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Abstract

We give, for a complex algebraic variety S, a Hodge realization functor .7-'? % from the (un-
bounded) derived category of constructible motives DA(S) over S to the (undounded) derived cate-
gory D(MHM(S)) of algebraic mixed Hodge modules over S. Moreover, for f: T — S a morphism
of complex quasi-projective algebraic varieties, FH49 commutes with the four operations f*, fu, fi, f*
on DA.(—) and D(MHM/(-)), making in particular the Hodge realization functor a morphism of
2-functor on the category of complex quasi-projective algebraic varieties which for a given S sends
DA.(S) to D(MHM(S)), moreover F&% commutes with tensor product. We also give an algebraic
and analytic Gauss-Manin realization functor from which we obtain a base change theorem for al-
gebraic De Rham cohomology and for all smooth morphisms a relative version of the comparaison
theorem of Grothendieck between the algebraic De Rahm cohomology and the analytic De Rahm

cohomology.
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1 Introduction

Saito’s theory of mixed Hodge modules associate to each complex algebraic variety S a category M HM(.S)
which is a full subcategory of PShD(LO)ﬁMh(S/(S’I)) x 1 Cri(S) which extend variations of mixed Hodge
structure and admits a canonical monoidal structure given by tensor product, and associate to each
morphism of complex algebraic varieties f : X — S, four functor Rfrag, Rfrdg«, fHHdg f=Hdg Ty the
case of a smooth proper morphism f : X — S with § and X smooth, H”RfHdg*ngg is the variation of
Hodge structure given by the Gauss-Manin connexion and the local system H"Rf.Zx. Moreover, these
functors induce the six functor formalism of Grothendieck. We thus have, for a complex algebraic variety
S a canonical functor

MH(/S) : Var(C)/S — D(MHM(S)), (f : X = S) — Rfia, 258"

and

MH(/-): Var(C) — TriCat, S+ (MH(S): Var(C)/S - D(MHM(S))),
is a morphism of 2-functor. In this work, we extend MH(/—) to motives by constructing, for each
complex algebraic variety S, a canonical functor ]-'5 9 . DA(S) — D(MHM(S)) which is monoidal,

that is commutes with tensor product, together with, for each morphism of complex algebraic varieties
g:T — S a canonical transformation map 7'(g, F799), which make

FH49 . Var(C) — TriCat, S+ (F§" : DA(S) — D(MHM(S))),

is a morphism of 2-functor : this is the contain of theorem 45. A partial result in this direction has been
obtained by Ivorra in [17] using a different approach. We already have a Betti realization functor

Bti_ : Var(C) — TriCat, S — (Btig : DA(S) — D(S)),

which extend the Betti realization. The functor F¥% .= (FFPR Bti_) is obtained by constructing the
De Rham part

FEPE : Var(C) — TriCat, S — (F&PH : DA(S) = Dp1,0)it,00(5)),

which takes values in the derived category of filtered algebraic D-modules obtained by inverting oo-filtered
Zariski local equivalence. This method can be seen as a relative version of the construction of F.Lecompte
and N.Wach in [20].

In section 6.1.1 and 6.2.1, we construct an algebraic and analytic Gauss-Manin realization functor,
but this functor does NOT give a complex of filtered D-module, BUT a complex of filtered O-modules
whose cohomology sheaves have a structure of filtered Dg modules. Hence, it does NOT get to the



desired category. However this functor gives some interesting results. Let S € Var(C) and S = ut_,S;
an open cover such that there exist closed embeddings i; : S; < S; with S; € SmVar(C) smooth. For
I C [1,---1], denote by S; = NierS; and jr : St = S the open embedding. We then have closed

embeddings iy : S; < Sy := Il;;.5;. We define the filtered algebraic Gauss-Manin realization functor
defined as

FSM i DAL(S)P = Dofip.o(S/(S1))", M
FEM (M) = ((e(S1)sHom® (L(irji F), Eet(¥g), Fy))[~dg, ], uf ;(F))
where F' € C(Var(C)*™/S) is such that M = D(A! et)(F), see definition 104 and corollary 4. We then
prove (theorem 30):

Theorem 1. (i) Let g: T — S is a morphism with T, S € Var(C). Assume there exist a factorization

g:T Ly xS 25 withy € SmVar(C), I a closed embedding and pg the projection. Let S = ut_, S;
be an open cover such that there exists closed embeddings i; : S; < S; with S; € SmVar(C). Then,
for M € DA.(S)

T(g, FM)(M) : Rg™!ITFGM (M) — FEM (9" M)
is an isomorphism in Doy i1 p.oo(T/(Y x Sp)).
(i) Let g : T — S is a morphism with T, S € SmVar(C). Then, for M € DA.(S)
TO(g, FEM)(M) : Lg™ " FGM (M) — F§ (g M)
is an isomorphism in Do, (T).

(iii) A base change theorem for algebraic De Rham cohomology : Let g : T — S is a morphism with
T,S € SmVar(C). Let h : U — S a smooth morphism with U € Var(C). Then the map (see
definition 1)

T (g,h) - Lg"™ ' Rh(Qy 5, Fo) — RR(Q,. )7, Fb)

is an isomorphism in Do, (T).
Another consequence is the following (theorem 31):

Theorem 2. Let X € PSmVar(C) and D = UD; C X a normal crossing divisor. Consider the open
embedding j : U := X\D — X. Then, the inclusion

75 DX, Eear (% (log D), Fy)) = T(U, Ear (2, F))
is an oo-filtered quasi-isomorphism, that is
j*: FPH™(U,C) := FPH"T(X, E.q,(Q% (log D), F})) = FPH"T(U, E.q,(Qy, Fy)) =: FPH"(U, C)

is an isomorphism for alln,p € Z (note that it is obviously injective since j* : H"I'(X, E.ar(Q% (log D))) —
H'"INU, E,or(2))) is an isomorphism if we forgot filtrations). Note that however, it is NOT a filtered
quasi-isomorphism (for example if U is affine H1(U, Q) = 0 for ¢ > 0) that it is not an isomorphism
on the E1 terms of the spectral sequences in general.

Let S € Var(C) and S = Uézls’i an open cover such that there exist closed embeddings i; : S; < S;
with S; € SmVar(C). For I C [1,---1], denote by S; = M;ecrS; and j; : Sy < S the open embedding.
We then have closed embeddings i; : S; — Sr = I 1S;. We define the filtered analytic Gauss-Manin
realization functor defined as

FSM  DA(S)? = Dosip.oo(S/(S1)Y, M
FSM(M) = ((6(51)*H0m‘(An*g, L(iz*j}‘F),Eet(ﬂ;gl),Fb))[—dg,],U?J(F))

where F' € C(Var(C)*™/S) is such that M = D(A! et)(F), see definition 128 and corollary 7. We then
prove (theorem 35):



Theorem 3. (i) Let g : T — S is a morphism with T, S € Var(C). Assume there exist a factorization

g:T Ly xS 25 withy € SmVar(C), I a closed embedding and ps the projection. Let S = ut_, S;
be an open cover such that there exists closed embeddings i; : S; < S; with S; € SmVar(C). Then,
for M € DA.(S)

T(g, Fa')(M) : Rg™™ 1T FER (M) — Ffiar (9" M)
is an isomorphism in Doy i1 pe oo (T/(Y X St)).
(ii) Let g : T — S is a morphism with T, S € SmVar(C). Then, for M € DA.(S)
T(g, Fa' ) (M) = Lg* ™ F§ g (M) = Fii (9" M)
is an isomorphism in Do, (T).

A consequence of the construction of the transformation map between the algebraic and analytic
Gauss-Manin realization functor is the following (theorem 40)

Theorem 4. (i) Let S € Var(C). Then, for M € DA.(S)
Ts(=) o H"T(An, FGM) (M) = Js(H"(F§M(M))™") = H"F§ 35, (M)

is an isomorphism in PShp (5" /(S¢™)).

(ii) A relative version of Grothendieck GAGA theorem for De Rham cohomology Let h : U — S a
smooth morphism with S,U € SmVar(C). Then,

Ts(=) 0 JSTO an, h) s Js((R"1a086)™) =5 R 0o 50n
is an isomorphism in PShp(S™).

In section 6.1.2, using results of sections 2, 4 and 5, we construct the algebraic filtered De Rham
realization functor FXPE. Let S € Var(C) and S = U!_;S; an open cover such that there exist closed
embeddings i; : S; — S; with S; € SmVar(C). For I C [1,---1], denote by S; = N;erS; and j; : S; — S
the open embedding. We then have closed embeddings i; : S; — 5’1 = Hl-e[gl-. We define, by definition
116(ii) which use definition 112 and definition 36, proposition 105(ii) and corollary 5, the filtered algebraic
De Rahm realization functor defined as

FEPRDAL(S) = Dpfites(S/(S1)), M — FEPF(M) :=

(lim ¢'(S1)eHom® (pg,, G2 Ry poy 5, (0, Llinad ), Bl Q57" Fo))[=ds, ], (F)
r(5)

where F' € C(Var(C)*™/S) is such that M = D(A!,et)(F). By computing this functor an homological
motive, we get by proposition 107, for S € Var(C) and M € DA.(S), FLPE(M) € ng(D(MHM(S)),
and the following (theorem 32, theorem 33 and theorem 34):

Theorem 5. (i) Let g T — S a morphism, with S,T € Var(C). Assume we have a factorization

g: T Ly xS 2 S withY e SmVar(C), | a closed embedding and ps the projection. Let
M € DA.(S). Then map in mp(D(MHM(T)))

T(g, FFPR)(M) : gifset FEPR(M) = FEPR (g M)

gien in definition 121 is an isomorphism.



(i) Let f : X — S a morphism with X,S € Var(C). Assume there exist a factorization f : X Ly x

S 25 S with Y € SmVar(C), I a closed embedding and ps the projection. Then, for M € DA.(X),
the map given in definition 122

T(f, FIPR)(M) 2 RETOFORM) = FEPR(RAM)
is an isomorphism in wg(D(MHM(S)).

(ii) Let f: X — S a morphism with X,S € Var(C), S quasi-projective. Assume there exist a factor-

ization f: X Ly x8 25 S withy e SmVar(C), I a closed embedding and ps the projection. We
have, for M € DA (X), the map given in definition 122

T.(f, FFPR)(M) : FEPR(Rf.M) =5 RfH9 FEPR(0)
is an isomorphism in mg(D(MHM(S)).

(iv) Let f: X — S a morphism with X, S € Var(C), S quasi-projective. Assume there exist a factoriza-

tion f : X Ly xS2 S withy e SmVar(C), I a closed embedding and ps the projection. Then,
for M € DA.(S), the map given in definition 122

T, FIPR) (M) s FEPR(FM) S fifiet FEPR(OM)
is an isomorphism in wx (D(MHM (X)).

(v) Let S € Var(C) and S = Ul_,S; an open affine covering and denote, for I C [1,---1], St = Nic1S;
and j; : St — S the open embedding. Let i; : S; — S; closed embeddings, with S; € SmVar(C).
Then, for M, N € DA.(S), the map in ms(D(MHM(S)))

T(FEPR,@)(M. N) : FEPROM) @b, FEPR(N) = FEPR(M @ N)
given in definition 124 is an isomorphism.

Let S € Var(C). Let S = U;S; an open cover such that there exists closed embedding i; : S — S;
with S; € SmVar(C). We define the Hodge realization functor as

F&9 = (FEPR Btig) : DA(S) — Dpyinee(S/(S1)) x1 D(S™),
M = FJ9(M) = (FEPR(M), Btig M, o(M)),
where a(M) is given in definition 157. The main theorem of this article is the following (theorem 45):
Theorem 6. (i) For S € Var(C), we have fé{d‘q(DAc(S)) C D(MHM(S)).
(i) The Hodge realization functor FHdg define a morphism of 2-functor on Var(C)
FHI9 . \ar(C) — (DAL(—) — D(MHM(-)))
whose restriction to QPVar(C) is an homotopic 2-functor in sense of Ayoub. More precisely,

(i10) for g : T — S a morphism, with T,S € QPVar(C), and M € DA.(S), the the maps of
definition 121 and of definition 152 induce an isomorphism in D(MHM (T))
T(g, FH4)(M) := (T(g, F"PR)(M), T (g,bti)(M)) :
g TS (M) = (g FEP (M), 9" Btis (M), g" (a(M)))
= (FFPR (g7 M), Btin(g™M), alg™ M) =: F7 (g" M),



(ii1) for f: T — S a morphism, with T, S € QPVar(C), and M € DA.(T), the maps of definition
122 and of definition 153 induce an isomorphism in D(MHM/(S))
To(f, FH9) (M) = (T(f, FFPR) (M), T (£, bti) (M) -
Rfag Fp (M) = (REIOF{PR(M), R Btis (M), f.(a(M)))
= (FEPR(RFM), Btig(Rf. M), a(Rf.M)) =: FL(Rf,M),
(i2) for f: T — S a morphism, with T, S € QPVar(C), and M € DA.(T), the maps of definition
122 and of definition 153 induce an isomorphism in D(MHM/(S))
Ty(f, ) (M) = (T(f, FFPR)(M), Ti(f, bti) (M) -
RfipagFr ™ (M) = (R F PR (M), Rf Bt (M), fila(M)))
= (FEPR(RAM), BHig (RAM), a(iM)) =: F7™ (fiM),
(i3) for f: T — S a morphism, with T, S € QPVar(C), and M € DA.(S), the maps of definition
122 and of definition 153 induce an isomorphism in D(MHM(T))
TH(f, FH9) (M) = (T'(f, FFPR) (M), T' (£, bti) (M) -
[ FSY (M) = (fFifag  FSPR (M), f Btis (M), f(a(M)))
= (FEPR( M), Bti (M), o' M) = Fr ™ (f'M),
(ii4) for S € Var(C), and M, N € DA.(S), the maps of definition 124 and of definition 154 induce
an isomorphism in D(M HM(S))
T(@, F1)(M,N) := (T(2, F§ ") (M, N), T(®, bti)(M, N)) :
(FEPR(M) @b, FEPE(N), Btis(M) ® Btig(N), a(M) ® a(N))
= FHY(M @ N) = (FEPE(M @ N),Btis(M @ N),a(M @ N)).

(i1i) For S € Var(C), the following diagram commutes :

MH(/S)

Var(C)/S D(MHM(S))
M(/s>l lbs
DA(S) 7 Dopyit,ee(S/(S1)) X1 Dgi(S°™)

We obtain theorem 6 from theorem 5 and from the result on the Betti factor after checking the
compatibility of these transformation maps with the isomorphisms a(M).

I thank F.Mokrane for his help and support during his work as well as J.Wildeshaus for the interest
and remarks that he made on a first version of this text.

2 Generalities and Notations

2.1 Notations

e After fixing a universe, we denote by

— Set the category of sets,
— Top the category of topological spaces,

— Ring the category of rings and cRing C Ring the full subscategory of commutative rings,



— RTop the category of ringed spaces,
« whose set of objects is RTop := {(X,0x), X € Top, Ox € PSh(X,Ring)}
* whose set of morphism is Hom((T, Or), (S,0s)) :={((f : T — S),(ay : f*Os — Or))}
and by ts : RTop — Top the forgetfull functor.

— Cat the category of small categories which comes with the forgetful functor o : Cat —
Fun(A!, Set), where Fun(A!, Set) is the category of simplicial sets,

— RCat the category of ringed topos
« whose set of objects is RTop := {(X,0x), X € Cat, Ox € PSh(X,Ring)},
« whose set of morphism is Hom((7", Or), (S,0s)) :={((f : T — S), (ay : f*Os — Or)), }
and by tc : RCat — Cat the forgetfull functor.

e Let F: C — (' be a functor with C,C’ € Cat. For X € C, we denote by F(X) € C’ the image of X,
and for X, Y € C, we denote by F*Y : Hom(X,Y) — Hom(F(X), F(Y)) the corresponding map.

e Let C € Cat. For S € C, we denote by C/S the category

— whose set of objects (C/S)? = {X/S = (X,h)} consist of the morphisms h : X — S with
X e,

— whose set of morphism Hom(X’/S, X/S) between X'/S = (X',W),X/S = (X,h) € C/S
consits of the morphisms (g : X’ — X) € Hom(X’, X) such that ho g =h'.

We have then, for S € C, the canonical forgetful functor
r(S):C/S—=C, X/S—r(S)X/S)=X, (g:X'/S—X/S)—~7r(S)(g)=g
and we denote again r(S) : C — C/S the corresponding morphism of (pre)sites.
— Let F': C — C’ be a functor with C,C’ € Cat. Then for S € C, we have the canonical functor

Fs:C/S — C'/F(S), X/S s F(X/S)=F(X)/F(S),
(9:X'/S = X/S) = (F(g) : F(X')/F(S) = F(X)/F(S))

— Let § € Cat. Then, for a morphism f : X’ — X with X, X’ € S we have the functor

C(f):8/X" = 8/X, Y/X'= (Y, f1) = C()HY/X) = (Y, fo f1) € §/X,
(9:Y1/X" = Y2/ X") = (C(f)(g) =g : V1/X = Y2/ X)

— Let S € Cat a category which admits fiber products. Then, for a morphism f : X’ — X with
X, X' € S, we have the pullback functor
P(f):8/X = 8/X", Y/ X—=P(/)Y/X) =Y xx X'/X' e S/ X',
(9:V1/X = Ya/X) = (P(f)(g) = (g x I) : V1 xx X' = Yo xx X)

which is right adjoint to C(f) : §/X’ — §/X, and we denote again P(f) : /X’ — S/X the
corresponding morphism of (pre)sites.

e Let C,7 € Cat. Assume that C admits fiber products. For (S,) € Fun(Z°P,C), we denote by
C/(Se) € Fun(Z, Cat) the diagram of category given by
—for I €Z,C/(S.)(I) :=C/Sy,

—forrry: I — J,C/(Se)(r1s) := P(rry):C/S; — C/S;, where we denoted again r7; : S; — Sy
the associated morphism in C.



e Let (F,G) : C = (' an adjonction between two categories.

— For X € C and Y € C’, we consider the adjonction isomorphisms
« [(F,G)(X,Y):Hom(F(X),Y) - Hom(X,G(Y)), (u: F(X)=Y)— (I(F,G)(X,Y)(u) :
X = G(Y))
x [(F,G)(X,Y): Hom(X,G(Y)) - Hom(F(X),Y), (v: X - GY)) — (I(F,G)(X,Y)(v) :
F(X)—->Y).
— For X € C, we denote by ad(F,G)(X) := I(F,G)(X, F(X))(Irx)) : X = Go F(X).
— For Y € C' we denote also by ad(F,G)(Y) :=I(F,G)(G(Y),Y)Uaw)) : FoG(Y) =Y.

Hence,

— for v : F(X) — Y a morphism with X € C and Y € C’, we have I(F,G)(X,Y)(u) =
G(u) o ad(F, G)(X),

—for v : X — G(Y) a morphism with X € C' and Y € C’, we have I(F,G)(X,Y)(v) =
ad(F,G)(Y) o F(v).

e Let C a category.

— We denote by (C, F') the category of filtered objects : (X, F) € (C, F) is a sequence (F*X)ecz
indexed by Z with value in C together with monomorphisms a, : FPX < FP71X — X,

— We denote by (C, F, W) the category of bifiltered objects : (X, F,W) € (C, F, W) is a sequence
(WF*X)es € Z? indexed by Z? with value in C together with monomorphisms WIFPX <
FP=1X WIFPX — WILFPX,

e For C a category and ¥ : C — C an endofunctor, we denote by (C,X) the corresponding category of
spectra, whose objects are sequence of objects of C (T;)iez € Fun(Z,C) together with morphisms
s; : T; = XT;41, and whose morphism from (T;) to (T}) are sequence of morphisms T; — T/ which
commutes with the s;.

e Let A an additive category.

— We denote by C(A) := Fun(Z,.A) the category of (unbounded) complexes with value in A,
where we have denoted Z the category whose set of objects is Z, and whose set of morphism
between m,n € Z consists of one element (identity) if n = m, of one elemement if n = m + 1
and is () in the other cases.

— We have the full subcategories C*(A), C~(A), C*(A) of C(A) consisting of bounded, resp.
bounded above, resp. bounded below complexes.

— We denote by K (A) := Ho(C(A)) the homotopy category of C(A) and by Ho : C(A) — K(A)
the full homotopy functor. The category K (.A) is in the standard way a triangulated category.

e Let A an additive category.

— We denote by Cyiyi(A) C (C(A), F) = C(A, F) the full additive subcategory of filtered com-
plexes of A such that the filtration is biregular : for (A®*, F') € (C(A), F), we say that F is
biregular if F'®* A" is finite for all r € Z.

— We denote by Cory(A) C (C(A),F,W) = C(A, F,W) the full subcategory of bifiltered com-
plexes of A such that the filtration is biregular.

— For A* € C(A), we denote by (A*,F,) € (C(A), F) the complex endowed with the trivial
filtration (filtration bete) : FPA" =0if p >n+ 1 and FPA™ = A" if p <n.



e Let A be an abelian category. Then the additive category (A, F) is an exact category which
admits kernel and cokernel (but is NOT an abelian category). A morphism ¢ : (M, F) — (N, F)
with (M,F) € (A, F) is strict if the inclusion ¢(F"M) C F"N NIm(¢) is an equality, i.e. if
G(F"M) = F"N NIm(e).

e Let A be an abelian category.

— For (A*,F) € C(A, F), considering a,, : FPA®* — A® the structural monomorphism of of the
filtration, we denote by, for n € N,

H"(A®,F) € (A, F), FPH"(A*, F) :=Im(H"(a,) : H"(FPA*) — H"(A®)) C H"(A®)

the filtration induced on the cohomology objects of the complex. In the case (A, F) € Cf;(A),
the spectral sequence EP-7(A®, F') associated to (A°®, F') converge to Grh. HPT9(A®, F), that is
for all p, ¢ € Z, there exist r, , € N, such that EP9(A*, F) = Grl, HPT1(A*, F) for all s < 7y, ,.

— Let r € N. A morphism m : (4°, F) — (B*, F) with (4°,F),(B*,F) € C(A, F) is said to be
an r-filtered quasi-isomorphism if for all p,q € Z,

EP9(m) : EP9(A®, F) & EPA(B*, F)
is an isomorphism in 4, note that by definition this r does NOT depend on p and ¢g. A filtered
quasi-isomorphism is by definition an 1-filtered quasi-isomorphism.
— A morphism m : (A*, F) — (B*, F) with (A°*, F'), (B®, F) € C(A, F) is said to be an oco-filtered
quasi-isomorphism if there exist r € N such that for all p,q € Z,

EP(m) : EP1(A®, F) = E(B®, F)

is an isomorphism in A, note that by definition this » does NOT depend on p and ¢. If a
morphism m : (A%, F) — (B*,F), with (A*,F),(B*,F) € Cfi(A) is an oo-filtered quasi-
isomorphism, then for all n € Z

H"(m) : HM(A*, F) = H"(B*,F)

is a filtered isomorphism, i.e. an isomorphism in (A, F'). Note that the converse is NOT
true since the integer rp, , € N such that EP9(A®, F) = Grl. HPT9(A®, F) and EP9(B*, F) =
Grl, HPT4(B*, F) for s < rp , depends on p and gq.

e Let A be an abelian category.

