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Abstract. This paper presents the Subterranean 2.0 cipher suite that can be used for
hashing, MAC computation, stream encryption and several types of authenticated
encryption schemes. At its core it has a duplex object with a 257-bit state and a
lightweight single-round permutation. This makes Subterranean 2.0 very well suited
for low-area and low-energy implementations in dedicated hardware.
Keywords: lightweight · permutation-based crypto · deck function · XOF function
· session authenticated encryption · NIST lightweight competition

1 Introduction
Subterranean is a cryptographic primitive to be used both for hashing and as a stream
cipher and dates back to 1992 [CDGP93,Dae95]. With some imagination its mode can
be seen as a precursor to the sponge [BDPA07] with an absorbing phase followed by a
squeezing phase.

The round function of Subterranean has features that were adopted in several designs
over the last three decades, including Panama [DC98], RadioGatún [BDPA06], Kec-
cak-p [BDPA14] and Xoodoo [DHVAVK18]. Namely, all its steps, except the addition
of a constant, are bit-level translation-invariant operations, its non-linear step is χ, the
mixing step is a lightweight bit-oriented mapping with a heavy inverse and it has a bit
shuffling step.

But the Subterranean round function also differs in important ways from Keccak-p
and Xoodoo. Namely, its state is essentially one-dimensional rather than 3-dimensional,
due to the particular shuffling and the 257-bit state, it is not software-friendly, and it has
a buffer, similar to the belt in belt-and-mill designs such as RadioGatún [BDPA06].

Despite the differences, it only takes some minor refurbishing to turn Subterranean
into a lightweight symmetric cipher suite that can compete with new designs, at least
when implemented in dedicated hardware. Refurbishing we did, and we call the result
Subterranean 2.0. In short, it is Subterranean with the buffer removed and the hashing
and stream encryption modes replaced by a duplex-based construction with modes on
top, inspired by the cyclist mode underlying Xoodyak [DHAK18]. The result is very
efficient in hardware but remains relatively slow in software. We believe this makes sense in
resource-constrained platforms, in particular, when energy per bit is the primary concern
and relatively short messages must be protected. The current state of cryptanalysis of
Subterranean and related designs suggests that it has a very good trade-off between safety
margin and hardware performance.

Subterranean 2.0 operates on a state of 257 bits. The modernization into a duplex
object required updating the output extraction and the input injection. For the former,
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we have opted to extract a 32-bit string z per duplex call, where each bit of z is the sum
of 2 state bits. For the latter, we inject a string σ of up to 32 bits per duplex call in keyed
mode and up to 8 bits every two rounds in unkeyed mode. The central functions of the
duplex object are the application of a permutation to the state and subsequent injection
of an input string on the one hand and extraction of an output string on the other. On
top of this we define a number of wrapper functions for absorbing arbitrary-length strings,
possibly combined with encryption or decryption, for performing blank rounds and for
squeezing arbitrary-length strings.

Loyal to the original Subterranean, we chose for the permutation f in duplex to have
only one round and so we expect there to be attacks better than generic ones, i.e., those not
exploiting the specifics of f . In particular we claim 128 bits of security against multi-target
attackers in keyed modes and 112 bits in unkeyed modes.

In Section 2 we specify the Subterranean duplex object, the primitive underlying the
schemes we propose and the three cryptographic schemes that are specified as modes of on
top of it: an eXtendable Output Function (XOF), a Doubly-Extendable Cryptographic
Keyed (deck) function and a Session Authenticated Encryption (SAE) scheme. This is
not meant to be exhaustive but covers most use cases: the XOF for hashing, the deck
function for MAC computation, stream encryption, key derivation and more sophisticated
modes such as those specified in the Xoodoo cookbook [DHAK18] and the SAE scheme
for compact authenticated encryption. In Section 3 we provide the design rationale of
the Subterranean 2.0 cipher suite and in Section 4 we discuss implementation aspects.
Appendix A contains the details of a dedicated inner collision attack on a reduced-round
version of Subterranean unkeyed hashing discussed in the paper, Appendix B lists examples
of differential trails in Subterranean and Appendices C and D illustrate the basic operations
and modes of Subterranean in figures. Finally, Appendix E illustrates a 4-round unrolled
hardware architecture.

In the remainder of this paper we use the term security strength in relation to security
claims and attacks. We say a cipher has security strength of s bits against an attack if the
success probability p of an attack is at most 2−s multiplied by the attack complexity, that
is the sum of its data complexity and computational complexity.

2 Specification of the Subterranean 2.0 suite

We specify the Subterranean 2.0 suite in a bottom-up fashion, starting with the round
function, input injection and output extraction in Section 2.1, the Subterranean 2.0 duplex
object in Section 2.2, the XOF function in Section 2.3, the deck function in Section 2.4
and the SAE scheme in Section 2.5. Finally, Section 2.6 specifies the instances submitted
to the NIST lightweight competition.

2.1 The round function R, input injection and output extraction

The round function R operates on a 257-bit state and has four steps:

R = π ◦ θ ◦ ι ◦ χ . (1)

Each step of the round function has a particular purpose: χ for non-linearity, ι for
asymmetry, θ for mixing and π for dispersion. In the remainder we will use the term
bending as a synonym for non-linearity.

We denote the state as s and its bits as si with position index i ranging from 0 to 256,
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Figure 1: Subterranean round function, illustrated for bit s92

where any expression in the index must be taken modulo 257. For all 0 ≤ i < 257:

χ : si ← si + (si+1 + 1)si+2 ,

ι : si ← si + δi ,

θ : si ← si + si+3 + si+8 ,

π : si ← s12i .

Here the addition and multiplication of state bits are in F2, and δi is a Kronecker delta:
δi = 1 if i = 0 and 0 otherwise. We sometimes use subscript notation for indicating
component functions of mappings, e.g. χ(s)i denotes bit i of the state obtained by applying
χ to s. Figure 1 illustrates the round function by the computational graph of a single bit
of the state.

At the core of the Subterranean duplex object is a simple (internal) duplex call that
first applies the Subterranean round function R to the state and then injects a string σ of
variable length of at most 32 bits. Before adding it into the state, it pads the string σ to 33
bits with simple padding (10∗) and hence the absorbing rate is 33 bits. In between duplex
calls, one may extract 32-bit strings z from the state, so the squeezing rate is 32 bits.

Each of the 32 bits of the extracted output z is constructed as the sum of two state bits.
Those are taken from 64 fixed positions that are the elements of 〈124〉, the multiplicative
subgroup of (Z/257Z)∗ generated by 124 = 176, that has order ord(176) = 64. More
precisely,

for all 0 ≤ i ≤ 31 : zi = s124i + s−124i ,

where the minus sign is taken modulo 257, e.g., −120 = −1 = 256 and −124 = −176 = 81.
The 33 bits of σ after padding are injected into the state at positions that form the

first 33 powers of 124 in 〈124〉. For the unkeyed mode (hashing), the input σ is limited to
8 bits bringing the effective absorbing rate to 9 bits due to the padding.

2.2 The Subterranean duplex object
The Subterranean duplex object has at its core two internal functions: the duplex call and
the output extraction. The duplex call applies the round function and injects the input
together with the output extraction it is specified in the previous section.

On top of the duplex and extraction calls it has a thin wrapper consisting of three
functions that facilitate the compact specification of cryptographic functions and schemes.

The wrapper supports absorbing and squeezing of strings of arbitrary length and the
integration of encryption and decryption with absorbing. It provides separators between
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absorbed strings by internally ensuring its last injected block to be shorter (possibly empty)
than 32 bits in keyed mode and 8 bits in unkeyed mode. When absorbing into a secret
state (op ∈ {keyed, encrypt,decrypt} in Algorithm 1), Subterranean injects up to 32 bits
per duplex call. In unkeyed absorbing (op = unkeyed), it injects at most 8 bits per duplex
call and applies duplex calls with no injected data in between. We motivate this choice
with cryptanalysis that we present in Section 3.4.

We make no security claim for the Subterranean duplex object as such but only for
the schemes that consist of modes on top of the primitive.

We specify the Subterranean duplex object in Algorithm 1. There, any input or output
is a bit string of arbitrary length, unless specified otherwise. We indicate the length of a
bit string X by |X|, concatenation of strings a and b by a||b and the empty string by ε.

Algorithm 1 Subterranean duplex object
Interface: Constructor: Subterranean()
s← 0257

Interface: Y ← absorb(X, op) with op ∈ {unkeyed, keyed, encrypt,decrypt}
if op = unkeyed then w ← 8 else w ← 32
Let x[n] be X split in w-bit blocks, with last block strictly shorter
Y ← ε
for i = 0, . . . , n− 1 do
if op ∈ {encrypt,decrypt} then
temp← x[i] + (extract(s) truncated to |x[i]|)
Y ← Y ||temp

if op = decrypt then duplex(temp) else duplex(x[i])
if op = unkeyed then duplex(ε)

return Y

Interface: blank(r) with r a natural number
for r times do duplex(ε)

Interface: Z ← squeeze(`) with ` a natural number
Z ← ε
while |Z| < ` do
Z ← Z||extract(s)
duplex(ε)

return Z truncated to ` bytes

Internal interface: duplex(σ) with |σ| ≤ 32
s← R(s)
x← σ||1||032−|σ|

for j from 0 to 32 do s124j ← s124j + xj

Internal interface: z ← extract(s)
z ← ε
for j from 0 to 31 do z ← z||(s124j + s−124j )
return z

2.3 The Subterranean-XOF function
We specify Subterranean-XOF in Algorithm 2. It is meant to be used for unkeyed hashing
and takes as input a sequence of an arbitrary number of arbitrary-length strings M [i],
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denoted as M [[n]] and returns a bit string of arbitrary length. For Subterranean-XOF we
make a flat sponge claim.

