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Abstract: We theoretically compute the coupling constant C between two emission modes of
an extended cavity laser with a multiple quantum-well active layer. We use an optimized Monte
Carlo model based on the Markov chain that describes the elementary events of carriers and
photons over time. This model allows us to evaluate the influence on C of the transition from a
class A laser to a class B laser and illustrates that the best stability of dual-mode lasers is obtained
with the former. In addition, an extension of the model makes it possible to evaluate the influence
of different mode profiles in the cavity as well as the spatial diffusion of the carriers and/or the
inhomogeneity of the temperature. These results are in very good agreement with previous
experimental results, showing the independence of C with respect to the beating frequency and
its evolution versus the spatial mode splitting in the gain medium.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Microwave photonics [1,2] requires compact and stable sources to generate frequencies from a
few GHz to the millimeter wave range. The direction today is towards integration [3] and in the
future this trend will be accentuated with increasingly smaller elementary components.

Optical beating using a dual-mode laser in combination with a high speed detector has shown to
be very attractive for the generation of microwave frequencies, possibly up to the THz frequency
range as has already been done for telecommunications [4]. Integrated dual-mode lasers have
many advantages over two separate lasers, mainly due to their single optical cavity which allows
compactness and insensitivity of the frequency difference to any first-order drift in the cavity
length [5]. As a result high-purity microwave sources using dual-mode lasers have already
been demonstrated [6]. The road to more compact devices uses semiconductor gain materials
operating at 1.55 µm to take advantage of the enormous technological effort already made for
optical communications.
These sources are our case study, dual wavelength operation is achieved by designing two

distinct resonant frequencies on the semiconductor chip. Because they share the same gain
material, these two sources are subject to mode competition and instabilities [7] whose counterpart
is the intrinsic phase-to-noise correlation or antiphase noise [8,9] which can be turned to advantage
since it reduces the RF beatnote noise [10].

#395790 https://doi.org/10.1364/OE.395790
Journal © 2020 Received 22 Apr 2020; revised 8 Jun 2020; accepted 15 Jun 2020; published 7 Jul 2020

https://orcid.org/0000-0002-4806-771X
https://orcid.org/0000-0001-7943-5290
https://doi.org/10.1364/OA_License_v1
https://crossmark.crossref.org/dialog/?doi=10.1364/OE.395790&amp;domain=pdf&amp;date_stamp=2020-07-07


Research Article Vol. 28, No. 15 / 20 July 2020 / Optics Express 21408

Since the earliest theory of gas lasers [7], the dual-mode emission is well understood starting
from gas lasers rate equations. If mode intensities, I1 and I2, follow the time evolution

dI1
dt
= (α1 − β1I1 − θ12I2) I1, (1a)

dI2
dt
= (α2 − β2I2 − θ21I1) I2, (1b)

where the αi are unsaturated gains and βi and θij are self-saturation and cross-saturation
coefficients, then the stability analysis is governed by the Lamb constant

C =
θ12θ21
β1β2

. (2)

Depending onwhether this constant is less or greater than 1, the twomodes oscillate simultaneously
or not. This model has been established within the restricted framework of “class A laser”, a
system that classifies lasers according to their respective dynamics between photons, polarization
and population inversion. A modern discussion of these classes and their relation to high-order
photon correlations is given in [11].
Although dual-mode lasers using a solid-state active region are well known [12–14], their

transposition to a semiconductor gain material has only appeared in recent years [10,15,16], the
latter case involving InAs/GaAs quantum dots (QD). The procedure applied to experimentally
extract C on such solid state lasers [13,17], has recently been transposed only twice to semi-
conductor based dual-mode lasers, consisting mainly of quantum wells (QW) active layers in
Vertical External Cavity Surface Emitting Laser (VECSEL) architecture [18,19].