— We denote by D(A) the localization of K (A) with respect to the quasi-isomorphisms and by
D : K(A) — D(A) the localization functor. The category D(A) is a triangulated category in
the unique way such that D a triangulated functor.

— We denote by Dy ,(A) the localization of Ky;(A) with respect to the r-filtered quasi-
isomorphisms and by D : K, (A) — Dy r(A) the localization functor.

— We denote by Dy oo(A) the localization of K;(A) with respect to the oo-filtered quasi-
isomorphisms and by D : K7, (A) = Dyii00(A) the localization functor.

e Let A be an abelian category. We denote by Inj(A) C A the full subcategory of injective objects,
and by Proj(A4) C A the full subcategory of projective objects.

e For § € Cat a small category, we denote by

— PSh(S) := PSh(S, Ab) := Fun(S, Ab) the category of presheaves on S, i.e. the category of
presheaves of abelian groups on S,

10



— PSh(S,Ring) := Fun(S, Ring) the category of presheaves of ring on S, and PSh(S, cRing) C
PSh(S, Ring) the full subcategory of presheaves of commutative ring.

— for FF € PSh(S) and X € S, F(X) = I'(X, F) the sections on X and for h : X’ — X a
morphism with X, X’ € S, F(h) := FXY(h) : F(X) — F(X’) the morphism of abelian
groups,

— C(S) = PSh(S,C(Z)) = C(PSh(S)) = PSh(S x Z) the big abelian category of complexes of
presheaves on S with value in abelian groups,

— K(S) := K(PSh(S)) = Ho(C(S)) In particular, we have the full homotopy functor Ho :
c(8) = K(5),

= Ciay1it(S) := Ca) £ (PSh(S)) € C(PSh(S), F, W) the big abelian category of (bi)filtered com-
plexes of presheaves on § with value in abelian groups such that the filtration is biregular, and

— Kyu(8) := K(PShyu(S)) = Ho(Cru(S5))

For f: T — S a morphism a presite with 7,8 € Cat, given by the functor P(f):S — T, we will
consider the adjonctions given by the direct and inverse image functors :

— (f*, f) = (f 74 f«) : PSh(S) = PSh(T), which induces (f*, f.) : C(S) <= C(T), we denote,
for F € C(S) and G € C(T) by

ad(f*, f)(F) : F = [ f*F , ad(f", f)(G) : f .G = G
the adjonction maps,
— (fu, f1) : PSh(T) < PSh(S), which induces (f., f+) : C(T) = C(S), we denote for F' € C(S)
and G € C(T) by
ad(fe, fY)(F) : G = .G, ad(fu, f1)(G) : fuf 'F = F
the adjonction maps.

e For (S,05) € RCat a ringed topos, we denote by

— PShp,(S) the category of presheaves of Og modules on S, whose objects are PShp, (S)? :=
{(M,m), M € PSh(S),m : M @ Og — M}, together with the forgetful functor o : PSh(S) —
PSho, (S),

— Co4(S) = C(PShp,(S)) the big abelian category of complexes of presheaves of Og modules
on S,

— Koy (S) :== K(PSho4(S)) = Ho(Co,(S)), in particular, we have the full homotopy functor
Ho: Coy(S) = Kog(S),

= Cog2)fi(S) := C(2)7a(PShog(S)) C C(PShog(S), F, W), the big abelian category of (bi)filtered
complexes of presheaves of O modules on S such that the filtration is biregular and PSho (2) ri(S) =
(PShog(S), F,W),

= Kog2)5i(S) == K(PShog2)ru(S)) = Ho(Cog2)rir(S5))-
e For S, € Fun(Z, Cat) a diagram of (pre)sites, with Z € Cat a small category, we denote by

— PSh(S,) := PSh(S,, Ab) the category of presheaves on S,
* whose objects are PSh(S,)° := {(F7,ur;)1ez}, with F; € PSh(S;), and for vy : [ — J
with I,J € Z, ury : F; — r1j.F; are morphism in PSh(S;), noting again r;; : Sy — S
the associated morphism of presite,

* whose morphism are m = (my) : (Fr,ury) — (Gr,vyy) satisfying vy jomy; = rrjamyoury
in PSh(Sy),
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— PSh(S., Ring) the category of presheaves of ring on S, given in the same way, and PSh(S,, cRing) C
PSh(S,, Ring) the full subcategory of presheaves of commutative ring.

— C(S,) := C(PSh(S,)) the big abelian category of complexes of presheaves on S, with value in
abelian groups,

— K(S,) := K(PSh(S,)) = Ho(C(S,)), in particular, we have the full homotopy functor Ho :
C(Se) = K(S.),

= Cray1it(Se) 1= C(2)7a(PSh(S,)) C C(PSh(S,), F, W) the big abelian category of (bi)filtered
complexes of presheaves on S, with value in abelian groups such that the filtration is biregular,
and PShz)7(Ss) = (PSh(S,), F, W), by definition C()7;1(Se) is the category

* whose objects are C(g)fil(S.)O = {((Fr,F,W),urj)rez}, with (Fr, F,W) € C2)7a(Sr),
and for vy : I — J with I,J € Z, ury : (Fr, F,\W) — r15.(Fy, F,W) are morphism in
C(2)£i(S1), noting again rry : Sy — S the associated morphism of presite,

« whose morphism are m = (my) : ((Fr, F,W),ury) — (G, F,W),vr;) satisfying vy o
my = rryemyoury in Cio)ra(Sr),

— K (Ss) := K(PShyi(Ss)) = Ho(Cri(Ss))
Let Z,7' € Cat be small categories. Let (fo,s) : Te — Se a morphism a diagrams of (pre)site
with T € Fun(Z, Cat), Se € Fun(Z’, Cat), which is by definition given by a functor s : Z — I’ and
morphism of functor P(fe) : Ss(e) := Se 05 — T,. Here, we denote for short, Sye) 1= Se 05 €

Fun(Z, Cat). We have then, for r;; : I — J a morphism, with I, J € Z, a commutative diagram in
Cat

Dy = Sy5) —== Sy -

fJT fIT
Tt

T ——T

We will consider the the adjonction given by the direct and inverse image functors :

((for8)*s (for8)*) = ((for )1, (for 8)x) : PSh(Sy(e)) = PSh(TL),
F = (Fr,ury) = (fe,8)"F == (f{F1,T(Dys15)(Fy) o fiury),
G = (Gr,v15) = (fe, 9)«G == (f1+Gr, frevry).

It induces the adjonction ((fs,5)*, (fe,5)«) : C(Ss(e)) = C(7Ts). We denote, for (Fr,ury) € C(Ss())
and (G[,’U[J) S 0(7;) by

ad((fe,8)", (fe,8)«)((Fr,ury)) : (Fr,ury) = (fe,5)«(fe,8)" (F1,urs),
ad((f'vs)*7(f'vs)*)((G17U1J)) : (f'vs)*(fhs)*(Gla’UlJ) — (Gla'UIJ)

the adjonction maps.

Let Z € Cat a small category. For (S.,0Os,) € Fun(Z,RCat) a diagram of ringed topos, we denote
by

— PShog, (S.) the category of presheaves of modules on (S, Os, ),

* whose objects are PShog, (Se)? := {(Fr,urs)rez}, with Fr € PSho, (81), and for rry :
I — J with I,J € Z, ury : Fi — rr5F; are morphism in PShog, (Sr), noting again
rrj : 8y — Sy the associated morphism of presite,

* whose morphism are m = (my) : (Fr,ury) — (Gr,vyy) satisfying vyjomy = rrjamyoury
in PShog, (Sr),

— Cog, (Se) := C(PShog, (S.)),
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— Kos, (Se) := K(PShog, (S.)) = Ho(Cog, (S.)), in particular, we have the full homotopy
functor Ho : C(S,) — K(S,),

— Cos, 2)fit(Se) = Cog, 2)7i(PSh(Ss)) C C(PShog, (Se), F,W) the big abelian category of
(bi)filtered complexes of presheaves of modules on (S, Og, ) such that the filtration is biregular,
and PShog, (2)7i(Ss) = (PShog, (Se), F, W), by definition Cog (2)ri(Ss) is the category

* whose objects are OOS. (2).,«1-1(8.)0 = {((F], F, W), ’LL[J)IGI}, with (F], F, W) € OOSI (g)fil(S[),
and for ryy : I — J with I,J € Z, ury : (Fr, F,W) — r;5.(Fy, F,W) are morphism in
COSI(Q)M (81), noting again ryy : Sy — S the associated morphism of presite,

« whose morphism are m = (my) : ((Fr, F,W),ury) — (G, F,W),vr;) satisfying vy o
mp =rremgoury in Cog (2)i(S1),

— Koy, (2)1i1(Se) := K(PShog, (2)7i1(Se)) = Ho(Cog, (2) it (Se))-

e Let S € Cat. For ¥ : C(S) — C(S) an endofunctor, we denote by Cx(S) = (C(S),X) the
corresponding category of spectra.

e Denote by Sch C RTop the full subcategory of schemes. For a field k, we consider Sch /k :=
Sch / Spec k the category of schemes over Spec k. We then denote by

— Var(k) C Sch /k the full subcategory consisting of algebraic varieties over k, i.e. schemes of
finite type over k,

— PVar(k) c QPVar(k) C Var(k) the full subcategories consisting of quasi-projective varieties
and projective varieties respectively,

— PSmVar(k) C SmVar(k) C Var(k) the full subcategories consisting of smooth varieties and
smooth projective varieties respectively.

e Denote by Top? the category whose set of objects is
(Top?)? := {(X, Z), Z C X closed} C Top x Top
and whose set of morphism between (X1, Z1), (X2, Z2) € Top? is
Homrype (X1, Z1), (X2, Z2)) i= {(f : X1 = X3), s.t. Zy C f~(Z2)} C Homrop (X1, X2)
For S € Top, Top? /S := Top? /(S, S) is then by definition the category whose set of objects is
(Top? /S)° :={((X,Z),h),h: X = S, Z C X closed } C Top /S x Top

and whose set of morphisms between (X1,21)/S = (X1, Z1),h1), (X2, Z2)/S = (X2, Z2),ha) €
Top? /S is the subset

HOHlTop2 /S((Xla Zl)/S, (XQ,ZQ)/S) =
{(f: X1 — X2), st.hiof=hyand Z; C f~'(Z;)} C Homprop(X1, X2)

We denote by
s Top*P" /S :={((Y x 8,Z),p),p: Y xS =S, ZCY x S closed } < Top* /S

the full subcategory whose objects are those with p : ¥ x .S — S a projection, and again us :
Top? /S — Top®?" /S the corresponding morphism of sites. We denote by

Grg : Top /S — Top*?" /S, X/S — Grg(X/S) := (X x S, X)/S,
(9:X/S = X'/S) s Grii(g) :== (g x Is : (X x S, X) = (X' x 5, X))

the graph functor, X — X x S being the graph embedding (which is a closed embedding if X is
separated), and again Grg’ : Top®?" /S — Top /S the corresponding morphism of sites.
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e Denote by RTop? the category whose set of objects is
(RTop?)? := {((X,0x), Z), Z C X closed} C RTop x Top
and whose set of morphism between ((X1,0x,), Z1), ((X2,0x,), Z2) € RTop? is

HomRTop2(((X1aOX1)7zl)a ((XQ,OX2)7Z2)) =
{(f : (XlaOXl) — (XQ,OXz)), s.t. Z1 C f_l(Zg)} C HomRTOp((X170X1)7 (XQ,OXZ))

For (S, 0s) € RTop, RTop® /(S, Os) := RTop? /((S, Os), S) is then by definition the category whose
set of objects is
(RTop” /(S,0s)) :=
{(((X,0x),2),h),h: (X,0x) = (S,0s), Z C X closed } C RTop /(S,Og) x Top

and whose set of morphisms between (((X1,0x, ), Z1), h1), (X2, 0x,), Z2), ha) € RTop* /(S,Os)
is the subset

HornRTop2 /(S,Os)(((Xla OXl)? Zl)/(Sv OS)) ((XQ, OXz)v ZQ)/(Sv OS)) =
{(f : (XlaOXl) — (XQ,OXz)), s.t. hq o f = ho and Z1 C f_l(Zz)}
C Homprop (X1, O, ), (X2,0x,))

We denote by
s : RTop®?" /S := {(((Y x S,¢*Oy @ p*0s),Z),p),p:Y xS =S, ZCY x 8 closed } — RTop* /S

the full subcategory whose objects are those with p : ¥ x § — S is a projection, and again
ts : RTop? /S — RTop?*" /S the corresponding morphism of sites. We denote by
Grg : RTop /S — RTop>?" /8,
(X, 0x)/(8,05) = Grg((X,0x)/(5,05)) = (X x 8,¢"Ox ®p*Os), X)/(8,0s),
(9: (X,0x)/(8,05) = (X', 0x:)/(S,05)) =
Gré(g):==(gxIs: (X x S,¢"Ox ®p*0s),X) = (X' x S,¢*"Ox @ p*0s), X))
the graph functor, X — X x S being the graph embedding (which is a closed embedding if X is

separated), p: X xS — S, ¢: X xS — X the projections, and again Grg’ : RTop*?" /S — RTop /S
the corresponding morphism of sites.

e We denote by Sch? ¢ RTop? the full subcategory such that the first factors are schemes. For a field
k, we denote by Sch? /k := Sch® /(Speck, {pt}) and by

— Var(k)? C Sch? /k the full subcategory such that the first factors are algebraic varieties over
k, i.e. schemes of finite type over k,

— PVar(k)? c QPVar(k)? C Var(k)? the full subcategories such that the first factors are quasi-
projective varieties and projective varieties respectively,

— PSmVar(k)? C SmVar(k)? C Var(k)? the full subcategories such that the first factors are
smooth varieties and smooth projective varieties respectively.

In particular we have, for S € Var(k), the graph functor
Grg : Var(k)/S — Var(k)>?P"/S, X/S + Grg’(X/S) := (X x S, X)/S,
(g: X/S = X'/S) = Crd(g) :=(gxIs: (X xS, X)—= (X' x5 X))

the graph embedding X < X x S is a closed embedding since X is separated in the subcategory
of schemes Sch C RTop, and again Grg* : Var(k)??" /S — Var(k)/S the corresponding morphism
of sites.
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e Denote by CW C Top the full subcategory of CW complexes, by CS € CW the full subcategory of A
complexes, by TM(R) C CW the full subcategory of topological (real) manifolds which admits a CW
structure (a topological manifold admits a CW structure if it admits a differential structure) and by
Diff(R) € RTop the full subcategory of differentiable (real) manifold. We denote by CW? C Top?
the full subcategory such that the first factors are CW complexes, by TM(R)? ¢ CW? the full
subcategory such that the first factors are topological (real) manifolds and by Diff(R)?> C RTop?
the full subcategory such that the first factors are differentiable (real) manifold.

e Denote by AnSp(C) C RTop the full subcategory of analytic spaces over C, and by AnSm(C) C
AnSp(C) the full subcategory of smooth analytic spaces (i.e. complex analytic manifold). We
denote by AnSp(C)? C RTop? the full subcategory such that the first factors are analytic spaces
over C, and by AnSm(C)? € AnSp(C)? the full subcategory such that the first factors are smooth
analytic spaces (i.e. complex analytic manifold). In particular we have, for S € AnSp(C), the graph
functor

Grg : AnSp(C)/S — AnSp(C)*?P" /S, X/S + Grs?(X/S) := (X x S, X)/S,
(g:X/S = X'/S) = Gri*(g) == (g x Is: (X x S, X) = (X' x 8, X))
the graph embedding X — X x S is a closed embedding since X is separated in RTop, and again
Grg : AnSp(C)?>?" /S — AnSp(C)/S the corresponding morphism of sites.

e For V € Var(C), we denote by V" € AnSp(C) the complex analytic space associated to V with
the usual topology induced by the usual topology of C¥. For W € AnSp(C), we denote by W €
AnSp(C) the topological space given by W which is a CW complex. For simplicity, for V' € Var(C),
we denote by Vv := (V™) ¢ CW. We have then

— the analytical functor An : Var(C) — AnSp(C), An(V) = Ve,
— the forgetful functor Cw = ¢p : AnSp(C) = CW, Cw(W) = W,
— the composite of these two functors Cw = Cwo An : Var(C) - CW, é\v\//(V) =Vew,
We have then
— the analytical functor An : Var(C)? — AnSp(C)?, An((V, Z)) = (V" Z),
— the forgetful functor Cw = tp : AnSp(C)? — CW?, Cw((W, Z)) = (W, Zv),
— the composite of these two functors Cw = CwoAn : Var(C)2 — CW?, Cw((V,2)) =
(Vcw7 ZC’UJ)'
2.2 Additive categories, abelian categories and tensor triangulated categories

Let A an additive category.

e For ¢ : F* — G* a morphism with F*,G* € C(A), we have the mapping cylinder Cyl(¢) :=
(Fr" @ Frt @ Gt (9%, 0t "t 4+ 0" @) € C(A). and the mapping cone Cone(¢) := ((F™ @
G (0%, " T + 0"G) € C(A).

e The category K(A) := Ho(C(A)) is a triangulated category with distinguish triangles F'® ir,
Cyl(¢) 25 Cone(¢) —& F*[1].
e The category (A, F) is obviously again an additive category.

o Let ¢ : F* — GG* a morphism with F'*,G* € C(A). Then it is obviously a morphism of filtered
complex ¢ : (F*, Fp) — (G*, F},), where we recall that Fj, is the trivial filtration (F*, Fy), (G*, F,) €
Cri(A).
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We recall the following property of the internal hom functor if it exists of a tensor triangulated
category and the definition of compact and cocompact object.

Proposition 1. Let (T,®) a tensor triangulated category admitting countable direct sum and product
compatible with the triangulation. Assume that T has an internal hom (bi)functor RHom(.,.): T2 — T
which is by definition the right adjoint to (- ® ) : T2 — T. Then,

e for N € T, the functor RHom(-,N) : T — T commutes with homotopy colimits : for M =
holim_,;c; M;, where I is a countable category, we have

RHom(M,N) = ho lim RHom(M;, N).

—iel

o dually, for M € T, the functor RHom(M,-) : T — T commutes with homotopy limits : for
N =holim, ;c;N;, where I is a countable category, we have

RHom (M, N) = holim RHom (M, N;).
—

Proof. Standard. O

Let (7,®) a tensor triangulated category admitting countable direct sum and product compatible
with the triangulation. Assume that 7 has an internal hom functor RHom(.,.) : T — T.

e For N € T, the functor RHom(-, N) : T — T does not commutes in general with homotopy limits
: for M = holim, ;c;M;, where I is a countable category, the canonical map

holim RHom(M;, N) — RHom(M, N)

— i€l
is not an isomorphism in general if I is infinite. It commutes if and only if N is compact.

e Dually, for M € T, the functor RHom(M,e) : T — T does not commutes in general with infinite
homotopy colimits. It commutes if and only if M is cocompact.

Most triangulated category comes from the localization of the category of complexes of an abelian
category with respect to quasi-isomorphisms. In the case where the abelian category have enough injective
or projective object, the triangulated category is the homotopy category of the complexes of injective,
resp. projective, objects.

Proposition 2. Let A an abelian category with enough injective and projective.

o A quasi-isomorphism ¢ : Q® — F*, with F*,Q* € C~(A) such that the Q™ are projective is an
homotopy equivalence.

e Dually,a quasi-isomorphism ¢ : F* — I*, with F* I* € CT(A) such that the I"™ are projective is
an homotopy equivalence.

Proof. Standard. O

Proposition 3. Let A an abelian category with enough injective and projective satisfying AB3 (i.e.
countable direct sum of exact sequences are exact sequence).

o Let K(P) C K(A) be the thick subcategory generated by (unbounded) complexes of projective objects.
Then, K(P) — K(A) EEN D(A) is an equivalence of triangulated categories.

o Similarly, let K(I) C K(A) be the thick subcategory generated by (unbounded) complezes of injective
objects. Then K(I) — K(A) L, D(A) is an equivalence of triangulated categories.

Proof. Tt follows from proposition 2 : see [22]. O
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2.3 Presheaves on a site and on a ringed topos
2.3.1 Functorialities

Let S € Cat a small category. For X € § we denote by Z(X) € PSh(S) the presheaf represented by X.
By Yoneda lemma, a representable presheaf Z(X) is projective.

Proposition 4. o Let S € Cat a small category. The projective presheaves Proj(PSh(S)) C PSh(S)
are the direct summand of the representable presheaves Z(X) with X € S.

e More generally let (S,0s) € RCat a ringed topos. The projective presheaves Proj(PShp,(S)) C
PSho, (S) of Os modules are the direct summand of the representable presheaves Z(X) ® Og with
Xes.

Proof. Standard. O

Let f: T — S a morphism of presite with 7,8 € Cat. For h: U — S a morphism with U, S € S, we
have f*Z(U/S) = Z(P(f)(U/S)).

We will consider in this article filtered complexes of presheaves on a site. Let f: 7 — S a morphism
of presite with 7, S € Cat.

e The functor f, : C(T) — C(S) gives, by functoriality, the functor

f* : C(2)f1l(T) — C(2)fll(8)7 (GuF) = f*(GaF) = (f*Gu f*F7)7
since f, preserves monomorphisms.
e The functor f*: C(S) — C(T) gives, by functoriality, the functor
I CypalS) = Coypa(T), (G F) = fX(G, F), FP(f*(G,F)) :=Im(f F*G — [*G).

In the particular case where f* : PSh(S) — PSh(T') preserves monomorphisms, we have f*(G, F) =
(f*G, fF).

e The functor f+: C(S) — C(T) gives, by functoriality, the functor
f+: CypalT) = Ciaypal(S), (G, F) = [H(G.F) = (J*G, f1F),
since f+: C(S) — C(T) preserves monomorphisms.
Let f: 7T — S a morphism of presite with 7,S € Cat.
e The adjonction (f*, f.) = (f71, fi) : C(S) = C(T), gives an adjonction
(f* 1) : Coypa(S) = Craypa(T), (G, F) = fH(G F) 5 (G F) = fu(G, F),
with adjonction maps, for (G1, F) € C(2)7:(S) and (G2, F) € C(2)5u(T)
ad(f*, f)(G1, F) (G, F) = fof*(G1, F)  ad(f7, f)(Ga, F) : f* fo(G2, F) = (G2, F).
e The adjonction (f., f1): C(S) = C(T), gives an adjonction
(fur [7) : Cypa(T) S Crappa(S), (G, F) = fu(G,F) , (G, F) = fH(G,F),
with adjonction maps, for (G1, F') € C(2)5:1(S) and (G2, F) € C(2)5i(S)

ad(f*, £.)(G2, F) : (G2, F) = [ fu(G2, F) , ad(f*, f)(G1, F) « fuof H(G1, F) = (G1, F).
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Remark 1. Let 7,8 € Cat small categories and f : T — S a morphism of presite. Then the functor
f* : PSh(S) — PSh(T) preserve epimorphism but does NOT preserve monomorphism in general (the
colimits involved are NOT filetered colimits). However it preserve monomorphism between projective
presheaves by Yoneda and we thus set for (Q,F) € Cyy(Proj(PSh(S))), that is FPQ™ € Proj(PSh(S))

forallp,n € Z, f*(Q,F) = (f"Q, f"F).