Claim 1 (Flat sponge claim [BDPA11a]). The success probability of any attack on
Subterranean-XOF shall not be higher than the sum of that for a random oracle and

N2

2224

with N the attack complexity expressed in calls to the Subterranean round function. We
exclude from the claim weaknesses due to the mere fact that the function can be described
compactly and can be efficiently executed, e.g., the so-called random oracle implementation
impossibility [MRH04], as well as properties that cannot be modeled as a single-stage
game [RSS11].

Our claim corresponds to a security strength of 112 bits against all attacks that do
not apply to a random oracle. The capacity in the claim is 24 bits short of the effective
capacity 257−9 = 248 bits to account for possible shortcut attacks. These are attacks that
are more efficient than generic ones by exploiting specific properties of Subterranean (see
Section 3.4).

Algorithm 2 Subterranean-XOF
Interface: Z ← Subterranean-XOF(M [[n]], `) with M [[n]] a string sequence and ` a
natural number
S ← Subterranean()
for all strings M [i] in M [[n]] do S.absorb(M [i],unkeyed)
S.blank(8)
return Z ← S.squeeze(`)

2.4 The Subterranean-deck function
We specify Subterranean-deck in Algorithm 3. It takes as input an arbitrary-length key K
and a sequence of an arbitrary number of arbitrary-length strings M [i], denoted as M [[n]]
and returns a bit string of arbitrary length. It can readily be used as a stream cipher, a
MAC function and for key derivation. The Farfalle paper [BDH+17] and the Xoodoo
cookbook [DHAK18] specify several authenticated encryption modes for deck functions.

We claim Subterranean-deck offers 128 bits of security strength against adversaries
that are limited to 296 data blocks, when it is loaded with a key with min-entropy 128 bits
in a single-target setting, and loaded with independent keys with min-entropy 128 + log2 µ
in a multi-target setting with µ targets.

Subterranean-deck absorbs the key in blocks of 32 bits. This makes it an application of
the result of Bart Mennink [Men18]. The bottom line is that, even for a uniform key with
length k and an ideal underlying permutation, the success probability of key prediction
cannot be proven to be close to N2−k for N operations. On the other hand, the absence
of this bound does not imply there is an attack with success probability above N2−k and
we do not take this into account in our claim.

Claim 2. The advantage of an adversary in distinguishing an array of µ instances of
Subterranean-deck loaded with µ independent keys, each with min-entropy 128 + log2 µ bits,
from an array of µ independent random oracles, is upper bounded by (N +M)2−128, with
N the total computational complexity in calls to the Subterranean round function and M
the total data complexity in 32-bit input- and output blocks, with M < 296.
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Algorithm 3 Subterranean-deck
Interface: Z ← Subterranean-deck(K,M [[n]], `) with M [[n]] a string sequence and ` a
natural number
S ← Subterranean()
S.absorb(K, keyed)
for all strings M [i] in M [[n]] do S.absorb(M, keyed)
S.blank(8)
return Z ← S.squeeze(`)

2.5 The Subterranean-SAE authenticated encryption scheme
We specify Subterranean-SAE in Algorithm 4. It takes a nonce when starting the session
and can then encipher and authenticate a sequence of messages each consisting of a plaintext
and associated data. Compared to authenticated encryption modes based on Subterranean-
deck, Subterranean-SAE has smaller state and is better suited to offer protection against
differential power analysis (DPA). In particular, the security is based on the secrecy of
a state that evolves during the session rather than a static key. Across sessions, one can
derive a fresh key per session using Subterranean-deck. This protects against differential
power analysis and provides fine-grained forward secrecy. If one wishes to use the same
key for multiple sessions and DPA is a concern, one can absorb the nonce bit per bit, as
was proposed by Mostafa Taha and Patrick Schaumont in [TS14]. By taking as nonce the
shortest binary representation of a session counter, this can be quite economical.

For Subterranean-SAE, we make the same security claim as for Subterranean-deck
with two differences. First, we do not try to distinguish it from a random oracle, but from
a random function with the same interface as Subterranean-SAE. Second, we only consider
adversaries that respect nonces and that only get an error message when presenting invalid
cryptograms for unwrapping.

Claim 3. Consider an adversary that respects the nonce requirement and that, when
presenting invalid cryptograms for unwrapping, only gets an error message. The advantage
of such an adversary in distinguishing an array of µ Subterranean-SAE instances loaded
with µ independent keys, each with min-entropy 128 + log2 µ bits, from an array of µ
independent random functions with the same interface is upper bound by (N +M)2−128,
with N the total computational complexity in calls to the Subterranean round function and
M the total data complexity in 32-bit input and output blocks, with M ≤ 296.

This claim implies that, in the case of a 128-bit tag, the probability that an attacker
violates plaintext confidentiality and the probability of cryptogram forgery are both
(N +M + q)2−128 with q the number of decryption queries. In other words, it implies in
plaintext confidentiality and message integrity of security strength 128 bits.

In a nonce-misuse scenario or when unwrapping invalid cryptograms returns more
information than a simple error, we make no security claims and the attacker may be able
to recover the secret state. Fukang Liu, Takanori Isobe and Willi Meier showed an attack
achieving exactly this, requiring 1177 sessions with the same diversifier and exchanging 224
bits in each, using conditional cube testers and guess-and-determine techniques in [LIM19].

2.6 Parameter choices for the NIST lightweight competition
In this section we specify the set of parameters for both the hash function and the
authenticated encryption scheme in the context of the NIST lightweight competition. Both
concrete instances are modes on top of the Subterranean duplex object that can be shared.

The hash function of the Subterranean 2.0 suite submitted to the NIST lightweight
competition is Subterranean-XOF, with the input restricted to a string sequence of a single
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Algorithm 4 Subterranean-SAE, with τ the tag length
Interface: start(K,N)
S ← Subterranean()
S.absorb(K, keyed)
S.absorb(N, keyed)
S.blank(8)

Interface: (Y, T )← wrap(A,X, T ′, op) with op ∈ {encrypt,decrypt}
S.absorb(A, keyed)
Y ← S.absorb(X, op)
S.blank(8)
T ← S.squeeze(τ)
if op = decrypt AND (T ′ 6= T ) then (Y, T )← (ε, ε)
return (Y, T )

arbitrary-length byte string and the output length fixed to 256 bits. The security claim is
given in Claim 1

The authenticated encryption scheme of the Subterranean 2.0 suite submitted to the
NIST lightweight competition is Subterranean-SAE, with a key K of length 128 bits, a
nonce N of length 128 bits and a tag length τ = 128 and associated data and plaintext
limited to byte strings. The security claim is given in Claim 3 and it implies that the
amount of data available to the attacker shall be limited to 296 bits.

3 Design Rationale
In this section we give the design rationale for the Subterranean 2.0 cipher suite, following
the canvas of the specifications in previous section. Before discussing the different aspects
more in-depth, we give the design rationale in a nutshell.

3.1 Rationale in a nutshell
The round function operates at bit level with a maximum of symmetry by using very light
translation-invariant operations and a minimum of sub-structures by letting it operate on
a prime-sized state. When speaking of sub-structures, we are thinking of bytes and super-
boxes in Rijndael [DR02], but also Matryoshka in Keccak-p [BDPA11b] or symmetry
properties in the ChaCha permutation [Ber08,FLM10]. In a way, the Subterranean round
function is the nec plus ultra of weak alignment.

We extract the output z from state bits that are in positions distant from each other to
make it very hard to reconstruct the secret state from a series of outputs z and to prevent
existence of measurable biases in the output stream Z.

Likewise, we inject input strings σ in the state in positions distant from each other to
make it infeasible to control difference propagation in the state. In unkeyed absorbing we
limit the strings σ in length to 8 bits and we apply two rounds in between input injections.
The reason for this is to make the generation of state collisions infeasible.

Subterranean-XOF and Subterranean-deck each have a single absorbing phase followed
by a squeezing phase. In between those phases there is a sequence of 8 blank rounds. In
Subterranean-deck, these blank rounds are meant to prevent measurable correlations or
exploitable differentials between input M [i] and output Z. In Subterranean-XOF they are
meant to make the generation of collisions in n-bit outputs, for any n ≤ 224, infeasible.
Similarly, they should prevent the generation of (2nd) pre-images for any n-bit output
with n ≤ 112 in less than 2n operations.
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More generally, in Subterranean-XOF, Subterranean-deck and Subterranean-SAE alike,
the blank rounds should make the output Z (tag or keystream) depend on all bits of the
input in a complex way, as in the case for a random oracle. Finally, the blank rounds
should prevent attacks that make use of higher order differentials such as cube attacks
by the fact that expressions of state bits as a function of the state 8 rounds ago has high
degree and is relatively dense.