In the first case, InGaAs/GaAsP QWs provide optical gain at 1 µm and a variable spatial
separation is introduced between the two mode gain zones to reduce competition between them.
A coupling constant of value C = 0.8 is extrapolated for a perfect overlap. In the second case, the
dual-mode laser has been built with a perfect overlap between modes and includes InP/InAlGaAs
QWs operating at 1.54 µm. A coupling constant of C = 0.84 ± 0.02 was measured. Although
high, these C-values indicate a stable behavior that was not expected with models of QW lasers
based on population rate equations but was strongly anticipated for QDs [20,21]. As in these
models the carrier population is not adiabatically eliminated to account for the laser class B
behaviour, these models do not really take into account real experimental situations. A refinement
has recently been proposed using Monte Carlo simulation of the dual-mode regime taking into
account the light-matter interaction directly by quantum jumps between the populations [22] and
the possibility of a stable regime has been suggested. Nevertheless, the calculations in this first
study were too long to investigate the question in more detail with respect to the laser parameters.
Due to the recent improvement of the Monte Carlo model [23], we are able to derive in the

following a numerical strategy to illustrate the stability of dual-mode lasers with active QW
regions. We achieve this by evaluating the constant C with a numerical procedure that replicates
the experimental procedure [13,18,19].

2. Material and methods

The numerical evaluation of C using simulations is based on the variations in losses inserted
selectively for each mode, thereby mimicking the experience [13]. Although complicated
experimentally, it is conceptually easy to introduce in calculations since the cavity lifetime of each
mode is a separate parameter. Within the framework of (1), the steady-state optical intensities are
Ii and the optical losses are given by αi. Assuming that the numerical conditions for a stable
steady-state dual-mode regime are obtained, the intensity variation of mode 1 while modulating
the losses of mode 2 is thus given by ∂I1/∂α2 and should be divided by the modulated intensity
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of mode 2 in the same condition ∂I2/∂α2. The converse applies when modulating the linear gain
of mode 1 and yields

C ≡ K12K21, with Kij ≡ − ∂Ii

∂αj

(
∂Ij

∂αj

)−1
. (3)

Before the previous procedure can be applied, it is necessary to obtain a steady-state operation
exhibiting average photon number approximatively equals for both modes. This choice of
iso-intensity operation is dictated by the experimental need for maximum beatnote contrast
yielding a maximum emission. This point is called the standard dual-mode operation point and
its search is sometimes cumbersome as discussed in a previous work [22]. It is only around this
point that we can reproduce the experimental procedure to obtain the Kij, which are the cross-
to self-saturation ratio, by varying one by one the two cavity losses in a tiny range with aim to
extract the slopes and then C.

2.1. Compact Monte Carlo model

Monte Carlo and stochastic laser models calculate the time-dependent traces of the intensity
evolution. They have been developed most of the time from the laser master equation [24,25]
and were often applied to nanolasers with aim to understand their noise performance [26,27] or
specific transition to lasing [23,28,29] because fluctuations are intrinsically taken into account.
Recently we studied the mode competition within a dual-mode QW laser using our specific
model that includes the carrier competition within bands via their thermal relaxation and Pauli’s
exclusion principle [22]. In spite of extremely long numerical computations that barely allowed
us to touch the modal competition in QW lasers, we were able to show that contrary to rate
equation models that predict a bistable regime [20], a stable two-mode regime could be possible
by adjusting the cavity losses separately on the two modes, even if this adjustment is extremely
sensitive.
To go further, improvements were needed to significantly reduce computing requirements.

This was done in another work and applied to the emission properties of nanolasers during the
transition to lasing. We extend it here to QW dual-mode semiconductor lasers and recall only its
main features which are detailed in [23]. Our picture of a QW dual-mode semiconductor laser
consists of two quantized electromagnetic modes resonant with a dual-mode cavity containing m1
and m2 photons and a finite number of electrons occupying the valence band and the conduction
band. A finite number of energy values is available for each electron, only two of such levels
in each band may allow radiative transitions. Owing to level discretization and introducing
thermalization constants it is possible to follow each particle (electron or photon) with a huge
Markov chain whose transition rates are completely defined by the present state [20,26]. Because
typical time constants are far shorter for thermalization than for photonic processes, we split the
Markov chain in a rapid part, the thermalization, that is treated only once analytically using the
framework of the canonical ensemble of statistical mechanics, and a slower one, the photonic and
pumping events, that is calculated using the exact algorithm of Gillespie [30].

