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zone by means of a spatial Fourier transform approach.
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Celestijnenlaan 200D 3001 Leuven, Belgium.

Summary

Using Bloch-Floquet boundary conditions implies a
periodicity in both the spatial and wavenumber do-
mains, causing the numerically computed wavenum-
bers to be folded or aliased within the Brillouin zone.
A methodology is presented to unwrap the wavenum-
ber spectrum to extended Brillouin zones using a
Fourier transform method in the spatial domain, thus
providing new insights on the physical meaning and
relative amplitudes of aliased wave components. In
addition, a procedure is presented to identify out-of-
plane (Lamb wave type) components, which are usu-
ally of interest for thin structures.

The proposed methodologies were applied to finite
element based simulations of a 2D periodic reticu-
lated structure consisting of interconnected rectangu-
lar struts with orthorombic symmetry. This reticu-
lated structure was used as a toy model for the skele-
ton in porous media, focusing on the out-of-plane
waves. Laser ultrasonic experiments were conducted
to verify the numerical results.

Both the simulations and measurement results indi-
cate that, in spite of bandgap features induced by the
periodicity of the structure, the dispersion behavior of
the out of plane Lamb wave modes in the considered
type of structure is similar to the one of the Lamb
waves of a homogeneous plate with thickness equal to
the one of the struts, both for wavenumbers within
and outside the Irreducible Brillouin Zone.

HIGHLIGHTS
- A technique is presented to unwrap dispersion curves
in the irreducible Brillouin zones to the extended Bril-
louin zones
- A method is presented to determine the rela-
tive amplitudes of the wave components at different
wavenumbers that contribute to the respective eigen-
mode, for any frequency of interest.
- The unwrapping method is illustrated by means of
data from a numerical model, supported by experi-
mental results.
- The dispersion relationships of Lamb wave type of
modes a 2D periodic reticulated frame structure re-
semble quite well the ones of a homogeneous plate

KEYWORDS: periodic structures, Bloch-Floquet;
spatial aliasing, Irreducible Brillouin Zone IBZ.

1 Introduction

Many studies have been dedicated to the dispersion
relationships of periodic structures[1, 2, 3, 4, 5]. From
an application point of view, periodic structures are
quite common and therefore important, appearing in
sandwich structures, porous materials, truss beams
etc. Moreover, these structures exhibit interesting
dispersion properties: because of the periodicity, fre-
quency bandgaps can exist, within which wave prop-
agation cannot occur (e.g. see [3, 5]). This phe-
nomenon has stimulated researchers and developers
to design periodic metamaterials with enhanced struc-
tural and acoustical wave insulation or absorption in
a frequency range of interest, e.g. to eliminate an un-
wanted tonal sound component or a disturbing narrow
band vibration from a spectrum.

In order to numerically analyse periodic structures,
a common approach is to use a Bloch-Floquet bound-
ary condition. This approach reduces the modeling
effort and computational effort drastically, without
compromising accuracy. The method exploits the pe-
riodicity of the structure in the spatial domain. As a
result of the space-wavenumber duality, this implies a
periodicity in the wavenumber domain as well [6].

Although this approach has been shown to be a
computationally efficient way to exploit the periodic-
ity of a structure [5, 7], application of Bloch-Floquet
boundary conditions results in an ambiguity of the
wavenumber, which complicates the interpretation of
the computed results. As an illustration, in Kulpe et
al. [8], results that are reported to be unphysical can
most likely be ascribed to aliasing effects that could be
overcome by a dispersion curve unwrapping approach
presented further on in this paper, for the case of 2D
periodic reticulated structures.