The width of the permutation, 257, fits nicely the ambition to offer a security strength
of 128 bits in keyed modes and 112 bits in unkeyed mode. It is rather small but not too
small to fall prey to time-memory-data-precomputation trade-offs.

3.2 The round function
The round function is just taken from the original Subterranean specified in [Dae95], with
the buffer addition removed and the bending step complemented. In short, it is a classical
lightweight bit-oriented wide trail design, with a bending layer, a mixing layer, a shuffling
layer and a (round) constant addition. The state is a one-dimensional array of length
257, a prime number. This had to be at least 256 as the original Subterranean targeted a
security strength of 128 bits. A prime was taken to rule out exploitable symmetries. In
particular, the bending and mixing layers are translation-invariant. The shuffling layer,
that we call multiplicative as it moves each bit to a position that is a modular multiple of
its original position, satisfies a generalization of translation-invariance. The round constant
addition ensures the round function itself does not have any of those symmetry properties.

In the remainder of this section we discuss the propagation properties of the steps of
the round function with an emphasis on their symmetry properties and the consequences
for their algebraic order.

3.2.1 On translation-invariance

Definition 1 (Translation Invariance). We say a mapping α is translation-invariant over
an offset v if it commutes with a (cyclic) translation by v positions, that we denote as τ(v):

α ◦ τ(v) = τ(v) ◦ α .

Lemma 1. If a mapping is translation-invariant over offset 1, it is translation-invariant
over any offset.

Proof. We have: α ◦ τ(v) = α ◦ τ(1) ◦ τ(v−1) = τ(1) ◦ α ◦ ◦τ(v−1). By iteratively applying
this, we obtain τ(v) ◦ α.

Lemma 2. The composition of two translation-invariant mappings is translation-invariant.

Proof. We have
τ(1) ◦ α ◦ β = α ◦ τ(1) ◦ β = α ◦ β ◦ τ(1)

A translation-invariant mapping α is fully specified by its first component function
α(s)0. Any other component function is given by α(s)i = α(τ(i)(s))0.

The shuffling layer π is not translation-invariant but has a similar property.

Definition 2 (Multiplicative shuffle). Let b a strictly positive integer and g coprime to b.
Then the mapping π(g) : s ∈ Fb2 → Fb2 defined by ∀0 ≤ j < b,

π(g)(s)gj mod b = sj

is called multiplicative shuffle on b-bit with shuffling factor g.
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Lemma 3. Let π(g) be a multiplicative shuffle, then τ(g) ◦ π(g) = π(g) ◦ τ(1).

Proof. Let 0 ≤ j < b and s ∈ Fb2. Then (τ(g) ◦ π(g)(s))j = (π(g)(s))j−g mod b. As
(π(g)(s))gj mod b = sj and g is coprime to b, it implies that (π(g)(s))j−g mod b = sg−1(j−g)
where g−1 denotes the multiplicative inverse of g in Z/bZ∗. Hence (τ(g)◦π(g)(s))j = sg−1j−1.

Similarly, we have (π(g) ◦ τ(1)(s))j = (π(g)(τ(1)(s)))j = (τ(1)(s))g−1j . Hence (π(g) ◦
τ(1)(s))j = sg−1j−1.

3.2.2 The bending layer χ

The bending layer is χ, described and analyzed in [Dae95] and well known from Keccak-p.
χ is the sparsest translation-invariant mapping of algebraic degree 2 that is invertible when
the state has odd length. By sparse we mean that each output bit only depends on few
input bits, in this case 3 bits in neighbouring positions. The low degree is an advantage
when countermeasures against differential power analysis need to be implemented, such as
masking or threshold schemes. In general, computing the inverse of χ requires a recursive
procedure and the consequence is that it is dense and has an algebraic degree that is
proportionate to the state length. In the case of Subterranean, the inverse of χ has
algebraic degree 128. This complexity helps in frustrating cryptanalysts.

3.2.3 The mixing layer θ

The mixing layer θ is similarly sparse: each output bit is the sum of 3 input bits at fixed
relative offsets. The Subterranean round function was an improved version of that of the
very first wide-trail design, the hash function Cellhash [DGV91]. In Cellhash, the offsets
in θ were −3, 0, 3: symmetric around 0 and at minimum distance so that each output bit
of θ ◦ χ depends on 9 bits. Due to this choice of offsets, an input difference in θ with
two active bits in positions i + 3 and i + 6 for any i leads to a 2-bit output difference
with active bits in positions i and i+ 9. The choice of offsets in Subterranean avoids this
problem: a 2-bit input difference leads to an output difference with at least 4 active bits.
The symmetry around 0 was abandoned, 3 was kept and 8 was chosen as the smallest
value that gives excellent mixing properties.

In order to capture algebraic properties of θ, we identify state values s with binary
polynomials s(X) =

∑
i siX

i. As discussed in [Dae95], a translation-invariant mapping
corresponds with multiplication with a polynomial modulo 1 +Xb. For a linear translation-
invariant mapping α defined by α(s)0 =

∑
i pisi, the mapping corresponds with multiplying

with polynomial P (X) =
∑
i piX

b−i. For θ this yields:

θ (s(X)) = s(X)(1 +X249 +X254) mod (1 +X257) .

The multiplication polynomial can likewise be written as 1 +X−3 +X−8.
The polynomials P (X) of degree smaller than 257 that are coprime to 1 + X257

form a group that we will denote by
(
F2(X)/(1 +X257)

)∗. The modulus 1 + X257 is
the product of 1 + X with 16 irreducible polynomials of degree 16. This implies that(
F2(X)/(1 +X257)

)∗ is isomorphic to the product of 16 groups of order 216− 1 and ord(θ)
must divide 216 − 1 = 3 × 5 × 17 × 257. For P (X) = 1 + X−3 + X−8, we checked that
the order is 216 − 1, the maximum possible order in

(
F2(X)/(1 +X257)

)∗. The inverse of
θ can be computed with the extended Euclidean algorithm or as (1 +X−3 +X−8)216−2

and has a Hamming weight of 127. This high diffusion in the backward direction helps in
frustrating cryptanalysis.

3.2.4 The shuffling layer π

The shuffling layer of Subterranean is a multiplicative shuffle (see definition 2) on 257
bits with shuffling factor 150. It puts bits that are 12 positions apart next to each other:
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si ← s12i. This ensures that each state bit depends on 81 bits of the state 2 cycles
ago. Moreover, it moves neighbouring bits to positions 150 bits apart: s150j ← sj as
150× 12 mod 257 = 1. The result is that a single-bit difference in the state may affect 81
state bits 2 cycles later.

The order of 12 in (Z/257Z)∗ is 256, or in other words, it is a generator. The consequence
is that the order of π is likewise 256.

3.2.5 The order of the linear layer π ◦ θ

For understanding the order of the linear layer π ◦ θ we first prove a number of lemmas.

Lemma 4. If α is translation-invariant and π(g) a multiplicative shuffle, then π−1
(g) ◦α◦π(g)

is translation-invariant.

Proof. We have:(
π−1

(g) ◦ α ◦ π(g)

)
◦ τ(1) = π−1

(g) ◦α ◦ τ(g) ◦π(g) = π−1
(g) ◦ τ(g) ◦α ◦π(g) = τ(1) ◦

(
π−1

(g) ◦ α ◦ π(g)

)

Lemma 5. If α is translation-invariant and π(g) a multiplicative shuffle and β = π−1
(g) ◦

α ◦ π(g), then β(s)0 = α(π(g)(s))0.

Proof. Bit 0 of π−1
(g)(α(π(g)(s))) is bit 0 of α(π(g)(s)) and that is per definition α(π(g)(s))0.

Lemma 6. If α is linear and translation-invariant with multiplication polynomial P (X)
and π(g) a multiplicative shuffle, then π−1

(g) ◦α ◦ π(g) is linear and translation-invariant with
multiplication polynomial P (Xg).

Proof. Applying Lemma 5 with α = θ we obtain θ(j)(s)0 = θ(π(g)(s))0 =
∑
i pisig. This

corresponds with polynomial P (Xg).

Lemma 7. For any i ∈ Z, let θ(i) be the linear transformation defined as θ(i) = π−i ◦θ◦πi.
Then, for any n ∈ N, we have:

(π ◦ θ)n = πn ◦ θ(n−1) ◦ θ(n−2) ◦ · · · ◦ θ(1) ◦ θ(0) . (2)

Proof. Working it out gives:

(π ◦ θ)n = π ◦ θ ◦ π ◦ θ ◦ · · · ◦ π ◦ θ = πn ◦ π1−n ◦ θ ◦ πn−1 ◦ π2−n ◦ θ ◦ · · · ◦ π1 ◦ θ .

If we apply Lemma 7 for n = 256, πn becomes the identity and we obtain a mapping
that is an element of

(
F2(X)/(1 +X257)

)∗ as it is the composition of 256 linear translation-
invariant mappings, each with its own multiplication polynomial. From this follows that
the composed mapping is also a linear translation-invariant mapping and that its order
divides 216 − 1. Hence, the order of π ◦ θ divides 28(216 − 1). We checked the divisors of
this integer and it turns out that the order of π ◦ θ is 256 and the minimal polynomial of
π ◦ θ is 1 +X256.