Eventually the calculation requirements were reduced by a factor of more than 5 000, without
loss of accuracy [23]. Thanks to this gain, the first results proposed in [22] can now be extended by
adding a recursive procedure to automatically find the balance between the modes by adjusting the
cavity losses and finding an appropriate couple αbal

i . As a result, a redundancy in the calculation
is used to extract valid statistical results and not simple averages over a few trajectories as was
done in [22] due to the heavy numerical calculations. The Fig. 1 illustrates what is generally
obtained for the optical intensities by varying the optical losses αi around these equilibrium
values once the equilibrium between the modes I1 = I2 inside the cavity has been obtained at
αbal

i . The mode competition in these lasers is so strong that we had to calculate a large number
of Monte Carlo trajectories to extract the slopes from their average intensities with sufficient
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precision, then the Kij and finally C. For each αi the point reported in Fig. 1 is the statistical
result of 40 runs and thus exhibits an uncertainty that sometimes includes negative intensities,
which highlights the coexistence of On and Off laser operations within each trajectory of the
set of 40 runs. It is interesting to note that this uncertainty is even greater at the vicinity of the
mode balance, reflecting the modal competition and the more frequent mode switching around
this point than when the laser is completely unbalanced, for instance at the extrema of the αi
considered. In practice we performed several tests before finding the acceptable solution reported
in Fig. 1 for which a total of more than 10 000 runs has to be performed to extract the following
values for the Lamb parameters: K12 = 0.863 ± 0.024, K21 = 1.121 ± 0.031 and C = 0.97 ± 0.04
with specified 95% confidence intervals. Numerically, each trajectory covers more than 3 105
pump events whose statistics is poissonian to model optical pumping. An equivalent number
of photonic events occurs in the cavity for each trajectory, and the total cost in calculation time
including the mode-balance search and the 10 000 runs with their respective initializations was
75 minutes by requesting 40 cores on a cluster.

Fig. 1. Evolutions of the optical intensities I1, red, low energy mode, and I2, blue, high
energy mode of a nanolaser while varying the optical losses αi once at a time. Intensity unit
is the average number of photons in the cavity for each mode. Optical loss unit is the inverse
of the time unit which is fixed in our model to the lifetime of the population in the excited
state, generally 1 ns for a semiconductor laser. Laser gain is thus unity and assumed identical
on both modes. Dots are averages over 40 runs at each α value and the error bars are 95%
confidence intervals. Pump rate is 200 per unit time. The fraction of spontaneous emission
coupled into the lasing mode β is 0.4, which corresponds to a nanolaser with low threshold.
(a) Variation of α1 at fixed αbal2 = 0.439. (b) Variation of α2 at fixed αbal1 = 0.5. Lines are
fits whose slopes give the Kij of (3). Other laser parameters are B = 800 levels per band,
T = 300K, ε = 1meV level spacing within bands and a mode spacing of 4meV, i.e. ≈ 1 THz.
Laser model details and details on how parameters are defined may be found in [23].

2.2. Two-dimensionally coupled Monte Carlo model

To get closer to experiments we developed a more complex model coupling many elementary
emitters as described by the previous compact model. The objective is to address any spatial
effects, whether due to competition between adjacent laser zones, inhomogeneous temperature or
transverse carrier scattering in the VECSEL, all of which can influence bimodal stability. Figure 2
gives a schematic representation of the 2D laser model. It is built on a meshed arrangement
of elementary emitters individually described in §2.1 whose parameters may depend on the
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spatial position. Each of the elementary emitters can exchange carriers with its closest neighbors,
to account for electronic scattering, but all share the same photon bath since the latter is not
localized in a conventional laser operating well above threshold. Eventually, the gain of each of
the two modes can also be differentiated for each laser, allowing to take into account the imperfect
overlap of the two modes, either desired [18] or resulting from waist differences due to possible
different optical paths in the cavity [19].

of elementary emitters individually described in §2.1 whose parameters may depend on the
spatial position. Each of the elementary emitters can exchange carriers with its closest neighbors,
to account for electronic scattering, but all share the same photon bath since the latter is not
localized in a conventional laser operating well above threshold. Eventually, the gain of each of
the two modes can also be differentiated for each laser, allowing to take into account the imperfect
overlap of the two modes, either desired [18] or resulting from waist differences due to possible
different optical paths in the cavity [19].