Using the proposed unwrapping procedures, a
study was performed on the wave propagation in 2D
periodic reticulated structures. Our incentive for this
study originates in the question whether the intrin-
sic, microscopic elastic properties of the porous frame
material can be extracted from the propagation char-
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acteristics of elastic waves traveling along the foam
structure. Hilyard and Cunningham [9] derived ex-
pressions that link the global static stiffness of peri-
odic frames to the elastic modulus of the frame mate-
rial, with the porosity as the key parameter of the
structure. However, in many cases, the foam ma-
terial exhibits relaxation behavior, and thus a fre-
quency dependent and complex dynamic elastic mod-
ulus. Hence, a first question is whether the dynamic
behavior of macroscopic vibrations and waves in a
reticulated structure depends on the microscopic ma-
terial modulus and porosity in the same way as it
does for the static case. Alternatively, starting from
a microscopic viewpoint, one can wonder to what ex-
tent the propagation of guided waves traveling along
a microscopic strut in a reticulated structure is af-
fected by the presence of interconnections with other
struts. The latter question becomes particularly per-
tinent when the wavelength is of the order of magni-
tude, or longer, than the interconnection length.

In the performed study emphasis was put on out-of-
plane guided wave propagation in 2D grids, which are
representative e.g. for woven textile and 2D scaffolds.
In literature, many papers can be found that deal with
2D spatially periodic reticulated structures, especially
for in-plane vibrations (e.g. [10, 11, 12, 13, 1, 2, 4]).
The results presented here, which cover Lamb wave-
type out-of-plane displacements, are complementary
to the ones reported in those works.

The article is organised as follows. Section 2 starts
off with a brief summary of Bloch-Floquet theory.
In section 2.2 a method is described how disper-
sion curves in the irreducible Brillouin zones can
be unwrapped to extended Brillouin zones. A spa-
tial Fourier transform is used to determine the true
wavenumber, and to classify modes according to their
polarization. Section 3 presents the measurement
setup. Laser excitation and detection was used for
the sake of efficient and flexible excitation and de-
tection of the out-of-plane waves in a wide range of
wavelengths, ranging from the strut thickness d to
a multiple of the interconnection distances L1 and
L2 [14]. The measured wave dispersion results are
compared with the ones obtained by numerical sim-
ulations. Special attention is given to the particular
effects of periodicity, and to the comparison of the dis-
persion curves of the periodic structure with the ones
of an equivalent plate, made of the same material, and
with the same thickness as the struts. Conclusions are
drawn in Section 4.

2 Dispersion and Bloch-
Floquet theory

Bloch-Floquet’s theorem [15, 16] expresses that the
propagation of a wave from cell to cell does not de-
pend on the cell location within the periodic lattice.

Following Hussein [17], the displacements of two ad-
jacent Representative Elementary Volume’s (REV’s)
of the lattice can be written as

u (r + d,k) = u (r,k) ei(k
Td) (1)

where r = {x, y, z} is the position vector, u =
{ux, uy, uz} the displacement vector, d = {dx, dy, dz}
the lattice vector, k = {kx, ky, kz} the wave num-
ber vector, and i =

√
−1. The real part of the wave

number vector k reflects the phase velocity, while the
imaginary part reflects the attenuation of the wave.
By virtue of Bloch-Floquet’s theorem, wave propaga-
tion through the entire lattice can be described by
considering a single REV only, with obvious reduc-
tions of the computational load. Assuming a lossless
medium, the discretized equations of motion of the
REV can be written in matrix form as(

K− ω2M
)
u = fi + fe (2)

where K is the dynamic stiffness matrix of the REV,
M the mass matrix of the REV and ω the angular
frequency. The right hand side of the equation repre-
sents the force vector acting on the REV. The force
vector can be decomposed into an internal fi and an
external force vector fe.

Exploiting equation (1), a constraint relation can
be devised that links the displacements of the edges
at either side of the REV. The constraint relation is
described by the lattice vector d, and is used to re-
duce the number of equations of motion. It can also
be shown that the application of Bloch’s procedure
eliminates the internal forces fi [18]. The reduced
equations of motion read(

K̃− ω2M̃
)
ũ = f̃e (3)

where K̃, M̃, ũ and f̃e are the reduced stiffness
and mass matrices and the reduced displacement and
external force vectors, respectively. The eigenvalue
problem of the lattice structure can be formulated by
setting the external forces f̃e to zero:(

K̃− ω2M̃
)
ũ = 0 (4)

Solving Eq. (4) for a range of wavenumber vectors ki

results in sets of eigenfrequencies fi,j and eigenmodes,
with respective phase velocities, real part, ci,j = 2 ∗
π ∗ fi,j/Re {ki}.

