, Papers of particular interest, published within the period of review, have been highlighted as: of special interest of special interest

J. L. Dangl, D. M. Horvath, and B. J. Staskawicz, Pivoting the plant immune system from dissection to deployment, Science, vol.341, pp.746-751, 2013.

P. K. Anderson, A. A. Cunningham, N. G. Patel, F. J. Morales, P. R. Epstein et al., Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers, Trends Ecol Evol, vol.19, pp.535-544, 2004.

, Hull R: Plant Virology. edn 5, 2013.

J. P. Legg, B. Owor, P. Sseruwagi, and J. Ndunguru, Cassava mosaic virus disease in East and Central Africa: epidemiology and management of a regional pandemic, Adv Virus Res, vol.67, pp.355-418, 2006.

S. A. Hogenhout, D. Ammar-el, A. E. Whitfield, and M. G. Redinbaugh, Insect vector interactions with persistently transmitted viruses, Annu Rev Phytopathol, vol.46, pp.327-359, 2008.

S. W. Ding and O. Voinnet, Antiviral immunity directed by small RNAs, Cell, vol.130, pp.413-426, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00176625

, Voinnet O: Origin, biogenesis, and activity of plant microRNAs, Cell, vol.136, pp.669-687, 2009.

N. Sharma, P. P. Sahu, S. Puranik, and M. Prasad, Recent advances in plant-virus interaction with emphasis on small interfering RNAs (siRNAs), Mol Biotechnol, vol.55, pp.63-77, 2013.

X. B. Wang, J. Jovel, P. Udomporn, Y. Wang, Q. Wu et al., The 21-nucleotide, but not 22-nucleotide, viral secondary small interfering RNAs direct potent antiviral defense by two cooperative argonautes in Arabidopsis thaliana, Plant Cell, vol.23, pp.1625-1638, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01000508

N. Pumplin and O. Voinnet, RNA silencing suppression by plant pathogens: defence, counter-defence and counter-counter-defence, Nat Rev Microbiol, vol.11, pp.745-760, 2013.

M. Aregger, B. K. Borah, J. Seguin, R. Rajeswaran, E. G. Gubaeva et al., Primary and secondary siRNAs in geminivirus-induced gene silencing, PLoS Pathog, vol.8, p.1002941, 2012.

T. Blevins, R. Rajeswaran, P. V. Shivaprasad, D. Beknazariants, A. Si-ammour et al., Four plant Dicers mediate viral small RNA biogenesis and DNA virus induced silencing, Nucleic Acids Res, vol.34, pp.6233-6246, 2006.

X. B. Wang, Q. Wu, T. Ito, F. Cillo, W. X. Li et al., RNAi-mediated viral immunity requires amplification of virus-derived siRNAs in Arabidopsis thaliana, Proc Natl Acad Sci U S A, vol.107, pp.484-489, 2010.

A. Molnar, C. W. Melnyk, A. Bassett, T. J. Hardcastle, R. Dunn et al., Small silencing RNAs in plants are mobile and direct epigenetic modification in recipient cells, Science, vol.328, pp.872-875, 2010.

J. Burgyan and Z. Havelda, Excellent review describing how viruses use repressors of gene silencing to fight against antiviral RNA silencing mechanisms, Trends Plant Sci, vol.16, pp.265-272, 2011.

M. H. Chiu, I. H. Chen, D. C. Baulcombe, and C. H. Tsai, The silencing suppressor P25 of Potato virus X interacts with Argonaute1 and mediates its degradation through the proteasome pathway, Mol Plant Pathol, vol.11, pp.641-649, 2010.

E. Lukasik and F. L. Takken, STANDing strong, resistance proteins instigators of plant defence, Curr Opin Plant Biol, vol.12, pp.427-436, 2009.

E. J. Slootweg, L. N. Spiridon, J. Roosien, P. Butterbach, R. Pomp et al., Structural determinants at the interface of the ARC2 and leucine-rich repeat domains control the activation of the plant immune receptors Rx1 and Gpa2, Plant Physiol, vol.162, pp.1510-1528, 2013.

T. K. Eitas and J. L. Dangl, NB-LRR proteins: pairs, pieces, perception, partners, and pathways, Curr Opin Plant Biol, vol.13, pp.472-477, 2010.

D. Stirnweis, S. D. Milani, T. Jordan, B. Keller, and S. Brunner, Substitutions of two amino acids in the nucleotide-binding site domain of a resistance protein enhance the hypersensitive response and enlarge the PM3 F resistance spectrum in wheat, Mol Plant Microbe Interact, vol.27, pp.265-276, 2014.

J. C. Ng and K. L. Perry, Transmission of plant viruses by aphid vectors, Mol Plant Pathol, vol.5, pp.505-511, 2004.

H. Lecoq and C. Desbiez, Viruses of cucurbit crops in the Mediterranean region: an ever-changing picture, Adv Virus Res, vol.84, pp.67-126, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02810422

G. Farnham and D. C. Baulcombe, Artificial evolution extends the spectrum of viruses that are targeted by a disease-resistance gene from potato, Proc Natl Acad Sci, vol.103, pp.18828-18833, 2006.

, One of the first examples of engineering of broader spectrum of diseaseresistance specificity by mutagenesis

C. J. Harris, E. J. Slootweg, A. Goverse, and D. C. Baulcombe, Stepwise artificial evolution of a plant disease resistance gene, Proc Natl Acad Sci U S A, vol.110, pp.21189-21194, 2013.