(a) (b)

Fig. 2. (a) Schematic representation of the 2D laser model. (b) Simple chain of carrier
reservoirs exchanging particles.

Aside from a simple juxtaposition of emitters, which can all exhibit different intrinsic
parameters, the electron transfer requires to introduce novel rates in the Markov chain governing
that transition for each elementary emitter with its neighbors. Let’s consider a simple chain of
three elements A, B and C as depicted in Fig. 2(b), this rate is set proportional to the number of
carrier in each element, and for � it is given by

=� (C + XC) = =� (C) +DXC (=�(C) + =� (C) − 2=� (C)) , (4)

where D is the diffusion constant in the system. A simple justification of Eq.(4) is given in
Appendix A and its generalization in 2D is straightforward considering only the four closest
neighbors.

Inhomogeneous temperature also influences carriers with an obvious transfer from hot devices
toward cold ones. We account it as a modification of D in Eq.(4) by means of the Metropolis
criterion forMonte Carlo. Considering two adjacent reservoirs � and � of temperatures)� and)�,
the D factor of transition from � to � is multiplied by the probability min [exp(1 − )�/)�), 1],
thus it is favored if )� ≥ )� but still allowed with a reduced rate if )� > )�.
While we had gained a very important factor exceeding 5 000 in computation time with

our ad-hoc processing of the Markov chain describing the laser, the reintroduction of multiple
active elements and their coupling results in single trajectory computation times of several
minutes on our multi-core computer, thus requiring many hours for averaging and producing the
numerous traces required to extract the value of �. Although carrier diffusion and temperature
inhomogeneity were included in the final open source software [31], their computational time
sometimes made it impossible to evaluate them all.

Fig. 2. (a) Schematic representation of the 2D laser model. (b) Simple chain of carrier
reservoirs exchanging particles.

Aside from a simple juxtaposition of emitters, which can all exhibit different intrinsic
parameters, the electron transfer requires to introduce novel rates in the Markov chain governing
that transition for each elementary emitter with its neighbors. Let’s consider a simple chain of
three elements A, B and C as depicted in Fig. 2(b), this rate is set proportional to the number of
carrier in each element, and for B it is given by

nB(t + δt) = nB(t) +Dδt (nA(t) + nC(t) − 2nB(t)) , (4)

where D is the diffusion constant in the system. A simple justification of (4) is given in
Appendix A and its generalization in 2D is straightforward considering only the four closest
neighbors.

Inhomogeneous temperature also influences carriers with an obvious transfer from hot devices
toward cold ones. We account it as a modification of D in (4) by means of the Metropolis
criterion for Monte Carlo. Considering two adjacent reservoirs A and B of temperatures TA and
TB, theD factor of transition from A to B is multiplied by the probability min [exp(1 − TB/TA), 1],
thus it is favored if TA ≥ TB but still allowed with a reduced rate if TB>TA.
While we had gained a very important factor exceeding 5 000 in computation time with

our ad-hoc processing of the Markov chain describing the laser, the reintroduction of multiple
active elements and their coupling results in single trajectory computation times of several
minutes on our multi-core computer, thus requiring many hours for averaging and producing the
numerous traces required to extract the value of C. Although carrier diffusion and temperature
inhomogeneity were included in the final open source software [31], their computational time
sometimes made it impossible to evaluate them all.

3. Results

First of all, we used the compact model described in §2 to evaluate the sensitivity of C to some
typical laser parameters. Let’s consider β which governs the emission ratio in the laser mode and
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therefore the laser threshold. The typical case already illustrated in Fig. 1 has been reproduced for
β values ranging from 10−2 to 1, which corresponds to the value for a well confined VCSEL and
that of a perfect nanolaser. The cross- to self-saturation coefficients Kij and the Lamb coupling
constant C are reported with respect to β in Fig. 3 following the statistical analysis on more than
10 000 trajectories per point discussed in Fig. 1.

