G. Moddel and S. Grover, Rectenna solar cells, vol.9781461437, 2013.

G. Konstantatos, Current status and technological prospect of photodetectors based on two-dimensional materials, Nature Communications, vol.9, issue.1, pp.9-11, 2018.

E. Donchev, J. S. Pang, P. M. Gammon, A. Centeno, F. Xie et al., The rectenna device: From theory to practice (a review), Jet Propulsion Lab, 2014.

W. C. Brown and J. R. Mims, The Microwave-Powered Helicopter System, Journal of Mi-380 crowave Power, vol.2, issue.4, pp.111-122, 1966.

P. Glaser, Method and apparatus for converting solar radiation to electrical power, 1973.

R. L. Bailey, A Proposed New Concept for a Solar-Energy Converter, Journal of Engineering for Power, vol.94, issue.2, p.73, 1972.

W. Shockley and H. J. Queisser, Detailed balance limit of efficiency of p-n junction solar cells, Journal of Applied Physics, vol.32, issue.3, pp.510-519, 1961.

Z. Ma and G. A. Vandenbosch, Optimal solar energy harvesting efficiency of nano-rectenna systems, Solar Energy, vol.88, pp.163-174, 2013.

S. Joshi and G. Moddel, Efficiency limits of rectenna solar cells: Theory of broadband photonassisted tunneling, Applied Physics Letters, vol.102, issue.8, pp.1-5, 2013.

H. Mashaal and J. M. Gordon, Efficiency limits for the rectification of solar radiation, Journal of Applied Physics, vol.113, issue.19, 2013.

E. Briones, J. Alda, and F. J. González, Conversion efficiency of broad-band rectennas for solar energy harvesting applications, Optics Express, vol.21, issue.S3, p.412, 2013.

S. Joshi and G. Moddel, Optical rectenna operation: where Maxwell meets Einstein, Journal of Physics D: Applied Physics, vol.49, issue.26, p.265602, 2016.

Y. Suh and K. Chang, A high-efficiency dual-frequency rectenna for 2.45-and 5.8-GHz wireless power transmission, IEEE Transactions on Microwave Theory and Tech-405 niques, vol.50, pp.1784-1789, 2002.

W. C. Brown, Optimization of the efficiency and other properties of the rectenna element, S International Microwave Symposium, 1976.

R. Dickinson and W. C. Brown, Radiated Microwave Power Transmission System Efficiency Measurements, p.410

. Pasadena, , 1975.

S. Bharj, R. Camisa, S. Grober, F. Wozniak, and E. Pendleton, High efficiency C-band 1000 element rectenna array for microwave powered applications, IEEE Antennas and Propagation Society International Symposium, p.301, 1992.

J. O. Mcspadden, L. Fan, and K. Chang, Design and Experiments of a High-Conversion-Efficiency 5.8-GHz Rectenna, IEEE Transactions on Microwave Theory and Techniques, vol.46, issue.12, pp.2053-2060, 1998.

X. Yang, J. Xu, D. Xu, and C. Xu, X-band circularly polarized rectennas for microwave power transmission applications, Journal of Electronics, vol.25, issue.3, pp.389-393, 2008.

K. Chang, Theoretical and Experimental Development of 10 and 35 GHz Rectennas, Transactions on microwave theory and techniques, vol.40, pp.1259-1266, 1992.

H. Chiou and I. Chen, High-Efficiency Dual-Band On-Chip Rectenna for 35-and 94-GHz Wireless Power Transmission in 0 . 13-m CMOS Technology, IEEE Transactions on, p.425

, Microwave Theory and Techniques, vol.58, issue.12, pp.3598-3606, 2010.

M. Dragoman, M. Aldrigo, M. Dragoman, and M. Aldrigo, Graphene rectenna for efficient energy harvesting at terahertz frequencies Graphene rectenna for efficient energy harvesting at terahertz frequencies, Applied Physics Letters, p.113105, 2016.

A. S. Jayaswal-a, A. Belkadi-b, A. Meredov-a, B. Pelz-b, and G. , Moddel b, Optical rectification through an Al2O3 based MIM passive rectenna at 28.3THz, Materials Today Energy, vol.9, issue.1, 2018.

M. Aldrigo, M. Dragoman, M. Modreanu, I. Povey, S. Iordanescu et al., , vol.435

, Using a Rectenna Formed by a Bow Tie Integrated with a 6-nm-Thick Au/HfO 2 /Pt Metal-Insulator-Metal Diode, IEEE Transactions on Electron Devices, vol.65, issue.7, pp.2973-2980, 2018.

G. Moddel, Optical rectennas: Nanotubes circumvent trade-offs, Nature Nanotechnology, vol.10, issue.12, 2015.

U. C. Fischer and D. W. Pohl, Observation of Single-Particle Plasmons by Near-Field Optical Microscopy, Physical Review Letters, vol.62, issue.4, pp.458-461, 1989.

