αK,1

αK,n

∣∣∣} for all
t ∈ (τK , τK+1) which satisfies the desired hypothesis. �

The following result is the main technical part of this section. The proof follows that of [7, Theorem
4.2] and is provided in Appendix B.

Theorem 1 Let z be a perturbed differential inclusion trajectory as given in Definition 5. Then z is
an asymptotic pseudotrajectory as described in Definition 3.
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3.4 Discussion of the obtained result

Definition 5 extends the notion of approximate differential inclusion introduced in [7] to the finite
sum setting. Indeed, the definition proposed in [7] coincides with ours when n = 1. We add the
flexibility to choose different approximation points for each elements of the sum which, in turn,
allows to conclude regarding the output of the algorithm. A more general result was described in
[13] in a more abstract form. It is interesting to notice that the differential inclusion approach was
developped to analyze stochastic approximation algorithms because of the difficulty caused by the
addition of random noise. The proposed analysis suggests that this approach is also useful to analyse
deterministic algorithms as ours.

The obtained convergence result is qualitative and completely mirrors what is obtained for SGD
under similar assumptions at this level of generality [23, 14]. In terms of assumptions, analysis of
stochastic approximation requires that the step size decay is proportioned to concentration of the
noise. For example, under uniformly bounded variance, step sizes should be square summable. Such
assumptions ensure that perturbations of dynamics induced by the noise are summable, and therefore
negligible in the limit, see fore example [6] for a discussion. Such an assumption is not required by
our deterministic approach, the only required assumption is that the step size goes to zero in the limit
and that the steps remain of the same order within an epoch.

All the obtained results hold under the assumption that the trajectory remains bounded. This is a
strong assumption which is difficult to check a priori given a problem of the form (1). This assumption
is common in the analysis of stochastic approximation algorithms [7, 23] and we are not aware of
easy sufficient condition which ensures that this is the case. A simple work around would be to
add a projection step on a compact convex set at the end of each epoch. This would correpond to a
constrained optimization problem in place of (1). The considered notion of approximate differential
inclusion in Definition 5 is general enough to include this additional algorithmic step in the analysis,
maintaining the qualitative convergence result without requiring the boundedness assumption, which
would be automatically fulfilled.

4 Conclusion

We have introduced a flexible algorithmic framework for finite sums and proposed convergence
guaranties in smooth and nonsmooth settings under assumptions which are qualitatively similar as
in the litterature on stochastic gradient descent for such problems. The obtained result rely on a
perturbed iterate analysis and are valid in a worse case sense, they have therefore a quite different
nature compared to guaranties obtained for stochastic approximation algorithms. In the smooth
setting we obtain quantitative rates which have worse dependency in n but are asymptotically faster.
The resulting complexity estimate improves over SGD in the asymptotic regime, but remains weaker
for first epochs, a situation which is not uncommon in the analysis of incremental methods [27].

A natural extension of this work would consist in providing proof arguments explaining why random
permutations, as implemented in practice, often provide superior results compared to “with replace-
ment sampling” in a nonasymptotic sense. This topic has been extensively studied in the strongly
convex setting [19, 49, 55, 28, 47, 53] and it is of interest to extend these ideas to the nonconvex and
possibly nonsmooth setting [44, 40]. This will be the subject of future research. Finally, another topic
of interest would be to devise variants of the proposed algorithmic scheme with faster convergence
rates.
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This is the appendix for “Incremental Without Replacement Sampling in Nonconvex Optimization”.
We begin with the proof of the first claim of the paper.

Proof of Claim 1: We have for all K ∈ N and i = 1 . . . n, using the recursion in Algorithm 1,

zK,i − xK =

i∑
j=1

αK,jd (ẑK,j−1) .

Using Lemma 2, we obtain

‖zK,i − xK‖2 ≤ i
i∑

j=1

α2
K,i‖d (ẑK,i−1) ‖2 ≤ n

n∑
i=1

α2
K,i‖d (ẑK,i−1) ‖2.