Fig. 3. Influence of β on (a) K12 (red) and K21 (blue) and (b) C calculated using the Monte
Carlo model. The span considered covers the transition from a VCSEL to a perfect nanolaser.

At first glance all the mean values remain insensitive to β, which is not the case for the
error bars produced by the statistical analysis. In any case the dynamical operation of the laser
is calculated as stable dual-mode even if C is very close to unity. Close examination of the
trajectories shows in this case very noisy intensities for each mode but with noise clearly in
antiphase and therefore, as expected, the beat intensity noise is much lower than that of the
individual modes. High C values are thus of no penalty for applications as long as only the
beat signal is used (See Appendix B). Anyway, as β decreases, the error bars increase more and
more to exceed by far the critical value C = 1, which is a sign of increasing instability. It has
been shown in [23] that low values of β promote a mode shutdown whose duration is inversely
proportional to its value. This results in large emission peaks when this mode is re-ignited,
causing a large increase in photon number variance and in turn the observed increasing error
bars. We thus admit that such behavior is intimately provoked by the very small number of
photons and electrons considered in our Monte Carlo simulation. If we consider that a significant
increase in this number of electrons and photons is impossible in the simulations without making
the computation times prohibitive, and if we refer to the computed mean values that do not vary
significantly over such a large scale, we must conclude that β has a very small influence on the
effective stability, so we will assume in the following that the computed behavior for a typical β
of 0.5 (or 0.4 in Fig. 1) is representative of the experimental VECSEL.

The dynamics of semiconductor lasers is very dependent on their class, and therefore on their
optical cavity. A VECSEL is intrinsically class A because of its large cavity, which considerably
increases the photon lifetime, whereas an integrated VCSEL laser is clearly class B with a slower
carrier dynamic than that of photons. It can therefore be expected that the dual-mode behaviour
may also depend on the class considered for the study laser. We have set up a simulation to
illustrate this transition. Keeping the parameters of Fig. 1 with β = 0.5 and increasing step-by-step
α1, the cavity losses of the low energy mode, the class of the laser gradually changes from A to
B. Results are given in Fig. 4.
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Fig. 4. Calculated (a) K12 (red) and K21 (blue) and (b) C constant as a function of α1 the
ratio between cavity lifetime to population lifetime. From left to right the evolution here
mimics the transition from a class A to a class B laser.

For numerical convergence reasons, α1 was chosen in the narrow range [10−1, 1] and the
solution α2 satisfying the mode balance was determined each time before computing the Kij and
Lamb constant C using statistics over 10 000 trajectories. Actually, α2 is proportional to α1 since
it can be adjusted according to the linear law α2 = 1.06α1 − 0.089. The negative constant in the
fit law thus prohibits dual mode behavior if α1 becomes too small, and it is also responsible for
the growing gap between the powers of the two modes when α1 decreases.

A regular transition with rapidly evolving Kij values is obtained (see Fig. 4(a)). At the smallest
α1, which corresponds to a class A laser with a carrier dynamic ten times faster than that of
photons, K12 is already very close to zero. This explains why it was not possible to consider
lower α1 without making the laser bistable. Conversely, this is the point where K21 is the highest,
showing an extreme sensitivity of the higher energy mode intensity to the losses of the low energy
one. At the opposite of the curve where α1 = 0.79, the two constants K12 and K21 tend towards
the same value very close to unity, showing an equivalent sensitivity for one or the other of the
two modes towards modifications made on its own losses or on those of his companion. At that
point the carrier and photon dynamics are now almost equivalent, a situation close to that of a
class B laser. Again, it was not numerically possible to push α1 to values far beyond without
resulting in unreasonable pumping.
As seen in Fig. 4(b), in the same time the Lamb constant C increases regularly. For class A

