A. J. Seeds and K. J. Williams, Microwave photonics, J. Lightwave Technol, vol.24, issue.12, pp.4628-4641, 2006.

J. Yao, Microwave photonics, J. Lightwave Technol, vol.27, issue.3, pp.314-335, 2009.

D. Marpaung, J. Yao, and J. Capmany, Integrated microwave photonics, Nat. Photonics, vol.13, issue.2, pp.80-90, 2019.

T. Nagatsuma, G. Ducournau, and C. C. Renaud, Advances in terahertz communications accelerated by photonics, Nat. Photonics, vol.10, issue.6, pp.371-379, 2016.

L. Chusseau, G. Almuneau, L. A. Coldren, A. Huntington, and D. Gasquet, Coupled-cavity vertical-emitting semiconductor-laser for continous-wave terahertz emission, IEE Proc. J, vol.149, pp.88-92, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00325132

G. Pillet, L. Morvan, M. Brunel, F. Bretenaker, D. Dolfi et al., Dual-frequency laser at 1.5 µm for optical distribution and generation of high-purity microwave signals, J. Lightwave Technol, vol.26, issue.15, pp.2764-2773, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00674591

M. Sargent, I. I. Scully, and W. Lamb, Laser Physics, 1974.

K. Otsuka, P. Mandel, S. Bielawski, D. Derozier, and P. Glorieux, Alternate time scale in multimode lasers, Phys. Rev. A, vol.46, issue.3, pp.1692-1695, 1992.

M. Wichmann, G. Town, J. Quante, M. Gaafar, A. Rahimi-iman et al., Antiphase noise dynamics in a dual-wavelength vertical-external-cavity surface-emitting laser, IEEE Photonics Technol. Lett, vol.27, pp.2039-2042, 2015.

S. De, V. Pal, A. E. Amili, G. Pillet, G. Baili et al., Intensity noise correlations in a two-frequency VECSEL, Opt. Express, vol.21, issue.3, pp.2538-2550, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00814154

N. Takemura, M. Takiguchi, and M. Notomi, Probing the Ginzburg-Landau potential for lasers using higher-order photon correlations, 2019.

M. Brunel, F. Bretenaker, and A. L. Floch, Tunable optical microwave source using spatially resolved laser eigenstates, Opt. Lett, vol.22, issue.6, pp.384-386, 1997.

M. Alouini, F. Bretenaker, M. Brunel, A. L. Floch, M. Vallet et al., Existence of two coupling constants in microchip lasers, Opt. Lett, vol.25, issue.12, pp.896-898, 2000.

M. Brunel, A. Amon, and M. Vallet, Dual-polarization microchip laser at 1.53 µm, Opt. Lett, vol.30, issue.18, pp.2418-2420, 2005.

G. Baili, L. Morvan, M. Alouini, D. Dolfi, F. Bretenaker et al., Experimental demonstration of a tunable dual-frequency semiconductor laser free of relaxation oscillations, Opt. Lett, vol.34, issue.21, p.3421, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00664805

K. A. Fedorova, A. Gorodetsky, and E. U. Rafailov, Compact all-quantum-dot-based tunable THz laser source, IEEE J. Sel. Top. Quantum Electron, vol.23, issue.4, pp.1-5, 2017.

A. Mckay, J. M. Dawes, and J. Park, Polarisation-mode coupling in (100)-cut Nd:YAG, Opt. Express, vol.15, issue.25, pp.16342-16347, 2007.

V. Pal, P. Trofimoff, B. Miranda, G. Baili, M. Alouini et al., Measurement of the coupling constant in a two-frequency VECSEL, Opt. Express, vol.18, issue.5, pp.5008-5014, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00659252

G. Brévalle, S. Pes, C. Paranthoën, M. Perrin, C. Levallois et al., Direct measurement of the spectral dependence of Lamb coupling constant in a dual frequency Quantum Well-based VECSEL, Opt. Express, vol.27, issue.15, pp.21083-21091, 2019.

L. Chusseau, F. Philippe, P. Viktorovitch, and X. Letartre, Mode competition in dual-mode quantum dots semiconductor microlaser, Phys. Rev. A, vol.88, issue.1, p.15803, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00797743

L. Chusseau, A. Vallet, M. Perrin, C. Paranthoën, and M. Alouini, Lamb mode-coupling constant in quantum dot semiconductor lasers, Phys. Rev. B, vol.98, issue.15, p.155306, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01975604

L. Chusseau, F. Philippe, and F. Disanto, Monte Carlo modeling of the dual-mode regime in quantum-well and quantum-dot semiconductor lasers, Opt. Express, vol.22, issue.5, pp.5312-5324, 2014.
URL : https://hal.archives-ouvertes.fr/lirmm-01067715

A. Vallet, L. Chusseau, F. Philippe, and A. Jean-marie, Markov model of quantum fluctuations at the transition to lasing of semiconductor nanolasers, Phys. E, vol.105, pp.97-104, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01888162

R. Loudon, The Quantum Theory of Light, 1983.

P. R. Rice and H. Carmichael, Photon statistics of a cavity-QED laser: A comment on the laser-phase-transition analogy, Phys. Rev. A, vol.50, issue.5, pp.4318-4329, 1994.

L. Chusseau and J. Arnaud, Monte-Carlo simulation of laser diodes sub-poissonian light generation, Opt. Quantum Electron, vol.34, issue.10, pp.1007-1023, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00105937

A. Lebreton, I. Abram, N. Takemura, M. Kuwata-gonokami, I. Robert-philip et al., Stochastically sustained population oscillations in high-? nanolasers, New J. Phys, vol.15, issue.3, p.33039, 2013.

K. Roy-choudhury, S. Haas, and A. Levi, Quantum fluctuations in small lasers, Phys. Rev. Lett, vol.102, issue.5, p.53902, 2009.

G. P. Puccioni and G. L. Lippi, Stochastic simulator for modeling the transition to lasing, Opt. Express, vol.23, issue.3, pp.2369-2374, 2015.

D. T. Gillespie, Markov Processes: An Introduction for Physical Scientists, 1992.

A. Vallet, Laser2D: A two-band 'semiconductor-like' markovian multimode laser using the Monte-Carlo method, pp.2019-2020

S. De, V. Potapchuk, and F. Bretenaker, Influence of spin-dependent carrier dynamics on the properties of a dual-frequency vertical-external-cavity surface-emitting laser, Phys. Rev. A, vol.90, issue.1, p.13841, 2014.