For a commutative diagram of presite :
D=T 258 |
Bt
7258
with 7,7'S,S’ € Cat, we denote by, for F' € C(§'),

97 f1« ad(g3,92+)( ad(g7 91+)(f2-95 F
%

) x
fQ*QQF

* F) * * * *
T(D)(F) : g f1:F 91 f1x92+95 F = g1 g1+ f2195 F

the canonical transformation map in C(7), and for (G, F) € Cy(S'),

g7 f1x ad(g3,92:) (G, F) . % %
) R 91 [1.92:.93 (G, F) = g; g1+ f2.95 (G, F)

ad(gy g1+)(f2x95 (G,F)) fo g*(G F)
xJo U,y .

T(D)(GaF> : grfl*(GaF

the canonical transformation map in Cp; (7)) given by the adjonction maps.
We will use the internal hom functor and the tensor product for presheaves on a site or for presheaves
of modules on a ringed topos. We recall the definition in the filtrered case.

e Let (S,0g) € RCat. We have the tensor product bifunctor
() ® (-) : PSh(S)? — PSh(S), (F,G) — (X € S (F® G)(X) := F(X) ® G(X)
It induces a bifunctor :
(YR ():C(8) xC(S) = C(8),(F,G) - FRG:=Tot(F*@G*),( F @ G)" = ®rezF" G
and a bifunctor
()@ () : C(S) x Cos(S) = Cos(S), a(F®G) :=F®(a.G)

For (G1,F),(Ga, F) € Cry(S), G € C(S), we define (note that tensor product preserve monomor-
phism only after tensoring with Qg € PSh(S))

— Fp((Gl,F)(X)Gg) = Im(FpGl ® G3z — Gy ®G3) and FP(G3®(G1,F)) =Im(G3 ® FPG3 —
Gs ®G1),

— Fqu((Gl,F) X (GQ,F)) = Im(F”Gl ® FiGy — G4 ®G2) and
Fk((Gl, F)®(G2, F)) = Fk TOtFF((Gl, F)®(G2, F)) = @pGZ Im(FpG1®Fk_qG2 — G1®G2)

Note that in the case where G = 0 for n < 0, we have (G1, F3) ® (G2, F) = G1 ® (G2, F). We get
the bifunctors

(=) @ (=) : Cra(S)* = Cra(S), (=)@ (=) : Cra(S) x Cogsia(S) = Cospu(S)-
We have the tensor product bifunctor

() ®0s (-) : PShoy(S)? — PSK(S), (F,G) — (X € 8§ = (F ®0, G)(X) := F(X) @04 (x) G(X)
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It induces a bifunctor :
() ®Os () : COs (8) X COS (8) — C(S)a (F7 G) — F ®OS G:= TOt(F. ®Os G.)

For (G4, F),(Go, F) € Cogfil (S), Gs € Co,(S), we define similarly (G, F)®04Gs, GsR04 (G1, F),
and

F*((G1, F)®04(Ga, F)) := F¥ Totpr((G1, F)®04 (G2, F)) := ®pez IM(FPG1R0s FF 1G5 — G1004G2)

Note that in the case where G = 0 for n < 0, we have (G, F}) ®oy (G2, F) = G1 ®o, (G2, F).
This gives

— in all case it gives the bifunctor (—) ®o, (=) : Coor ri(S) ® Cogfu(S) = Cru(S).
— in the case Og is commutative, it gives the bifunctor (=) ®og (=) : Cogi1(S)* — Cog £i(S).
e Let (S,0g) € RCat. We have the internal hom bifunctor
Hom(-,-) : PSh(S)? — PSh(S),
(F,G)— (X € S = Hom(F,G)(X) := Hom(r(X).F,r(X).G)
with r(X) : § = §/X (see subsection 2.1). It induces a bifunctors :
Hom(-,-) : C(S) x C(S) = C(S), (F,G) — Hom*(F, Q)
and a bifunctor
Hom(-,-) : C(S) x Cox(S) = Coy(S), aHom(F,G) := Hom(F, a.G)
For (G1,F), (G2, F) € Cru(S), Gs € C(S), we define

— FPHom(Gs, (G1,F)) = Hom(Gs, FP’G1) — Hom(Gs,G1)), note that the functor G —
Hom(F,G) preserve monomorphism,

— the dual filtration F~PHom((G1, F),Gs) := ker(Hom(G1,Gs) — Hom(F?PGq, G3))
— FPF1Hom((G1, F), (Ge, F)) := ker(Hom(G1, FPG3) — Hom(F9G4, FPG2)), and

F*Hom®((G1, F), (Ga, F)) := Totpp Hom((G1, F), (Go, F)) :=
Dpez ker(Hom(Gy, FFPGy) — Hom(FPGy, FFPGY))
We get the bifunctors
’Hom(-, ) : Cfil(S) X Cfi[ (S) — Cfil(S), Hom(-, ) : Cfil(S) X COsfil(S) — COSfil(S)-
We have the internal hom bifunctor
Homos(-, ) : PShos (S) X PShos (S) — PSh(S)
(F,G) — (X € § = Homo, (F,G)(X) := Homp, (r(X). F,r(X).G).
It gives similarly
— in all case a bifunctor Homog (-, ) : Crios(S) X Criog (S) = Cra(S),
— the case Og is commutative, a bifunctor Homog (-, -) : Crios(S) X Criog(S) = Cog i (S).
Let ¢ : A — B of rings.

e Let M a A module. We say that M admits a B module structure if there exits a structure of B
module on the abelian group M which is compatible with ¢ together with the A module structure
on M.
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e For N; a A-module and Ny a B module. I(A/B)(Ny, No) : Hom4 (N1, No) = Homp(N; ®4 B, No)
is the adjonction between the restriction of scalars and the extension of scalars.

e For N/, N"” a A-modules, evs(hom,®)(N’', N”,B) : Homas(N',N")®4 B — Homa(N',N" @ 4 B).
is the evaluation classical map.

Let ¢ : (S,01) = (S,02) a morphism of presheaves of ring on S € Cat.

e Let M € PSho, (S). We say that M admits an Oz module structure if there exits a structure of Oy
module on M € PSh(S) which is compatible with ¢ together with the O; module structure on M.

e For Ny € Cp,(S) and N € Co,(S),
I(01/02)(N1, N2) : Homgp, (N1, N2) = Homo, (N1 ®0, B, N2)
is the adjonction between the restriction of scalars and the extension of scalars.
e For N',N" € Co, (S),
evo, (hom, ®)(N', N”,03) : Homo, (N',N") @0, O2 = Homo, (N',N" ®0, O2).
is the classical evaluation map.
Let (S,0s) € RCat.
e For Fy, Fy,G1,Go € C(S), we denote by
T(®,Hom)(Fy, Fa, G1,G2) : Hom(F1,G1) @ Hom(Fz, G2) — Hom(F1 @ F3,G1 ® Ga)
the canonical map.
e For G3 € C(S) and G1,G2 € Cog(S), we denote by
ev(hom, ®)(Gs,G1,Ga) : Hom(Gs,G1) ®os G2 — Hom(G3,G1 ®o4 G2)
dRs— (s o(s') ®s)

e Let S € Cat a small category. Let (Hx : C(S/X) — C(S/X))xes a familly of functors which is
functorial in X. We have by definition, for Fy, F5 € C(S), the canonical transformation map

T(H, hO’ITL)(Fl,FQ) : H(’Hom'(Fl,Fg)) — Hom'(H(Fl),H(Fg)), (1)
¢ € Hom(Fy|x, Fyx) — HFfixtix(g) € Hom(H (Fyx), H(Fx)) (2)

in C(S).
Let 7,S € Cat small categories and f : T — S a morphism of presite.

e For Fy, Fy, € C(T) we have by definition f,(F; ® F») = f.F1 ® f«F». For G1,Gs € C(S), we have
a canonical isomorphism f*G; ® f*Gs = f*(G1 ® G3) since the tensor product is a right exact
functor, and a canonical map f1G; ® f1Gy — fH(G1 ® Ga).

e We have for F' € C(S) and G € C(T) the adjonction isomorphim,
I(f*, fO)(F,G) : feHom® (f*F,G) = Hom®(F, f.G). (3)

e Let Og € PSh(S,Ring) by a presheaf of ring so that (S,0Og), (T, f*Os) € RCat. We have for
F € Coy(S) and G € C-04(T) the adjonction isomorphim,

I(f*, f)(F,G) : feHomb. o, (f7F, G) = Homg, (F, f.G), (4)

and
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— the map ad(f*, fu)(F) : F — f.f*F in C(S) is Og linear, that is is a map in Co,4(S),
— the map ad(f*, f«)(G) : f*f«G — G in C(T) is f*Og linear, that is is a map in Cf-o4(T).

e For F|, F, € C(T), we have the canonical map

T.(f,hom)(F1, F) := T(fr, hom) : f.Hom® (F1, Fy) — Hom®(fF1, f+F2), (5)
for X e S, ¢ S Hom(Fl‘f*(X),FQ‘f*(X)) — f*Fl‘f*(X)’F2‘f*(X)((]5) S Hom(f*Fl‘f*(X), f*F2|f*(X)) (6)

given by evaluation.
e For G1,Gy € C(S), we have the following canonical transformation in C(T)
T(f, hom)(G1,Gz2) := T(f*, hom)(G1, Ga) : (7)
" Hom(Gr,ad(f7, 1) (G2)) FHom* (Gy, fof*Go) ST 4 (G1,Ge) (

f 7f*)('Hom(f Gl)f GZ)) HOm.(f*G17f*G2), (9)

f*HO’ITL. (Gl, Gg)
£ fHom® (£ Gy, £7Ga) -

e Let Og € PSh(S,Ring) by a presheaf of ring so that (S,0s), (T, f*Os) € RCat. For G1,G3 €
Cos(S), we have the following canonical transformation in Cy-og (7))

T(f, hom)(G1,G2) :=T(f*, hom)(G1,G2) : (10)

) . " *I(f*,f+)(G1,G
f HOmOS(G17f*f GQ) f (f f )( 1 2) (11)
ad(f*,fx)(Homsxog (£7G1,f"G2))

*Hom G1,ad(f*,f«)(G
f*HOTan(Gl,Gz) f 05 (G1,ad(f*, f+) (G2

[T fHomG o, (f7 G, f7G2)

Hom}*os(f*Gl, [ Ga), (12)

e Let Og € PSh(S, Ring) by a presheaf of ring so that (S, Og), (T, f*Os) € RCat. For M € Co,(S)
and N € Cy04(T), we denote by

ad(f*,£.)(M®og . N)

T(f,2)(M,N) : M @0, f.N (13)
L P (M @0y foN) = fu(f*M @50 f* fu,N) 2D, ¢ (o pf @060 N) (14)

the canonical transformation map.
Let f : (T,O0r) — (S,0g) a morphism with (S, Og), (T,Or) € RCat. We have the adjonction
(£ 1) : Cos(8) = Cor(T)
with f*"°4G .= f*G®+05 Or. If f*: C(S) — C(T) preserve monomorphisms, it induces the adjonction
(/% f2) : Cosa(S) S Corfa(T)

with f*m°d(G, F) := f*(G,F) @+04 Or.
For a commutative diagram in RCat :

D= (T'.04) === (8,04)
s
(T 02) =" (5,01)
we denote by, for I € Co; (8,

°4f1. ad(g3™ % g2 ) (F)

T™ed(D)(F) : gimodf k2 91 1. g2: g3 OUF = g7y, 2 g3 F

ad(gi ™% g14) (f2x 93 F) *mod
J2xg3 " F
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the canonical transformation map in Co, (7)) and, for (G, F') € Cor ra(S'),

g™ f1. ad(g5™ %, g2.) (G, F)

T™°YD)(G, F) : ;™" f1.(G, F) 91" f1.92: 95U G, F) = g7 14 fou g3 ™G, F)

d *mod . . *mod G,F
ad(g7 g1x)(f2+ 95 ( ) 2*g§<m0d(G7 F)

the canonical transformation map in Co, ri1(7T) given by the adjonction maps.
Let f: (T,0r) — (S,0s) a morphism with (S, Og), (T,Or) € RCat.

e We have, for M, N € Co4(S) the canonical transformation map in Co,. (7))
T(f,hom)(M,N)Q o, O

T™d(f, hom) (M, N) : f*"Homo, (M, N) — N80, 02
e(hom,®)(f*M,f*N)

7_[0771)‘*01 (f*Mv f*N) ®f*01 02
I(f*01/02)(f*M,f*™*N)

Hom-0,(f°M, f*"*'N) Homo, (£ M, f*N)

e We have, for M € Co,(S) and N € Co,.(T), the canonical transformation map in Co,.(T)

A(f* ™0 £ ) (M®og f«N)

Tmod(f,@)(M,N) : M @0q foN —

*MO! *MO0 *MO0 ad(f'*m()dvf*)(N)
[P OUM ®0g foN) = fo([M @0, [V N) —————

(15)
fo(fIM ®0, N) - (16)
the canonical transformation map.
We now give some properties of the tensor product functor and hom functor given above
Proposition 5. Let (S,0g) € RCat. Then, the functors
o (5)®(=):C(8)? = C(S), C(S) x Cos(S) = Cos(S)

* (—)®0s () : Coz (S) x Cos(S) — C(S) and in case Og is commutative (—) ®os (—) : Cos (8)? —
COS (S)

are left Quillen functor for the projective model structure. In particular,

o for L € C(S) is such that L™ € PSh(S) are projective for all n € Z, and ¢ : F — G is a quasi-
isomorphism with F,G € C(S), then ¢ @1 : F® L — G ® L is a quasi-isomorphism,

o for L € Co4(S) is such that L™ € PSho.(S) are projective for allm € Z, and ¢ : F — G is a
quasi-isomorphism with F,G € Co4(S), then ¢ QI : F ®os L — G Qo4 L is a quasi-isomorphism.

Proof. Standard. O
Proposition 6. Let (S,0g) € RCat. Then, the functors
o Hom(,-): C(S) x Cos(S) = Cog(S), C(S) x Cog(S) = Cos(S),

e Homog(+,") : Coxr (S)xCos(S) = C(S) and in the case Os is commutative Homo, (-, ) : Cos(S)x
Cos (8) — Cos (8)7

are on the left hand side left Quillen functor for the projective model structure. In particular,

o for L € C(S) is such that L™ € PSh(S) are projective for all n € Z, and ¢ : F — G is a
quasi-isomorphism with F,G € C(S), then Hom(L, ) : Hom*(L,F) — Hom*(L,G) is a quasi-

isomorphism,

o for L € Coy(S) is such that L™ € PSho,(S) are projective for alln € Z, and ¢ : F — G is a
quasi-isomorphism with F,G € Co4(S), then Homog (L, ¢) : Homg, (L, F') — Homg, (L,G) is a
quasi-isomorphism.
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Proof. Standard. O

Let S € Cat a site endowed with topology 7. Denote by a, : PSh(S) — Sh(S) the sheaftification
functor A morphism ¢ : F* — G* with F'*,G* € C(S)) is said to be a 7 local equivalence if

a-H"(¢) : a  H"(F*) = a, H"(G*®)

is an isomorphism for all n € Z, where a, is the sheaftification functor. Recall that C;;(S) C (C(S), F) =
C(PSh(S), F) denotes the category of filtered complexes of abelian presheaves on & whose filtration is
biregular.

e A morphism ¢ : (F*, F) — (G*, F) with (F*,F),(G*,F) € Cfy(S) is said to be a filtered 7 local
equivalence or an 1-filtered 7 local equivalence if

a-H"(¢) : ar H"(Grh, F*) = a, H"(Gr}. G*)
is an isomorphism for all n,p € Z.

e Let r € N. More generally, a morphism ¢ : (F*, F) — (G*,F) with (F*,F),(G*,F) € Cy(S) is
said to be an r-filtered 7 local equivalence if for all p,q € Z,

a, EPU(¢) : a, EPU(F*, F) = a, EP9(G*, F)

is an isomorphism. Note that if ¢ is an r-filtered 7 local equivalence, that it is an s-filtered 7 local
equivalence for all s > 7.

e A morphism ¢ : (F*,F) — (G*, F) with (F*,F),(G*,F) € Cfy(S) is said to be a co-filtered 7
local equivalence if there exists r € N such that ¢ is an r-filtered 7 local equivalence. If a morphism
¢:(F*,F)— (G*,F) with (F*, F),(G*,F) € Cyu(S) is an oo-filtered 7 local equivalence then, for
all n € Z,

a-H"(¢) : a  H"(F*,F) — a,H"(G*, F)

is an isomorphism of filtered sheaves on S. Recall the converse is NOT true (see section 2.1).

Let (S,0) a ringed topos where S € Cat is a site endowed with topology 7. Let r € N. A morphism
¢: (F*, F)— (G*,F) with (F*,F),(G*,F) € Cogzriu(S) is said to be an r-filtered 7 local equivalence if
0¢ is one, where o : Cog i (S) = Cru(S) is the forgetful functor, that is if

a, B2 ) : a, EPYF*,F) — a.EYY(G*, F)

is an isomorphism for all p, q € Z.

Let S € Cat a site which admits fiber product, endowed with topology 7. A complex of presheaves
F* € C(S) is said to be 7 fibrant if it satisfy descent for covers in S, i.e. if for all X € S and all 7 covers
(Ci U; — X)ie] of X, denoting Uy = (Uio X s Ui1 Xg "'Uiy‘)ikEJ and for I C J, PrJ: Uj — Uy is the
projection,

F*(¢;) : F*(X) = Tot(®cardar=eF* (Ur))

is a quasi-isomorphism of complexes of abelian groups.

e A complex of filtered presheaves (F'*, F) € C;(S) is said to be filtered 7 fibrant or 1-filtered 7
fibrant if it satisfy descent for covers in S, i.e. if for all X € S and all 7 covers (¢; : U; = X);er of
X,

(F*, F)(ci) : (F°, F)(X) = Tot(Bearar=e(F*, F')(Ur))

is a filtered quasi-isomorphism of filtered complexes of abelian groups.
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e Let r € N. More generally, a complex of filtered presheaves (F'*, F') € C;(S) is said to be r-filtered
7 fibrant if it satisfy descent for covers in S, i.e. if for all X € § and all 7 covers (¢; : U; = X)ier
of X,

EPA(F®, F)(ci) : EPY(F®, F)(X) = EPY(Tot(Bearar=e(F*, F)(Ur)))
is an isomorphism for all p, ¢ € Z. Note that if (F'*, F) is r-filtered 7 fibrant, then it is s-filtered 7
fibrant for all s > 7.

e A complex of filtered presheaves (F*,F) € Cf;(S) is said to be oo-filtered 7 fibrant if there exist
r € N such that (F'®, F) is r-filtered 7 fibrant. If a complex of filtered presheaves (F*, F') € Cy;(S)
is co-filtered 7 fibrant, then for all X € S and all 7 covers (¢; : U; — X);ey of X,

H"(F*,F)(¢;): H*(F*,F)(X) — H" Tot(®carar=e (F*, F)(Ur))
is a filtered isomorphism for all n € Z.

2.3.2 Canonical flasque resolution of a presheaf on a site or a presheaf of module on a
ringed topos

Let S € Cat a site with topology 7. Denote a, : PSh(S) — Shv(S) the sheaftification functor. There is
for F' € C(S) an explicit 7 fibrant replacement :

o k:F* s E2(F*) := Tot(E2(F*)), if F* € CH(S),
e k: F* — E2(F*) :=holim Tot(E2(F*=")), if F'* € C(S) is not bounded below.
The bicomplex E*(F*) := E2(F*) together with the map k : F* — E*(F*®) is given inductively by

e considering ps : S° — S the morphism of site from the discrete category S™ whose objects are the
points of the topos S and we take

ko = ad(pg. ps ) (F*) = E°(F*) = psupsF* = @) lim__F*(X),
sEST .

then a ko : a,F* — E°(F*) is injective and E°(F*®) is 7 fibrant,
e denote Q°(F*) := a, coker(ko : F'* — E°(F*)) and take the composite
E°(F®) = Q"(F*) — E'(F*) := E°(Q"(F*)).

Note that k : F* — E°*(F*) is a 7 local equivalence and that a,k : a.F* — E*(F*) is injective by
construction.

Since E° is functorial, F is functorial: for m : F* — G* a morphism, with F*,G* € C(S), we have
a canonical morphism E(m) : E(F) — E(G) such that E(m)ok = k' om, with k : F — FE(F) and
k' : G — E(G). Note that E° hence F preserve monomorphisms. This gives, for (F*,F) € C;y(S), a
filtered 7 local equivalence k : (F*, F) — E*(F*, F) with E*(F*, F) filtered 7 fibrant.

Moreover, we have a canonical morphism E(F) ® E(G) — E(F ® G).

There is, for g : T — S a morpism of presite with 7, S € Cat two site, and F* € C(S), a canonical
transformation

T(g,E)(F*):g"E(F*) = E(g"F*) (17)
given inductively by

e T(g9,E°)(F) := T(9,ps)(p5F) : g*E°(F) = g*pspsF — prig*psF = prooyg*F = E°(g*F),
T(9,Q°)(F) = T(g,E°)(F) : g*Q°(F) = coker(¢*F — ¢g*E°(F)) — Q°(g*F) = coker(¢*F —
E%(g*F)
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. . T(g,E%)(Q"(F)) . E°(T(9,Q%)(F)) «

o T(9.Q")(F) : g"E'(F) = g" E°(Q°(F)) —252EE0 BO(g"QO(F)) “HEE0E0, 10(QU (g™ F)) =
El(g*F).