lasers, we obtain our lowest value of C = 0.85 ± 0.12 which is in very good agreement with
published experiments [18,19]. On the other hand, moving towards the class B laser, C increases
steadily and becomes so close to unity that it excludes any practical stable dual-mode regime,
according to rate-equation models [20]. In our view, the fact that bulk semiconductor or QW
lasers are intrinsically class B makes them unsuitable for dual mode operation. Only the addition
of an external cavity to make them class A and eventually the advent of spatial hole burning makes
this possible. This is not the case if quantum dots are used instead because then intrinsic mode
decoupling occurs through the inhomogeneous gain broadening, and we have high expectations
for the realization of compact and stable dual-mode lasers with this type of gain material [16,21].
The most complete model, with its 2D coupled Monte Carlo emitters, is expected to provide

further insights, especially as it supports the spatial dimension of VECSEL lasers. First of all,
coupling parameters were introduced one by one to see their influence on Kij and C. In practice,
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it was not possible to go as far as the situation described in the Fig. 2, because then the Markov
chain to be simulated explodes in size. In fact the number of transitions to be taken into account
is multiplied by the number of individual elements included. It grows even bigger if coupling is
introduced since the rate in (4) is proportional to the total number of carriers considered and thus
becomes very high if D is high. In practice, we limited calculations to a few emitters that we
considered regularly spaced rather than spread out on a grid, because our maximum allowable
computer time has thus been reached. Our typical situation includes 4 of such individual Monte
Carlo lasers for which we consider the influence of carrier coupling, pump intensity, lasing level
spacing and mode overlap. We will see that temperature does not matter in our framework.

The Fig. 5(a) illustrates the influence of carrier coupling between emitters. Although the value
of this coupling is varied over more than 8 decades, the Kij and C are fairly constant over the whole
range of variation and identical to that of no-coupling, and only differences in the uncertainties
are noticeable. As concerns the final stability of the dual mode regime defined by the Lamb
constant C, it is almost unchanged, even in the case of strong spatial carrier exchanges between
emitters. We therefore conclude that carrier diffusion has no influence in our calculations, which
is beneficial because it is time consuming to take into account. In the same way and in order to
lighten the calculations we have ignored in the following the effects of temperature as previously
discussed as a modification of the diffusion coefficient. However, it should not be ignored that
temperature also acts on many material parameters including the gain and loss of optical modes
as well as the position of gain maximum. Intense optical intensity in the cavity can also influence
the gain through non-linear saturation or through heating due to higher absorption. The first
of these effects was demonstrated in our first Monte Carlo simulations using the microscopic
model which demonstrated a shift in mode balance with optical intensity [22]. This is no longer
possible with the canonical formalism used here [23], which is the only way to carry out the
amount of computation required by this study. However, if the effect of temperature is ignored in
the following, it would still be possible to add it as a phenomenological gain model.

Fig. 5. Calculated dual-mode coupling constants (a) versus D, the carrier coupling
parameter and (b) the pumping intensity J in carrier per unit time. The laser simulated
includes 4 emitters like the one of Fig. 1 with β = 0.5. In (a) the value determined without
coupling is indicated by dashed colored horizontal lines. For both, the dotted gray line
figures the stability limit for C.
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The Fig. 5(b) accounts for the influence of optical pumping level, J , in the same 4 emitter
system. Again we varied J over a wide range with only tiny changes either on the Kij or on C.
With the exception of side effects of pumping such as temperature increase which influences the
gain and refractive index of the active material, two effects that we do not take into account in
our model, we can therefore neglect the influence of pumping on the stability of the dual mode
regime.

Closer to the experiment [19] is the evaluation of Kij and C when the energy spacing between
the two lasing modes is varied. This is reported in Fig. 6 together with the experimental results.
The parameter values are the same as in Fig. 1 including 4 emitters in the same cavity with
identical gains on both modes. In our model, the energy spacing between modes is an integer
multiple of the discretization of energy levels in the conduction band or valence band. This
discretization is usually 1meV but we have separately evaluated in a few cases what happens
with half this value and found exactly the same results. This is the reason why calculations are
given in Fig. 6 starting from 1meV up to 5meV. Although measured Kij values exhibit variations
with mode spacing, the variation of calculated Kij is larger. However, they are very similar in
average, at least between 2 and 4 meV of mode separation. With a mode separation of 5meV
the calculated K12 is very low. This situation already occured in Fig. 4 with the lowest values
of α1. Again, this comes along with a large K21 and an extreme sensitivity to parameters for
the simulated laser. Nevertheless, like experiments, the resulting Lamb constant C is almost
independent of mode spacing, although its calculated value always exceeds that of the measured
value.