2.1 Selection of out-of-plane modes.

Although the unwrapping methodology that will be
presented in Section 2.2 is applicable to any peri-
odic structure, 2D or 3D, and any kind of mode, in
this article eigenmodes of 2D structures will be con-
sidered. The set of eigenmodes is further narrowed
down to eigenmodes with dominant out-of-plane mo-
tion, in view of allowing comparison with available



Preprint submitted to International Journal of Solids and Structures, March 23, 2020, Roozen et al., p. 3

experimental results on 2D grids, which yielded the
out-of-plane displacements only. In this section we
elaborate on an approach to select out-of-plane eigen-
modes from a set of eigenmodes that result from a
finite element analysis.

For the sake of simplicity and straightforward vali-
dation with an analytical model, we have started off
with a solid plate to illustrate the selection of out-of-
plane eigenmodes (this section) and the unwrapping
approach (Section 2.2).

A REV with dimensions 7.5 × 7.5 mm in a
polyamide plate of t = 1.1mm thickness, Young’s
modulus 1.8GPa, Poisson’s ratio 0.4 and density
1200kg/m3 was modeled by means of the FEM, apply-
ing Bloch-Floquett boundary conditions at the edges
of the REV. Varying the wavenumber in one lat-
eral direction of the REV, the eigenvalue frequencies
were computed, thus obtaining the dispersion rela-
tions. The prescribed wavenumber in the x-direction
was varied between 0 < kx < π/dx =418.9 rad m−1,
with dx = 7.5 mm. The wave propagation is con-
sidered in one direction only, the x-direction, which
reduces the Bloch-Floquett boundary conditions to
u (x+ dx) = u (x). As the plate was assumed to be
lossless, only real values of the wavenumber were con-
sidered. The solutions to Eq. 4 that yielded real
eigenvalues ω, for the prescribed wavenumbers kx, are
shown in Figure 1.
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Figure 1: Numerical eigenfrequencies found for pre-
scribed wavenumbers, for a 1.1mm thick polyamide
solid plate.

For every (ω,k) solution found by the FE eigen-
solver, the amplitudes of the Out-Of-Plane (OOP,
in the z-direction) and In-Plane (IP, in the x- or
y-direction) components of the corresponding dis-
placement field were evaluated and the ones with an
OOP/IP ratio larger than 50, were retained. For the
selected OOP modes, the sign of the ratio between the
uz displacements at the top and bottom surface of the
plate was used to classify the modes into symmetrical
(Sn) and antisymmetrical (An) ones, as illustrated in
Figure 2.

Using this approach, the modes were sorted ac-
cording to their symmetrical/antisymmetrical, and
OOP/IP character, as illustrated in Figure 3. Besides
the well-known symmetric (S0, red symbols) and anti-
symmetric (A0, blue symbols) branches of OOP Lamb
modes known for a plate, other branches of OOP as
well as IP modes modes are apparent (gray symbols).
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Figure 2: Schematic representation of the methodol-
ogy used to distinguish A0 and S0 based on the (anti-
) symmetry of the Out-Of-Plane displacement at the
top and bottom plate interfaces.
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Figure 3: Eigenmode (ω,k) pairs of a 1.1mm thick
polyamide solid plate found by an FE eigensolver.
The OOP A0 and S0 mode are indicated by blue and
red crosses, respectively. The IP modes are indicated
by grey crosses.

2.2 Unwrapping of dispersion curves
from the IBZ to extended Bril-
louin zones

Consider a structure that is periodic in the
x−direction with spatial period dx. As a result of
the space-wavenumber duality, the dispersion relation
of a spatially periodic mechanical system is periodic
in wave number domain as well [6]. The dispersion
curves are periodic in the kx direction, with the re-
ciprocal lattice vector

K = 2π/dx. (5)

as period. Thus, any frequency-wavenumber pair
(ω,kx) will have a multiple of counterpart frequency-
wavenumber pairs

(ω, kx +Km), (6)

where m is an arbitrary integer. The part of the
wavenumber domain defined by

[0,K/2] (7)

completely defines the dispersion relation of a periodic
structure. This part of the wavenumber domain is
called the Irreducible Brillouin Zone (IBZ).