Let (S,0s) € RCat with topology 7. Then, for F* € Co4(S), E-(F*) is naturally a complex of Og

modules such that &k : F'* — E.(F*) is Og linear, that is is a morphism in Co4(S).
We will use the following :

Proposition 7. Let S € Cat an small category endowed with a topology T. Let ¢ : GS — G§ a morphism
with GY,GS € C(S). It is a morphism of filtered complex ¢ : (G}, Fy) — (GS, Fy), where we recall that Fy
is the trivial filtration. If ¢ : G} — G is an homotopy equivalence, then E(¢) : E*(GY, Fy) — E*(GS, Fp)
is a 2-filtered quasi-isomorphism that is for all p,q € Z

EYU(E(¢)) : E3*(E*(GY, Fv)) — Ey*(E*(GS3, Fy))
is an isomorphism
Proof. Let X € S.Consider the cohomological functors
Ty : K(S) = Ab,G* — H"E®*(G*)(X) =: H"(X,G*)

and denote, for G* € C(S) by EP9(Tx(G*)) the associated spectral sequence. The result then follows
(see [30]) from the following commutative diagram of complexes for each r € N

B E(9)
EY*(E*(GY, Fy)) — = EP°E*(G3, Fy)

_l l_

Eoe(Tx(GY) — D pee(r(GY))

2.3.3 Canonical projective resolution of a presheaf of module on a ringed topos

Let (S,0g) € RCat. We recall that we denote by, for U € S, Z(U) € PSh(S) the presheaf represented
by U : for V € S Z(U)(V) = ZHom(V,U), and for h : V3 — Vo a morphism in S, and hy : V3 = U
Z(U)(h) : hy = hohy, and s is the morphism of presheaf given by s(V1)(h1) = F(h1)(s) € F(V1). There
is for F € Cp,(S) a complex of Og module an explicit projective replacement :
o q: LY(F*) :=Tot(LH(F*)) = F*,if F* € C~(S),
e q: L(F*) :=holim Tot(Lg(F*=")) if F'* € C(S) is not bounded above.
For Og = Zs, we denote Ly, (F*) =: L(F*). The bicomplex L, (F'*) together with the map ¢ : L, (F'*) —
F* is given inductively by
e considering the pairs {U € S,s € F(U)}, where U is an object of S and s a section of F over U we
take
w:LH(F)= @ ZU)®0s>F,
(UeS,seF(U))
then ¢q is surjective and L(O)(F ) is projective, this construction is functorial : for m : FF — G a
morphism in PSh(S) the following diagram commutes

q0

Des,serw) LU) ®Os F
Lo(m)l m
g
Dwes,seccw) ZU) ®Os : G

where (LO(m)KU,S))(U,m(U)(s)) = IZ(U) and (LO(m)KU,S))(U,S’) =0if S/ # m(U)(S),
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e denote K2 (F) :=ker(qo : LY (F) — F)) and take the composite

20 (K5 (F))

0 2 Lo(F®) = Lo (Ko (F*)) Ko(F*) = Lo(F*).

Note that ¢ = ¢(F) : L(F*®) — F* is a surjective quasi-isomorphism by construction. Since LY is
functorial, Lo is functorial : for m : F* — G* a morphism, with F*, G* € C(S), we have a canonical
morphism Lo(m) : Lo(F) — Lo(G) such that ¢/ o Lo(m) = mo ¢, with ¢ : Lo(F) — F and ¢ :
Lo(G) = G. Note that LY and hence Lo preserve monomorphisms. In particular, it gives for (F*, F) €
Cos(S8), a filtered quasi-isomorphism ¢ : Lo(F*, F) — (F*, F). Moreover, we have a canonical morphism
Lo(F)® Lo(G) = Lo(F @ G).

Let g : T — S a morphism of presite with 7,S € Cat two sites.

o Let F'* € C(S). Since g*L(F*) is projective and q(¢*F) : L(g*F*) — ¢g*F'* is a surjective quasi-
isomorphism, there is a canonical transformation

T(g,L)(F*) : g"L(F*) — L(g"F") (18)
unique up to homotopy such that ¢(¢*F) o T(g, L)(F*) = g*q(F).

e Let F'* € C(S). Since L(g*F*®) is projective and g*q(F) : g*L(F*) — ¢g*F* is a surjective quasi-
isomorphism, there is a canonical transformation

T(g,L)(F*) : L(g"F*) = g"L(F*) (19)
unique up to homotopy such that g*q(F) o T(g,L)(F*) = q(¢*F).

o Let F'* € C(T). Since L(g.F*®) is projective and g.q(F) : g.L(F*®) — g.F* is a surjective quasi-
isomorphism, there is a canonical transformation

Ti(g, L)(F*®) : L(g+F"*) — g.L(F*) (20)
unique up to homotopy such that g.q(F) o Ti(g, L)(F*) = q(g. F).

Let g : (T,07r) — (S,0g) a morphism with (7,0r),(S,0s) € RCat. Let F* € Cp,(S). Since
g ™1 Lo (F*®) is projective and q(g*™°?F) : Lo(g*™°F*) — g*™°?F* is a surjective quasi-isomorphism,
there is a canonical transformation

T(g,Lo)(F®) : g™ Lo(F*) = Lo(g*™°?F*) (21)

unique up to homotopy such that ¢(g*™°¢F) o T(g, Lo)(F*®) = g*™°dq(F).

Let p : (S12,0s,,) — (81,0s,) a morphism with (S12,0s,,), (S1,0s,) € RCat, such that the
structural morphism p*Og, — Osg,, is flat. Let F'* € Co4(S). Since Lo(p*™°?F*) is projective and
p*modq(F) : p*™dLo(F*) — p*™°d[* is a surjective quasi-isomorphism, there is also in this case a
canonical transformation

T(p, Lo)(F*) : Lo(p"™**F*) — p*™**Lo(F*) (22)
unique up to homotopy such that p*™°%q(F) o T'(p, Lo)(F*) = q(p*™°¢F).
2.3.4 The De Rham complex of a ringed topos and functorialities
Let A € cRing a commutative ring. For M € Mod(A), we denote by

Der4(A, M) C Hom(A, M) = Homay (4, M)
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the abelian subgroup of derivation. Denote by T4 = ker(ss : A@ A — A) C A® A the diagonal ideal with
sa(ai,az) = a; — ag. Let Q4 := I4/13 € Mod(A) together with its derivation map d = da : A — Q.
Then, for M € Mod(A) the canonical map

w(M) : Homua (Qa, M) = Dera(A, M), ¢ — ¢od

is an isomorphism, that is €4 is the universal derivation. In particular, its dual T := DA(QA) =
DA(I4/13%) is isomorphic to the derivations group : w(A) : T4 — Dera(4, A). Also note that Der4 (A, A) C
Hom(A, A) is a Lie subalgebra. If ¢ : A — B is a morphism of commutative ring, we have a canonical
morphism of abelian group Qp,4)¢ : a4 — Qp.

Let (S,0s) € RCat, with Og € PSh(S, cRing) commutative. For G € PShp,(S), we denote by

Deros (05, G) C HOm(Os, G) = Homay (05, G)

the abelian subpresheaf of derivation. Denote by Zg = ker(ss : Os ® Os — Og) € PShpgsxo4(S) the
diagonal ideal with s5(X) = sog(x) for X € S. Then Qo := Zs/I% € PSho,(S) together with its
derivation map d : Og — Qo is the universal derivation Og-module : the canonical map

w(G) : Homog (o, G) = Derpg(0s,G), ¢ +— ¢pod

is an isomorphism. In particular, its dual To, := D3 (Qos) = DE(Zs/I2) is isomorphic to the presheaf
of derivations : w(Og) : Tos — Derpg(Og,Os) and Derp, (Os, Og) C Hom(Og, Og) is a Lie subalgebra.
The universal derivation d = dog : Os — Q0 induces the De Rham complex

DR(Og) : Q% := A*Qo, € C(S)

A morphism ¢ : Oy — Og with Og, O% PSh(S, cRing) induces by the universal property canonical
morphisms
Qo/s/os : Qo/s — QOS N DngO’S/OS ZTOS — To/s
in PSho,(S).
e In the particular cases where S = (S, Og) € Var(C) or S = (5,0g) € AnSp(C), we denote as usual
Qg = QOS/CS? Ts := TOs/Cs and DR(S) = DR(Os/(Cs) : Q% € C(S)
e In the particular cases where S = (5, 0g) € Diff(R) is a differential manifold, we denote as usual
AS = QOS/RS7 TS = TOS/RS and DR(S) = DR(OS/RS) : A% S C(S)

For f: (X,0x) — (S,0s) with (X,0x), (S,0s) € RCat such that Ox and Og are commutative, we
denote by
QOX/f*OS = Coker(QOX/f*OS : Qf*Os — QOX) S Pshf*os (X)

the relative cotangent sheaf. The surjection ¢ = qo,/r @ Qox — Qoy/f-0s gives the derivation
w(Qoy /r05)(@) = doy /5 Ox = Qoy /g0 It induces the surjections ¢* := APq : Qp,  — ng/f*os'
We then have the realtive De Rham complex

DR(Ox/f*Os) = be/.f*os = /\.Qox/f*Os S Cf*Os (X)
whose differnetials are given by
for X? € X andw € I'(X°, 07, ) d(¢(w)) := " (d(w))

Note that Q2, /.o, € Cr0s (8) is a complex of f*Og modules, but is NOT a complex of Ox module
since the differential is a derivation hence NOT Ox linear. On the other hand, the canonical map in
PShy«04(S)

T(f,hom)(Os,Og) : f*Hom(0g,05) = Hom(f*Og, f*Os)

induces morphisms
T(f,hom)(Os,05) : [*Tog — Ty-0s and DF.o T (f, hom)(Os,0s) : Q05 = [*Qos.

In this article, We will be interested in the following particular cases :
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e In the particular case where Og PSh(S, cRing) is a sheaf, Qog, Tos € PSho, (S) are sheaves. Hence,
T(f, hom)(OS, 05) . an*TOS l> Tan*oS and D?*OST(fv hom)(Os, Os) . Qar,f*Os l> a-,—f*QoS

are isomorphisms,where a, : PSh(S) — Shv(S) is the sheaftification functor. We will note again
in this case by abuse (as usual) f*Ogs := a,f*Os, f*Qos = a: [*Qog and f*Tos := arf*Tog, so
that

Qp-05 = ["Qog and fTog =Tro

e In the particular cases where S = (5,05), X = (X,0x) € Var(C) or S = (5,05),X = (X,0x)
AnSp(C), we denote as usual Qx/s := Qo /05, U4x/s = G0y /s : 2x — Qx/g and DR(X/S) :=
DR(Ox/*05) s 9% g € Cp-04(5).

m

e In the particular cases where S = (S,05), X = (X,0x) € Diff(R), we denote as usual Ax,/g :=
Qo /f0s+ 4x/s = ox/s + Ax = Axys and DR(X/S) := DR(Ox/[*Os) : A5 € Cp-05(9).

Definition 1. For a commutative diagram in RCat

D= (x,0x)—1=(5,0¢)
i
(X', 0x:) = (T.Or)
whose structural presheaves are commutative sheaves, the map in Cg/*oxﬁl()(’)
QOX,/g/*OX ‘g >k(s):)va‘b) = (Q;/*Ox’Fb) - (QZ)X, ) Fb)

pass to quotient to give the map in Cy.o piy(X")

Qoy /¢+0x)/(0r/g-0s) = Qoy 7g'+0x )"

g *(be/f*OS7Fb) = (Q;/*Ox/g/*f*OS7Fb) — (Q:)Y/f/*OT,Fb)

It is in particular given for X ° € X', ¢*(X°) + X % and & € F(XO,QgX/f*OS),

’

Q(OX//QI*OX)/(OT/g*Os)(X O)(w) = qOX//f, (QOX//g/*OX ((U)) S F(X 07 ngl/f,*OT)'

where w € I‘(XO,Q’())X) such that qo, /5(w) = @. We then have the following canonical transformation
map in Coyra(T)

T(g' E)(-)oT(D)(EQY ) s-0,))

(f»iE(gl*( .Ox/f*Os’Fb))) ®g+0s Or

E(me, /9'*0x)/(Or /9% 05)

) m
f’iE(Q.OX//f,*OT’Fb) ®g*05 OT — fiE(Q:)X,/f’*OTuFb)u

with m(n ® s) = s.n.

2.4 Presheaves on diagrams of sites or on diagrams of ringed topos

Let Z,7' € Cat and (fe,s) : Te — Se a morphism of diagrams of presites with 7, € Fun(Z, Cat), S, €
Fun(Z’, Cat). Recall it is by definition given by a functor s : Z — I’ and morphism of functor P(f,) :
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Sse) = Se 05 — T,. and that we denote for short, Sy) := Se 05 € Fun(Z, Cat). Recall that, for
rry : I — J a morphism, with I, J € Z, Dy is the commutative diagram in Cat

Dgry = Sy — Ss(1) -

4

T —2 T

The adjonction
((f'vs)*v (f'v 8)*) = ((f'v 8)_17 (f°7 8)*) : C(SS(‘)) = 0(7-')7
G = (Gryury) = (fo. 8)"(G) == (f1(G1), T(Dsrs)(Gs) o frury)
G = (Gr,ury) = (fe,8)x(G) := (f1«(Gr), freury)

gives an adjonction

((fo,8)", (fo,8)x) : Crayfit(Ss(ey) = Craypir(Te),
(GvF) = ((leF)vulJ) = (f.,S)*(G,F) = (f}k(GlaF)vT(DfIJ)(GJaF) OfI*UIJ)
(G, F) = ((G1, F),ur) = (fe, 8)+(G, F) := (fr:(G1, F), frsurs).

For a commutative diagram of diagrams of presite :

(9215,2)

D - T/ %8//
® s5(e) ’
l/(fz,sz) l(.fl;sl)
(91,81)

Tas(e) — Ss(e)

with Z,7", 7, J’ € Cat and T, € Fun(Z, Cat), 7, € Fun(Z’, Cat),Se € Fun(J,Cat),S, € Fun(J’, Cat),
and s = s1 08, = sy 0] : ' — J, we denote by, for F = (Fr,usy) € 0(82,2(.)),

91 f1x ad(g5,92+)( ad(g791+)(f2495 F) fouiF
——————— J2x95

* F) * * * *
T(D)(F) : 91 f1F' 91 f1+92+95 F = g1 g1+ fox 95 F

the canonical transformation map in C(7,, (), and for (G, F) = ((G1, F),urs) € Cra(S (.)),

/
/
S2

971 f1x ad(g*,g *)(G,F) * * * *
A 2 91f1*92*92(G7F) = 9191*f2*92(G7F)

ad (g7 91x)(f2x95 (G, F)) f2 g*(G F)
*J2 ’

T(D)(GvF) :grfl*(GvF)

the canonical transformation map in C'y;(7,,()) given by the adjonction maps.
Let Se € Fun(Z,RCat) a diagram of ringed topos with Z € Cat. We have the tensor product bifunctor

() ® (-) : PSh(S,)? — PSh(S,),
((Fr,urg, (Gr,urg)) = (Fryury) @ (Gr,vrg) == (F1 @ Gr,ury ® vry)

We get the bifunctors
()@ (=) : Cra(Sa)* = Cria(Se), (=) @ (=) : Cri(Se) x Cogpit(Se) = Cog it (Se)-
We have the tensor product bifunctor

(1) ®0s (-) : PSho(Se)? — PSh(S,),
((Fr,urs, (Gr,ury)) = (F1,ur;) ®os, (Gr,v15) = (F1 ®og, Gr,urs ®@vry)

which gives,
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e in all case it gives the bifunctor (—) ®os (=) : Coor fi(Se) ® Cog fit(Se) = Crit(Se).

e in the case Og is commutative, it gives the bifunctor (—) ®og (=) : Cog fit(Se)? = Cog fit(Se).

Let (fe, $) : (Te;, O1) = (Se, Os) a morphism with (S., Og) € Fun(Z’, RCat), (7s, Or) € Fun(Z, RCat)
and Z,7' € Cat. which is by definition given by a functor s : Z — I’ and morphism of ringed topos
fo : (Te,01) = (Ss(e); Os). As before, we denote for short, (Ss(), Os) := (Se,Os) 0 s € Fun(Z, RCat).
Denote as before, for ryy: I — J a morphism, with I, J € Z, Dy the commutative diagram in RCat

Dyry = Sy SELR Ss(n)

fJT fIT
T?J

Ts

We have then the adjonction
((f'v 8)*m0d7 (fh S)*) : COS (SS(O)) s COT (7;)7
(Gr,urg) = (fo, )N Grury) i= (fi™'Gr, T (Dy1)(G) o £ ur),
(Gr,urg) = (fo,8)+(G1,ury) :== (f1«Gr, freury).

which induces the adjonction

((for )%, (fo, 8)%) : Cog rit(Ss(a)) S Cogrir(Te),
(G1, F)yurg) = (for )™ NG, F),urg) = (fi™NGL, F), T D) (Gy) o f1 ™),
((Gr,F),ury) = (fe,8)«((G1,F),ury) :== (f1«(Gr1, F), frsury).

For a commutative diagram of diagrams of ringed topos, :

(92, 52)
(7:/702) (S//(.),Oi) )
l(h s2) l(flvsl)
1,8 1)
(Te, O2) —— © (Ss(e), O1)

with Z,7', 7, J’ € Cat and T, € Fun(Z, Cat), 7, € Fun(Z’, Cat),Se € Fun(J,Cat),S, € Fun(J’, Cat),
and s = 51 085 = 57 053 : I' = J, we denote by, for F' = (Fr,uzs) € Co; (S;é(_)),

mOdfl* ad(9§m°d792*)(F) *modF

T™°UD)(F) : gimodfy, F 2 95 1,92 93U F = g7 g1, f21. G5

ad(g; ™ g1x) (f22 95T F) d
f2eg3 " F

the canonical transformation map in Co, (T, (s)), and for G = ((G1, F),ur;) € Coy ra (S;,z(.)),

smod ) ad(gi™0d go, ) (G, F)

T"*(D)(G, F) : g;" fr(G, F) 2 97" freg2.95" UG, F) = 91" g1 fau g3 (G, F)

ad(g*m()dgl*)(f2*!]2m0d(c F)) *mod(G F)

the canonical transformation map in Co, ri1(7s,(e)) given by the adjonction maps.
Let (Se,Os) € Fun(Z,RCat) a diagram of ringed topos with Z € Cat and, for I € Z, Sy is endowed
with topology 77 and for r : I — J a morphism with I,J € Z, ry; : S; — Sy is continous. Let r € N.

[ Amorphlsm¢ = (¢]) : ((F], F),U]J) — ((G], ),U]J) with ((F], F), UIJ), ((G], ), UIJ) € Cosfil(s.)
is said to be an r-filtered 7 local equivalence if the ¢ are r-filtered 7 local equivalences for all I € 7.

o ((Gr,F),ury) € Cogrit(Se) is said to be r-filtered 7 fibrant if the (G, F') € Cogfi(Sr) are r-filtered
7 fibrant for all I € 7.
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2.5 Presheaves on topological spaces and presheaves of modules on a ringed
spaces

In this subsection, we will consider the particular case of presheaves on topological spaces.
Let f: T — S a continous map with S, T € Top. We denote as usual the adjonction

(f*, f+) == (P(f)", P(f)«) : PSh(S) = PSh(T)
induced by the morphism of site given by the pullback functor
P(f) : Ouv(S) — Ouv(T), (§° C ) P(f)(S°):=8°xsT = f1(S°)cT

Since the colimits involved in the definition of f* = P(f)* are filtered, f* also preserve monomorphism.
Hence, we get an adjonction

(f*5 f) : PShya(S) = PShpau(T), [5G, F) = (f*G, [*F)
Let f : (T,Or) — (S,0g) a morphism with (S, Og), (T',Or) € Top. We have then the adjonction
(oL, ) i= (P(F)"™% P(f)x) : PShog sa(S) S PShopsa(T), fUG, F) == f*(G, F) ®;-05 Or

Recall CW C Top is the full subcategory whose objects consists of CW complexes. Denote, for n € N,
I":=10,1]", 8" :=1"/0I" € CW and A™ C I"™ the n dimensional simplex. We get I*, A* € Fun(A, CW)
Denote for S € Top, 15 := S x I'/(({0} x S)u ({1} x S)) € Top.

e Let f: T — S amorphism with T, S € Top. We have the mapping cylinder Cyl(f) := (T'xI')UsS €
Top and the mapping cone Cone(f) := (T x I') Uy S € Top. We have then the quotient map
qs : Cyl(f) — Cone(f) and a canonical retraction ry : Cone(f) — X'T

e Recall two morphisms f,g : T — S with T, S € Top are homotopic if there exist H : T x I' — S
continous such that H o (I x ig) = f and H o (I x i;) = g. Then K(Top) := Hop: (Top) is a
triangulated category with distinguish triangle

T 2y Cyl(f) 25 Cone(f) -5 ST

e For X € Top, denote for n € N, m,(X) : Homg (op) (S™, X) the homotopy groups. For f: 7T — S
a morphism with 7', S € Top, we have for n € N the morphisms of abelian groups

o :mn(T) = 7o (S),h— foh

Recall two morphisms f,g : T — S with T, S € Top are weakly homotopic if f. = g« : m,(T) —
7 (S) for all n € N.

e For X € Top, denote by Ci"8(X) := ZHom(A*, X) € C~(Z) the complex of singular chains and
by C%,.(X) := D2Ci™8(X) := DZHom(A*, X) € C~(Z) the complex of singular cochains. For

sing

f:T — S amorphism with T, S € Top, we have

— the morphism of complexes of abelian groups
Jo: CIUE(T) 5 CF72(S),0 1 f o0,
— the morphism of complexes of abelian groups

f* = DRt Chag(T) = Cing(S), @ [ra: (0. [0(0) := a(f 0 0))

sing
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We denote by Cy € CT(X) the complex of presheaves of singular cochains given by,

sing

(U C X) = Cxaing(U) 1= Cx ging(U) 1= Clip(U) := D*ZHom(A*, U),

sing
(: Up = U2) o (57 £ Clig(U1) = Cling (U2)

sing sing

and by ¢x : Zx — C¥ gy, the inclusion map. For f: T — S a morphism with T',.S € Top, we have
the morphism of complexes of presheaves

f* : C;',sing - f*C;,sing
in C(S).
Theorem 7. (i) If two morphisms f,g: T — S with T,S € Top are weakly homotopic, then

H™(f.) = H"(9+) : Hysing(T,Z) := H"C¥8(T) — Hy, 6ing(S, Z) := H"C8(9).

(ii) For S € Top there exists CW(S) € CW together with a morphism Ls : CW(S) — S which is
a weakly homotopic equivalence, that is Lg. : m,(CW(S)) = 7,(S) are isomorphisms of abelian
groups for all n € N.

(i)’ For f : T — S a morphism, with T,S € Top, and Lg : CW(S) — S, Lg : CW(T) - T
weakly homotopy equivalence with CW(S), CW (T') € CW there exist a morphism L(f): CW(T) —
CW (S) unique up to homotopy such that the following diagram in Top commutes

cw(s) i ~s .

o)

ow(r)y X1

In particular, for S € Top, CW(S) is unique up to homotopy.
Proof. See [14]. O

We have Kunneth formula for singular cohomology :

Proposition 8. Let X1, X9 € Top. Denote by p1 : X1 x X9 — X1 and p2 : X1 x X9 — Xy the projections.
Then
pi@ps: Ch (X1) ® Chpu(X2) = Chipe (X1 X Xo)

sing sing sing

is a quasi-isomorphism.

Proof. Standard (see [14] for example): follows from the fact that for all p € N, H"C%  (AP) = 0 for all

sing

n € 7. O

Remark 2. By definition, X € Top is locally contractile if an only if the inclusion map cx : Zx — Cx 0
is an equivalence top local. In this case it induce, by taking injective resolutions, for n € Z isomorphisms

H"& : HY(X,Zx) = H"(X, C% ging) = H"Clinp(X) =1 Hi,o (X, Z).

sing sing
We will use the following easy propositions :

Proposition 9. (i) Let (S,0s) € RTop. Then, if K* € Cy_(S) is a bounded above complex such that
K™ € PSho,(S) are locally free for all m € Z, and ¢ : F* — G* is a top local equivalence with
F,G€Coy(S), then 91 : F®* Qo L* — G* ®p4 L® is an equivalence top local.
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(it) Let f : (T,Op) = (S,0s) a morphism with (T,Or),(S,0s) € RTop. Then, if K € C§_(S) is a
bounded complex such that K™ € PShog(S) are locally free for alln € Z, and N € Co, (T)

koT™(f,@)(M, E(N)) : K&og [ E(N) = f((f" " K)@0r E(N)) = fE((f"K)®o, E(N))
is an equivalence top local.