, The work describes artificial evolution of NB-LRR disease resistance genes. The engineered alleles enhanced the activation sensitivity rather than the recognition phase of a NB-LRR, Rx, which led to broad-spectrum resistance against PVX strains and PopMV

F. Piron, M. Nicolai, S. Minoia, E. Piednoir, A. Moretti et al., An induced mutation in tomato eIF4 E leads to immunity to two potyviruses, PLoS ONE, vol.5, p.11313, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02658059

, A good example of engineered resistant plant by knocking a host factor, in this case required for translation of viral RNA

S. Whitham, S. P. Dinesh-kumar, D. Choi, R. Hehl, C. Corr et al., The product of the tobacco mosaic virus resistance gene N: similarity to toll and the interleukin-1 receptor, Cell, vol.78, pp.1101-1115, 1994.

A. Bendahmane, M. Querci, K. Kanyuka, and D. C. Baulcombe, Agrobacterium transient expression system as a tool for the isolation of disease resistance genes: application to the Rx2 locus in potato, Plant J, vol.21, pp.73-81, 2000.
URL : https://hal.archives-ouvertes.fr/hal-02693438

S. Vidal, H. Cabrera, R. A. Andersson, A. Fredriksson, and J. P. Valkonen, Potato gene Y-1 is an N gene homolog that confers cell death upon infection with potato virus Y, Mol Plant Microbe Interact, vol.15, pp.717-727, 2002.

M. B. Cooley, S. Pathirana, H. J. Wu, P. Kachroo, and D. F. Klessig, Members of the Arabidopsis HRT/RPP8 family of resistance genes confer resistance to both viral and oomycete pathogens, Plant Cell, vol.12, pp.663-676, 2000.

H. Takahashi, J. Miller, Y. Nozaki, M. Takeda, J. Shah et al., RCY1: an Arabidopsis thaliana RPP8/HRT family resistance gene, conferring resistance to cucumber mosaic virus requires salicylic acid, ethylene and a novel signal transduction mechanism, Plant J, vol.32, pp.655-667, 2002.

S. H. Brommonschenkel, A. Frary, A. Frary, and S. D. Tanksley, The broadspectrum tospovirus resistance gene Sw-5 of tomato is a homolog of the root-knot nematode resistance gene Mi, Mol Plant Microbe Interact, vol.13, pp.1130-1138, 2000.

F. C. Lanfermeijer, J. Dijkhuis, M. J. Sturre, P. De-haan, and J. Hille, Cloning and characterization of the durable tomato mosaic virus resistance gene Tm-2(2) from Lycopersicon esculentum, Plant Mol Biol, vol.52, pp.1037-1049, 2003.

F. C. Lanfermeijer, J. Warmink, and J. Hille, The products of the broken Tm-2 and the durable Tm-2(2) resistance genes from tomato differ in four amino acids, J Exp Bot, vol.56, pp.2925-2933, 2005.

A. J. Hayes, S. C. Jeong, M. A. Gore, Y. G. Yu, G. R. Buss et al., Recombination within a nucleotide-binding-site/ leucine-rich-repeat gene cluster produces new variants conditioning resistance to soybean mosaic virus in soybeans, Genetics, vol.166, pp.493-503, 2004.

C. E. Vallejos, G. Astua-monge, V. Jones, T. R. Plyler, N. S. Sakiyama et al., Genetic and molecular characterization of the I locus of Phaseolus vulgaris, Genetics, vol.172, pp.1229-1242, 2006.

Y. S. Seo, J. S. Jeon, M. R. Rojas, and R. L. Gilbertson, Characterization of a novel Toll/interleukin-1 receptor (TIR)-TIR gene differentially expressed in common bean (Phaseolus vulgaris cv. Othello) undergoing a defence response to the geminivirus Bean dwarf mosaic virus, Mol Plant Pathol, vol.8, pp.151-162, 2007.

Y. S. Seo, M. R. Rojas, J. Y. Lee, S. W. Lee, J. S. Jeon et al., A viral resistance gene from common bean functions across plant families and is up-regulated in a nonvirus-specific manner, Proc Natl Acad Sci, vol.103, pp.11856-11861, 2006.

Z. N. Yang, X. R. Ye, J. Molina, M. L. Roose, and T. E. Mirkov, Sequence analysis of a 282-kilobase region surrounding the citrus Tristeza virus resistance gene (Ctv) locus in Poncirus trifoliata L. Raf, Plant Physiol, vol.131, pp.482-492, 2003.

M. Rai, Refinement of the Citrus tristeza virus resistance gene (Ctv) positional map in Poncirus trifoliata and generation of transgenic grapefruit (Citrus paradisi) plant lines with candidate resistance genes in this region, Plant Mol Biol, vol.61, pp.399-414, 2006.

R. Tomita, K. T. Sekine, H. Mizumoto, M. Sakamoto, J. Murai et al., Genetic basis for the hierarchical interaction between Tobamovirus spp. and L resistance gene alleles from different pepper species, Mol Plant Microbe Interact, vol.24, pp.108-117, 2011.

J. Ma, X. Hou, D. Xiao, L. Qi, F. Wang et al., Cloning and characterization of the BcTuR3 gene related to resistance to Turnip mosaic virus (TuMV) from non-heading Chinese cabbage, Plant Mol Biol Rep, vol.28, pp.588-596, 2010.

M. Jin, S. S. Lee, L. Ke, J. S. Kim, M. S. Seo et al., Identification and mapping of a novel dominant resistance gene, TuRB07 to Turnip mosaic virus in Brassica rapa, Theor Appl Genet, vol.127, pp.509-519, 2014.

S. Maiti, S. Paul, and A. Pal, Isolation, characterization, and structure analysis of a non-TIR-NBS-LRR encoding candidate gene from MYMIV-resistant Vigna mungo, Mol Biotechnol, vol.52, pp.217-233, 2012.