More in general, we can prove the following lemma.

Lemma 8. Let θ′ be a linear translation-invariant mapping with multiplication polynomial
P and let π′ = π(g) a 257-bit multiplicative shuffle. If ord(g) ≥ 16, the order of π′ ◦ θ′
divides ord(g).
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Proof. Applying (2) with n = ord(g) yields

(π′ ◦ θ′)ord(g) = θ′(ord(g)−1) ◦ θ′(ord(g)−2) ◦ · · · ◦ θ′(1) ◦ θ′(0)

with θ′(i) = π′−i ◦ θ′ ◦ π′i. For any i ∈ N, the multiplication polynomial of θ′(i) is P (Xgi)
modulo 1 +X257 (see Section 4.4).

It follows that (π′ ◦ θ′)ord(g) is a linear translation-invariant mapping with polynomial
Q =

∏ord(g)−1
i=0 P (Xgi). As expressed before in Section 3.2.3, 1 +X257 is the product of

1 +X and 16 polynomials of degree 16. We can now show that Q = 1, the multiplication
polynomial of the identity mapping. Let α be a primitive element of F2257 , then it follows
immediately from the expression of Q that Q(α) = Q(αg) = Q(αg2) = · · · = Q(αgord(g)−1).
As α is a primitive element, all these powers are different elements. Thanks to the Chinese
Remainder Theorem, and the factorisation of (1 + X257) in polynomials of degree 16
or smaller, the result follows immediately: Q is a constant polynomial. Depending on
the Hamming weight of P , we get either a constant term that is zero or one, but as
P corresponds to a bijective mapping, we have Q = 1. Hence, (π′ ◦ θ′)ord(g) = Id if
ord(g) ≥ 16.

3.3 The number of blank rounds

The algebraic degree of the Subterranean round function is 2 and for small r the degree
of r rounds is 2r. For larger r, it was observed by Christina Boura, Anne Canteaut and
Christophe De Cannière in [BCC11] that the degree lags behind starting from a number of
rounds r when 2r starts approaching the permutation width b. Still, for r = 8 we expect
the algebraic degree to be well above 128. Together with the positioning of the input bits
and the fact that there are only 32 per round, this makes it unlikely that shortcut attacks
based on higher-order differentials, such as cube attacks, can be mounted.

In collision attacks in Subterranean-XOF, a non-zero difference a′ in the state before
the blank rounds will propagate to a non-zero difference b′ in the state after the blank
rounds. Due to the 8 rounds, the difference b′ will depend in a complicated way on the
difference a′ and the absolute values of the states before the blank rounds. This implies that
the best collision-generating strategy against Subterranean-XOF is to go for an internal
collision during the absorbing phase.

For Subterranean-deck, differential attacks require the propagation of a difference
across the blank rounds. As can be seen in Section 3.7, we did not find 8-round trails and
we are certain that there are none with expected differential probability above 2−98. It
follows that exploiting differential propagation with 296 or less pairs will be problematic.
Similarly, we do not expect there to be 8-round correlations with amplitude above 2−48,
the value that would be required for exploiting it with 296 input-output couples. The same
reasoning is true for Subterranean-SAE for nonce-respecting adversaries that do not get
unverified deciphered ciphertext. Namely, in these use cases, controllable input and output
is separated by 8 blank rounds.

The safety margin provided by the 8 blank rounds in keyed modes is confirmed by the
cryptanalysis of Fukang Liu, Takanori Isobe and Willi Meier in [LIM19]. The authors
showed that when the number of blank rounds is reduced to 4, one can do a state recovery
attack with data complexity 271.5 bytes and computational complexity 2122 computations
of the round function.

In the following sections we will discuss input-only attacks in the form of state collisions
and output-only attacks in the form of state-recovery attacks from output only and biases
in the output.
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3.4 State collisions in unkeyed absorbing
The single-most important security requirement of unkeyed absorbing is that it should be
hard to generate state collisions. A state collision is defined as a pair of different string
sequences M [[n]] and M ′[[n′]] that lead to the same state value.

A string sequence M [[n]] gives rise to a sequence of absorb calls, that each split the
string M [i] into 8-bit blocks, pad these blocks with 10∗ and then sequentially inject these
into the state in a series of duplex calls interleaved with blank duplex calls. The borders
between the strings in the sequence are marked by the fact that the last block of each
string M [i] before padding is shorter than 8 bits. If the strings M [i] are not restricted to
byte strings but can have any bitlength, an adversary can hence choose 9 bits between two
consecutive duplex calls. In the case of input byte strings, the adversary can choose from
28 + 1 input values, namely 28 byte values with padding and the padded empty string.
This reduces the number of chosen bits per two consecutive duplex calls to 8 + ε with ε
small. Our ambition is to have 112-bit security strength in the more general case of bit
strings.

When generating a state collision, the colliding string sequences M [[n]] and M ′[[n′]]
may take an equal or a different number of duplex calls. For duplex call sequences of
equal length, we can try to find a differential from the input M [[n]] to a zero difference in
the state with a high differential probability (DP). For duplex call sequences of different
lengths, one could try to generate a fixed point. Those properties are discussed respectively
in Section 3.4.4 and Section 3.4.3. Finally, one can try to find state collisions with a generic
attack by just randomly trying inputs and count on the birthday bound for collisions to
occur. This is the starting point of the attack explained in the following subsections.

3.4.1 Generating state collisions with a generic attack

In absorbing, we call the bit positions where the input is injected the outer part of the state.
The inner part of the state is formed by the other bit positions. In unkeyed absorbing,
the outer part consists of 9 bit positions and the inner part 248 bit positions. In keyed
absorbing, the outer part is 33 bits wide and the inner part 224 bits.

A naive collision-generating attack strategy is to try random inputs and to check if
there are state collisions among them. The probability that there is a collision after q
attempts is close to

(
q
2
)
/2257 ≈ q2/2258 as long as q is smaller than 2129. When q gets

close to this value, it is likely that the set of inputs exhibits a state collision. The success
probability increases if we only require a collision in the 248-bit inner part of the state, a
so-called inner collision. An inner collision can readily be converted into a state collision
by compensating for the (possible) difference in the 9-bit outer part by choosing the last
blocks in the inner-state colliding inputs. The probability of an inner collision after q
attempts is about q2/2249. As every attempt will take at least two duplex calls, the lowest
possible computational complexity of q inputs is N = 2q. It follows that the probability of
an inner collision for this generic attack is close to N2/2251.

Increasing this probability by a factor higher than 2251−222 = 229 by exploiting specifics
of the round function would break our security claim for Subterranean-XOF, Claim 1 as a
state collision allows generating an arbitrary number of input pairs with the same output,
something that a random oracle does not have.

3.4.2 Dedicated attack to generate inner collisions

In this section we describe an attack for generating an inner collision for a round-reduced
version of Subterranean-XOF. It is round-reduced in the sense that there are no blank
duplex calls in between the duplex calls absorbing the input blocks. As a matter of fact,
this attack is the reason why we introduced these blank duplex calls in unkeyed absorbing.
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Figure 2: Finding state collisions in unkeyed absorbing. The mi’s are 9-bit padded input
blocks and we aim for a collision on s0. We tolerate a difference in s0 the blue positions as
it can be compensated by a simple difference in m0. Red positions in s represent conditions
that can be satisfied by choosing the value of m−1,

An inner collision can be seen as a stepping stone to a state collision, where the
difference in the outer part can be annihilated by compensating last input blocks. The
states s and s′ corresponding to the inner collision are equal in their outer part.

The basic idea of this attack is to take this one step further. We build proto-collisions:
pairs of states s and s′ that satisfy specific equations. For states of a proto-collision,
there is a high probability that their difference in the inner part can be annihilated by
compensating last input blocks.

In a first phase of the attack, we generate states s by absorbing random inputs and
assemble them in a set we call birthday set.

In a second phase of the attack, we identify pairs of states (s, s′) in this set that form
a proto-collision. We depict the schematic of the attack in Figure 2.

We now derive the equations that a proto-collision must satisfy. We denote by s and s′
the value of the state just before absorbing the penultimate input blocks m−1 and m′−1,
that we denote by b and b′ for compactness. Our equations are in the bits of s, s′, b and b′
as variables, i.e., si and s′i for 0 ≤ i < 256 and bi and b′i for 0 ≤ i < 9. We aim to find
equations in s and s′ such that if satisfied, the probability that they can be converted into
an inner collision by choosing appropriate last blocks b and b′ is maximal. The states just
before absorbing m0 and m′0 form an inner collision if their difference is contained in the
9-bit outer part, i.e., in bit positions 1, 176, 136, 35, 249, 134, 197, 234, 64, highlighted in
blue in Figure 2. For the 248 inner bits, the difference must be 0 and one can express the
difference in terms of the bits of s, s′, b and b′. As the round function has algebraic degree
2, these are quadratic equations. We denote these equations as:

qj(s, b) = qj(s′, b′) for 1 ≤ j ≤ 248 ,

with qj quadratic expressions. Each bit bi (or b′i), for 0 ≤ i < 9 appears in the expression
qj in 9 of those equations. By doing a Gaussian elimination, we can convert this to an
equivalent system in which the number of equations where bi or b′i appear is minimized.
In particular, it contains 221 equations where the variables bi and b′i don’t intervene at all.
We denote the resulting system as:

q′j(s, b) = q′j(s′, b′) for 1 ≤ j ≤ 26 (3)
q′j(s) = q′j(s′) for 27 ≤ j ≤ 248 (4)

The exact form of these equations is not needed to understand the attack and can be found
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in Appendix A.1. If we find a tuple (s, s′, b, b′) that satisfies Equations (3) and (4), we
have an inner collision just before absorbing m0 and m′0.

