S. G. Siddell, P. J. Walker, E. J. Lefkowitz, A. R. Mushegian, M. J. Adams et al., Additional changes to taxonomy ratified in a special vote by the International Committee on Taxonomy of Viruses, Arch. Virol, vol.164, pp.943-946, 2018.

Z. Song, Y. Xu, L. Bao, L. Zhang, P. Yu et al., SARS to MERS, Thrusting Coronaviruses into the Spotlight. Viruses, 11, p.59, 2019.

A. E. Gorbalenya, L. Enjuanes, J. Ziebuhr, and E. J. Snijder, Nidovirales: evolving the largest RNA virus genome, Virus Res, vol.117, pp.17-37, 2006.

E. J. Snijder, P. J. Bredenbeek, J. C. Dobbe, V. Thiel, J. Ziebuhr et al., Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage, J. Mol. Biol, vol.331, pp.991-1004, 2003.

A. Saberi, A. A. Gulyaeva, J. L. Brubacher, P. A. Newmark, and A. E. Gorbalenya, A planarian nidovirus expands the limits of RNA genome size, PLoS Pathog, vol.14, p.1007314, 2018.

A. Van-vliet, S. L. Smits, P. Rottier, and R. J. De-groot, Discontinuous and non-discontinuous subgenomic RNA transcription in a nidovirus, EMBO J, vol.21, pp.6571-6580, 2002.

M. M. Lai, C. D. Patton, and S. A. Stohlman, Further characterization of mRNA's of mouse hepatitis virus: presence of common 5 -end nucleotides, J. Virol, vol.41, pp.557-565, 1982.

J. L. Sagripanti, R. O. Zandomeni, and R. Weinmann, The cap structure of simian hemorrhagic fever virion RNA, Virology, vol.151, pp.146-150, 1986.

E. Decroly, F. Ferron, J. Lescar, and B. Canard, Conventional and unconventional mechanisms for capping viral mRNA, Nat. Rev. Microbiol, vol.10, pp.51-65, 2011.

A. Ramanathan, G. B. Robb, and S. Chan, mRNA capping: biological functions and applications, Nucleic Acids Res, vol.44, pp.7511-7526, 2016.

K. A. Ivanov and J. Ziebuhr, Human coronavirus 229E nonstructural protein 13: characterization of duplex-unwinding, nucleoside triphosphatase, and RNA 5 -triphosphatase activities, J. Virol, vol.78, pp.7833-7838, 2004.

E. Minskaia, T. Hertzig, A. E. Gorbalenya, V. Campanacci, C. Cambillau et al., Discovery of an RNA virus 3 ?5 exoribonuclease that is critically involved in coronavirus RNA synthesis, Proc. Natl. Acad. Sci. U.S.A, vol.103, pp.5108-5113, 2006.

Y. Chen, H. Cai, J. Pan, N. Xiang, P. Tien et al., Functional screen reveals SARS coronavirus nonstructural protein nsp14 as a novel cap N7 methyltransferase, Proc. Natl. Acad. Sci. U.S.A, vol.106, pp.3484-3489, 2009.

E. Decroly, I. Imbert, B. Coutard, M. Bouvet, B. Selisko et al., Coronavirus nonstructural protein 16 is a cap-0 binding enzyme possessing (nucleoside-2 O)-methyltransferase activity, J. Virol, vol.82, pp.8071-8084, 2008.

E. Decroly, C. Debarnot, F. Ferron, M. Bouvet, B. Coutard et al., Crystal structure and functional analysis of the SARS-coronavirus RNA cap 2 -O-methyltransferase nsp10/nsp16 complex, PLoS Pathog, vol.7, p.1002059, 2011.

Y. Chen, C. Su, M. Ke, X. Jin, L. Xu et al., Biochemical and structural insights into the mechanisms of SARS coronavirus RNA ribose 2 -O-methylation by nsp16/nsp10 protein complex, PLoS Pathog, vol.7, p.1002294, 2011.

S. T. Rao and M. G. Rossmann, Comparison of super-secondary structures in proteins, J. Mol. Biol, vol.76, pp.241-256, 1973.

B. Chouhan, S. Maimaiti, M. Gade, and P. Laurino, Rossmann-fold methyltransferases: taking a "?-Turn" around their cofactor, S-Adenosylmethionine, Biochemistry (Mosc), vol.58, pp.166-170, 2019.

Y. Ma, L. Wu, N. Shaw, Y. Gao, J. Wang et al., Structural basis and functional analysis of the SARS coronavirus nsp14-nsp10 complex, Proc. Natl. Acad. Sci. U.S.A, vol.112, pp.9436-9441, 2015.

F. Ferron, L. Subissi, A. T. Silveira-de-morais, N. Le, M. Sevajol et al., Structural and molecular basis of mismatch correction and ribavirin excision from coronavirus RNA, Proc. Natl. Acad. Sci. U.S.A, vol.115, pp.162-171, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02094607

G. Sutton, J. M. Grimes, D. I. Stuart, and P. Roy, Bluetongue virus VP4 is an RNA-capping assembly line, Nat. Struct. Mol. Biol, vol.14, pp.449-451, 2007.