This aliasing phenomenon has the advantage that
the full wave behavior of the structure is condensed in
the IBZ, which is limiting the calculation effort. Using
relationship 6, the dispersion curves can be replicated
in the wave number domain, for all frequencies, from
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the IBZ to extended Brillouin zones, by adding multi-
ples of K to the wavenumbers kx in the IBZ. However,
it is a challenge to determine to what extent modes
at different wavenumbers, replicated to extended Bril-
louin zones, contribute to eigenmodes of the frame for
different frequencies.

An example of an unwrapped result for the A0 and
S0 OOP modes in the full plate under consideration is
shown in Figure 4. The values of m were chosen such
that the well-known A0 and S0 dispersion curves were
obtained, matching the non-aliased physical reality.
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Figure 4: Unwrapping Bloch-Floquet OOP model re-
sults for a solid plate by means of a spatial Fourier
transform approach.

Automated determination of m-values that corre-
spond with a respective non-aliased physical solutions
is not trivial, in particular in more complicated retic-
ulated structures, where the physical nature of dif-
ferent modes is not known a priori. In order to
address this difficulty and find appropriate m val-
ues, we have taken a step back. We considered for
each wavenumber-frequency pair in the IBZ the cor-
responding displacement pattern in the unit cell, and
periodically extended it over a large number of cells
(typically about 800) in the propagation direction x,
consistent with the Bloch-Floquet boundary condi-
tion, Eq. 1:

u (x+ ndx) = uIBZ (x) ei(nkxdx), n = 1...800 (8)

Using this procedure, the respective structural
mode was replicated in the spatial domain over a wide
range of possible (eigenmode) wavelengths, up to the
longest ones of interest. This replication process was
performed for every eigenfrequency that resulted from
the finite element solution that was obtained for a
specific Bloch-Floquet boundary condition (i.e. for
a specific prescribed wavenumber kx). Next, we de-
scribed the waveform of each structural mode as a
sum of sinusoidal (Fourier) wave forms. Note that
due to the 2D periodicity of the frames, with side
branches repeating every distance dx, the structural

modes deviate from simple sinusoidal shapes; a mul-
titude of Fourier components are required to describe
their displacement fields. The amplitudes of these
wavenumber components were determined by taking a
spatial Fourier transform of the periodically extended
displacement pattern. The non-aliased components
of the eigenmode were then identified from the com-
puted Fourier components.

Note that the above described procedure can be
extended and applied to structures that are periodic
in 2 or 3 dimensions.

To illustrate the use of a spatial Fourier transform
to ’de-aliase’ the computed eigenmode, we consider
the 1.1 mm polyamide plate, whose dispersion be-
havior in the IBZ was shown in Figure 1. Eigen-
modes were computed by prescribing a Bloch-Floquet
wavenumber in the IBZ equal to kx = 230.4 rad/m.
Figure 5A shows the dispersion curves after applying
Bloch’s theorem to replicate the dispersion curves in
the IBZ to the extended Brillouin zones by shifting
the wavenumbers by Km, for a number of m-values of
interest, exploiting the periodicity in the wavenumber
domain, Eq. 6. To identify which value of m consti-
tutes the true ’non-aliased’ component of the numeri-
cally computed eigenmode at a specific eigenfrequency
(as obtained for a specific Bloch-Floquet boundary
condition), the extended eigenmode was transformed
from physical space (x) to wavenumber domain (k)
by means of a spatial Fourier transform. The re-
sult of this transformation is illustrated, as an ex-
ample, for an eigenfrequency of 170.4 kHz in Figure
5B. This figure clearly shows that, in this case of a
simple plate, only one specific wavenumber, kx=2041
rad m−1 stands out, which corresponds to a physi-
cal, ’non-aliased’ mode. Note that the IBL runs up
to π/dx=418.9 rad m−1 (dx = 7.5 mm). Thus, the
true wavenumber lies in the extended Brillouin zone.
All other wavenumbers (corresponding to other inte-
ger values of m) can be associated with non-physical,
aliased components: Figure 5A shows that they have
a negligible amplitude, more than 70 dB smaller than
the physical one. As expected, the dominant k, f -
pair ω/(2π)=170.4kHz, k=2041 rad m−1 corresponds
to the A0 mode for an infinite plate, which is the only
antisymmetric physical A0 mode possible. The neg-
ligibly small peaks in the Fourier spectrum can be
considered as numerical artifacts. We have verified
that the true ’non-aliased’ S0-mode can be recovered
in a similar manner.