The 221 equations in (4) are independent of bi and b′i and must hence be satisfied
by the bits of s and s′. A pair {s, s′} that satisfies these equations is a proto-collision.
So we first try to find proto-collisions in the birthday set and then values of b and b′

that satisfy Equations (3). To do so, we could store the birthday set in a hash table,
ordering the states (and corresponding inputs) according to the 221-bit values defined by
(q′27(s)||q′28|| · · · ||q′248). We call these the birthday set coordinates. Storing this hash table
would cost an excessive amount of memory. However, we can use the work of Paul C. van
Oorschot and Michael J. Wiener [vOW94] to find collisions without storing and sorting all
computed states.

When we find a proto-collision {s, s′}, forming an inner collision still requires values of
b, b′ that satisfy the 26 equations of (3). As we have 26 equations and only 18 variables,
this will often not be possible. This means we will have to find multiple proto-collisions to
find an inner collision.

Given a proto-collision {s, s′} , the probability of satisfying remaining equations by
trailing blocks b, b′ is approximately 2−10. The derivation of this probability can be found
in Appendix A.2.

So for a given number of attemps q, the probability to have a proto-collision is
approximately

(
q
2
)
/2221 ≈ q2/2222 and the probability that for this proto-collision trailing

blocks b and b′ can be found that lead to an inner collision is 2−10. It follows that
the probability to get an inner collision in q attempts is close to q2/2232. Assuming
that we can limit the computational workload per input to 1 duplex call and neglecting
the computational complexity of the collision finding process, the success probability is
N2/2232.

One may consider extending this attack by converting a proto-collision into an inner
collision with sequences of two trailing blocks rather than simple trailing input blocks.
However, equations corresponding to those in (3) and (4) would have algebraic degree
4 there would be many more equations involving the bits of the trailing input blocks.
However, as the success probability of our attack, N2/2232 is only a factor 28 short of
Claim 1, we think reducing the injection of input bits in unkeyed absorbing to 9 bits per
two duplex calls is justified as a safety margin.

Adapting this attack the nominal unkeyed absorbing in Subterranean for a success
probability higher than that in Claim 1 would require the construction of equations
spanning 4 Subterranean rounds. We believe this to be infeasible.

3.4.3 Fixed points

A duplex-level fixed point consists of a state value s and two input block sequences A and
B and has the following properties. The value s is the state after absorbing the sequence A,
where A may be empty. After absorbing the non-empty sequence B starting from state s,
the state must again have value s. Such a fixed point would allow generating an infinite set
of input sequences A,A||B,A||B||B, . . . all colliding in the same state and would therefore
generate the same output sequences.

Finding a duplex-level fixed point (s,A,B) could be done in two phases. In a first
phase we can try finding a pair (s,B) and in the second phase a matching value of A. The
complexity of this undertaking increases with the number of blocks in the sequence B.
The simplest possible case is when B has a single block, where it comes down to finding a
fixed point in two-round Subterranean, where the 9 bits of B are degrees of freedom. The
expected number of such fixed points is 29. For B consisting of n blocks, we have to find a
fixed point in 2n-round Subterranean, with 9n degrees of freedom, leading to an expected
29n solutions. We expect the difficulty of finding pairs (s,B) to increase rapidly with the
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number of blocks of B due to the increasing number of Subterranean rounds that must be
covered.

However, the difficulty lies mostly in the second phase, where, given a set of states S,
an input block sequence A must be found that would give rise to a state in S. Such an
undertaking is similar to generating inner collisions as described in Section 3.4.2, but with
less degrees of freedom per round for the attacker. We therefore believe duplex-level fixed
points form no threat for the security of Subterranean.

3.4.4 Differential properties

For duplex call sequences of equal length one may try to generate an inner collision by
exploiting a differential or trail with high DP. As an inner collision must be obtained
in 248 bits of the state and the adversary can choose 9 bits per duplex call in each of
the two input block sequences, it is unlikely that starting from some given state, there
exist colliding input sequences of less than 248/(2 × 9) ≈ 14 blocks. Clearly, there are
29×14 = 2126 input block sequences and just trying them all would just be a generic attack.
Doing this in less calls in a systematic way would require controlling the propagation of the
difference through the rounds and hence having some kind of high probability differential
in Subterranean from the input blocks to the state. We believe such differentials do simply
not exist.

One could imagine applying an attack that exploits differential properties combined
with backtracking. This was done by Thomas Fuhr and Thomas Peyrin for mounting inner
collision attacks on RadioGatún [FP09], almost breaking its security claim. Moreover,
RadioGatún has a round function very similar to that of Subterranean. However, in
backtracking attacks the degrees of freedom for the attacker play a very important role,
and these are much higher in RadioGatún than in Subterranean. Namely, RadioGatún
absorbs 3 words per round in a 19-word state (mill) of 19 words, while Subterranean
absorbs 8 bits per two rounds in a 257-bit state.

3.5 State-recovery attacks
Subterranean-SAE is very similar to the CAESAR candidate Ketje Jr [BDP+14,BDP+16]
that was attacked by Thomas Fuhr, Maria Naya-Plasencia and Yann Rotella in [FNR18].
This attack is a state-recovery attack on a weakened version of Ketje Jr, where the
weakening consists of an increase of the rate during the wrap calls from the nominal 16 bits
to 32 bits. The attack focuses on 4 consecutive rounds on Ketje Jr v1. The feasibility of
the attack strongly depends on the bit positions of the outer part. In Ketje Jr the outer
part covers full (5-bit) rows and the non-linear mapping operates at row level. This means
that if in a state at the input (resp. output) of χ all bits of a row are known, one can
compute the bits in that row at the output (resp. input) of χ. This fact allows an attacker
to link the information between 4 consecutive rounds. In Ketje Jr v2 the definition of the
outer part was changed and no longer contains full rows, greatly reducing the applicability
of the attack.

In Subterranean the squeezing rate is 32 bits, so at first sight the attacks in [FNR18]
may be a concern. However, two factors already make it much harder to pull of for
Subterranean than for the weakened version of Ketje Jr v1:

• Subterranean has a 257-bit state and Ketje Jr only a 200-bit state.

• In Ketje Jr the χ mapping is applied on rows of 5 bits. In Subterranean, χ is
applied on all state bits arranged in a single circle.

From the reduction in effectiveness of attacks from Ketje Jr v1 and Ketje Jr v2,
we learned that it is a good idea to choose the positions of output bits far from each other.
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Our choice of output positions does exactly that when seen in the context of state-recovery
attacks. It takes the knowledge of at least two consecutive bits at the input (output) of χ
to determine a single bit at its output (input) and by our choice of output bits, we avoid
the propagation of knowledge of individual bit values across χ.

On top of that, we added another hurdle to frustrate state-recovery attacks: instead
of simply taking individual state bits as output bits zi, we construct each output bits as
the sum of 2 state bits. This is inspired by the stream cipher Trivium [Can06], where the
output bit consists of the sum of three state bits. Hence, to obtain 32 output bits, we
take 64 state bits and add them in pairs. While information-technically an attacker gets
the same amount of information per round as in the case of taking 32 consecutive state
bits, it is much harder to exploit this information. In particular, most techniques used
in [FNR18] no longer work and it appears that Subterranean has a comfortable safety
margin with respect to state-recovery attacks. In particular, the algebraic expression of
the output bits gets twice the number of monomials, exploding the cost of (for instance)
Guess-and-Determine techniques.

3.6 Bias in the keystream
In this section we investigate possible biases in the keystream. Here, we refer to biases in
linear combination of output bits such as found by Brice Minaud in AEGIS [Min14] or
Tomer Ashur et al. in MORUS [AEL+18]. For Subterranean this would mean the following.
We write an output stream Z as a sequence of 32-bit blocks z0, z1, z2 . . . and define a
mask sequence U that consists of a sequence of, 32-bit masks u0, u1, u2 . . . un−1 for some n.
This mask sequence U defines a (binary) parity of a sequence Z as UTZ =

∑
0≤i<n u

T
i zi.

We can shift this mask to a later position in Z and compute a similar parity. We write
UT(Z � q) =

∑
0≤i<n u

T
i zq+i. If we have a keystream Z of m blocks, a parity determined

by an n-block mask U can be computed on m−n positions. If we have multiple keystreams
Z of length mi, this parity can be computed on

∑
i(mi − n) positions.

For AEGIS and MORUS, masks U were found so that UTZ exhibits a bias, i.e., its
value has higher probability to be 0 than 1 or vice versa. This is equivalent to saying that
UTZ is correlated to 0 with positive or negative correlation C. To detect a bias in an
output Z with some given correlation C, one needs to compute C−2 parities implying at
least C−2 output blocks. So for example to detect a bias with correlation 1/1000 we need
about a million output blocks.