Taking i = n, we obtain the second inequality. The result follows for ẑK,i−1 because it is in
conv(zK,j)

i−1
j=0 and

‖ẑK,i−1 − xK‖2 ≤ max
z∈conv(zK,j)i−1

j=0

‖z − xK‖2 = max
j=0,...,i

‖zK,j − xK‖2 ≤ n
n∑
i=1

α2
K,i‖d (ẑK,i−1) ‖2,

where the equality in the middle follows because the maximum of a convex function over a polyhedra
is achieved at vertices. �

A Proofs for the smooth setting

For all K ∈ N, we let αK = αK−1,n, with α0 = δ−1/3 ≥ α0,1.

A.1 Analysis for both step size strategies.

Claim 5 We have for all K ∈ N,

〈∇F (xK), xK+1 − xK〉+
1

2nαK
‖xK+1 − xK‖2

≤ − nαK
2
‖∇F (xK)‖2 + αKL

2n2
n∑
j=1

α2
K,j‖dj(ẑK,j−1)‖2 + αKM

2
n∑
i=1

(
αK,i
αK
− 1

)2

(19)

Proof of Claim 5: Fix K ∈ N, we have

xK+1 − xK = −
n∑
i=1

αK,idi(ẑK,i−1) = −αK
n∑
i=1

αK,i
αK

di(ẑK,i−1) (20)

Recall that∇F (xK) = 1
n

∑n
i=1 di(xK), combining with (20), we deduce the following

〈∇F (xK), xK+1 − xK〉+
1

2nαK
‖xK+1 − xK‖2

=
−αK
n

〈
n∑
i=1

di(xK),

n∑
i=1

αK,i
αK

di(ẑK,i−1)

〉
+

1

2nαK
‖xK+1 − xK‖2

=
αK
2n

∥∥∥∥∥
n∑
i=1

di(xK)−
n∑
i=1

αK,i
αK

di(ẑK,i−1)

∥∥∥∥∥
2

−

∥∥∥∥∥
n∑
i=1

di(xK)

∥∥∥∥∥
2

−

∥∥∥∥∥
n∑
i=1

αK,i
αK

di(ẑK,i−1)

∥∥∥∥∥
2


+
1

2nαK
‖xK+1 − xK‖2

= − nαK
2
‖∇F (xK)‖2 +

αK
2n

∥∥∥∥∥
n∑
i=1

di(xK)−
n∑
i=1

αK,i
αK

di(ẑK,i−1)

∥∥∥∥∥
2

≤ − nαK
2
‖∇F (xK)‖2 +

αK
n

∥∥∥∥∥
n∑
i=1

di(xK)−
n∑
i=1

di(ẑK,i−1)

∥∥∥∥∥
2

+

∥∥∥∥∥
n∑
i=1

di(ẑK,i−1)−
n∑
i=1

αK,i
αK

di(ẑK,i−1)

∥∥∥∥∥
2
 ,

(21)
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where the first two equalities are properties of the scalar product, the third equality uses (20) to
drop canceling terms and the last inequality uses ‖a+ b‖2 ≤ 2(‖a‖2 + ‖b‖2). We bound each term
separately, first,∥∥∥∥∥

n∑
i=1

di(xK)−
n∑
i=1

di(ẑK,i−1)

∥∥∥∥∥
2

≤

(
n∑
i=1

‖di(xK)− di(ẑK,i−1)‖

)2

≤

(
n∑
i=1

Li‖xK − ẑK,i−1‖

)2

≤ max
i=1,...,n

‖xK − ẑK,i−1‖2
(

n∑
i=1

Li

)2

≤ L2n3
n∑
j=1

α2
K,j‖dj(ẑK,j−1)‖2. (22)

where the first step uses the triangle inequality, the second step uses Li Lipschicity of di, the third
step is Hölder inequality, and the fourth step uses Claim 1. Furthermore, we have using the triangle
inequality and Cauchy-Schwartz inequality,∥∥∥∥∥

n∑
i=1

di(ẑK,i−1)−
n∑
i=1

αK,i
αK

di(ẑK,i−1)