In a next step, the above described procedure for
”de-aliasing” wavenumbers in the IBZ, by re-assigning
them to their proper extended Brillouin zone value,
was also applied to a simple polyamide beam with
rectangular cross section (1.1mm x 1.1mm). Fig. 6
shows that the procedure leads to the proper disper-
sion curves, as known from the not-periodized, ana-
lytical modeling of the infinite plate and beam.
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Figure 5: Illustration of the unwrapping process us-
ing a search of a peak in a spatial Fourier transform
of the displacement field of the solid plate model, for
eigenmodes computed by prescribing a Bloch-Floquet
wavenumber in the IBZ equal to kx = 230.4 rad/m.
A): k,f dispersion plot of all eigenmodes found, repli-
cated using Eq. 6; B): spatial Fourier transform spec-
trum of an eigenmode with an eigenfrequency of 170.4
kHz, after replicating the displacement pattern to 800
REV-cells (exploiting Eq. 8), showing one dominant
peak at k=2041 rad m−1.
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Figure 6: A): Dispersion curve (A0 mode) from a
FEM model, including ’aliased’ A0-components, for
a 1.1mm thick plate. B): Dispersion curve for a
1.1x1.1mm2 cross section beam made of polyamide
material. The true A0-components clearly have a
larger magnitude, as represented by the symbol size,
than the ’aliased’ A0-components. For the beam,
also the A1 mode, including its ’aliased’ components
stands out, at frequencies above 325 kHz.

2.2.1 Dispersion curves of reticulated struc-
tures.

In this section, four 2D orthorombic reticulated struc-
tures, consisting of interconnected beams with square
cross section, periodically arranged in a plane as
shown in Figure 7, are considered. A top view of the
investigated REV’s, which had different values of the
WH-ratio (ratio between the width and height) of the
2D, in plane cross section unit cell, are schematically
represented in Figure 8. The thickness of the beams
is 1.1mm.

Figure 9A shows all the modes within the IBZ, to-
gether with the replicated ones in the extended Bril-
louin zones (exploiting Eq. 6), for the frame struc-
ture with an width-height ratio (WH-ratio) of 1:1
(Fig. 8A, blue frame). Considering e.g. the com-
puted eigenmode at a frequency of 159.5kHz, and a

Figure 7: 3D perspective view of a grid with struts
having rectangular cross section.

Figure 8: Top view of the Finite Element model of
the investigated frame models, which differ in their
value of the WH-ratio of the unit cell, i.e., the ratio
between the width and height of the unit cell.