Fig. 6. Calculated (lines) and measured (filled dots and squares) [19] (a) K12 (red) and K21
(blue) and (b) C constant as a function of energy spacing between the two modes. Open
symbols are calculations given with surrounding colored bands for 95% confidence levels.

Finally we used the most complete model with multiple emitters to evaluate the dependence of
decoupling on mode overlap in the active semiconductor region. This point was experimentally
investigated in [18]. Numerically, we chose 4 different emitters in the same cavity with mode
gains according to a prescribed spatial splitting d within the active medium. Again the laser
parameters of Fig. 1 with β = 0.5 were used. To represent the overlapping modes we set these
modal gains according to gaussian profiles for the two modes. This is represented in the insets of
Fig. 7 for selected values of splitting distances d. Furthermore and in order to keep similar overall
gain for the two modes, their total gains were equalized. Nevertheless, the method accounts
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carefully of the experimental condition used in [18] using only a restricted number of emitters.
Our simulated points and the corresponding fitting curve C0 exp−( d

w0
)2 expected with gaussian

profiles [18] are plotted in Fig. 7 together with the experimental data.

Fig. 7. Lamb C constant of two non-overlapping gaussian modes as a function of their
effective separation d in gain medium. Four emitters are set in the cavity with different mode
gains adjusted to emulate the behavior of two non-overlapping gaussian modes. Monte Carlo
results are the brown dots with error bars and the brown curve is a gaussian fit. Green stars
are measurements from Ref. [18]. The insets for different separation distances are mode
profile drawings where the dots indicate the exact position and relative intensity for each
emitter while the curves are eye guides corresponding to the simulated continuous mode
profiles. Total gain was equalized for each mode and d.

As anticipated C decreases with d following a gaussian fit whose starting point at d = 0 µm is
C0 = 0.89 and radii w0 = 34 µm. When the spacing between modes increases, the Fig. 7 exhibits
an excellent overall agreement with the experimental results even if C0 is slightly higher than that
of the two reported experimental values [18,19]. Our complete model is thus an accurate tool for
predicting laser dynamics, including mode competition in a device as complex as a dual-mode
VECSEL with adjustable mode separation in the gain medium. Notice that we obtained in
Fig. 6(b) larger Lamb C factors in what seems to be the same situation in Fig. 7 with four emitters
at perfect overlap. The difference here comes from the gain values which are no more identical in
Fig. 7 for all four emitters but decrease as we move away from the beam center, according to
the first inset of Fig. 7. Therefore, taking into account a realistic mode profile would probably
slightly alter the results in Fig. 6 in favor of a better agreement with the experiment.

4. Conclusions

Owing to drastic improvements in the Markov chain which represent a dual-mode laser, we
have set up very efficient Monte Carlo simulations of dual-mode semiconductor lasers and have
considerably extended the explored range of parameters compared to previous work [22]. The
significant increase in speed obtained on the programmakes it possible to multiply the simulations,
allowing for the determination of the Lamb factor C for quantum well lasers by mimicking the
experimental modulation of one mode at a time and observing all intensity modulations. A
complete QW semiconductor laser simulator has been built, able to take into account multiple
modes with different spatial and spectral profiles and ultimately lateral carrier diffusion and
inhomogeneous temperature.
Numerical results show that some parameters do not influence the dual-mode stability, for

instance the spontaneous emission factor β or lateral carrier diffusion, whereas the intrinsic
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nature of the laser (class A or class B) is of tremendous importance. Up until now, experimental
evidence on the stability of dual-mode QW lasers has apparently contradicted model predictions.
This originated from the discrepancy in dynamical properties since the measurements were taken
in class A VECSELs while models were tailored to compact class B semiconductor lasers.
The application of the model to previously published experimental situations is done with

success and good precision, both concerning the independence of C with the spectral separation
of the two modes and its decrease when optical modes are spatially separated in the gain
medium. Nevertheless, all this required a significant computational effort, and as the possibility
of extending the computation to more complex lasers has been included in the software, this work
will deserve to be expanded in the future for specific applications.