∥∥∥∥∥
2

≤

(
n∑
i=1

(
αK,i
αK
− 1

)
‖di(ẑK,i−1)‖

)2

≤
n∑
i=1

(
αK,i
αK
− 1

)2 n∑
i=1

‖di(ẑK,i−1)‖2

≤
n∑
i=1

(
αK,i
αK
− 1

)2 n∑
i=1

M2
i

= nM2
n∑
i=1

(
αK,i
αK
− 1

)2

(23)

Combining (21), (22) and (23), we obtain,

〈∇F (xK), xK+1 − xK〉+
1

2nαK
‖xK+1 − xK‖2

≤ − nαK
2
‖∇F (xK)‖2 + αKL

2n2
n∑
j=1

α2
K,j‖dj(ẑK,j−1)‖2 + αKM

2
n∑
i=1

(
αK,i
αK
− 1

)2

,

which is (19) �

Claim 6 F has L Lipschitz gradient.

Proof : For any x, y, we have

‖∇F (x)−∇F (y)‖ =
1

n

∥∥∥∥∥
n∑
i=1

di(x)− di(y)

∥∥∥∥∥ ≤ 1

n

n∑
i=1

‖di(x)− di(y)‖ ≤ 1

n

n∑
i=1

Li ‖x− y‖

= L‖x− y‖

where we used triangle inequality and Li Lipschicity of di. �

Proof of Claim 2:

Using smoothness of F in Claim 6, we have from the descent Lemma [43, Lemma 1.2.3], for all
x, y ∈ Rp

F (y) ≤ F (x) + 〈∇F (x), y − x〉+
L

2
‖y − x‖2. (24)
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Choosing y = xK+1 and x = xK in (24), using Claim 5 and Claim 1, we obtain

F (xK+1) ≤F (xK) + 〈∇F (xK), xK+1 − xK〉+
L

2
‖xK+1 − xK‖2

≤F (xK)− nαK
2
‖∇F (xK)‖2 + αKL

2n2
n∑
j=1

α2
K,j‖dj(ẑK,j−1)‖2 + αKM

2
n∑
i=1

(
αK,i
αK
− 1

)2

+

(
L

2
− 1

2nαK

)
‖xK+1 − xK‖2

≤F (xK)− nαK
2
‖∇F (xK)‖2 +

(
αKL

2n2 +
Ln

2
− 1

2αK

) n∑
j=1

α2
K,j‖dj(ẑK,j−1)‖2

+ αKM
2

n∑
i=1

(
αK,i
αK
− 1

)2

.

Since αK,i ≤ αK for all K ∈ N and i = 1 . . . , n, we have 0 ≤ αK,i/αK ≤ 1, and using
(t− 1)2 ≤ 1− t2 for all t ∈ [0, 1](

αK,i
αK
− 1

)2

≤ 1−
α2
K,i

α2
K

≤ 1−
α3
K,i

α3
K

,

and the result follows. �

B Proofs for the nonsmooth setting

Proof of Theorem 1: Fix T > 0, we consider the sequence of functions, for each k ∈ N

wk : [0, T ] 7→ Rp

t 7→ w(τk + t)

From Assumption 4 and Definition 5, it is clear that all functions in the sequence are M Lipschitz.
Since the sequence (xk)k∈N is bounded, (wk)k∈N is also uniformly bounded, hence by Arzelà-
Ascoli theorem [51, Chapter 10, Lemma 2], there is a a subsequence converging uniformly, let
z : [0, T ] 7→ Rp be any such uniform limit. By discarding terms, we actually have wk → z as
k →∞, uniformly on [0, T ]. Note that we have for all t ∈ [0, 1], and all γ > 0