prescribed Bloch-Floquet wavenumber kx=230.4 rad
m−1, the wave components of this eigenmode were
extracted by means of the spatial Fourier transform
approach described in the previous section. Figure
9B shows, for this eigenmode, the spectral amplitude
of the Fourier components of this mode, which spec-
trum has a rather limited spectral resolution. Figure
9C shows the wavenumber spectrum, as obtained from
a spatial Fourier transform of the replicated displace-
ment field over 800 unit cells, exploiting Eq. 8. Note
that the larger the number of unit cells considered,
the better is the wavenumber resolution. Fig. 9D
shows the computed structural eigenmode. In order
to get an idea on the relative magnitudes of the differ-
ent wavenumber contributions, the contribution of the
most dominant wavenumber, kx=1905m−1 (which
equals the IBZ wavenumber kx=230rad/m plus two
times the reciprocal lattice spacing K = 2π/d=839
rad/m), shown separately (blue asterisks). Interest-
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Figure 9: Illustration of the unwrapping process using a search of a peak in the spatial Fourier transform of the
displacement field of the numerical ’WH-ratio 1:1’ frame model, for a frequency of 159.5 kHz and a prescribed
Bloch-Floquet wavenumber kx=230.4 rad/m. A): The full IBZ and extended IBZ dispersion plot. The size
of the blue marker indicates the amplitude of the spatial Fourier component at a frequency of 159.5 kHz B):
Spatial Fourier transform spectrum using the displacement pattern of the REV cell (i.e. one unit cell only). C):
Spatial Fourier transform spectrum, after replicating the displacement pattern to 800 REV-cells (exploiting Eq.
8). D): Out of plane displacement pattern within a REV, including only the most dominant wave component
of Fig. 9C (red circles), and including all wave components of Fig. 9C (blue asterisks)

ingly, in this case, this contribution, as well the other
largest contributing wavenumbers, are all lying out of
the IBZ, in the extended Brillouin zones. Note that
due to the different absolute values of the negative
and positive wavenumbers, the amplitude spectrum
is not symmetric around kx=0.

Figure 10 shows an overview of the k, ω magni-
tude plots obtained for the replicated displacement
patterns of OOP antisymmetric modes, for the 3 ge-
ometries of Fig. 8, with WH-ratio values 1/1, 2/2,
1/0.5, 0.5/1. In general it is observed that an eigen-
mode as computed from a model of a repetitive frame
structure is constituted of a plentitude of Fourier wave
components of which a small number are dominant.
For the grids considered in this study, the dominant
Fourier wave components typically have wavenumbers
that are close to the wavenumbers of a homogeneous
plate with the same material properties and the same

thickness.

In all cases shown in Fig. 10, the magnitudes of the
Fourier components are strongest near the A0 branch
of the simple infinite plate with thickness equal to
the thickness of the rectangular beams of which the
frames are composed. This implies that, similarly to
the case of the simple plate, also in a 2D frame geom-
etry, the bending stiffness of the individual polyamide
beams in the frame can be approximated by fitting the
dominant modes to a simple plate model. In other
words, the trend line through the dominant (k,ω)
pairs existing in the frame dispersion plot is a good
approximation for the dispersion of the main flexural
mode of a 2D reticulated structure is a good approxi-
mation for the A0 mode of a homogeneous plate with
the same material properties and the same thickness.
Interestingly, the correspondence is also valid for very
small wavenumbers, for which the wavelength is much
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longer than the REV size. Contrary to the considered
case of out-of-plane displacements, in this limit, and
in the very limit of zero wavenumber corresponding to
the case of static deformations, it has been shown that
the in-plane elastic behavior of the frame strongly de-
pends on the structural porosity (i.e. the filling frac-
tion) [9, 1, 2].

A) B)

C) D)

Figure 10: Dispersion curves of the A0 mode. A) WH-
ratio 1:1, 7.5mm strut length; B) WH-ratio 2:2, 15mm
strut length; C) WH-ratio 2:1, 15mm strut length; D)
WH-ratio 1:2, model 7.5mm strut length. The colors
in this figure corresponds to the color coding in Fig.
8.

Fig. 10 shows that when the struts are long with
respect to the strut thickness, the bandgaps are nar-
rower (compare e.g. 10C with 10A) and the disper-
sion curve deviations (with respect to the classical
dispersion curves of a simple plate) in their vicinity
are less pronounced. This is consistent with the max-
imum wavenumber value for the Brillouin zone being
inversely proportional with the size of the unit cell,
i.e. the strut length (K = 2π/dx). In the limit of
infinite strut length, a simple beam structure would
be obtained, while the bandgap features would disap-
pear.