For any given mask U we can form the algebraic expression of UTZ in terms of the
bits of the state value at the point of the first mask of U . If this algebraic expression is
a balanced function, UTZ has zero bias and this is the case If it contains at least one
degree-1 monomial si that does not appear in any other monomial.

In Subterranean, every bit of zt is the sum of two state bits of st. If U consists of a
single block u0, the expression of UTZ in terms of the bits of s0 is simply a sum of bits
and hence balanced.

We will now explain the case of a two-block mask U = u0u1. The expression for
uT

0 z0 + uT
1 z1 is a sum of bits of s0 and bits of s1. One can convert the latter to bits of s0

by substitution using the round function:

s1
j = s0

i + δi + s0
i+3 + s0

i+8 + (s0
i+1 + 1)s0

i+2 + (s0
i+4 + 1)s0

i+5 + (s0
i+9 + 1)s0

i+10 , (5)

with i = 12× j.
The 64 state bit positions used for generating the output bits zi are the elements of

the multiplicative subgroup 〈124〉 of (Z/257Z)∗ of order 64 generated by 124 = 176.
So the bits of s0 corresponding to uT

0 z0 have indices i in 〈124〉. The bits of s1 due to
the term uT

0 z0 have indices j, also in 〈124〉. After converting them to bits of s0 using (5),
each bit s1

j leads to at least one bit s0
12×j , namely the leftmost at the righthand side. As
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j ∈ 〈124〉, this bit of s0 has an index i in 12〈124〉. It follows that the degree-1 monomials
due to uT

0 z0 and those due to uT
1 z1 have non-overlapping indices and therefore there is

always at least one degree-1 monomial that does not appear in any other monomial. In
other words, there is no bias for masks Z of less than 3 blocks.

For 3-block and 4-block masks, the reasoning above generalizes in that uT
2 z2 generates

degree-1 monomials with indices in 122〈124〉 and uT
3 z3 degree-1 monomials with indices in

123〈124〉. This provides evidence that there is probably no bias for masks Z of less than 5
blocks and we believe there is is no bias in Z measurable from output sequences of 296

blocks or less.

3.7 Differential trail analysis
We investigated the differential propagation in Subterranean in the form of differential
trails. For this, we used an approach inspired by the work of Silvia Mella et al. in [MDA17]
that was later also applied to Xoodoo in [DHVAVK18]. It consists in generating all trail
cores over a small number of rounds up to some weight. A trail core is trail where the initial
difference and the final difference are left unspecified and its weight is the minimum of the
weight of all trails compatible with that trail core. The weight w of a trail Q corresponds
to its differential probability DP(Q) and is given by w(Q) = log2 DP(Q), so DP(Q) = 2−n
implies w(Q) = n.

One-round trails correspond with differentials and even for relatively small weights
there are huge numbers of trails. This is due to the fact that they can be reduced to
differentials over the non-linear layer χ only. For two-round trail cores, the numbers
decrease as the diffusion of the linear mapping λ = π ◦ θ in between the χ layers kicks
in. However, due to the limited mixing in θ, the histogram is still quite dense. Starting
from 3 rounds, the landscape of trail cores becomes quite sparse due to the interaction of
the linear step λ of consecutive rounds. This can be seen in the 3-round trail core weight
histogram in Table 1.

Table 1: Trail core weight histogram for 3 rounds of Subterranean. We report only on
the number of trail cores that are different modulo translation: each unit in this table
corresponds to 257 trail cores.

weight 25 28 29 30 32 33 34 35 36 37 38 39
# trail cores 1 1 2 3 2 1 5 6 4 9 12 17

We report on the bounds for 1 up to 8 rounds in Table 2. For 1 up to 3 rounds the
bounds are tight as we have trails with the reported weight. For 4 rounds we know there
are no trails with weight less than 49 and have found a trail with weight 58. For more
than 4 rounds, no trails were found but the space was scanned up to the given limits. The
3-round trail core with weight 25 and the 4-round trail core with weight 58 can be found
in Appendix B.

Table 2: Lower bounds for the weight of differential trails in Subterranean for different
number of rounds.

# rounds: 1 2 3 4 5 6 7 8
lower bound: 2 8 25 [49, 58] ≥ 54 ≥ 65 ≥ 70 ≥ 98

Based on our understanding of the propagation through χ and λ, we expect similar
bounds for linear trails. We leave their analysis as future work.
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Figure 3: Subterranean duplex combinatorial circuit.

3.8 Time-Memory-Data Trade-offs
When squeezing an output, Subterranean behaves like a stream cipher and hence it may
be subject to Time-Memory trade-off attacks as specified by Steve Babbage in [Bab95].
Those attacks can recover the internal state given resources M = T =

√
N with M the

memory complexity and T the time complexity and N the stream cipher state space. As
for Subterranean N = 2257, these attacks are not a threat for our claimed security strength
of 128 bits. In 2000, Alex Biryukov and Adi Shamir [BS00] improved the trade-off by
bringing the data complexity D and computation in the pre-processing phase P into the
equation. The invariances of their trade-off become TP = N and MD = N . As we limit
the data complexity to D < 296 and have N = 2257, this still does not jeopardize the
claimed security strength of 128 bits.

4 Implementation
Since Subterranean 2.0 is designed for hardware, we discuss a hardware architecture
aimed at ASICs, report on its resource usage and discuss why we believe it is suited
for low-energy implementations. We also illustrate how to implement Subterranean
relatively efficient in software using the π procrastination technique. The code for the
hardware implementation can be found in the NIST Lightweight competition website https:
//cs.ru.nl/~joan/subterranean.html together with a software reference code, mainly
used to debug the hardware implementation.

4.1 Hardware architecture
We design as a proof of concept an hardware circuit that can perform duplex, extract
an output block and perform block-level absorbing, encryption and decryption. Also, we
compare with some other lightweight duplex-based designs.

Figure 3 illustrates the Subterranean duplex combinatorial circuit that basically just
extends the one in Figure 1, with the extraction logic and the injection of x in the θ step.
The latter allows extending some of the 3-input XORs of θ step to 4-input XOR. These
4-input XOR gates can be synthesized directly to 4-input XOR cell, or more commonly, to
three 2-input XOR cells. When done with 2-input XOR gates, as one can see in Figure 3,
the addition of the input injection does not affect the total gate delay of the round logic.

We chose to add the extraction logic in this abstraction layer to have a single combina-
torial block performing all cipher processing at duplex level, minus the padding.

The Subterranean duplex circuit in Figure 4 builds on top of the duplex combinatorial
circuit by adding the 257-bit state register and the operation logic handling encryption,
decryption and padding. The state register can be loaded with all zeroes, or by the round
function applied to its previous value and the input block. The circuit computes the value
of the injected string x by padding a string σ formed from the first bytes of din. The
length of σ in bytes shall be indicated at dinSize. In case of the decrypt operation the

https://cs.ru.nl/~joan/subterranean.html
https://cs.ru.nl/~joan/subterranean.html
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circuit XORs the first bytes of din to the first bytes of ex to form σ before padding. The
output dout contains ex in case of (un)keyed absorbing and the XOR of din and ex in case
of encrypt and decrypt.

Figure 4 shows the subterranean duplex hardware architecture with single-round
combinatorial logic. This architecture can be expanded by unrolling 2 or even 4 rounds in
the combinatorial logic, with per round a clone of the circuit of Figure 3 and additional
control logic indicating how many rounds must be executed. This unrolling allows increasing
the throughput and decreasing the power consumption per encrypted/decrypted bit at the
cost of increased area and latency.

Figure 4: Subterranean single-round du-
plex logic.

Unit Area Area
(GE) (%)

Subterranean duplex 5160 100
Round 2040 39.5
Registers 1463 28.4
State MUX 943 18.3
din padding 16 0.3
dout mask 9 0.2
Duplex din MUX 75 1.5
dout encrypt/decrypt 96 1.9
Buffer 518 9.9

Table 3: NanGate OpenCell 45nm typical
area costs for Subterranean single-round
duplex logic without flattening.

4.2 Hardware results
We synthesized the Subterranean circuit of Figure 4 and the 2- and 4-round unrolled
variants, plus some similar authenticated encryption schemes in the ASIC cells NanGate
OpenCell 45nm typical through the open source tool Yosys version 0.9 [Wol] and also,
thanks to Silvia Mella, STMicroelectronics 40 nm technology with Synopsys Design
Compiler and PrimePower tools. During our synthesis we opted for a clock period of 10
ns, which makes the tool optimized for area, but not for critical path.

We first synthesized with NanGate OpenCell 45nm typical the architecture in Figure 4
with flattening disabled in Table 3. The flattening option in hardware tools takes the
entire architecture code of all units and merges into one code. This technique enables the
tool to optimize across the boundaries of all units, thus optimizing the entire circuit. Since
we want to know the cost of each part in the Subterranean duplex circuit, we disabled
flattening only for Table 3.