K. Trofymchuk, A. Reisch, P. Didier, F. Fras, P. Gilliot et al., Giant light-harvesting nanoantenna for single-molecule detection in ambient light, Nature

N. Caselli, F. China, W. Bao, F. Riboli, A. Gerardino et al., Deepsubwavelength imaging of both electric and magnetic localized optical fields by plasmonic campanile nanoantenna, Scientific Reports, vol.5, pp.1-6, 2015.

P. M. Voroshilov, V. Ovchinnikov, A. Papadimitratos, A. A. Zakhidov, and C. R. Simovski, Light Trapping Enhancement by Silver Nanoantennas in Organic Solar Cells, ACS Photonics, vol.5, issue.5, pp.1767-1772, 2018.

Y. Luo, A. I. Fernandez-dominguez, A. Wiener, S. A. Maier, and J. B. Pendry, Surface plasmons and nonlocality: A simple model, Physical Review Letters, vol.111, issue.9, 2013.

R. D. Grober, R. J. Schoelkopf, and D. E. Prober, Optical antenna: Towards a unity efficiency near-field optical probe, Applied Physics Letters, vol.70, issue.11, pp.1354-1356, 1997.

J. N. Farahani, H. J. Eisler, D. W. Pohl, M. Pavius, P. Flückiger et al., , p.460

, Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy, Nanotechnology, vol.18, issue.12, 2007.

C. M. Gruber, L. O. Herrmann, A. Olziersky, G. F. Puebla-hellmann, U. Drechsler et al., Fabrication of bow-tie antennas with mechanically tunable gap sizes below 5 nm for 465 single-molecule emission and Raman scattering, IEEE-NANO 2015 -15th International Conference on Nanotechnology, p.20, 2015.

I. S. Maksymov, I. Staude, A. E. Miroshnichenko, and Y. S. Kivshar, Optical yagi-uda nanoantennas, Nanophotonics, vol.1, issue.1, pp.65-81, 2012.

R. Vogelgesang, D. Dregely, R. Taubert, K. Kern, H. Giessen et al., 3D optical Yagi-Uda nanoantenna array, Nature Communications, vol.2, issue.1, 2011.

A. Farhang, T. Siegfried, Y. Ekinci, H. Sigg, and O. J. Martin, Large-scale sub-100 nm compound plasmonic grating arrays to control the interaction between localized and prop-475 agating plasmons, Journal of Nanophotonics, vol.8, issue.1, p.83897, 2014.

A. Chakrabarty, F. Wang, F. Minkowski, K. Sun, and Q. Wei, Cavity modes and their excitations in elliptical plasmonic patch nanoantennas, Optics express, vol.20, issue.11, pp.11615-11624, 2012.

F. Minkowski, F. Wang, A. Chakrabarty, Q. Wei, F. Minkowski et al., Resonant cavity modes of circular plasmonic patch nanoantennas Resonant cavity modes of circular plasmonic patch nanoantennas, Applied Physics Letters, pp.10-14, 2014.

T. J. Dill, M. J. Rozin, E. R. Brown, S. Palani, and A. R. Tao, Investigating the effect of Ag 485 nanocube polydispersity on gap-mode SERS enhancement factors, The Analyst, vol.141, issue.12, pp.3916-3924, 2016.

M. H. Rose, T. B. Hoang, F. Mcguire, J. J. Mock, C. Ciracì et al., Control of Radiative Processes Using Tunable Plasmonic Nanopatch Antennas, vol.14, pp.4797-4802, 2014.

C. Lin, Q. Y. Mason, M. A. Li, Z. Zhou, W. O'brien et al., Building superlattics from individual nanoparticles via template-confied DNA-mediated assembly, Science, vol.0591, pp.1-4, 2018.

Q. Y. Lin, Z. Li, K. A. Brown, M. N. O'brien, M. B. Ross et al.,

G. C. Chen, V. P. Schatz, K. Dravid, C. A. Aydin, and . Mirkin, Strong Coupling between Plasmonic Gap Modes and Photonic Lattice Modes in DNA-Assembled Gold Nanocube Arrays, Nano Letters, vol.15, issue.7, pp.4699-4703, 2015.

T. B. Hoang and M. H. Mikkelsen, Broad electrical tuning of plasmonic nanoantennas at visible frequencies, Applied Physics Letters, vol.108, issue.18, 2016.

J. Treuttel, L. Gatilova, A. Maestrini, D. Moro-melgar, F. Yang et al., A 520-620-GHz Schottky Receiver Front-End for Planetary Science and Remote Sensing with 1070 K-1500 K DSB Noise Temperature at Room Temperature, IEEE Transactions on Terahertz Science and Technology, vol.6, issue.1, pp.148-155, 2016.

J. Zhang, Y. Li, B. Zhang, H. Wang, Q. Xin et al., Flexible indium-gallium-zinc-oxide Schottky diode operating beyond 2.45 GHz, Nature Communications, vol.6, pp.1-7, 2015.

G. G. Shixiong-liang, Y. Fang, D. Xing, Z. Zhang, J. Wang et al., Z. Feng, p.510

. Ghz, Electronics Letters, vol.52, issue.16, pp.1408-1410, 2016.