Proof. Standard. O

Proposition 10. Leti: (Z,0z7) < (S,0s) a closed embedding of ringed spaces, with Z,S € Top. Then
for M € Cog(S) and M € Ci04(Z),

T(,)(M,N): M ®0g i« N = i.(i" M Q;+04 N)
is an equivalence top local.

Proof. Standard. Follows form the fact that j*i./N = 0. O

We note the following :

Proposition 11. Let (S,0g) € Sch such that Og s are reduced local rings for all s € S. For s € S
consider q : Log ,(k(s)) — k(s) the canonical projective resolution of the Os s module k(s) := Og,s/ms
(the residual field) of s € S. For s € S denote by is : {s} < S the embedding. Let ¢ : F — G a morphism
with F,G € Cog,c(S) i.e. such that a,erH"F, a5, H"G € Coh(S) . If

l§¢ ®i§Os Lif;Os (k(s)) : ZzF ®i§Os Lif;Os (k(s)) — ZzG ®i§Os LizOs (k(s))
is a quasi-isomorphism for all s € S, then ¢ : F — G is an equivalence top local.

Proof. Let s € S. Since tensorizing with L;-o4(k(s)) is an exact functor, we have canonical isomorphism
a(F),a(G) fiting in a commutative diagram

H™(i29®is 04 Lizog (k(s)))

H"(ZiF ®i§Os Lif;Os (k(s))) Hn(Z:G ®i§Os Li;OS (k(s)))
la(F) la(G)

, i(H" )06 Lizog (K(s))

is(H"F) ®i:05 Lizos (k(s)) =2 S i5(H"G) ®iz0s Lizos (k(s))

Let n € Z. By hypothesis

H"(i¢ @05 Lizos (k(s)))  H"(ilF ®i;05 Lizos (k(s))) = H"(i{G ®i;05 Lizos (k(s)))
is an isomorphism. Hence, the diagram 2.5 implies that

iy(H"$) ®iz05 Lizos (k(s)) 1 i{(H"F) ®i;05 Lizos (k(s)) = i (H"G) ®iz0s Lizos (k(s))

is an isomorphism. We conclude on the one hand that iH"¢ : itH"F — iiH"G is surjective by
Nakayama lemma since i*H"F', i H"G are Og ¢ modules of finite type as F,G € Cog (S) has coherent
cohomology sheaves, and on the other hand that the rows of the following commutative diagram are
isomorphism

HO (i (H"$)® i 0g Liz og (K(s)))

HO(i5(H"F) @is05 Lizos (k(s))) HO(i%(H"G) @iz05 Liz0s ((s))) -
l E(H"$)®ix 0 k(s)~ l
i2(H"F) @304 k(s) i5(H"G) ®i:04 k(s)

Since

is(H"$) ®ix0g k(s) 1 i5(H"F) ®iz04 k(s) = i3 (H"F) @05 k(s)
is an isomorphism for all s € S, Og s =: i;Og are reduced, and a,q, H"F, a4, H"G are coherent, i: H"¢ :
1:H"F — i H"G are injective. O
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Let ¢ : Z < S a closed embedding, with S, Z € Top. Denote by j : S\Z < S the open embedding of
the complementary subset. We have the adjonction

(ix,3') == (ix,it) : C(Z) = C(S), with in this casei'F :=ker(F — j.j*F).

It induces the adjonction (i.,4') : Cia)piu(Z) — Cay7u(S) (we recall that i := i preserve monomor-
phisms).

Let ¢ : Z < S a closed embedding, with S, Z € Top. Denote by j : S\Z < S the open embedding of
the complementary subset. We have the support section functors :

e We have the functor
Tz :C(S) = C(S), Fr—Tz(F):=Cone(ad(j*, 7:)(F) : F = j.j"F)[-1],
together with the canonical map vz (F) : Tz F — F. We have the factorization

) 1 ad(i.,i ) (F)Y

ad(iv, &) (F) : ii'F ryF 225

F.

3

and ad(i,, ') (F)" :i,i'F — T'zF is an homotopy equivalence. Since I'z preserve monomorphisms,
it induce the functor

Tz :Cru(S) = Cra(S), (G, F) = Tz(G,F):=(TzGTzF),
together with the canonical map vz ((G, F) : Tz(G,F) — (G, F).
e We have also the functor
ry:C(S)— C(S), F— T'LF := Cone(ad(ji, j*)(F) : ij*F — F),
together with the canonical map vy (F) : F — ', F. We have the factorization

vy (F) ad(i*,i.)(F)7

ad(i*,i,)(F) : F Ty F ii*F,

and ad(i*,4.)(F)Y : TLF — i,*F is an homotopy equivalence. Since I, preserve monomorphisms,
z z
it induce the functor

Lz :Cru(S) = Cru(S), (G, F) = T%(G,F):=(I'yG,TLF),
together with the canonical map v%(G,F) : (G, F) = '} (G, F).

Definition-Proposition 1. (i) Let g : S’ — S a morphism and i : Z < S a closed embedding with
S',8,Z € Top. Then, for (G,F) € Cry(S), there is a canonical map in Cy;y(S)

T(Q?V)(GaF) : g*PZ(GaF) — FZXSS’Q*(GuF)
unique up to homotopy such that vzx s/ (9" (G, F)) o T(9,7)(G, F) = g*vz(G, F).

(ii) Let ih : Z1 — S, ia 1 Zo — Zy be closed embeddings with S, Z1,Z € Top. Then, for (G,F) €
Cfil(s)a

— there is a canonical map T(Z2/Z1,7)(G,F) : T'z,(G,F) = I'z, (G, F) in Cyy(S) unique up
to homotopy such that vz, (G, F) o T(Z2/Z1,7)(G, F) = vz,(G, F) together with a distinguish
triangle in Ky (S) := K(PShyy(S))

dd(]; 7j2*)(FZI (G7F))

T(Z4/Z1,7)(G,F
T2, (G, F) Z220C0, b (@, F) T2 020 (G, F) = Ty (G, F)[1]
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— there is a canonical map T(Z2/Z1,vV)(G, F) : T} (G, F) = T} (G, F) in Cru(S) unique up to
homotopy such that vy, (G, F) = T(Z2/Z1,~")(G, F) o vy (G, F). together with a distinguish
triangle in Ky (S)

ad(ja1,j3)(G,F) T(Z2/Z1 7" )(G,F))
T\ (G,F) Lﬂ“gl(@ F) 2720 I}, (G, F) =Ty, 4 (G F)1]

(iii) Consider a morphism g : (S, Z') — (S, Z) with (S, Z"), (S, Z) € Top®>. We denote, for G € C(S)
the composite
T(Z'/Zx 58 vY)(G)

T(D,’YV)(G) . g*FéG:%F%XSS/g*G Fv/g*G

*_V G Vv
and we have then the factorization vy (¢9*G) : ¢*G EMEACIN g TYG TDA7)E), 'y g*G.

Proof. (i): We have the cartesian square

S\Z— =5
'
S\Z x5S~
and the map is given by
(1,T(9,4)(4"G)) : Cone(g"G — g"j.j*G) — Cone(g"G — jLj "¢ G = j.g " j"G).

(ii): Follows from the fact that j{T'z,G = 0 and j{T'} G = 0, with j; : S\Z; — S the closed embedding.
(iii): Obvious. O

Let (S,0g) € RTop. Let Z C S a closed subset. Denote by j : S\Z < S the open complementary
embedding,

e For G € Cop.(S), I'zG := Cone(ad(5*, j«)(G) : F — j.j*G)[—1] has a (unique) structure of Og
module such that vz(G) : T'zG — G is a map in Co,(S). This gives the functor

FZ : COsfil(S) — OfilOs(S); (G,F) — Fz(G,F) = (FzG,FzF),

together with the canonical map vz((G,F) : T'z(G,F) — (G,F). Let Zy C Z a closed subset.
Then, for G € Coy(S), T(Z2/Z,7)(G) : Tz,G — T'zG is a map in Co(S) (i.e. is Og linear).

e For G € Co,(S), I'yG := Cone(ad(ji, j*)(G) : 71j*G — G) has a unique structure of Og module,
such that v%(G) : G — I'}G is a map in Co,(S). This gives the functor

Fé : COSfil(S) — Cfilos (S)u (GuF) = Fé(GuF) = (P\Z/Gvr\Z/F)u

together with the canonical map v3((G,F) : (G,F) — I'(G,F). Let Zy C Z a closed subset.
Then, for G € Co4(S), T(Z2/Z,7")(G) : TG — Ty, G is a map in Co,(S) (i.e. is Og linear).

e For G € Cp,(5), we will use
ry"G: = DYLoTZEDYG)
= Cone(DY Lo ad(jx, j*)(E(DSQR)) : DY Loj.i* E(DYG) — DY Lo E(DYG))
and we have the canonical map ”yz’h(G) M — F}’hG of Og module. The factorization
oDC I(4r i) (DO 7* od(ini*
ad(]|,]*)(LOM) ]lj*LOG (k D I(J47J )(]D) J LOG) d(].] LOG))q
ad(j.,i")(E(DF LoG))

DS Loj»j*E(DS LoG) DS Lo E(D§ LoG)
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17 (LoG), LoG (koD I(j1,5*)(DC5* LoG)od(jij* LoG))?

Iy

gives the factorization vé’h(LoG) : LoG
F}’hLOG. We get the functor

T": Cosfir(S) = Cosri(S), (G, F) —TyMG, F) :=DYLoTzE(DY (G, F)),
together with the factorization
vz (Lo (G,F))

VE)h(LO(GvF)) : LO(GvF)
(koD I(§1,5)(DF 5" Lo (G, F))od(ji15* Lo (G, F)))?

F%‘LO(G? F)

I} "Lo(G, F),

e Consider Z C Og a right ideal of Og such that 79 C Z, where Z, C Og is the left and right ideal
consisting of section which vanish on Z.

— For G € PShp,(S), we consider, S° C S being an open subset,
IG(S°) =< {fm,m e G(S°), f € Z(5°)} >C G(S?)

since 7 is a right ideal, and we denote by b;(G) : ZG — G the injective morphism of Og modules
and by ¢z(G) : G = G/IG the quotient map. The adjonction map ad(ji, 7*)(G) : 17*G — G
factors trough b;(G) :

5/5(@) b1 (G)

b
ad(j, j")(G) : 1j" G G

We have then the support section functor,
1797 Coy(S) = Cos(S), G Ty G = Cone(br(G) : IG = G)
together with the canonical map *yg’O(G) G — Fé’OG which factors through

VY(G) bs2(G)

e,

vl @) @ r;°a.

By the exact sequence 0 — ZG M G ﬂ G/ZIG — 0, we have an homotopy equivalence
cr(G):Ty2'a = G/IG.
— For G € PShp,(S), we consider
Vi (G): G — G®osDY(T) := G R0y Hom(Z,Os)
The adjonction map ad(j*, j«)(G) : G — j.j*G factors trough b7 (G) :

. : vis(G)
ad(j*,j.)(G) : G RGN G ®o; DI(T) 2 j.5*G

We have then the support section functor,
9" Coy(S) = Cos(S), G TG := Cone(b;(G) : G — G ®o, D(Z))[—1]
together with the canonical map 75 (G) : T'9G — G which factors through

bé/z (&) vz (G)

v @) T)aG ;G G.
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— By definition, we have for a canonical isomorphism
I(D,7°)(G) : DTV 16 = 19 'DEG
which gives the transformation map in Co(S)

DI(DAO)BLE)

T(D,7°)(@G) : TV0'DgG X2 p22rv-0IpQG

DYTY ! d(G)

DYry g ic Dgry’a

Definition-Proposition 2. (i) Let g : (5,0s/) — (5,0s) a morphism and i : Z — S a closed
embedding with (S’,Og:, (S,0g) € RTop. Then, for (G,F) € Cogru(S), there is a canonical map
in Cog, rir(S")

T (g, 7)(G, F) : g T 2(G, F) = Tz 559" (G, F)
unique up to homotopy, such that vzx s (g*™°1G) o T™°(g,7)(G) = g*™°y;G.

(i1) Let i1 : (Z1,0z,) < (S,0s), iz : (Z2,0z,) < (Z1,0z,) be closed embeddings with S, Z1, Zs € Top.
Then, for (G, F) € Cogfiu(S), there is a canonical map in Cog i (S)

T(ZQ/Zla’Yvyo)(Ga F) : F\Z/;O(Ga F) — F\Z/;O(Ga F)
unique up to homotopy such that WE;O(G, F)=T(Z2/Z1,7V°)(G,F)o WZ;O(G, F).

(iii) Consider a morphism g : ((S',0s), Z") — ((S, Os), Z) with ((S’,0s), Z') — ((S,0s), Z) € RTop™.
We denote, for M € Co4(S) the composite

~ ’ S’ V,0 G
TmOd(D,’yv’O)(G) . g*mOdF}’OG ~y Fé,)?ss,g*modG T(Z2']ZxsS" v ")(G) F}’,Og*mOdG

and we have then the factorization

*mod’y\/,O(G)

'Yg;o(g*mOdM) . g*modG g z g*modF\Z/,OG TMOd(D,'Yv’O)(G)

Fé}og*mOdG

Proof. (i): We have the cartesian square

S\Z—? -5
4
S\Z x5S
and the map is given by
(1, T™(9.4)(i* @) : Cone(g™*'G — g™"*jj*G) = Cone(g™™*'G — jLj g™ *'C = jLg """ G).

(ii):Obvious.
(iii):Obvious. O

Definition-Proposition 3. Consider a commutative diagram in RTop

Dy= f:(X,0x) —— (Y,0y) —— (S,05)
A
(X Ox — (v, 0y) = (T, 07)

with i, 1 being closed embeddings. Denote by D the right square of Dg. The closed embedding i’ : X' — Y’

factors through i’ + X' 2 X xy Y' 2% Y where i},1, are closed embeddings.
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(i) We have the canonical map,

EQ0,,14"+0v))/(0r/9-0s)) © T(g" E)(=) 0 T(g",7) (=) :

g *FXE(Qby/;D*OS’Fb) — FXXYY/E(QZ)Y//p/*OT’Fb)

unique up to homotopy such that the following diagram in Cyr.po s piu(Y') = Cprepeogpu(Y') com-
mutes

E(Ff‘ls(oy,/Y))/(oT/s))OT(Q”7E)(*)°T(9"1’Y)(*) Qe 7
by e KB g )

’YX()\L l'VXXyY’()
" EQ@o.,, 14"+ 0y )00 /5 ° T8 E)=)
g *E(Qby/p*ostb) - E( .oz,/p’*oT’Fb)

g *TxE(Qe

(ii) There is a canonical map,

TO(D)" : g*mOdLOp*PXE(Q.Oy/;D*Os’Fb) = Pl xxy vy B(

Oy//p,*OT ) Fb)

unique up to homotopy such that the following diagram in Co.ra(T) commutes

73(D)”

g LopTx B /e 0 Fb) Xy v B, 6,0 Fb) -
’rx()l lvxww()
G Lop B, o F) (D) DB 0 T)
(i1i) We have the canonical map in Cpr.q, (Y')
T(X'/X 3y Y N EQ), jy-0p F) : T B, 60 F) = Txsy v B a0, F)

unique up to homotopy such that yxx,vy/ (=) o T(X'/X xy Y',v)(—=) = vx/(—).
Proof. Immediate from definition. We take for the map of point (ii) the composite

TWO(D)V : g*mOdLOp*FXE(Q.OY/p*OsuFb) i> g*p*I‘XE(Q:)Y/p*OSJFb) ®g*05 OT

T(g",E)(—)oT(g" 7)(—=)oT(DYEQS  /prog))

(p;FXxYY’E(g Qby/p*OSva)) ®g=0s Or

E(wal /g”*oy)/(oT/Q*os))

p;FXXYY’E(Q.OY//p/*OTan) ®g-0s Or —> p;FXxYY'E(Q.OY//p/*OTaFb)v
with m(n ® s) = s.n. O

Definition 2. (i) Let S € Top. For Z C S a closed subset, we denote by Cz(S) C C(S) the full
subcategory consisting of complexes of presheaves F' € C(S) such that awpH"™(j*F) = 0 for all
n € Z, where j : S\Z — S is the complementary open embedding and a.op is the sheaftification
functor.

(i)’ More generally, let (S,0Og) € RTop. For Z C S a closed subset, we denote by
Cog,z(S) C Cos(S), QCohz(S) C QCoh(S)
the full subcategories consisting of complexes of presheaves G € Cog(S) such that aiopH™(j*F) =0
for all n € Z, resp. quasi-coherent sheaves G € QCoh(S) such that j*F = 0.
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(i) Let S € Top. For Z C S a closed subset, we denote by Cyy z(S) C Cru(S) the full subcategory
consisting of filtered complexes of presheaves (G, F) € Cry(S) such that there exist r € N such that
atop *EPY(G, F) = 0 for all p,q € Z, where j : S\Z — S is the complementary open embedding
and atop 15 the sheaftification functor. Note that this definition say that this r does NOT depend on
p and q.

(i)’ More generally, let (S,Og) € RTop. For Z C S a closed subset, we denote by
Cos,fi,z(S) C Cog,7i(S), QCohsi, z(S) C QCoh(S)

the full subcategories consisting of filtered complexes of presheaves (G,F) € Cogyru(S) such that
there exist 1 € N such that aiopj*EPY(G,F) = 0 for all p,q € Z, resp. filtered quasi-coherent
sheaves (G, F) € QCoh(S) such that there exist r € N such that j*EPIF =0 for all p,q € Z. Note
that this definition say that this v does NOT depend on p and q.

Let (S,0s) € RTop and Z C S a closed subset.

e For (G,F) € Cyiy(S), we have I'z(G, F),T'%(G, F) € Crq z(S5).

o For (G,F) € Cogsa(S), we have Tz(G, F), T} (G, F), T " (G, F),T}°(G,F) € Cogti,z(S).
Proposition 12. Let S € Top and Z C S a closed subspace. Denote by i: Z < S the closed embedding.

(i) The functor i* : Shvz(S) — Shv(Z) is an equivalence of category whose inverse is i, : Shv(Z) —
Shvz(S). More precisely ad(i.,i*)(H) : i*i,H — H is an isomorphism if H € Shv(Z) and
ad(i«,1*)(Q) : G = i.3*G is an isomorphism if G € Shvz(S).

(it) : The functor i* : Shvy z(S) — Shvyy(Z) is an equivalence of category whose inverse is i :
Shv i (Z) — Shv i, z(S). More precisely ad(iy, *)(H, F) : i*i.(H, F) — (H, F) is an isomorphism
if (H,F) € Shv(Z) and ad(i.,i*)(G,F) : (G,F) — .i*(G,F) is an isomorphism if (G,F) €
Shv(S).

(it1) : The functor i* : Dy i z(S) — Dr5u(Z) is an equivalence of category whose inverse is i, :
D ru(Z) = Dy i,z(S). More precisely ad(i.,i*)(H,F) : i*i,(H,F) — (H,F) is an equivalence
top local if (H,F) € Cry(Z) and ad(is,i*)(G, F) : (G, F) — 4.i*(G, F) is an equivalence top local
if (G,F) S Cfil)z(S).

Proof. (i):Standard.
(ii): Follows from (i).
(iii): Follows from (ii). O

Let S € Top and Z C S a closed subspace. By proposition 12, if G € C(5), ad(i.,i*)(T'2zG) : T'zG —
1+1*T'zG is an equivalence top local since I'zG € Cz(5).

Let (S,05) € RTop. Let D = U;D; C X a normal crossing divisor, denote by j : S\D < S the open
embedding, and consider Zp C Og the ideal of vanishing function on D which is invertible. We set, for
M e Cos (S),

M(xD) := 1irrln Homoy (I", M),

and we denote by ap(F) : F — F(xD) the surjective morphism of presheaves. The adjonction map
ad(j*,j«)(F) : F — j.«j*F factors trough ap(F) :

as/p(F)

0@, pp) 220, G R

ad(j*, j«)(F) : F

Remark 3. o Let j: U — X an open embedding, with (X,Ox) € RTop. Then if F' € Coho,, (U) is

a coherent sheaf of Oy module, j.F is quasi-coherent but NOT coherent in general. In particular

for F € Co,(U) whose cohomology sheaves aiq H"F are coherent for all n € Z, the cohomology
sheaves R"j. F := a; H"j. E(F) of Rj.F = j.E(F) are quasi-coherent but NOT coherent.
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o Let j:U < X an open embedding, with X € Sch. Then if F' € Coh(U) is a coherent sheaf of Oy
module, j.F' is quasi-coherent but NOT coherent. However, there exist an Ox submodule F C j.F'
such that j*F = F and F € Coh(X).

The following propositions are true for schemes but NOT for arbitrary ringed spaces like analytic
spaces :

Proposition 13. (i) Let X = (X,0x) € Sch a noetherien scheme and D C X a closed subset.
Denote by j : U = X\D — X an open embedding. Then for F € QCoho, (U) a quasi coherent
sheaf, j.F € QCoho, (X) is quasi-coherent and is the direct limit of its coherent subsheaves.

(i) Let X = (X,0x) a noetherien scheme and D = UD; C X a normal crossing divisor. Denote by
j: U= X\D < X an open embedding. Then for F' € QCoho, (U) a quasi coherent sheaf, the
canonical map ax,p(F) : F(xD) = j,F is an isomorphism.

Proof. Standard. O

Proposition 14. Let S = (S,0s) € Sch and Z C S a closed subscheme. Denote by i : Z < S the closed
embedding.

(i) For G € QCohz(S), i*G has a canonical structure of Oz module. Moreover, the functor i* :
QCohz(S) = QCoh(Z) is an equivalence of category whose inverse is i, : QCoh(Z) — QCohz(S).

(it) : The functor i* : QCohysy,z(S) — QCohyyu(Z) is an equivalence of category whose inverse is
Ty : QCOhfil(Z) — Qcohfi[)z(S).

(i1i) : The functor i* : Dogfi,z,qc(S) = Doy filqc(Z) is an equivalence of category whose inverse is
it Doy fitge(Z) = Dog fit,2,4¢(5)-

Proof. (i):Standard.
(ii): Follows from (i).
(iii): Follows from (ii) since ¢* and i, are exact functors. O

Definition 3. Let (S,0s) € RTop a locally ringed space with Og commutative. Consider an kg €
Cos(S). Let T C Og an ideal subsheaf and Z = V(I) C S the associated closed subset. For G €
PSho,(S), we denote by Gz = G := lim, G/I*G the completion with respect to the ideal T and by
F(G):G— Gy the quotient map. Then, the canonical map

T (®kg,hom)(DSG,05)

drs 2(G) - G L9 D02

T™°YT 7 E,hom)(—,—)

Homos (]D)gG Rog KS, Iis) Homos (PzE(]D)gG Rog Iis), PzE(Hs))

factors through

ez (G) drg.2(G)

dos.z(G): G Gy Homog (TzE(DYG @0y ks),TzE(ks))

Clearly if G € Cogy(S) then dyg z(G) is a map in Coy(S). On the other hand, we have a commutative
diagram

P des 2 (55 oOP

QOS }[Somos (FZE(DSQOS ®og Iis),rzE(HS))
ld -

p+1 drg.z (X)) 0pt1
QS #Omos(rzE(DSQOS ®og IQS),FzE(Iis))

so that dig z(Q%) € C(9).
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The following theorem is the from [13]

Theorem 8. Let S € Var(C). Let Z = V(Z) C S a closed subset. Denote by Kg € PSho,(S) the
canonical bundle. Then, for G € Cog (5),

dics. 7(G) : Gz = Homos(TzEMYG ®os Ks),TzE(Ks))

is an equivalence Zariski local.