Looking at the opposite case of a short strut length
(Fig. 10A and Fig. 10D), the dispersion curve defor-
mations are roughly twice as large and the bandgaps
are wider. Note also that the WH-ratio 1:1 (blue)
points that are not corresponding with the A0 mode
belong to a torsional vibration mode of the strut
(leading to an out-of-plane displacement component).
Such torsional modes are visible in the following fre-
quency ranges: 30 kHz - 50 kHz; 110 kHz - 130 kHz;
210 kHz - 250 kHz.

3 Experimental analysis

Dispersion measurements were performed on a 3D
printed polyamide frame consisting of rectangular
beams with a cross section of 1.1mm x 1.1 mm and
equal unit cell length and width of 7.5mm (WH-ratio
1), as shown in Fig. 11. The nominal material prop-
erties of the polyamide material were estimated as:
Young’s modulus = between 1 and 2 GPa, density =
1200 kg/m3, Poisson’s ratio = 0.4.

Figure 11: 3D printed polyamide grid sample, with
square cross section struts, 1.1 mm × 1.1 mm, a unit
cell WH-ratio of 1/1, and a periodic length scale dx
of 7.5 mm.

We have made use of photoacoustic excitation (see
Fig. 12) of guided elastic waves by illuminating a
spot on the sample with light pulses from a 10 ns
Spectra Physics Quantaray Nd:YAG laser with a 10
Hz repetition rate. In this approach, illumination of
the material with laser pulses results in partial opti-
cal absorption of the light energy, heating and ther-
mal expansion. Due to the impulsive character of
the induced stress, this results in elastic waves to be
launched along the struts, in this specific case every
0.1 second. Although the generation bandwidth of
10 ns pulses is of the order of 100MHz, due to mate-
rial damping, dynamic range limitations of the Poly-
tec Laser Doppler Vibrometer (sensor head OFV-353
with controller in displacement mode, with a sensi-
tivity of 50nm/V), and a finite laser spot size, the
spectrum of the detected signal was limited to the 50
kHz-500 kHz range.

The phase velocity of the generated waves was de-
termined from their spatiotemporal behavior. A scan-
ning stage from APT Thorlabs was used to scan the
exciting Nd:YAG laser beam along the sample, thus
systematically varying the distance x between the ex-
citation and detection position. Signals were recorded
on an oscilloscope (Lecroy LC564A) and acquired by
a Labview program for every position of the scan, re-
sulting in a signal matrix S(x,t). A 2D Fourier trans-
form of this matrix was taken, resulting in an ampli-
tude map —S(k,f)—, from which k,f-pairs satisfying
the dispersion relations were extracted.

Figure 13A depicts the spatiotemporal behav-
ior of photoacoustically excited waves along the
grid. Two right-running (arrival time increasing with
pump-probe distance x) with different velocity (slope
∆x/∆t), and, from x=120 mm onwards, their re-
flections can be distinguished. The fastest wave
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Figure 12: Experimental test setup.

packet, reaching the end position (x = 120mm) in
about 100ms, keeps its width, implies that this is the
S0-wave, with limited dispersion. The slower wave
spreads out more in time with increasing detection
distance, indicating A0-character.

Figure 13B shows the result of a 2D FFT, giv-
ing a color map of the amplitude spectrum versus
wavenumber and frequency, (k, ω). The A0 and S0
modes of wave propagation are clearly visible, till
about 350 kHz and 400kHz respectively.

A peak search along the k-axis for each frequency
was performed to extract the dispersion curves k(f),
shown in Figure 13C for the A0 and S0 mode. As
a reference, also the analytically calculated disper-
sion curves of the A0 and S0 modes of an infinite
polyamide plate of 1.1mm thickness are indicated by
black and gray lines, respectively. Like the numerical
simulations, the experimentally obtained dispersion
curves for reticulated structures match the dispersion
curve of the plate reasonably well. The dispersion
curve of the plate, in turn, is known to be very sim-
ilar to the one of the individual beams. This allows
the material properties of the 2D periodic frame type
of structure considered in this study, can be fitted (in
approximation) from measurement data, using a ho-
mogeneous plate of the same thickness. It should be
noted, however, that the 2D periodicity of the frames
also causes a repetitive deviation from the ideal homo-
geneous plate dispersion curves, as becomes evident
from Fig. 13C,D.