Y. Tao, D. L. Farsetta, M. L. Nibert, and S. C. Harrison, RNA synthesis in a cage-structural studies of reovirus polymerase lambda3, Cell, vol.111, pp.733-745, 2002.

M. Egloff, D. Benarroch, B. Selisko, J. Romette, and B. Canard, An RNA cap (nucleoside-2 -O-)-methyltransferase in the flavivirus RNA polymerase NS5: crystal structure and functional characterization, EMBO J, vol.21, pp.2757-2768, 2002.

C. Lauber, J. J. Goeman, M. Parquet, C. Del, P. T. Nga et al., The footprint of genome architecture in the largest genome expansion in RNA viruses, PLoS Pathog, vol.9, p.1003500, 2013.

K. Bukhari, G. Mulley, A. A. Gulyaeva, L. Zhao, G. Shu et al., Description and initial characterization of metatranscriptomic nidovirus-like genomes from the proposed new family Abyssoviridae, and from a sister group to the Coronavirinae, the proposed genus Alphaletovirus, Virology, vol.524, pp.160-171, 2018.

H. J. Debat, Expanding the size limit of RNA viruses: Evidence of a novel divergent nidovirus in California sea hare, with a ?35.9 kb virus genome, 2018.

H. J. Debat, An RNA virome associated to the Golden Orb-Weaver Spider Nephila clavipes, Front. Microbiol, vol.8, p.2097, 2017.

F. Armougom, S. Moretti, O. Poirot, S. Audic, P. Dumas et al., Expresso: automatic incorporation of structural information in multiple sequence alignments using 3D-Coffee, Nucleic Acids Res, vol.34, pp.604-608, 2006.

E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt et al., UCSF Chimera-a visualization system for exploratory research and analysis, J. Comput. Chem, vol.25, pp.1605-1612, 2004.

L. Zimmermann, A. Stephens, S. Nam, D. Rau, J. Kübler et al., A completely reimplemented MPI bioinformatics toolkit with a New HHpred Server at its core, J. Mol. Biol, vol.430, pp.2237-2243, 2018.

G. Yachdav, E. Kloppmann, L. Kajan, M. Hecht, T. Goldberg et al., PredictProtein-an open resource for online prediction of protein structural and functional features, Nucleic Acids Res, vol.42, pp.337-343, 2014.

M. Gouy, S. Guindon, and O. Gascuel, SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building, Mol. Biol. Evol, vol.27, pp.221-224, 2010.
URL : https://hal.archives-ouvertes.fr/lirmm-00511794

P. Gouet, X. Robert, and E. Courcelle, ESPript/ENDscript: extracting and rendering sequence and 3D information from atomic structures of proteins, Nucleic Acids Res, vol.31, pp.3320-3323, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00314281

L. A. Kelley, S. Mezulis, C. M. Yates, M. N. Wass, and M. Sternberg, The Phyre2 web portal for protein modeling, prediction and analysis, Nat. Protoc, vol.10, pp.845-858, 2015.

G. E. Crooks, G. Hon, J. Chandonia, and S. E. Brenner, WebLogo: a sequence logo generator, Genome Res, vol.14, pp.1188-1190, 2004.

C. Zeng, A. Wu, Y. Wang, S. Xu, Y. Tang et al., Identification and Characterization of a Ribose 2 -O-Methyltransferase Encoded by the Ronivirus Branch of Nidovirales, J. Virol, vol.90, pp.6675-6685, 2016.

E. Decroly, I. Imbert, B. Coutard, M. Bouvet, B. Selisko et al., Coronavirus nonstructural protein 16 is a cap-0 binding enzyme possessing (nucleoside-2 O)-methyltransferase activity, J. Virol, vol.82, pp.8071-8084, 2008.

C. Fabrega, S. Hausmann, V. Shen, S. Shuman, and C. D. Lima, Structure and mechanism of mRNA cap (guanine-N7) methyltransferase, Mol. Cell, vol.13, pp.77-89, 2004.

D. Ray, A. Shah, M. Tilgner, Y. Guo, Y. Zhao et al., West Nile virus 5 -cap structure is formed by sequential guanine N-7 and ribose 2 -O methylations by nonstructural protein 5, J. Virol, vol.80, pp.8362-8370, 2006.

T. Ahola and L. Kääriäinen, Reaction in alphavirus mRNA capping: formation of a covalent complex of nonstructural protein nsP1 with 7-methyl-GMP, Proc. Natl. Acad. Sci. U.S.A, vol.92, pp.507-511, 1995.

B. Martin, B. Coutard, T. Guez, G. C. Paesen, B. Canard et al., The methyltransferase domain of the Sudan ebolavirus L protein specifically targets internal adenosines of RNA substrates, in addition to the cap structure, Nucleic Acids Res, vol.46, pp.7902-7912, 2018.
URL : https://hal.archives-ouvertes.fr/inserm-02416986

M. Ringeard, V. Marchand, E. Decroly, Y. Motorin, and Y. Bennasser, FTSJ3 is an RNA 2 -O-Methyltransferase recruited by HIV to avoid innate immunity sensing, Nature, vol.565, pp.500-504, 2019.

A. K. Rana and S. Ankri, Reviving the RNA World: An Insight into the Appearance of RNA Methyltransferases, Front. Genet, vol.7, p.99, 2016.