Let f: (X,0x) — (S,0s) a morphism with (S,0g) € RTop. In the particular case where Og is
a commutative sheaf of ring, To, € PSho(S) and Qos = Do Tos € PShp,(S) are sheaves and the
morphism in PSh(X)

T(f, hom)(Os, Os) : f*Hom(Os,O0s) — Hom(f*Os, f*Os)

induces isomorphisms T'(f,hom)(Og, Os) : f*To, — Tf-0s and Do, T(f, hom)(Og,0s) : Qs04 —
f*Qos where for F' € Shv(S), we denote again (as usual) by abuse f*F := a,f*F € Shv(S), aau :
PSh(S) — Shv(S) being the sheaftification functor.

Definition 4. (i) Let (X,0x) € RTop. A foliation (X,0x)/F on (X,0Ox) is an Ox module Qo /F €
PSho, (X) together with a derivation map d := dr : Ox — Qo /7 such that

— the associated map q = qr := wx(d) : Qo — Qo /F is surjective

— satisfy the integrability condition d(ker q) C ker g which implies that the map d : Q%X — Q%J;l
induce factors trough

d +1
0o, — 20,
qp:_/\pqt lqurl:_qu
P d p+1
QOX /F QOX /F
and d : ng/]_. — ng;l/F is neccessary unique by the surjectivity of qP : Q%X — QZX/]_..

In the particular case where Qo /5 € PShoy (X) is a locally free sheaf of Ox module, Doy q :
Tox 7 = DoxQoy 7 — Tox is injective and the second condition is then equivalent to the fact
that the sub Ox module To ;7 C Toy is a Lie subalgebra, that is [To /7, Toy /7] C Tox /7

(11) A piece of leaf a foliation (X,0x)/F with (X,0x) € RTop such that Ox is a commutative sheaf
of ring is an injective morphism of ringed spaces | : (Z,0z7) — (X,0x) such that Q0 /0,
Qi~ox — Qo, factors trough an isomorphism

D;* o, T(i,hom)(Ox,0x) | i* .
X Z*QOX ——q—>’L*QOX/]:—)QOZ.

Qi*Ox/OZ . Q’i*OX

(i) If f : (X,0x) — (S,0s) is a morphism with (X,0x),(S,0s) € RTop, we have the foliation
(X,0x)/(S,0s) := ((X,0x), f) on (X,0x) given by the surjection

q: QOX — Qox/,f*os = COker(QOx/f*Os : Qf*Os — QOX)-
The fibers ix, : (Xs,0x,) = (X,0x) for each s € S are the leaves of the foliation.
(iv) We have the category Fol RT op

— whose objects are foliated ringed spaces (X,0x)/F with Ox a commutatif sheaf of ring and
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— whose morphisms f: (X,0x)/F — (S,0s5)/G are morphisms of ringed spaces f : (X,0x) —
(S, 0s) such that Qo /505 : Q05 — Qox factors through

. ID)IMOST(f,hom)(os,os&*1 Qo /#*0g
f QOS > 3f*Og > QOx

f*qgl qu
q
QOX/f*OS

f*Qos/¢ Qoy/r

This category admits inverse limits with (X,0x)/F x(Y,0y)/G = (X xY,p%Ox @p}-Oy) /05 F
pyG and

(X, 0x)/F (5,05 (Y;0v)/G = (X x5 Y,05(px Ox @ pyOy))/Px F @ pyG
with 0s : X Xg Y — X x Y the embedding given by the diagonal §s : S — S x S.

Let S € Top. Let S = uﬁzlsi an open cover and denote by S; = MierS;. Let i; : S; — S; closed
embeddings, with S; € Top. For I C [L,---[], denote by St = Il;c1S;. We then have closed embeddings
iy : St — St and, for J C I, the following commutative diagram

Dry= 51 i Sr
juT PIJT
Sy Y Sy

where jry : S; < Sy is the open embedding so ~thatt jrojry = jj. and pry: S’J — 5’1 the projection.
This gives the diagram of topological spaces (Sr) € Fun(P(N), Top) which which gives the diagram
(S1) € (Ouv(Sy)) € Fun(P(N), Cat) Denote m : S;\(Sr\Sy) < S; the open embedding.

Definition 5. Let S € T~0p. Let S = UézlSi an open cover and denote~ by St = NierS;. Leti; 1 S; — 5‘1
closed embeddings, with S; € Top. We denote by Cry(S/(S1)) C Cru(Sr) the full subcategory

e whose objects are (G, F) = ((G1, F)icp,..q), ury), with (G, F) € Cti.s,(Sr), andury : m*(Gy, F) —
m*pj(]*(gJ, F) are oo-filtered top local equivalences satisfying for I C J C K, prjujx oury = Ui
mn Ofil(S[),

o the morphisms m : ((Gr, F),ury) = ((Hy, F),vry) being (see section 2.1) a family of morphism of
complexes,
m = (mr: (G, F') = (Hr, F))rcp,.q

such that vy omr = prj«myoury in sz-l(S'I).

A morphism m : ((Gr, F),ury) — ((Hr, F),vry) is said to be an r-filtered top local equivalence if all the
my are r-filtered top local equivalences.

Denote L = [1,...,l] and for I C L, poor) : S % S;— S, Pror @ S % S; — S the projections.By
definition, we have functors

o T(S/(51)) : Cru(S) = Cya(S/(SD)), (G, F) v (irj; (G, F), )
° T((g[)/S) : Cfll(S/(S'])) — Ofil(S), ((G[, F),U,[J) — hOlimch pO(OI)*ngp?(OI)(G[, F)
Note that the functors T(S/(S;) are embedding, since

ad(iy, i) (7 F) < iqin g F — i F
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are top local equivalence.

Let f: X — S a morphism, with X, S € Top. Let S = U._,S; and X = U._, X; be open covers and
i S; = S, i X, — X; be closed embeddings, such that, for each i € (1,1, fi == fix, : Xi — S; lift to
a morphism ﬁ : Xl- — S’Z Then, f; = f‘XI : X1 =Nier Xy — S = NierS; lift to the morphism

fr=Tcrfi: Xr = Wier Xi — Sp = Mier S

Denote by pry : S; — S; and Py - X; — X7 the projections. Consider for J C I the following
commutative diagrams

Dy = SIL>§1 , Dy, = X —> X, , Dyr = 51L>5'1
juT ZDUT j}JT PIUT fIT fIT

We have then following commutative diagram

X7 X X\X7 .

./ nI
JI‘] ’ / /
Pry Pry Pry

. lr. ~ nyxI ~ ~
i Xy —=' X x Xy x X —= Xy -~ XA\X
J

whose square are cartesian. We then have the pullback functor
F* 2 ClayalS/(S1) = Caypan(X/ (X)),
((GlaF)aulJ) = f*((GfaF)aulJ) = (P}If}ﬁ(GfaF%f;uIJ)
with

Fx s 'd( /»‘«, /‘*)(_) /s T T( ,n/)(—)fl)
Fiurs Py, Ji(Gr, F) i PrpliTx, f1(Gr, F) oLkl CaE

PIIJ*’YJVQ,(*)

p/IJ*F}/(I X;*(J\IPI*JJCI* (Gr, F)

T%, F3 105 pra:)(—=)(urs)

p}J*F}Jp}*}fN;(GI’ F) = p/IJ*F}/(Jf;p?J(GL F) F}/(Jf;(GJ7 F)
Let (G, F) € Cya(8). Since, j;"i}.,j" f*(G, F) = 0, the morphism T(Dy1)(j; (G, F)) « firji(G, F) —
i}*j}*f*(G, F) factors trough

7%, (=)

. Fei Fei T7(D41) (57 (G.F))
T(Ds)(§7(G,F)) « fiin; (G, F) === T, ffirj;i (G, F) ——="""—=

.07 (G, F)
We have then, for (G, F) € Cf;(S), the canonical transformation map

P8/ (S)G, ) —LTOINED i) (%)) (74(G, F))

| |

o o TV(Ds) (G (GLF)) T
(Fg(lflll*jI(GvF)vaI) ! (Z/I*jlf (GvF)vj)

Proposition 15. Let S € Top. Let S = Uﬁzlsi an open cover and denote by St = NierS;. Let i; : S; —
S; closed embeddings, with S; € Top. Denote by D(2)fi1,00((S/(S1))) = Hotop,co(C(2)£a((S/(S1)))) the
localization of C(Q)fil((S/(S’I))) with respect to top local equivalences. The functor T(S/(S7)) induces an

equivalence of category 3 }
T(S/(S1)) : D2)sit,00(S) — D(2)1i1,00((S/(S1)))
with inverse T((Sr)/5S)
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Proof. Follows from the fact that for (G, F) € Cp(S),
ho }lcn% Poon)«L 8,01 on (11437 (G, F)) = poon«L's, 37 (G, F)

is an equivalence top local. O

For f: T — S a morphism with T',.S € Top locally compact (in particular Hausdorf), e.g. T,5 € CW,
there is also a functor fi : C(T') — C(S) given by the section which have compact support over f, and,
for K1, K, € C(T), we have a canonical map

Ti(f, hom) : fiHom(K1, Ko) — Hom(fi K1, fiK2)
The main result on presheaves on locally compact spaces is the following :
Theorem 9. Let f: T — S a morphism with T,S € Top locally compact.

(i) The derived functor Rf, : D(T) — D(S) has a right adjoint f* (Verdier duality) and, for K1, Ko €
D(T) and K3, K4 € D(S), we have canonical isomorphisms

— Rf.RHom*(RfiK,, K3) = RHom* (K1, f'K3)
— f'RHom® (K3, K4) = RHom*(f*Ks, f'K,)

(ii) Denote, for K € D(S), D(K) = RHom®*(K,a\Z) € D(S) the Verdier dual of K. Then, if K €
D.(S), the evaluation map ev®(S)(K) : K — D(D(K) is an isomorphism.

(iii) Assume we have a factorization f : T LyZ2s of f with | a closed embedding and p a smooth
morphism of relative dimension d. Then f'K = i'p*K|[d]

Proof. (i):Standard, the proof is formal (see [29]).
(ii): See [29].
(iii): The fact that p'K = p*K|d] follows by Poincare duality for topological manifold. O

We have by theorem 9 a pair of adjoint functor
(Rfi, /') : D(T) = D(S)
e with fi = f. if f is proper,

e with f' = f*[d] if f is smooth of relative dimension d.

2.6 Presheaves on the big Zariski site or on the big etale site

For S € Var(C), we denote by pg : Var(C)*™ /S — Var(C)/S be the full subcategory consisting of the
objects U/S = (U, h) € Var(C)/S such that the morphism h : U — S is smooth. That is, Var(C)*™/S is

the category
e whose objects are smooth morphisms U/S = (U,h), h: U — S with U € Var(C),

e whose morphisms g : U/S = (U,hy) — V/S = (V,ha) is a morphism g : U — V of complex
algebraic varieties such that he 0o g = h;.

We denote again pg : Var(C)/S — Var(C)*™ /S the associated morphism of site. We will consider

r*(S) : Var(C) LGN Var(C)/S £2 Var(C)*™/S
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the composite morphism of site. For S € Var(C), we denote by Zg := Z(S/S) € PSh(Var(C)*™/S) the
constant presheaf By Yoneda lemma, we have for F' € C(Var(C)*™/S), Hom(Zs,F)=F. For f : T — S
a morphism, with T, S € Var(C), we have the following commutative diagram of sites

Var(C) /T —2 Var(C)*™ /T (23)
lp(f) lp(f)
Var(C)/S —2= Var(C)*™ /S
We denote, for S € Var(C), the obvious morphism of sites
&(S) : Var(C) /8 2% Var(C)*™ /S <% Ouv(S)

where Ouv(.S) is the set of the Zariski open subsets of S, given by the inclusion functors é(.S) : Ouv(S) —
Var(C)*™ /S < Var(C)/S. By definition, for f : T'— S a morphism with S, T" € Var(C), the commutative
diagram of sites (23) extend a commutative diagram of sites :

(T)

PT

&(T) : Var(C)/T — X~ Var(C)*™ /T — =~ Ouv(T) (24)
lP(f) lpm lP(f)
&(S) : Var(C) /S —> = Var(C)™ /S — . Ouv(s)

e As usual, we denote by
(f* fe) = (P(f)", P(f)«) : C(Var(C)*™ /S) — C(Var(C)*™ /T)
the adjonction induced by P(f) : Var(C)*™ /T — Var(C)*™/S. Since the colimits involved in the
definition of f* = P(f)* are filtered, f* also preserve monomorphism. Hence, we get an adjonction
(f*5 1) : Cru(Var(C)*™/S) = Cru(Var(C)*™/T), f*(G, F) = (f*G, [*F)
e As usual, we denote by
(f* fo) == (P(f)", P(f)«) : C(Var(C)/S) — C(Var(C)/T)
the adjonction induced by P(f) : Var(C)/T — Var(C)/S. Since the colimits involved in the
definition of f* = P(f)* are filtered, f* also preserve monomorphism. Hence, we get an adjonction

(f*; f+) : Cra(Var(C)/S) = Cra(Var(C)/T), (G, F) := (f*G, [*F)

e For h: U — S a smooth morphism with U, S € Var(C), the pullback functor P(h) : Var(C)*™ /S —
Var(C)*™ /U admits a left adjoint C'(h)(X — U) = (X — U — S). Hence, h* : C(Var(C)*™/S) —
C(Var(C)*™ /U) admits a left adjoint

hy : C(Var(C)*™ /U) — C(Var(C)*™/S), F + ((V,ho) — F(V' n")

Note that we have Z(V/S) = hyZy. More generaly for A’ : V' — V a smooth morphism,
V',V € Var(C), we have hy(Z(V'/V)) = Z(V'/S) with V'/S = (V',h o h'). Hence, since pro-
jective presheaves are the direct summands of the representable presheaves, hy sends projective
presheaves to projective presheaves. For F'* € C(Var(C)*™/S) and G* € C(Var(C)*™/U), we have
the adjonction maps

ad(hs, h*)(G*) : G* = h*h,G* | ad(hy, h*)(F®) : hyh*F* — F*.

lim
(V’,hoh’)—(V,hg)

For a smooth morphism h : U — S, with U, S € Var(C), we have the adjonction isomorphism, for
F € C(Var(C)*™/U) and G € C(Var(C)*™/S),

I(hy, h*)(F, G) : Hom®(hsF, G) = hoHom® (F, h*G). (25)
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e For f: T — S any morphism with T, S € Var(C), the pullback functor P(f) Var(C)/T — Var(C)/S
admits a left adjoint C(f)(X — T) = (X — T — S). Hence, f*: C(Var(C)/S) — C(Var(C)/T)
admits a left adjoint

fi : C(Var(C)/T) — C(Var(C)/S), F+— ((V,ho) — (V',hoig?g(v,ho)F(V/’ 1)

Note that we have Z(V/S) = hyZy. More generaly for A’ : V! — V a morphism, V',V € Var(C),
we have hy(Z(V'/V)) = Z(V'/S) with V' /S = (V',h o h’). Hence, since projective presheaves are
the direct summands of the representable presheaves, hy sends projective presheaves to projective
presheaves. For F* € C(Var(C)/S) and G* € C(Var(C)/T), we have the adjonction maps

ad(fy, f)(G®) : G* = f7RG® ad(fy, f)E®) : fof "B — F*.

For a morphism f : T — S, with T, S € Var(C), we have the adjonction isomorphism, for F' €
C(Var(C)/T) and G € C(Var(C)/S5),

I(fg, [*)(F.G) : Hom® (fF,G) = f.Hom*(F, f*G). (26)
e For a commutative diagram in Var(C) :

92
E—

—V U
b

T- 2.8

where hy and hg are smooth, we denote by, for F* € C(Var(C)*™/U),
Ty(D)(F*) : haggs F* — gihayF*®

D

3

the canonical map in C(Var(C)*™/T') given by adjonction. If D is cartesian with hy = h, g1 = ¢
fo=h :Upr—T,q :Ur—U,

Ty(D)(F*) =: Ty(g, h)(F*®) : g *F* =5 g*hy F*
is an isomorphism and for G* € C(Var(C)*™/T)

T(D)(G*) =:T(g,h)(G®) : g*h.G* = W.g*G*
is an isomorphism.

e For a commutative diagram in Var(C) :

92
— X

D=V
lfz lﬁ
T S

)

91
—_—

we denote by, for F'* € C'(Var(C)/X),
Ty(D)(F*®) = fa195F° — g1 frs F*

the canonical map in C(Var(C)/T) given by adjonction. If D is cartesian with hy = h, g1 = ¢
nghIZXT%T,gIZXT—}X,

TyD)(F*) = Ty(g, F)(F*) : fif "F* = g" foF®
is an isomorphism and for G* € C(Var(C)/T)
T(D)(G*) = T(g.h)(G*) : ["g.G" = gL "G"

is an isomorphism.
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For f: T — S a morphism with S, T € Var(C),

e we get for F' € C(Var(C)*™/S) from the a commutative diagram of sites (24) the following canonical
transformation

T(e, f)(F®): fre(S)«F* — e(T).f"F*®,

which is NOT a quasi-isomorphism in general. However, for h : U — S a smooth morphism with

~

S,U € Var(C), T'(e, h)(F*) : h*e(S)«F* — e(T).h*F* is an isomorphism.

e we get for F' € C'(Var(C)/S) from the a commutative diagram of sites (24) the following canonical
transformation

T(e, f)(E®) : fe(S)F* = e(T).f"F*,

which is NOT a quasi-isomorphism in general. However, for h : U — S a smooth morphism with

~

S,U € Var(C), T(e,h)(F*®) : h*e(S)«F* — e(T)«h*F* is an isomorphism.
Let S € Var(C),
e We have for F,G € C(Var(C)*™/8S),
— e(9)(F®G)=(e(S)F) ® (e(S)«G) by definition
— the canonical forgetfull map
T(S, hom)(F,G) : e(S).Hom*(F,G) — Hom®(e(S). F,e(5).G).
which is NOT a quasi-isomorphism in general.
By definition, we have for F' € C'(Var(C)*™/S), e(S)«E.ar(F) = E.qr(e(S).F).
e We have for F,G € C(Var(C)/5S),
— e(9)(F®G)=(e(S)F) ® (e(S)«G) by definition
— the canonical forgetfull map
T(S, hom)(F,G) : e(S) Hom®(F,G) — Hom®(e(S).F, e(S).G).
which is NOT a quasi-isomorphism in general.
By definition, we have for F' € C'(Var(C)/S), e(S)«Ezar(F) = E.ar(e(S).F).
Let S € Var(C).

e We have the dual functor
Dgs : C(Var(C)*™/S) — C(Var(C)*™/S), F + Dg(F) := Hom(F, Eet(Zs))
It induces the functor

LDg : C(Var(C)*™/S) — C(Var(C)*™/S), F +— LDg(F) := Dg(LF) := Hom(LF, E.+(Zs))

e We have the dual functor
Dgs : C(Var(C)/S) — C(Var(C)/S), F +— Dg(F) := Hom(F, Eet(Zs))
It induces the functor

LDg : C(Var(C)/S) — C(Var(C)/S), F — LDg(F) :=Dg(LF) := Hom(LF, Eet(Zs))
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The adjonctions
(€(5)*,é(9).) : C(Var(C)/S) = C(S), (e(9)",e(S).) : C(Var(C)*™/S) = C(S)
induce adjonctions
(e(S)*,e(S)«) : Cra(Var(C)/S) = Cra(S) , (e(S)*,e(S)«) : Cru(Var(C)*™/S) = Cru(S)
given by €(5).(G, F) := (e(9)+G, e(S).F), since e(5). and e(S)* preserve monomorphisms. Note that
e for F' € PSh(Var(C)*™/S), e(S).F is simply the restriction of F to the small Zariski site of X,

e for F € PSh(Var(C)/S), é(S).F = e(S).ps«F is simply the restriction of F' to the small Zariski
site of X, pg.F being the restriction of F' to Var(C)*™/S.

Together with the internal hom functor, we get the bifunctor,

e(S)«Hom(-,-) : Cru(Var(C)*™/S) x Cry(Var(C)*™/S) — Cariu(S), (27)
(F,W), (G, F)) — e(S)sHom®* ((F*, W), (G*, F)). (28)

For i: Z — S a closed embedding, with Z, S € Var(C), we denote by
(ix,i') := (P(i)s, P(i)}) : C(Var(C)*™/Z) = C(Var(C)*™/S)

the adjonction induced by the morphism of site P(i) : Var(C)*™/Z — Var(C)*™/S For i : Z — S a
closed embedding, Z, S € Var(C), we denote

Zzyg = Cone(ad(i*, Z*)(Zs) 1 ls — i*Zz)

We have the support section functors of a closed embedding ¢ : Z — S for presheaves on the big
Zariski site.

Definition 6. Let i : Z — S be a closed embedding with S,Z € Var(C) and j : S\Z — S be the open
complementary subset.

(i) We define the functor

Tz :C(Var(C)*™/S) — C(Var(C)*™/S), G* — I'zG* := Cone(ad(j*, j.)(G*) : G* — 4.j*G*)[-1],
so that there is then a canonical map vz(G*) : T'zG* — G°.

(i) We have the dual functor of (i) :

7 : C(Var(C)™/S) — C(Var(C)™/S), F ~— I';(F*) := Cone(ad(j;, j)(G®) : jsi"G* — G°),

together with the canonical map v%(G) : F — '} (G).

(iii) For F,G € C(Var(C)*™/S), we denote by

I(y,hom)(F,G) := (I, 1(js,5*)(F,G)™') : T zHom(F,G) = Hom(T'yF,G)

the canonical isomorphism given by adjonction.