In Fig. 13D the experimental results of Fig. 13C,

here in magenta circle marker, are compared with nu-
merical simulation results using a FE-model of the
frame structure, selecting out-of-plane modes and ex-
tending beyond the IBZ as explained in Section 2.
The black dashed lines indicate the Brillouin zones.

4 Conclusions

Bloch-Floquet’s theorem permits the dispersion rela-
tions of periodical reticulated structures to be com-
puted with low computational effort, by exploiting
the accompanying periodicity in wavenumber domain.
The application of the theorem, which allows to re-
strict the search of eigenmodes to the Irreducible Bril-
louin Zone (IBZ), can be considered as a beneficial
exploitation of spatial aliasing.

In this work, we have shown that by taking a spa-
tial Fourier transform of the Bloch-expanded displace-
ment field, the true, non-aliased Fourier components
of the constituting wave components can be deter-
mined. In addition, the relative amplitude of these
components to the displacement field of the mode un-
der consideration can be determined. Unwrapping
the aliased components to extended Brillouin zones is
useful to correctly classify and interpret the physical
meaning of the numerical eigenmodes that result from
the Bloch-Floquet model. The unwrapping method-
ology is applicable to any structure, 2D or 3D, and to
any kind of mode.

Although wave propagation along rectangular
struts in a 2D spatially periodic reticulated structure
is affected by strut interconnections, the wavenum-
bers that have the highest amplitudes in the Fourier
decomposition of the eigenmodes of the frame at
different frequencies, are close the wavenumbers of
waves propagating in infinite struts, and in an infi-
nite, monolithic, ”equivalent” plate that has the same
thickness as the struts.

Laser ultrasonic experiments were performed on a
3D printed polyamide planar frame with grid size
of 7.5 mm, and a strut thickness of 1.1 mm. Pho-
toacoustically excited guided waves were measured
by performing pump-probe distance scans. The
strengths of the experimentally assessed out-of-plane
wavenumber-frequency pairs, obtained by 2D Fourier
transforming the spatiotemporal dependence of the
experimental signals, were found to be consistent with
the numerically predicted ones.

On the basis of both numerical simulations and ex-
perimental results, it can be concluded that, in spite
of deviations due to the periodic structure, the dis-
persion curves of the out of plane modes are still very
similar to the out-of-plane Lamb waves of a plate that
is ”equivalent ” with the rectangular beam structure.
As a consequence, the microscopic bending stiffness
of a reticular frame can be approximated by fitting
the measured dispersion curves of out-of-plane modes
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Figure 13: Regular frame structure WH-ratio 1:1, strut length 7.5mm. A) Measured spatiotemporal map
of the photoacoustically generated waves. B) Measured amplitude map in wavenumber-frequency domain. C)
Extracted frequency-wavenumber pairs from the measurement data with significant amplitude (blue circles) and
numerically predicted dispersion relationship for an equivalent plate, revealing the presence of both A0 and S0
modes. D) Comparison between experimentally obtained dispersion curves (magenta circles) with numerically
computed ones for an equivalent plate (black and gray solid curves) and for the Bloch-Floquet model of the
periodic reticulated structure showing the unwrapped results (dotted blue curves), for both A0 and S0 modes.

on the numerically obtained dispersion curves of a ho-
mogeneous, equivalent plate. This adequate simplifi-
cation is very promising for porous material analysis.
In common porous materials (arranged in a 2D grid),
the struts are not arranged in a periodical frame, so
that there is no reason for the existence of bandgaps
in the dispersion plots. This suggests that in such a
disordered reticulated structure, compared to the in-
vestigated periodical grids, the dispersion curves can
be expected to be even more similar to the ones of the
infinitely extrapolated individual struts. The elastic
properties of the microscopic strut material can thus
be inferred from the dispersion behavior of out-of-
plane polarized waves propagating along the macro-
scopic frame.
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