Dγ(wk(t)) ⊂ Dγ+‖wk−z‖∞(z(t)). (25)

For all k ∈ N, we set vk ∈ L2([0, T ],Rp) such that vk = w′k at points where wk is differentiable
(almost everywhere since it is piecewise affine). We have for all k ∈ N and all s ∈ [0, T ]

wk(s)−wk(0) =

∫ t=s

t=0

vk(t)dt, (26)

and from Definition 5, we have for almost all t ∈ [0, T ],

vk(t) ∈ −Dγ(τk+t)(wk(t)). (27)

Hence, the functions vk are uniformly bounded thanks to Assumption 4 and hence the sequence
(vk)k∈N is bounded in L2([0, T ],Rp) and by Banach-Alaoglu theorem [51, Section 15.1], it has a
weak cluster point. Denote by v a weak limit of (vk)k∈N in L2([0, T ],Rp). Discarding terms, we
may assume that vk → v weakly in L2([0, T ],Rp) as k →∞ and hence, passing to the limit in (26),
for all s ∈ [0, T ],

z(s)− z(0) =

∫ t=s

t=0

v(t)dt. (28)

By Mazur’s Lemma (see for example [26]), there exists a sequence (Nk)k∈N, with Nk ≥ k and a
sequence ṽk∈N such that for each k ∈ N, ṽk ∈ conv (vk, . . . ,vNk

) such that ṽk converges strongly
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in L2([0, T ],Rp) hence pointwise almost everywhere in [0, T ]. Using (27) and the fact that countable
intersection of full measure sets has full measure, we have for almost all t ∈ [0, T ]

v(t) = lim
k→∞

ṽk(t) ∈ lim
k→∞

−conv
(
∪Nk

j=kD
γ(τj+t)(wj(t))

)
⊂ lim
k→∞

−conv
(
∪Nk

j=kD
γ(τj+t)+‖wj−z‖∞(z(t))

)
= −conv

(
1

n

n∑
i=1

Di(z(t))

)
= −D(z(t)).

where we have used (25), the fact that limγ→0D
γ = 1

n

∑n
i=1Di pointwise since each Di has closed

graph and the definition of D. Using (28), this shows that for almost all t ∈ [0, T ],

ż(t) = v(t) ∈ −D(z(t)).

Using [7, Theorem 4.1], this shows that w is an asymptotic pseudo trajectory. �

C Lemmas and additional proofs

Lemma 2 Let a1, . . . , am be vectors in Rp, then∥∥∥∥∥
m∑
i=1

ai

∥∥∥∥∥
2

≤ m
m∑
i=1

‖ai‖2

Proof : From the triangle inequality, we have∥∥∥∥∥
m∑
i=1

ai

∥∥∥∥∥
2

≤

(
m∑
i=1

‖ai‖

)2

Hence it suffices to prove the claim for p = 1. Consider the quadratic form on Rm

Q : x 7→ m

m∑
i=1

x2
i −

∥∥∥∥∥
m∑
i=1

xi

∥∥∥∥∥
2

.

We have

Q(x) = m(‖x‖2 −
(
xT e

)2
),

where e ∈ Rm has unit norm and with all entries equal to 1/
√
m. The corresponding matrix is

m(I − eeT ) which is positive semidefinite. This proves the result. �

Lemma 3 Let (ak)k∈N be a sequence of positive numbers, and b, c > 0. Then for all m ∈ N
m∑
i=0

ai

b+ c
∑k
i=0 ai

≤ 1

c
log

(
1 + c

∑m
i=0 ak
b

)

Proof : We have
m∑
i=0

ai

b+ c
∑k
i=0 ai

=
1

c

m∑
i=0

ai
b
c +

∑k
i=0 ai

≤ 1

c
log

(
1 + c

∑m
i=0 ai
b

)
where the last inequality follows from Lemma 6.2 in [24]. �
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