Let i : Z — S be a closed embedding with S, Z € Var(C) and j : S\Z — S be the open complemen-
tary.
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e For G € C(Var(C)*™/S), the adjonction map ad(i.,i')(G) : i.i'G — G factor through vz(G) :

ad(ix,i')(G)Y FZ(G) vz (G) a.

ad(ix,i)(Q) : i.i'G
However, note that when dealing with the big sites P(i) : Var(C)*™/Z — Var(C)*™/S, if G €
C(Var(C)*™/S) is not A} local and Zariski fibrant,

ad(ix,i')(G)Y 1 i.i'G — T'2(G)

is NOT and homotopy equivalence, and I'zG € C(Var(C)*™/S) is NOT in general in the image of
the functor i, : C(Var(C)*™/Z) — C(Var(C)*™/8S).

e For G € C(Var(C)*™/S), the adjonction map ad(i*,i.)(G) : G — i4i*G factor through v} (G) :

72(G) ad(i",i.)(G)”

ad(i*,i,)(G) : G IyG ivi*G,

and as in (i), ad(i*,i4)(G)7 : T%(G) — i,i*G is NOT an homotopy equivalence but
Let i : Z < S be a closed embedding with S, Z € Var(C).

e Since I'yz : C(Var(C)*™/S) — C(Var(C)*™/S) preserve monomorphism, it induces a functor

I'z: Cfil(Var((C)sm/S) — Cfil(Var((C)sm/S), (G, F) = Fz(G, F) = (FzG,FzF)

e Since I'Y, : C'(Var(C)*™/S) — C(Var(C)*™/S) preserve monomorphism, it induces a functor
DY : Cpa(Var(C)™™/S) — Cpa(Var(C)™ /8), (G, F) v TY(G, F) := (TYG, T4 F)
Definition-Proposition 4. (i) Let g : 8" — S a morphism and i : Z — S a closed embedding with
S’,8,Z € Var(C). Then, for (G,F) € Cy(Var(C)*™/S), there exist a map in Cyy(Var(C)*™/S")
T(9: G, F): g'T2(G, F) = Tzxs597(G, F)
unique up to homotopy such that yzx s (9*(G, F)) o T(g9,7v)(G, F) = g*vz(G, F).

(i1) Let iy : Z1 — S, iy : Zo — Z1 be closed embeddings with S, Zy, Zs € Var(C). Then, for (G, F) €
Cfil (Val“((C)sm/S),

— there exist a canonical map T(Z2/Z1,7)(G, F) :Tz,(G,F) = T'z, (G, F) in Cry(Var(C)*™/5S)
unique up to homotopy such that vz, (G, F) o T(Z2/Z1,7)(G,F) = vz,(G, F), together with a
distinguish triangle

ad(j3 ,j2« )Tz, (G,F))

T(Z2/Z1,7)(G,F)
AL SLEN

l—‘Zz (Gv F) l—‘Z1 (G7 F) ]‘—‘Zl\Z2 (G7 F) — FZQ (Gv F)[l]

m Kfil (Var((C)sm/S) = K(PShfil (Var((C)S’"/S)),

— there exist a map T(Z2/Z1,7v")(G,F) : Ty (G, F) —
up to homotopy such that vy, (G, F) = T(Z2/Z1,7")(G,
guish triangle

2,(G, F) in Cpy(Var(C)*™/S) unique
F)ovy (G, F), together with a distin-

ad(jzg,45 )Ty, (G, F)) T(Z2/Z1 7Y ) (G, F)

T70\2,(G F) Iz (G.F) I'7,(G.F) =Ty (G F)[]

in Kypy(Var(C)*™/S).
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(iii) Consider a morphism g : (S',Z') — (S, Z) with (S',Z"),(S,Z) € Var?(C) We denote, for G €
C(Var(C)*™/S) the composite

T(Z')ZxsS" ~4V)(Q)

T(D,’Y\/)(G) . g*F§G :—> F\Z/XSS/g*G Fv/g*G
and we have then the factorization vy (¢9*G) : ¢*G L(G)> g TYG T )G 'y g G.

Proof. (1): We have the cartesian square

S\Z—? s

A

SN\Z xg 81—
and the map is given by
(1.T(g,5)(j*G)) : Cone(g*G — g*j.j*G) — Cone(g*G — jLj *g*G = jLg"*j*G).

(ii): Follows from the fact that jiT'z,G = 0 and jiT'} G = 0, with j; : S\Z; — S the closed embedding.
(iii): Obvious. O
The following easy proposition concern the restriction from the big Zariski site to the small site Zariski

site :

Proposition 16. For f : T — S a morphism and i : Z — S a closed embedding, with Z,S,T € Var(C),
we have

(i) e(S)ifs = fre(T). and e(S)*f. = foe(T)*
(Zl) G(S)*Fz = er(S)*

Proof. (1):The first equality e(S).«f« = f«e(T). is given by the diagram (24). The second equality is
immediate from definition after a direct computation.
(ii) For G* € C(Var(C)*™/S), we have the canonical equality

e(S).I'z(G*) = e(S). Cone(G = j.j*G*)[—1] = Cone(e(S9).G* = e(S).j.j G*)[-1]
= Cone(e(S5).G* = j.j%e(5).G*)[—1]
= er(S)*G.
by (i) and since j : S\Z < S is a smooth morphism. O

Definition 7. For S € Var(C), we denote by
Cos (Var(C)*™/S) := Ce(sy-0s (Var(C)*™/S)

the category of complexes of presheaves on Var(C)*™ /S endowed with a structure of e(S)*Os module,
and by

Cos pi(Var(C)*™ /S) := Ce(s) 0 ru(Var(C)*™ /)

the category of filtered complexes of presheaves on Var(C)*™/Sendowed with a structure of e(S)*Og
module.

Let S € Var(C). Let Z C S a closed subset. Denote by j : S\Z < S the open complementary
embedding,
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For G € Co, (Var(C)*™/S), T'zG := Cone(ad(j*, j«)(G) : F — j.j*G)[—1] has a (unique) structure
of ¢(5)*Og module such that vz(G) : TzG — G is a map in Co4(Var(C)*™/S). This gives the
functor

FZ : Cosfil(Var((C)Sm/S) — OfilOs (Var((C)Sm/S), (G, F) — Fz(G, F) = (FzG, FzF),

together with the canonical map vz((G,F) : T'z(G,F) — (G,F). Let Zy C Z a closed subset.
Then, for G € Co,(Var(C)*™/S), T(Z2/Z,7)(G) : Tz,G — I'zG is a map in Co,(Var(C)*™/S)
(i.e. is e(9)*Og linear).

For G € Co,(Var(C)*™/S), T',G := Cone(ad(jy, j*)(G) : j3j*G — G) has a unique structure of
e(S)*Og module, such that v%(G) : G — I'}G is a map in Co, (Var(C)*™/S). This gives the the
functor

F% : COSfil(S) — Cfilos (S)u (GuF) = F%(GuF) = (P\Z/Gvr\Z/F)u
together with the canonical map v3((G,F) : (G,F) — I'(G,F). Let Zy C Z a closed subset.
Then, for G € Co4(Var(C)*™/S), T(Z2/Z,7V)(G) : TG — '} G is a map in Cog(Var(C)*™/S)
(i.e. is e(5)*Og linear).

Definition 8. Let S € Var(C). Let Z C S a closed subset.

(i)

(ii)

()’

We denote by
Cz(Var(C)*™/S) c C(Var(C)*™/8S)

the full subcategory consisting of complexes of presheaves F'* € C(Var(C)*™/S) such that ace H" (j*F*) =
0 for all m € Z, where j : S\Z < S is the complementary open embedding and ae; is the sheaftifi-
cation functor.

We denote by
Cog.z(Var(C)*™/S) C Coz(Var(C)*™/8S),

the full subcategory consisting of complexes of presheaves F'* € C(Var(C)*™/S) such that ace H"(j*F*®) =
0 for all n € Z, where j : S\Z < S is the complementary open embedding and ac: is the sheaftifi-
cation functor.

We denote by
Cfil,Z (Var((C)Sm/S) C Ofil (Var((C)Sm/S)

the full subcategory consisting of filtered complexes of presheaves (F'*, F) € Cyy(Var(C)*™/S) such
that there exist r € N such that aej*EPU(F*, F) = 0 for all p,q € Z, where j : S\Z — S is the
complementary open embedding and at is the sheaftification functor. Note that by definition this r
does NOT depend on p and q.

We denote by
Cosfil,Z(Var((C)Sm/S) C OOsfil (Var((C)Sm/S)

the full subcategory consisting of filtered complexes of presheaves (F*,F) € Cogru(Var(C)*™/S)
such that there exist v € N such that aetj*EPI(F*, F) =0 for all p,q € Z, where j : S\Z — S is
the complementary open embedding and a.: is the sheaftification functor. Note that by definition
this v does NOT depend on p and q.

Let S € Var(C) and Z C S a closed subset.

For (G, F) € Cyy(Var(C)*™/S), we have I'z (G, F),T'%(G, F) € Cyiy,z(Var(C)*™/S).
For (G,F) S Cosfu(Var(C)Sm/S), we have Fz(G,F),F§(G,F) S Cosfil,Z(Var((C)Sm/S).
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Let S € Var(C). Let S = UL_,S; an open affine cover and denote by S; = NierSi. Let i; : S; — S;
closed embeddings, with S; € Var(C). For I C [1,---1], denote by S; = Il;c;S;. We then have closed
embeddings i; : S; < Sy and for J C I the following commutative diagram

Dry= 51 L>g1

juT PIJT

Sy —L=8;

where pry : S’J — 5'1 is the projection and jr; : §’J < St is the open embedding so that j; o j;; =
Jju. This gives the diagram of algebraic varieties (Sr) € Fun(P(N), Var(C)) which the diagram of sites
Var(C)*"/(Sr) € Fun(P(N), Cat). Denote by m : S\(S7\Ss) < S the open embedding.

Definition 9. Let S € Var(C). Let S = UL_,S; an open cover and denote by S; = NierSi. Let
i+ S; — S; closed embeddings, with S; € Var(C). We will denote by Cpy(Var(C)*™/(S/(S1))) C
Ca(Var(C)*™ /(Sy)) the full subcategory

e whose objects (G, F) = ((G1,F)rcp,..qpurs), with (Gr, F) € Ctiv.s, (Var(C)*"/S;), and ury :
m*(Gr, F) = m*p1j.(Gy, F) for I C J, are oo-filtered Zariski local equivalence, satisfying for
ICJCK, prysujk oury =usk in Cpy(Var(C)*™/Sy),

o the morphisms m : ((G, F),ury) — ((H, F),vr;y) being (see section 2.1) a family of morphisms of
complexes,
m = (my: (G, F) = (Hr, F))rcp,

such that vy omy = prj«myoury in Cfu(Var((C)Sm/S’I).

A morphism m : (G, F),ury) = (Hy, F),vry) is said to an r-filtered Zariski, resp. etale local, equiva-
lence, if all the my are r-filtered Zariski, resp. etale, local equivalences.

Denote L = [1,...,(] and for I C L, po(ory : S X S; — S, Pr(on) : S X S; — S; the projections. By
definition, we have functors

o T(S/(S1)) : Cra(Var(C)™™/S) — Cra(Var(C)*™/(S/(51)), (G, F) = (ir.j; (G, F),T(Dr,)(j; (G, F))),
o T((51)/5) : Cu(Var(C)*™/(S/(S1))) = Cru(Var(C)*™/S), (G, F),urs) = holimrcr, poor«Lé,pion (Gr, F)-
Note that the functors T'(S/(S;) are NOT embedding, since
ad (i, i) (J1 F) < ipinegr F — i F

are Zariski local equivalence but NOT isomorphism since we are dealing with the morphism of big sites
P(ir) : Var(C)*™/S; — Var(C)*™/S;. However, by theorem 14, these functors induce full embeddings

T(S/(Sr)) : Dya(Var(C)*™ /S) = Dyu(Var(C)*" /(S/(51)))
since for F' € C(Var(C)*™/5),
ho }1&0% Poon)«L &, Pron (131 F) = poon«T'$, 31 F
is an equivalence Zariski local.
Let f: X = Sa morphism with X, S € Var(C). Let S = U\_,S; and X = U._, X; be affine open

covers and i; : S; — Sl, ;0 Xy = X be closed embeddings. Let fZ : X — S be a lift of the morphism
fi= f|Xi : X; — S;. Then, f; = f|X1 : X1 = Nier X; — St = NjerS; lift to the morphism

fr=Ticrfi: Xr = Wier Xi — Sp = Mier S,
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Denote by prs : S’J — 5’1 and p}; : )N(J — XI the projections. Consider for J C I the following
commutative diagrams

Dyy = SILS’I , D7y = X, —Ls X, , Dy = SIL>§I
B Y A
Sy L>S’] X;—1s X, X —> X,

We have then following commutative diagram

X; o X, X\X] .

./ nI
JI‘] ’ / /
Pry Pry Pry

. lr. ~ nyxI ~ ~
i Xy —=' X x X1 x X —= Xy -~ XA\X
J

whose square are cartesian. We then have the pullback functor
F* : Caypa(Var(©)™™ /S/(31)) = Ciay pa(Var(©)™ /X /(X1),
(Gr, F),ury) = f*((Gr, F),ury) == (Cx, f{ (G1, F), fyury)
with

Fx rx ad ’*) ’ D) > Fx Ty ( ‘1n/)(7)71)
fyurs: Fyffff (G, F) M PQJ*PJJF}IJCI (Gr, F) e A

p/IJ*'Y;/(J(_)

p/IJ*P}/(IXj(J\Ipr]f}F (Gr, F)

T%, F31(p% 5 op1aa) (=, =) (urs)

pIIJ*F}/(Jpr]fN;(GIa F) = p/IJ*FB/(J EP?J(GL F) Fg(,, E(Gh F)

Let (G, F) € Cyy(Var(C)*™/S). Since, j}*i}*j}*f*(G,F) = 0, the morphism T'(Dy7)(j5 (G, F)) : f}‘iz*j}*(G,F) N
ilz*j}*f*(G, F) factors trough

. S Vi, (=) S TY(Dyr)(G3(GOF)) o e o
T(Ds1)(G5(G, F)) : fringi (G, F) 5T, ffingi(G, F) —L 0220 i 7 (G, F)

We have then, for (G, F) € Cy;(S), the canonical transformation map

T(f,T(0/1)(G,F)

F*T(S/(SN)(G. F)

—l

T(X/(XD)(f*(G, F))

l_

T7(Dy1)(57 (G, F)) g e e
d - (Z/I*.]I f (GvF)vj)

To show that the cohomology sheaves of the filtered De Rham realization functor of constructible
motives are mixed hodge modules, we will need to take presheaves of the following form

Definition 10. (i) Let f : X — S a morphism with X,S € Var(C). Assume that there exist a

factorization f: X Y xS 5 S, withY € SmVar(C), i : X — Y is a closed embedding and p the
projection. We then consider

Q(X/S) := piT'% Zy xs|dy] € C(Var(C)*™/S).

By definition Q(X/S) is projective.
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(i) Let f: X — S and g : T — S two morphism with X,S,T € Var(C). Assume that there exist a

factorization f: X Y xS 5 S, withY € SmVar(C), i : X <= Y is a closed embedding and p the
projection. We then have the following commutative diagram whose squares are cartesian

f:X — ey xSt g
KA A
floXp—syxTX T
We then have the canonical isomorphism in C(Var(C)*™/T)

T s -1t .
T(f,9,Q) : 9" Q(X/S) = g"px Ly x5 Ten) pig ‘TxZyxs

pyT(g" AV)(=)""
d Pil%, Zy xr =: Q(X1/T).

(iii) Let f: X — S a morphism with X,S € Var(C). Assume that there exist a factorization f : X SN
Y xS5 S, withY e SmVar(C), i : X — Y is a closed embedding and p the projection. We then
consider

Q"(X/S) := ps LT x Eet(Zy x5)|dy] € C(Var(C)*™/S).

(iv) Let f : X — S and g : T — S two morphism with X,S,T € Var(C). Assume that there exist a

factorization f: X Y xS 5 S, withY € SmVar(C), i : X <= Y is a closed embedding and p the
projection. We then have the following commutative diagram whose squares are cartesian

fiX—syxS2L-g
Q’T g”:_(lxg)T QT
JIRD A T A
We then have the canonical morphism in C(Var(C)*™/T)

" % Ty (g,p)(—) " 1"y
T(f,9.Q") : g*Q"(X/S) := g"ps LT x Eet (Zy x5) ———— pyLg *Tx Eetr(Zy x5)

peT (9" 7)(=)
: PiLT Xy Eet(Zy x1) = Q"(X1/T).
We now give the definition of the A' local property :

Definition 11. Let S € Var(C). Denote for short Var(C)*™) /S either the category Var(C)/S or the
category Var(C)*™/S.

(i) A complex F € C(Var(C)5™ /S) is said to be A invariant if for all U/S € Var(C)™) /S,
F(py): F(U/S) — F(U x A'/S)
is a quasi-isomorphism, where py : U x Al — U is the projection.

(ii) Let T a topology on Var(C). A complex F € C(Var(C)™) /S) is said to be A' local for the topology
7, if for a (hence every) T local equivalence k : F — G with k injective and G € C(Var(C)™ /S)
T fibrant, e.g. k: F — E.(F), G is A invariant for alln € Z.
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(iii) A morphism m : F — G with F,G € C(Var(C)*™)/S) is said to an (A', et) local equivalence if for
all H € C(Var(C)©™) /S) which is A local for the etale topology

Hom(L(m), Eet(H)) : Hom(L(G), Eet(H)) — Hom(L(F), Ee:(H))

is a quasi-isomorphism. Equivalently, m : F — G with F,G € C(Var(C)*™/S) is an (A, et)
local equivalence if and only if there exists X1/S,...,X,/S € Var(C)*™ /S such that we have in
Hoe; (C(Var(C)™) /S))

Cone(m) = Cone(Cone(Z(X; x A'/S) — Z(X,/S)) = --- — Cone(Z(X, x A'/S) — Z(X,/S)))
Proposition 17. With the weak equivalence the (Als, et) equivalence and the fibration the epimorphism

with Ay local and etale fibrant kernels gives a model structure on C(Var(C)*™/S) : the left bousfield
localization of the projective model structure of C(Var(C)*™/S).

Proof. See [10]. O
We will consider for the construction of the filtered De Rham realization functor the filtered case :

Definition 12. Let S € Var(C). Denote for short Var(C)(*™) /S either the category Var(C)/S or the
category Var(C)*™/S.

(i) Let r € N. A filtered complex (G, F) € Cpy(Var(C)5™ /S) is said to be an r-filtered A' invariant
if for all U/S € Var(C)™ /S, and all p,q € Z,

EPG(py) « BPU(G, F)(U/S) = EP(G,F)(U x A'/S)

is an isomorphism of abelian groups, where py : U x A' — U is the projection. Note that this
definition say that this v does NOT depend on p and q.

(i) A filtered compler (G,F) € Cpy(Var(C)5™ /8) is said to be oo-filtered A invariant if for all
U/S € Var(C)*™) /S, there exist 7 € N such that for all p,q € Z,

EPG(py) : EP9(G, F)(U/S) = EP9(G, F)(U x A'/S)

is an isomorphism of abelian groups, where py : U x Al — U is the projection (note that this
definition say that this r does NOT depend on p and q but may depends on U/S). This implies that
for allU/S € Var(C)(*™) /S,

H"G(py) : H"(G,F)(U/S) = H™"(G,F)(U x A'/S)
is a filtered isomorphism of filtered abelian groups for all n € Z.

(iii) Let T a topology on Var(C)5™) . A filtered complex (G, F) € Cyy(Var(C)™)/S) is said to be oo-
filtered A* local for the topology T if for a (hence every) oo-filtered T local equivalence k : (G, F) —
(H, F) with k injective and (H,F) € Cpy(Var(C)*™) /S) co-filtered T fibrant, e.g. k : (G, F) —
E.(G,F), (H, F) is co-filtered A' invariant.

Lemma 1. Let S € Var(C).
(i) Let (G,F) € Cry(Var(C)*™/S) Then, if m : Fy — Fy with Fy,F, € C(Var(C)*™/S) is an etale

local equivalence,
Hom(m, Eet(G, F)) : Hom® (Fy, Eet(G, F)) — Hom®(F1, Ee:(G, F))

is a filtered quasi-isomorphism.
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(ii) Let (G, F) € Cpy(Var(C)*™/S) be co-filtered Al local for the etale topology. Then, if m : Fy — Fy
with Fy, Fy € C(Var(C)*™/S) is an (Al, et) local equivalence,

Hom(m, Eot (G, F)) : Hom® (Fy, Eot (G, F)) — Hom®(Fy, Ee (G, F))

is an oo-filtered quasi-isomorphism.

Proof. (i): Follows from the fact that E.:(G, F) is (1-)filtered etale fibrant.
(ii): By definition of an (A!,et) local equivalence, we have there exists X1/S,...,X,/S € Var(C)*™/S
such that we have in Hoe (C(Var(C)*™/5S))

Cone(m) = Cone(Cone(Z(X; x A'/S) = Z(X,/S)) — --- — Cone(Z(X, x A'/S) = Z(X,./9)))
This gives in Dy 1(Z) := Hoyu1(Z),
Cone(Hom(m, Ee (G, F))) = Cone(Cone(Ee (G, F)(X1/S) — Eet(G, F)(X;, x A'/S))
— - = Cone(Ex (G, F)(X,/S) = E.(G, F)(X, x A'/S)))

Since (G, F) € Cg;y(Var(C)*™/S) is oo-filtered Al local for the etale topology, there exist s; € Z such
that for all p,q € Z,

E?" Cone(Eet (G, F)(X;/S) = Eet (G, F)(X; x A'/S) =0
Hence for s := maz((s;)1<i<r), 27 Cone(Hom(m, Ee (G, F))) = 0. O
Let S € Var(C). For U/S = (U, h) € Var(C)*™/S, we consider
A*xU/S = (A* x U ,hop) € Fun(A, Var(C)*™/8S).
For F' € C~ (Var(C)®*™/S), it gives the complex
C.F € C~(Var(C)*™/S),U/S = (U, h) — C.F(U/S) :=Tot F(A* x U/S)
together with the canonical map cp := (0,Ir) : C.F — F. For F € C(Var(C)*™/S), we get
C,F := holim,, C, F=" € C(Var(C)*™/9),

together with the canonical map cp := (0,1r) : CouF' — F. For m : F — G a morphism, with F, G €
C(Var(C)*™/S), we get by functoriality the morphism Cym : C,.F — C,G.

Proposition 18. Let S € Var(C). Then for F € C(Var(C)*™/S), C.F is Al local for the etale topology
and cg : C.F — F is an equivalence (A, et) local.

Proof. Standard : see [10] for example. O
Proposition 19. Let g : T — S a morphism with T, S € Var(C).

(i) The functor g* : C(Var(C)*™/S) — C(Var(C)*™/T) sends quasi-isomorphism to quasi-isomorphism,
sends equivalence Zariski local to equivalence Zariski local, and equivalence etale local to equivalence
etale local, sends (A, et) local equivalence to (Al et) local equivalence.

(i) The functor g* : C(Var(C)/S) — C(Var(C)/T) sends quasi-isomorphism to quasi-isomorphism,
sends equivalence Zariski local to equivalence Zariski local, and equivalence etale local to equivalence
etale local, sends (A, et) local equivalence to (A, et) local equivalence.

Proof. Standard : see [10] for example. O
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Proposition 20. Let S € Var(C). The functor ps. : C(Var(C)/S) — C(Var(C)*™/S) sends quasi-
isomorphism to quasi-isomorphism, sends equivalence Zariski local to equivalence Zariski local, and equiv-
alence etale local to equivalence etale local, sends (A, et) local equivalence to (Al et) local equivalence.

Proof. Standard : see [10] for example. O

For S € Var(C), let Cor(Var(C)*™/S) be the category
e whose objects are smooth morphisms U/S = (U, h), h: U — S with U € Var(C),

e whose morphisms « : U/S = (U, h1) — V/S = (V,hg) is finite correspondence that is o €
®;Z75(U; xg V), where U = U;U;, with U; connected, and Z/%(U; xs V) is the abelian group
of cycle finite and surjective over Uj.

