Y. Lecun, Y. Bengio, and G. Hinton, Deep learning, nature, vol.521, issue.7553, p.436, 2015.

W. Rawat and Z. Wang, Deep convolutional neural networks for image classification: A comprehensive review, Neural computation, vol.29, issue.9, pp.2352-2449, 2017.

B. Bejnordi, M. Veta, P. Van-diest, .. B. Van-ginneken, N. Karssemeijer et al., Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer, The Journal of the American Medical Association, vol.318, issue.22, pp.2199-2210, 2017.

D. Wang, A. Khosla, R. Gargeya, H. Irshad, and A. Beck, Deep learning for identifying metastatic breast cancer, 2016.

Y. Liu, K. Gadepalli, M. Norouzi, G. Dahl, T. Kohlberger et al., Detecting cancer metastases on gigapixel pathology images, 2017.

G. Srinivasan and G. Shobha, Segmentation techniques for target recognition, International Journal of Computers and Communications, vol.1, issue.3, pp.313-333, 2007.

F. Dernoncourt, J. Lee, O. Uzuner, and P. Szolovits, De-identification of patient notes with recurrent neural networks, Journal of the American Medical Informatics Association, vol.24, issue.3, pp.596-606, 2017.

M. Buda, A. Maki, and M. Mazurowski, A systematic study of the class imbalance problem in convolutional neural networks, Neural Networks, vol.106, pp.249-259, 2018.

D. Masko and P. Hensman, The impact of imbalanced training data for convolutional neural networks, 2015.

S. Wang, W. Liu, J. Wu, L. Cao, Q. Meng et al., Training deep neural networks on imbalanced data sets, IEEE International Joint Conference In Neural Networks (IJCNN), pp.24-29, 2016.

N. Chawla, K. Bowyer, L. Hall, and W. Kegelmeyer, SMOTE: synthetic minority over-sampling technique, Journal of artificial intelligence research, vol.16, pp.321-357, 2002.

M. Kubat and S. Matwin, Addressing the curse of imbalanced training sets: one-sided selection, International Conference on Machine Learning, pp.8-12, 1997.

M. N. Gurcan, L. Boucheron, A. Can, A. Madabhushi, N. Rajpoot et al., Histopathological image analysis: A review, IEEE reviews in biomedical engineering, vol.2, p.147, 2009.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed et al., Going deeper with convolutions, IEEE conference on computer vision and pattern recognition, 2015.

S. Mejbri, C. Franchet, I. Reshma, J. Mothe, P. Brousset et al., Deep Analysis of CNN Settings for New Cancer Whole-slide Histological Images Segmentation: the Case of Small Training Sets, 6th International Conference on Bioimaging, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02092926

N. Jaccard, T. W. Rogers, E. J. Morton, and L. D. Griffin, Detection of concealed cars in complex cargo X-ray imagery using deep learning, Journal of X-ray Science and Technology, vol.25, issue.3, pp.323-339, 2017.

G. Levi and T. Hassner, Age and gender classification using convolutional neural networks, IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2015.

O. Ronneberger, P. Fischer, and T. Brox, U-net: Convolutional networks for biomedical image segmentation, International Conference on Medical image computing and computer-assisted intervention, pp.5-9, 2015.

F. Chollet and . Others, Keras, 2015.

Y. Lecun, L. Bottou, G. B. Orr, and K. Müller, Efficient backprop, pp.9-48, 2012.

D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, 2014.

R. C. Prati, E. A. Gustavo, P. A. Batista, and D. F. Silva, Class imbalance revisited: a new experimental setup to assess the performance of treatment methods, Knowledge and Information Systems, vol.45, issue.1, pp.247-270, 2015.

A. Frank and A. Asuncion, UCI machine learning repository, 2010.

D. Michie, D. Spiegelhalter, and C. C. Taylor, Machine Learning, Neural and Statistical Classification, 1994.