L. Li, Study of Metal Insulator Metal diodes for photodetection, 2013.

J. H. Shin, J. Im, J. W. Choi, H. S. Kim, J. I. Sohn et al., Ultrafast metalinsulator-multi-wall carbon nanotube tunneling diode employing asymmetrical structure 515 effect, Carbon, vol.102, pp.172-180, 2016.

E. H. Shah, B. Brown, and B. A. Cola, A Study of Electrical Resistance in Carbon Nanotube-Insulator-Metal Diode Arrays for Optical Rectenna, IEEE Transactions on Nanotechnology, vol.16, issue.2, pp.230-238, 2017.

P. Periasamy, J. J. Berry, A. A. Dameron, J. D. Bergeson, D. S. Ginley et al., , p.520

P. A. Parilla, Fabrication and characterization of MIM diodes based on Nb/Nb 2O 5 via a rapid screening technique, Advanced Materials, vol.23, issue.27, pp.3080-3085, 2011.

M. N. and A. N. , Solid state physics, 1976.

Z. Zhu, S. Joshi, S. Grover, and G. Moddel, Graphene geometric diodes for terahertz rectennas, 525 Journal of Physics D: Applied Physics, vol.46, issue.18, 2013.

M. A. Ratner, Arish Aviram, Molecular rectifiers, Chemical Physics Letters, vol.29, issue.2, pp.277-283, 1974.

X. Chen, M. Roemer, L. Yuan, W. Du, D. Thompson et al., Molec-530 ular diodes with rectification ratios exceeding 10^5 driven by electrostatic interactions, Nature Nanotechnology, vol.12, issue.8, pp.797-803, 2017.

J. Trasobares, D. Vuillaume, D. Théron, and N. Clément, A 17 GHz molecular rectifier, Nature Communications, vol.7, p.12850, 2016.

L. Yuan, N. Nerngchamnong, L. Cao, H. Hamoudi, E. Barco et al., , p.535

D. Sriramula, C. A. Thompson, and . Nijhuis, Controlling the direction of rectification in a molecular diode, Nature communications, vol.6, p.6324, 2015.

C. A. Nijhuis, W. F. Reus, and G. M. Whitesides, Mechanism of rectification in tunneling junctions based on molecules with asymmetric potential drops, Journal of the American Chemical Society, vol.132, issue.51, pp.18386-18401, 2010.

G. H. Lin, R. Abdu, and J. O. Bockris, Investigation of resonance light absorption and rectification by subnanostructures, Journal of Applied Physics, vol.80, issue.1, pp.565-568, 1996.

D. R. Ward, F. Hüser, F. Pauly, J. C. Cuevas, and D. Natelson, Optical rectification and field enhancement in a plasmonic nanogap, Nature nanotechnology, vol.5, issue.10, pp.732-738, 2010.

R. Arielly, A. Ofarim, G. Noy, and Y. Selzer, Accurate determination of plasmonic fields in molecular junctions by current rectification at optical frequencies, Nano Letters, vol.11, issue.7, pp.2968-2972, 2011.

A. Stolz, J. Berthelot, M. M. Mennemanteuil, G. ;. Markey, and V. Meunier, Colas Des Francs, p.550

A. Bouhelier, Nonlinear photon-assisted tunneling transport in optical gap antennas, Nano Letters, vol.14, issue.5, pp.2330-2338, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01264122

P. S. Davids, R. L. Jarecki, A. Starbuck, D. B. Burckel, E. A. Kadlec et al., Infrared rectification in a nanoantenna-coupled metal-oxidesemiconductor tunnel diode, Nature Nanotechnology, vol.10, issue.12, pp.1033-1038, 2015.

A. Sharma, V. Singh, T. L. Bougher, and B. A. Cola, A carbon nanotube optical rectenna, Nature nanotechnology, vol.10, issue.12, pp.1027-1032, 2015.

S. Piltan and D. Sievenpiper, Optical rectification using geometrical field enhancement in gold nano-arrays, Journal of Applied Physics, vol.122, 2017.

A. Dasgupta, M. M. Mennemanteuil, M. Buret, N. Cazier, and G. , Colas-Des-Francs, A. Bouhelier, Optical wireless link between a nanoscale antenna and a transducing rectenna, Nature Communications, vol.9, issue.1, pp.1-7, 2018.

C. A. Reynaud, D. Duché, J. L. Rouzo, A. Nasser, L. Nony et al., Enhancing Repro-565 ducibility and Nonlocal Effects in Film-Coupled Nanoantennas, Advanced Optical Materials, vol.6, issue.23, p.1801177, 2018.

C. A. Reynaud, D. Duché, V. Jangid, C. Lebouin, D. Brunel et al., Molecular spacers in nanocube patch antennas: a platform for embedded molecular electronics, Photonic and Phononic Properties of Engineered Nanostructures IX, vol.10927, pp.85-92, 2019.