A. Justification of (4)

Carrier diffusion is usually expressed in one dimension using

∂n(x, t)
∂t

= D
∂2n(x, t)
∂x2

, (5)

where D is the diffusion coefficient.
The finite difference schemes for derivatives in the left-hand and right-hand sides yields

∂n(x, t)
∂t

=
n(x, t + δt) − n(x, t)

δt
+ o(δt), (6a)

∂2n(x, t)
∂x2

=
n(x − δx, t) − 2n(x, t) + n(x + δx, t)

δx2
+ o(δx2), (6b)

which, inserted in (5) yields

n(x, t + δt) = n(x, t) + δtD
(
n(x − δx, t) − 2n(x, t) + n(x + δx, t)

δx2

)
+ o(δt + δx2). (7)

This result is the exact analogous of (4) for the discrete chain of Fig. 2(b) provided that
D = D/δx2.

B. Estimate of the beating noise from Monte Carlo trajectories

Since the objective of beating two modes of a dual-mode laser is to obtain a pure frequency, the
question of beatnote noise is a major concern. This appendix proposes a noise estimate starting
from the intensity fluctuations of the two modes as obtained from Monte Carlo trajectories. In
essence, this result is a lower bound for the beating noise since it neglects any phase noise.
However, it illustrates how the intrinsic noise of each mode may partly cancel in the beating
because of antiphase coupling. Additional improvements would, for instance, require keeping
track of the temporal carrier evolution in order to add phase fluctuations via the Henry amplitude-
phase coupling factor in semiconductor lasers. These improvements could be introduced into
Monte Carlo models in future work, following the procedure introduced in [32].
Let us start from the electromagnetic fields of the two modes in the laser cavity

E1(t) = E1(t) exp(jΩ1t),
E2(t) = E2(t) exp(jΩ2t).

If we define Ω0 = (Ω1 +Ω2)/2 the average optical pulsation and Ω = (Ω1 −Ω2)/2 the half of the
beating pulsation, the total field is

E(t) = E1(t) + E2(t) = E1(t) exp(j(Ω0 +Ω)t) + E2(t) exp(j(Ω0 −Ω)t). (8)



Research Article Vol. 28, No. 15 / 20 July 2020 / Optics Express 21418

Since the electromagnetic energy is E(t)E?(t), we have

E(t)E?(t) = E1(t)E?
1 (t) + E2(t)E?

2 (t) + E1(t)E?
2 (t) exp(j2Ωt) + E?

1 (t)E2(t) exp(−j2Ωt),

which simplifies by regrouping the last two terms

E(t)E?(t) = E 2
1 (t) + E 2

2 (t) + 2E1(t)E2(t) cos(2Ωt). (9)

In essence the Ei(t) ∝
√

mi(t) are real stochastic process, therefore the number of "photons" at the
beating frequency 2Ω inside the cavity is

u2Ω ∝ E1(t)E2(t) =
√

m1(t)m2(t). (10)

The result of (10) is illustrated using the particular trajectory of Fig. 8(a) where we have plotted
the stochastic process u2Ω. As visible from the figure, the geometric average representing the
beat intensity is considerably smoother than the highly fluctuating individual modes. This can
be attributed to the predominantly antiphase nature of the large individual fluctuations which
considerably reduce the variations in total photon number.

Fig. 8. (a) Example of calculated trajectories – photon number versus time – in dual-mode
regime and (b) corresponding g(2)(τ) versus time for the three processes. Red: low-energy
mode m1. Blue: high-energy mode m2. Orange: beating process u2Ω.

As a result the corresponding second-order delayed autocorrelation g(2)(τ) – the most adequate
statistical indicator [11] in the presence of a few intracavity photons per mode – is very close
to unity for the beatnote, proving good coherence, as opposed to the larger noise figures of the
individual modes (Fig. 8(b)).
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