Table 3 reveals that the largest building block is the duplex combinatorial logic. The
257× 3 = 771 XOR gates in θ and χ at 2 GE (gate equivalent) per XOR already give 1542
GE. Input injection and output extraction add 64 more XOR gates, adding 128 more GE.
The second largest building block is the state register taking in total 257 flip-flops (ff) each
accounting for 5.67 GE. Next is the multiplexer that chooses between keeping the state
register value, updating through the round function or loading with zeroes. Yosys has a
number of limitations without which one could reduce the area somewhat. First, it would
be possible to eliminate the multiplexer by replacing the flip-flops in the registers with
scan-ff as they have an embedded multiplexer functionality. Second, Yosys currently does
not support cells with 2 outputs. Having such cells would allow removing the inverters
used in χ circuit, since flip-flops have regular and negated outputs.

For comparison and evaluation, in Table 5, we used the results from STMicroelectronics
40 nm technology with flattening optimization. In case of Subterranean we report on
single-round, 2- and 4-round unrolled duplex logic. The similar schemes we compare with
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in Table 5 are Gimli [BKL+17], with 3 different unrolling variants and Ketje Jr and
Ketje Sr [BDP+16]. Note however that for these schemes we only report on the area of
the round logic and the state register. Even though they have similar lightweight goals,
they have different characteristics that are explained and illustrated in Table 4. Gimli
has 4 different rounds favoring a 4-round unrolled round logic but requires additional
multiplexers in single-round and 2-round unrolled round logic.

Table 5 reveals that the single-round Subterranean duplex has area very close to
the smallest scheme, Ketje Jr, but has more than twice its throughput. Therefore
Subterranean is a very good option for environments that require lightweight crypto in
hardware with high throughput requirements.

Table 4: Characteristics of some duplex-based AE schemes. Cost for message and session
denote the fixed cost per message and session respectively, assuming 128-bit tags.

b block computational cost in # rounds
Scheme (bits) (bits) per block message session
Subterranean-SAE 257 32 1 12 17
Gimli AEAD 384 128 24 24 n.a.
Ketje Jr 200 16 1 12 13
Ketje Sr 400 32 1 12 9

Table 5: Synthesis results for STMicroelectronics 40 nm for frequency 100 MHz
Implementation Area Power (µW) Energy (picoJoule), per

(GE) Average Peak cycle bit message session
Subterranean–1 4165.5 432.4 777 4.324 0.135 51.89 73.51
Subterranean–2 6680.6 503.1 1074 5.031 0.079 30.18 45.28
Subterranean–4 12163.1 654.1 1998 6.541 0.051 19.62 32.70
Gimli–1 5242.6 720.0 874 7.200 1.350 172.80 n.a.
Gimli–2 6949.8 813.9 1078 8.139 0.760 97.67 n.a.
Gimli–4 10209.3 935.1 1468 9.351 0.438 56.10 n.a.
Ketje Jr 3186.5 362.5 521 3.625 0.226 43.50 47.13
Ketje Sr 6278.1 721.1 1068 7.211 0.225 86.53 64.90

4.3 On the low energy aspect of Subterranean
As can be seen in Table 5, the energy consumption per bit (of plaintext, ciphertext, AD, key
or nonce) of the Subterranean implementations is quite competitive. This is even the case
when compared to the Ketje schemes that were specifically designed for the same purpose:
Subterranean–2 is about 3 times as energy-efficient than Ketje Sr while they both are
designed or 128-bit security strength and consume similar area. Moreover, Subterranean–2
requires less energy for setting up a session and has less fixed overhead per message. One
can get insight in the energy consumption numbers of Table 5 by associating with an
architecture a 2-dimensional metric we introduce here: the bit switch cost. The processing
of an input block takes a number of cycles and we expect the energy consumption of a
cycle to be dominated by the update of the state register and the consumption of the
combinatorial round logic. The bit switch cost has two components:

• The number of state register flip-flop updates per data block, divided by the size of
the data block. This is expressed in flip-flop updates (FF).

• The number of round function executions per data block, divided by the size of the
data block. This is expressed in so-called round slices (RS).
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The energy consumption per FF depends on the technology but is independent of the
cryptographic function and architecture. The energy consumption per RS depends on the
technology, the details of the round function such as the amount of gates and the circuit
depth and the hardware architecture: amount of unrolling, the presence of multiplexers or
the possible application of pipelining.

The bit switch cost is useful for comparing different architectures of the same crypto-
graphic function, but also allows comparing those of different cryptographic functions, at
least if they have comparable round functions.

Subterranean–1, with its 257-bit state and round and 32-bit data input/output per
round has 257/32 ≈ 8 FF and similarly 8 RS. Unrolling does not impact the RS score
but does divide the RS by the number of unrolled rounds, so Subterranean–2 has 4 FF
and 8 RS and Subterranean–4 has 2 FF and 8 RS. A naive interpretation of the energy
numbers of Table 5 would be that an FF consumes about 0.014 pJ and an RS 0.003 pJ.
For Ketje, with its 200/400-bit state and round and 16/32-bit data per round the score
has 200/16 ≈ 12.5 FF and similarly 12.5 RS. Filling in the energy consumption numbers
for FF and RS obtained from Subterranean would give an energy consumption per bit
of 12.5 × (0.014 + 0, 003) = 0.2125. This is very close to the value of the simulation in
Table 5. That makes sense because the round functions of Ketje and Subterranean are
very similar.

For Gimli–1, with its 384-bit state and round and 128-bit data per 24 rounds the bit
switch cost gives 384/128× 24 = 72 FF and similarly 72 RS. In the unrolled version this is
reduced to 36 FF and 72 RS for Gimli–2 and 18 FF and 72 RS for Gimli. Taking the FF
energy consumption interpolated from Subterranean, an RS would cost 0.0047 in Gimli–1,
0.0036 in Gimli–2 and 0.0026 in Gimli–4. That makes sense because Gimli has different
round functions for different round indices necessitating the insertion of multiplexers in
Gimli–1 and somewhat less in Gimli–2. We do not have hardware numbers of two other
very similar schemes in the NIST lightweight competition Xoodyak, Ascon, but their
bit switch cost gives an idea of what to expect. In single-round architectures, Xoodyak
has 384/192× 12 ≈ 24 FF and 24 RS, Ascon has 320/64× 6 = 30 FF and 30 RS. The FF
component can be reduced by round unrolling. A RS in Xoodyak has the same number
of gates as Subterranean but a slightly higher complexity and an RS of Ascon has slightly
more gates, so we expect their energy consumption per bit to be considerably higher than
Subterranean, for same number of unrolled rounds.

Single-round architectures of block cipher based schemes tend to have much higher bit
switch cost than Subterranean. A mode that can process 1 n-bit block per block cipher
call with n the block cipher block length has bit switch cost r FF and r RS. Most modes
require 2 block cipher calls per n-bit block and there the bit switch cost increases to 2r FF
and 2r RS. Lightweight block ciphers tend to have light rounds and so an RS contributes
less, but have very many rounds. Round unrolling can reduce the number of FFs but will
not decrease the number of RS and will typically even increase its energy consumption
from some point on due to larger circuit depth.

4.4 Speeding up software by procrastination of π

The techniques in this section were explored and refined by Thomas van der Burgt in his
bachelor thesis at the Radboud University [vdB19].

Steps χ, θ and ι lend themselves well for software implementations. The bit permutation
π on the other hand requires the manipulation of individual bits and is costly on all CPUs.

Using the translation-invariance properties discussed in Section 3.2.1, we provide an
alternative description where variants of χ and θ operate on a dynamically changing state
and without π. Basically, we push π in front of us, hence the name π procrastination.

Let γ be shortcut notation for θ ◦ ι ◦χ and γ(t) for π−t ◦ γ ◦πt, then applying Lemma 7



Joan Daemen, Pedro Maat Costa Massolino, Alireza Mehrdad and Yann Rotella 283

we have for all n ∈ N,

Rn = πn ◦ γ(n−1) ◦ γ(n−2) ◦ . . . γ(1) ◦ γ(0) . (6)

Programming γ(t) instead of the round function allows procrastinating π eternally. We
can again split up γ(t) in its components:

γ(t) = π−t ◦ θ ◦ πt ◦ π−t ◦ ι ◦ πt ◦ π−t ◦ χ ◦ πt = θ(t) ◦ ι(t) ◦ χ(t) ,

with θ(t) and χ(t) defined as in Lemma 5:

si ← si + (si+12t + 1)si+2×12t and si ← si + si+3×12t + si+8×12t8 .

Both χ(t) and θ(t) can be coded efficiently with bitwise Boolean and shift instructions. ι(t)
is the same as ι as π does not move bit 0 and requires a single bitwise XOR instruction.

For input injection and output extraction, we need to locate the corresponding bit
positions in a register R containing the evolving state st. The choice of 〈124〉 for these
positions allows doing this reasonably efficiently.

Using Equation (6), we have that for all 0 ≤ i ≤ 256 and any t ∈ N,

sti = R[12ti] .

Bit positions in the register evolve by the multiplication by 12, that generates (Z/257Z)∗.
At round 0, the indices are 〈124〉 = [1, 176, 136, . . . , 92]. At round 1, they are the coset

of 〈124〉 multiplied by 12: [12, 56, 90, . . . , 76]. In general, at round t, they are the coset of
〈124〉 multiplied by 12t. Clearly 124〈124〉 = 〈124〉 and hence the set of indices cycles every
4 rounds.

In software we can hardcode them as four 64-byte arrays and take care of the initial
offset by a pointer to the first position that increments by one position each 4 rounds.

5 Conclusions
Subterranean is a cryptographic primitive that can be used for all symmetric cryptographic
operations including stream encryption, MAC computation, key derivation, hashing and
duplex-based authenticated encryption.

Subterranean has a modular design with at its core is a duplex object with a relatively
small state and a round function with a very simple description optimized for dedicated
hardware. The round function has some nice features such as a dense inverse and algebraic
degree 2.

Duplex has the advantage that it requires no fixed key as block ciphers do and
hence offers better leakage resilience features. The SAE mode supports session-based
authenticated encryption, or seen from a different perspective, supports intermediate tags,
to limit the amount of buffering needed at unwrapping end required when not releasing
unverified deciphered ciphertext.
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A Details of dedicated inner collision cryptanalysis
In this appendix, we provide necessary material to verify the attack depicted in Section 3.4.2

A.1 System of equations
Here we give equations where bits b2, b′2, b5 and b′5 intervene. Those bits are respectively
injected at position 136 and 134. This yields equations of the form:

q124(s) + q124(s′) = b5s133 + b′5s
′
133

q125(s) + q125(s′) = b5s135 + b′5s
′
135

q126(s) + q126(s′) = b5 + b′5 + b2s135 + b′2s
′
135

q127(s) + q127(s′) = b2s137 + b′2s
′
137

q128(s) + q128(s′) = b2 + b′2
q129(s) + q129(s′) = b5s133 + b′5s

′
133

q130(s) + q130(s′) = b5s135 + b′5s
′
135

q131(s) + q131(s′) = b5 + b′5 + b2s135 + b′2s
′
135

q132(s) + q132(s′) = b5s133 + b′5s
′
133 + b2s137 + b′2s

′
137

q133(s) + q133(s′) = b5s135 + b′5s
′
135 + b2 + b′2

q134(s) + q134(s′) = b5 + b′5 + b2s135 + b′2s
′
135

q135(s) + q135(s′) = b2s137 + b′2s
′
137

q136(s) + q136(s′) = b2 + b′2

By doing a Gaussian elimination, we can say that this system of equations is equivalent to

q′124(s) + q′124(s′) = 0
q′125(s) + q′125(s′) = 0
q′126(s) + q′126(s′) = 0
q′127(s) + q′127(s′) = 0
q′128(s) + q′128(s′) = 0
q′129(s) + q′129(s′) = 0
q′130(s) + q′130(s′) = 0
q′131(s) + q′131(s′) = 0
q′132(s) + q′132(s′) = b5s133 + b′5s

′
133

q′133(s) + q′133(s′) = b5s135 + b′5s
′
135

q134(s) + q134(s′) = b5 + b′5 + b2s135 + b′2s
′
135

q135(s) + q135(s′) = b2s137 + b′2s
′
137

q136(s) + q136(s′) = b2 + b′2

where q′133 = q133 + q136, q′132 = q135, q′131 = q131 + q134, q′130 = q130 + q′133, q′129 =
q129 + q′132, q′128 = q128 + q136, q′127 = q127 + q135, q′126 = q126 + q134, q′125 = q125 + q′133 and
q′124 = q124 + q′132.

Except for this specific behaviour of bits b2 and b5 that are injected at positions 136
and 134, the injected bits yield a system of 3× 7 equations, concatenated with equations

http://www.clifford.at/yosys/
http://www.clifford.at/yosys/
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exclusively in bits of s and s′. The system of equations we obtain (after applying the
Gaussian elimination and reordering the equations) has the following form

q′1(s) + q′1(s′) = b0 + b′0
q′2(s) + q′2(s′) = b0s0 + b′0s

′
0

q′3(s) + q′3(s′) = b0s2 + b′0s
′
2

q′4(s) + q′4(s′) = b1 + b′1
q′5(s) + q′5(s′) = b1s175 + b′1s

′
175

q′6(s) + q′6(s′) = b1s177 + b′1s
′
177

· · ·
q′19(s) + q′19(s′) = b7 + b′7
q′20(s) + q′20(s′) = b7s63 + b′7s

′
63

q′21(s) + q′21(s′) = b7s65 + b′7s
′
65

q′22(s) + q′22(s′) = b5s133 + b′5s
′
133

q′23(s) + q′23(s′) = b5s135 + b′5s
′
135

q24(s) + q24(s′) = b5 + b′5 + b2s135 + b′2s
′
135

q25(s) + q25(s′) = b2s137 + b′2s
′
137

q26(s) + q26(s′) = b2 + b′2
q′27(s) = q′27(s′)
q′28(s) = q′28(s′)

· · ·
q′248(s) = q′248(s′)

where q′j , for all 0 ≤ j ≤ 27, are quadratic functions exclusively in bits of s and s′. The q′j
functions differs from qj functions as we did a Gaussian elimination.

A.2 Probability of satisfying remaining equations
For any i with i different from 2 and 5, bits bi and b′i for different i occur in non-overlapping
equations and there are 3 equations per couple (bi, b′i). An exception to this are equations
in bits b2, b

′
2, b5 and b′5 that we will address afterwards. We will now work out the case for

b0 and b′0 that corresponds to the first 3 equations.

• If s0 = s′0 and s2 = s′2, then only the difference b0 + b′0 matters. This difference
is uniquely determined by the first equation and this equation can be satisfied by
choosing b0 + b′0. The next two equations are then both satisfied with probability
2−2.

• If s0 = s′0 + 1 or s2 = s′2 + 1, then the difference b0 + b′0 matters for the first equation,
but the absolute value also matters. This uniquely determines the value of b0 and b′0
by using only 2 equations. The last equation is then satisfied with probability 2−1.

Hence, the first three equations can be satisfied with probability

1
4 ×

1
4 + 3

4 ×
1
2 = 7

16 .

This probability is the same for equations where b1, b3, b4, b6, b7 and b8 intervene.
For the five equations where b2, b′2, b5 and b′5 intervene, the previous analysis does not

hold. To obtain the probability that these equations can be satisfied, we can look into the
following 8 different events:

• s137 = s′137, s135 = s′135, s133 = s′133;

• s137 6= s′137, s135 = s′135, s133 = s′133;

• s137 = s′137, s135 6= s′135, s133 = s′133;
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• s137 = s′137, s135 = s′135, s133 6= s′133;

• s137 6= s′137, s135 6= s′135, s133 = s′133;

• s137 6= s′137, s135 = s′135, s133 6= s′133;

• s137 = s′137, s135 6= s′135, s133 6= s′133;

• s137 6= s′137, s135 6= s′135, s133 6= s′133.

By using the same arguments as before, the probability of satisfying the five equations can
be expressed as

1
8

(
1
8 + 1

4 + 3
8 + 1

4 + 1
2 + 1

2 + 3
8 + 1

2

)
= 23

64 .

Putting everything together, the probability of satisfying all remaining equations by
choosing freely bi and b′i for i from 0 to 8 is

p′ =
(

7
16

)7(23
64

)
≈ 2−10 .

B Differential trail core examples
In this appendix we give an example of a differential trail core over 3 rounds and one over
4 rounds. The 3-round trail core is in Table 6 and it is the single one (modulo translation)
that has the lowest weight, namely 25. The 4-round trail core is in Table 7. It has weight
58 and it may be that there are 4-round trail cores with weight in the interval [49, 57],
since there is no 4-round trail with weight 48 or less.

In Table 6 and 7, we specify the trail cores with the intermediate difference bi before
χ by the positions of their active bits and we specify the weight of the corresponding
differentials over χ. This is possible because χ has algebraic degree 2 and the weight of a
differential over a quadratic mapping is fully determined by its input difference. For the
first round differential a trail core only specifies its output difference a1 and the weight
reported is the minimum weight over all possible differentials over χ of the form (b0, a1).

Table 6: 3-round differential trail core with lowest weight.
state weight active bit positions

a1 2 {0}
b1 6 {0, 64, 85}
b2 17 {0, 64, 85, 91, 155, 157, 176, 221, 242}

Table 7: 4-round differential trail with lowest weight we found.
state weight active bit positions

a1 12 {0, 5, 8, 10, 12, 15, 16, 18, 21}
b1 7 {65, 66, 85, 86, 87}
b2 11 {7, 28, 134, 198, 200, 219}
b3 28 {16, 18, 22, 39, 54, 86, 88, 107, 118, 139, 152, 173, 188, 211, 252}
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C Figures for Subterranean absorb, squeeze and blank

Figure 5: Subterranean absorb with operation unkeyed.

Figure 6: Subterranean absorb with operation keyed.

Figure 7: Subterranean absorb with operation encryption.

Figure 8: Subterranean absorb with operation decryption.

Figure 9: Subterranean squeeze.
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Figure 10: Subterranean blank.

D Figures for Subterranean XOF, deck and SAE

Figure 11: Subterranean XOF.
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Figure 12: Subterranean deck.
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Figure 13: Subterranean-SAE, only encryption is illustrated.



294 The Subterranean 2.0 Cipher Suite

E Hardware architecture with 4 rounds in one cycle

Figure 14: Subterranean 4-rounds duplex logic.
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