We denote by Tr(S) : Cor(Var(C)*™/S) — Var(C)*™ /S the morphism of site given by the inclusion
functor Tr(S) : Var(C)*™ /S — Cor(Var(C)*™/S) It induces an adjonction

(Tr(S)* Tr(S).) : C(Var(C)*™/S) = C(Cor(Var(C)*™/9))

A complex of preheaves G € C(Var(C)®™/S) is said to admit transferts if it is in the image of the

embeddin
° Tr(S). : C(Cor(Var(C)*™/S) — C(Var(C)*™/8S),

that is G = Tr(S). Tr(S)*G.
We will use to define the algebraic De Rahm realization functor the following

Theorem 10. Let ¢ : F* — G* an etale local equivalence with F*,G* € C(Var(C)*™/S). If F*
and G* are A local and admit tranferts then ¢ : F* — G* is a Zariski local equivalence. Hence if
F € C(Var(C)*™/S) is A' local and admits transfert

k: E.or(F) = Eet(Erar(F)) = Eet(F)
is a Zariski local equivalence.

Proof. See [10]. O

2.7 Presheaves on the big Zariski site or the big etale site of pairs

We recall the definition given in subsection 5.1 : For S € Var(C), Var(C)?/S := Var(C)?/(S, S) is by
definition (see subsection 2.1) the category whose set of objects is

(Var(C)?/9)? := {((X,Z),h),h: X — S, Z C X closed } C Var(C)/S x Top
and whose set of morphisms between (X1, Z1)/S = ((X1, Z1), h1), (X1, 21)/S = ((Xa, Z2), ha) € Var(C)?/S
is the subset

Homyar(cy2 /s ((X1, 21)/S, (X2, Z2)/S) =

{(f:X2— X3), st.hiof=hyand Z1 C f~(Z2)} C Homyay(c)(X1, X2)
The category Var(C)? admits fiber products : (X1, Z;) X(3,7) (X2,Z2) = (X1 x5 Xo,Z1 Xz Z3). In
particular, for f : T — S a morphism with S, T € Var(C), we have the pullback functor

P(f): Var(C)?/S — Var(C)*/T, P(f)((X, 2)/S) := (Xr, Z1)/T, P(f)(9) := (g x5 )

and we note again P(f) : Var(C)?/T — Var(C)?/S the corresponding morphism of sites.

We will consider in the construction of the filtered De Rham realization functor the full subcategory
Var(C)?*m /S C Var(C)?/S such that the first factor is a smooth morphism : We will also consider, in
order to obtain a complex of D modules in the construction of the filtered De Rham realization functor,
the restriction to the full subcategory Var(C)*P" /S C Var(C)?/S such that the first factor is a projection
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Definition 13. (i) Let S € Var(C). We denote by
ps : Var(C)*>*™ /S — Var(C)?/S

the full subcategory consisting of the objects (U,Z)/S = ((U,Z),h) € Var(C)?/S such that the
morphism h : U — S is smooth. That is, Var(C)>*™ /S is the category

— whose objects are (U,Z)/S = ((U,Z),h), with U € Var(C), Z C U a closed subset, and
h:U — S a smooth morphism,

— whose morphisms g : (U, Z)/S = (U, Z),h1) — (U',Z")/S = (U',Z"),ha) is a morphism
g:U = U’ of complex algebraic varieties such that Z C g=*(Z') and hy o g = h;.

We denote again ps : Var(C)?/S — Var(C)?*™ /S the associated morphism of site. We have
r(S) : Var(C)? 1(8)=r(5,5), Var(C)?/$ £% Var(C)*>*™ /S
the composite morphism of site.
(ii) Let S € Var(C). We will consider the full subcategory
ps : Var(C)*?" /S — Var(C)?/S
whose subset of object consist of those whose morphism is a projection to S :

(Var(C)%?"/S)? := {((Y x S, X),p), Y € Var(C), p: Y x S — S the projection} C (Var(C)?/S)°.

(ii) We will consider the full subcategory
s : (Var(C)**mP" /S < Var(C)*>*™/S
whose subset of object consist of those whose morphism is a smooth projection to S :
(Var(C)%*m?" /)0 .= {((Y x 8, X),p), Y € SmVar(C), p:Y x S — S the projection} C (Var(C)?/S)°

For f : T — S a morphism with T, S € Var(C), we have by definition, the following commutative
diagram of sites

Var(C)2/T -k Var(C)2?" /T . (29)
K \
P(f) Var(C)%sm /T [ Var(C)2smer /T
Var(C)?/S P(f)‘L Var(C)*rr /S P(f)
Var(C)2*™/$ 1 Var(C)2mvr /8

Recall we have (see subsection 2.1), for S € Var(C), the graph functor

Grg : Var(C)/S — Var(C)>?"/S, X/S +— Gre*(X/S) := (X x S, X)/S,
(9:X/S = X'/S) = Cr(g) = (gxIs: (X xS, X) = (X' xS,X")
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For f : T — S a morphism with T',.S € Var(C), we have by definition, the following commutative diagram
of sites

Var(C)2P" /T o Var(C),T . (30)
Gri?
P(f) Var(C)%smrr /T PLFY Var(C)*™ /T
GL |
Var(C)??" /S PLF) Var(C)/S P(f)
Gré2
Var(C)>*™ /S Var(C)*™/S

where we recall that P(f)((X,Z)/S) := ((Xr,Zr)/T), since smooth morphisms are preserved by base
change.
As usual, we denote by

(f*, fo) == (P(f)*, P(f)s) : C(Var(C)**™/S) — C(Var(C)>*™/T)

the adjonction induced by P(f) : Var(C)%*™/T — Var(C)?*™/S. Since the colimits involved in the
definition of f* = P(f)* are filtered, f* also preserve monomorphism. Hence, we get an adjonction

(f*, fo) : Cra(Var(C)**™/8) = Cra(Var(C)**™/T), f*(G,F) = (f*G, f*F)

For S € Var(C), we denote by Zs := Z((S,S5)/(S,S)) € PSh(Var(C)?*™/S) the constant presheaf. By
Yoneda lemma, we have for F' € C(Var(C)**™/S), Hom(Zs,F) = F.

For h: U — S a smooth morphism with U, S € Var(C), P(h) : Var(C)?*™ /S — Var(C)?*™ /U admits
a left adjoint

C(h) : Var(C)?*™ /U — Var(C)>*™/S, C(h)((U',Z'),h') = (U, Z'),h o h").
Hence h* : C(Var(C)%*™/8) — C(Var(C)%*™ /U) admits a left adjoint

. 2,sm 2,sm . : / /
hy : C(Var(C)>*™/U) — C(Var(C)**™/S), F— (hF : (U, 2Z), ho) — ((U/)Z/)7ho}111/1t)r1_>((U7Z))h0)F((U ,ZN)/0))

For F'* € C(Var(C)?*™/S) and G* € C(Var(C)**™/U), we have the adjonction maps
ad(hy, h*)(G*) : G* = h*hyG* , ad(hy, B*)(F*)  hyh* F* — F*.

For a smooth morphism h : U — S, with U,S € Var(C), we have the adjonction isomorphism, for
F € C(Var(C)?*m/U) and G € C(Var(C)**™/8S),

I(hy, h*)(F, G) : Hom®(hyF, G) = h.Hom*(F, h*G). (31)
For a commutative diagram in Var(C) :
D=v-2-U |

ha h1

T35
where hy and hy are smooth, we denote by, for F'* € C(Var(C)**™ /U),

Ty(D)(F*) : haygsF* — gy F®
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the canonical map given by adjonction. If D is cartesian with hy = h, g1 = g fo = h' : Ur = T,
!
g :Ur —U, )
Ty(D)(F*) =: Ty(g, h)(F) : gg F* — g"hyF*

is an isomorphism.
We have the support section functors of a closed embedding ¢ : Z < S for presheaves on the big
Zariski site of pairs.

Definition 14. Let i: Z — S be a closed embedding with S,Z € Var(C) and j : S\Z < S be the open
complementary subset.

(i) We define the functor

I'z : C(Var(C)**™/8) — C(Var(C)*>*™/S), G* +— I';G* := Cone(ad(j*, j.)(G*) : G* — 4.5 G*)[-1],
so that there is then a canonical map vz(G*) : T'zG* — G°.

(ii) We have the dual functor of (i) :
7 : C(Var(C)**™/8) — C(Var(C)**™/8), F = T7(F*) := Cone(ad(jz, *)(G*) : jzj"G* — G*),
together with the canonical map v%(G) : F — I'y(G).

(iii) For F,G € C(Var(C)%*™/S), we denote by

1y, hom)(F, G) = (I, I(js, j*)(F,G)"\) : T 7Hom(F, G) = Hom(TF, G)

the canonical isomorphism given by adjonction.

Note that we have similarly for i : Z — S, i’ : Z' — Z closed embeddings, g : T — S a morphism
with T, S, Z € Var(C) and F € C(Var(C)?*™/S), the canonical maps in C(Var(C)**™/S)

o T(9.7)(F): g*'TzF = Tzusrg*F, T(g,7")(F) : T%, .rg"F = g*'TzF
o T(Z2'/Z,4)(F): Tz F —T4F, T(Z')Z,AV)(F) : TYF — T} F

but we will not use them in this article.
We now define the Zariski and the etale topology on Var(C)2/S.

Definition 15. Let S € Var(C).

(i) Denote by T a topology on Var(C), e.g. the Zariski or the etale topology. The T covers in Var(C)?/S
of (X,Z2)/S are the families of morphisms

{(c;i : Ui, Z xx U;) /S = (X, 2)/S)icr, with (¢; : Uy = X)ier Tcover ofX in Var(C)}

(ii) Denote by T the Zariski or the etale topology on Var(C). The T covers in Var(C)**™ /S of (U, Z)/S

are the families of morphisms
{(c; : Ui, Z xp U) /S — (U, Z2)/S)icr, with (¢; : Uy = U);er Tcover ofX in Var(C)}

(iii) Denote by T the Zariski or the etale topology on Var(C). The 7 covers in Var(C)>(™Pr /S of
(Y x S,Z)/S are the families of morphisms

{{c; xIs: (Ui xS, Z xyxs Ui xS)]S —= (Y x8,2)/8)ict, with (¢; : Uy = Y );c Tcover ofY in Var(C)}
Let S € Var(C). Denote by 7 the Zariski or the etale topology on Var(C). In particular, denoting a :

PSh(Var(C)%(s™) /) — Shv(Var(C)>(™) /S) and a, : PSh(Var(C)>=™Pr /S) — Shv(Var(C)?(mrr/S)
the sheaftification functors,
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e a morphism ¢ : F — G, with F,G € C(Var(C)>(*™)/8S), is a 7 local equivalence if a,H"¢ :
a;H"F — a,H"G is an isomorphism, a morphism ¢ : F — G, with F,G € C(Var(C)>»m™Pr/g),
is a 7 local equivalence if a,H"¢ : a; H"F — aH™G is an isomorphism,

e a morphism ¢ : (G1,F) — (G, F), with (G4, F), (Gs, F) € Cy(Var(C)>(™/8), is an r-filtered
7 local equivalence if for all p,q € Z, a,EP9¢ : a,EP%(G1,F) — a,EP9(Gy, F) is an isomor-
phism of sheaves on Var(C)>(™ /S a morphism ¢ : (G1, F) — (Go, F), with (G1, F), (Gs, F) €
Cpa(Var(C)2(mPr /S) is an r-filtered 7 local equivalence if for all p, q € Z, a, E?9¢ : a, E?9(Gy, F) —
a, EP9(Gy, F) is an isomorphism of sheaves on Var(C)>(m)»r /g

e [* ¢ C(Var(C)*>™/8) is 7 fibrant if for all (U, Z)/S € Var(C)*>®™ /S and all 7 covers (c; :
(Ui, Z Xy UZ)/S — (U, Z)/S)le] of (U, Z)/S,

F*(ci) : F*((U,2)/S) — Tot(Searar—eF* (U1, Z x17 Ur)/S))

is a quasi-isomorphism of complexes of abelian groups, F'* € C(Var(C)>(™?7/S) is 7 fibrant if
for all (Y x S,Z)/S € Var(C)>(™P"/S and all 7 covers (¢; x Is : (Ui x S, Z Xyxs Ui x S)/S —
(Y x8,2)/8)ier of (Y xS,2)/8,

F.(Ci X Is) : F.((Y X S, Z)/S) — TOt(EBcard]:.F.((U] X S, 1 Xy UJ)/S))

is a quasi-isomorphism of complexes of abelian groups,

e (F*,F) € Cpy(Var(C)2(5m) /S) is r-filtered 7 fibrant if for all (U, Z)/S € Var(C)*»®™) /S and all 7
covers (¢; : (U, Z xy Uy) /S — (U, 2)/S)ier of (U,Z)/8,

EPIE®, F)(ci) : EPU(F®, F)(U, 2)/5) = EPY(Tot(Searar=e(F*, F)((Ur, Z xv Ur)/5)))

is an isomorphism of of abelian groups for all p, g € Z, (F*, F) € C};y(Var(C)>(s™Pr/8) is r-filtered
7 fibrant if for all (Y x S, Z)/S € Var(C)>(™P" /S and all 7 covers (¢; x Is : (Ui x S, Z Xy x5 U; x
S))S = (Y x8,2)/S)icr of (Y xS,2)/8,

EPUF® F)(e;xIg) : EPYF*, F)((YxS,Z)/S) = EPY(Tot(®carar—e(F*, F)(UrxS, ZxyUr)/S)))
is an isomorphism of abelian groups for all p,q € Z.
Will now define the A! local property on Var(C)?/S.

Definition 16. Let S € Var(C).Denote for short Var(C)*(™) /S either the category Var(C)?/S or the
category Var(C)>*™/S. Denote for short Var(C)>(™P" /S cither the category Var(C)?P" /S or the cate-
gory Var(C)%smrr /S,

(i) A complex F € C(Var(C)>™) /8, is said to be A' invariant if for all (X, Z)/S € Var(C)>C™ /S
F(px): F((X,Z2)/8) = F((X x A, (Z x A"))/S)
is a quasi-isomorphism, where px : (X x Al (Z x A')) — (X, Z) is the projection.
(i)’ A complex G € C(Var(C)>™Pr/8) s said to be A invariant if for all (Y xS, Z)/S € Var(C)>(smrr /g
G(pyxs): G((Y x S,2)/S) = G((Y x A' x S,(Z x A))/S)
is a quasi-isomorphism of abelian group for all p,q € Z.

(i) Let T a topology on Var(C). A complex F € C(Var(C)>(5™ /S) is said to be A' local for the T
topology induced on Var(C)%/S, if for an (hence every) T local equivalence k : F — G with k
injective and G € C(Var(C)>(5™) /S) 1 fibrant, e.g. k: F — E.(F), G is A' invariant.
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(ii)" Let T a topology on Var(C). A complex F € C(Var(C)>™Pr/8) is said to be A" local for the T
topology induced on Var(C)?P" /S, if for an (hence every) T local equivalence k : F — G with k
injective and G € C(Var(C)>(™Pr /S)  fibrant, e.g. k: F — E.(F), G is A" invariant.

(iii) A morphism m : F — G with F,G € C(Var(C)*»©™)/S) is said to an (A',et) local equivalence if
for all H € C(Var(C)>™) /S which is A local for the etale topology

Hom(L(m), Eet(H)) : Hom(L(G), Eet(H)) — Hom(L(F), Ee:(H))

is a quasi-isomorphism.

(iii)’ A morphism m : F — G with F,G € C(Var(C)>(™?7 /S) is said to an (A, et) local equivalence if
for all H € C(Var(C)>™Pr /S) which is A' local for the etale topology

Hom(L(m), Eet(H)) : Hom(L(G), Eet(H)) — Hom(L(F), Ee:(H))

is a quasi-isomorphism.
Equivalently, m : F — G with F,G € C(Var(C)*»®™ /S) is an (A, et) local equivalence if and only if
there exists (X1,21)/S,...,(Xy, Z,)/S € Var(C)*>*™ /S such that we have in Ho.;(C(Var(C)**™/S))
Cone(m) =+ Cone(Cone(Z((X; x A', Z, x AY)/S) — Z((X1, Z1)/9))
— -+ — Cone(Z((X1 x AY, Z; x AY)/S) = Z((X1, Z1)/95)))

In the filtered case, we consider :

Definition 17. Let S € Var(C). Denote for short Var(C)>(™) /S either the category Var(C)%/S or
the category Var(C)>*™/S. Denote for short Var(C)>(™P" /S cither the category Var(C)>P" /S or the
category Var(C)2*mPr /S,

(i) Letr € N. A filtered complex (G, F) € Cpy(Var(C)2(™) /S) s said to be r-filtered A' invariant if
for all (X,Z)/S € Var(C)>=m) /g

EP(G, F)(px) : (G, F)(X,2)/8) = EF(G, F)(X x A',(Z x A1))/S)

is an isomorphism of abelian groups for all p,q € Z, where px : (X x A*, (Z x A)) — (X, Z) is the
projection. Note that this definition say that this r does NOT depend on p and q.

Let r € N. A filtered complex (G, F) € Cyy(Var(C)>»C™P7/S) s said to be r-filtered A' invariant
if for all (Y x S,2)/S € Var(C)>(smrr /g

2

EPU(G, F)(pyxs) : EPUG, F)((Y x 8,Z)/8) = EPUG, F)((Y x Al x 8,(Z x A))/S)

is an isomorphism of abelian group for all p,q € Z. Note that this definition say that this r does
NOT depend on p and q.

(i) A filtered complex (G,F) € Cyy(Var(C)»™)/S), is said to be co-filtered A invariant if for all
(X,2)/8 € Var(C)>™) /S there exist r € N such that

EPUG, F)(px) : BP(G, F)((X, 2)/S) — EPI(G, F)((X x A',(Z x A"))/S)
is an isomorphism of abelian groups for all p,q € Z, where px : (X x AY,(Z x A1) — (X, Z) is the
projection (note that this definition say that this r does NOT depend on p and q but may depends
on (X,Z)/S). This implies that, for all (X,Z)/S € Var(C)>(™) /S,
H™(G,F)(px) : HMG, F)((X, 2)/S) = H"(G, F)((X x A',(Z x A"))/S)

is a filtered isomorphism of filtered abelian groups for all n € Z.
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(i)’ Similarly, a filtered complex (G, F) € Cyy(Var(C)>mPr /S) s said to be oo-filtered A' invariant
if for all (Y x S,Z)/S € Var(C)>™P7 /S there exist v € N such that

EPU(G, F)(pyxs) : EPUG,F)(Y x S,2)/S) = EPYG, F)(Y x A x S,(Z x A))/S)

is an isomorphism of abelian group for all p,q € Z (note that this definition say that this r does NOT
depend on p and q but may depends on (Y x A',Z)/S. This implies that, for all (Y x S,Z)/S €
Var(C)>(sm)rr /g,

H™(G,F)(pyxs): H"(G,F)(Y x 8,2)/S) = H"(G,F)((Y x A' x S,(Z x A"))/S)
is an filtered isomorphism of filtered abelian groups for all n € Z.

(iii) Let T a topology on Var(C). A filtered complex (G, F) € Cyy(Var(C)>™) /8), is said to be co-
filtered A* local for the T topology induced on Var(C)2/S, if for an (hence every) oco-filtered T local
equivalence k : (G, F) — (H, F) with k injective and (H,F) € Cpy(Var(C)>™) /S, co-filtered T
fibrant, e.g. k: (G,F) — E.(G,F), (H,F) is co-filtered A' invariant.

(iii)” Similarly, a filtered complex (G,F) € Cpy(Var(C)>mPr/S) s said to be oo-filtered A local
for the T topology induced on Var(C)2/S, if for an (hence every) oco-filtered T local equivalence
k:(G,F)— (H,F) with k injective and (H, F) € C}y(Var(C)>»™P" /S) oo-filtered T fibrant, e.g.
k:(G,F)— E.(G,F), (H,F) is co-filtered A' invariant.

Lemma 2. Let S € Var(C).

(i) Let (G,F) € Cyy(Var(C)>*™?" /S) Then, if m : Fy — Fy with Fy, F» € C(Var(C)>*™"/S) is an
etale local equivalence,

Hom(m, Eot (G, F)) : Hom® (Fy, Eot (G, F)) — Hom®(Fy, Ee (G, F))
is a filtered quasi-isomorphism.

(ii) Let (G, F) € Cpy(Var(C)%s™r7 /S) be co-filtered A local for the etale topology. Then, if m : Fy —
Fy with Fy, Fy € C(Var(C)**™P"/8) is an (Al et) local equivalence,

Hom(m, Eet (G, F)) : Hom® (Fy, Eet(G, F)) — Hom® (Fy, Ee: (G, F))

is an oo-filtered quasi-isomorphism.

Proof. (i): Follows from the fact that E.:(G, F) is (1-)filtered etale fibrant.

(ii): By definition of an (Al et) local equivalence, we have there exists (X1, 71)/S,..., (X, Z.)/S €

Var(C)>*™P" /S such that we have in Ho.(C(Var(C)2mP" /S))

Cone(m) = Cone(Cone(Z((X1 xA', Z; xAY)/S) = Z((X1, Z1)/S)) — --- — Cone(Z((X,xA', Z,xA'/S) = Z((X,, Z,)/9))
This gives in Dy 1(Z) := Hofu,1(Z),

Cone(Hom(m, Eet (G, F))) = Cone(Cone(Ee (G, F)((X1,21)/S) = Eut(G, F)((X;1 x A', Z; x AY)/S9))
— - = Cone(Ext (G, F)(X,, Z,)/S) = Eot (G, F)((X, x A', Z, x A1)/S)))

Since (G, F') € Cyy(Var(C)%s™m7 /S) is oo-filtered A! local for the etale topology, there exist s; € Z such
that for all p,q € Z,

E?1 Cone(Eet(G, F)((Xi, Zi)/S) = Eet(G, F)((X; x A*, Z; x A1) /S) =0

Hence for s := maz((s;)1<i<r), EP'? Cone(Hom(m, E. (G, F))) = 0. O
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We have, similarly to the case of single varieties the following :
Proposition 21. Let g : T — S a morphism with T, S € Var(C).

(i) The functor g* : C(Var(C)>t™/S) — C(Var(C)>©™)/T) sends quasi-isomorphism to quasi-
isomorphism, sends equivalence Zariski local to equivalence Zariski local, and equivalence etale local
to equivalence etale local, sends (A, et) local equivalence to (Al,et) local equivalence.

(i) The functor g* : C(Var(C)>(™Pr/S) — C(Var(C)2™Pr /T sends quasi-isomorphism to quasi-
isomorphism, sends equivalence Zariski local to equivalence Zariski local, and equivalence etale local
to equivalence etale local, sends (A, et) local equivalence to (Al,et) local equivalence.

Proof. (i): Since the functor ¢g* preserve epimorphism and also monomorphism (the colimits involved
being filetered), g* sends quasi-isomorphism to quasi-isomorphism. Hence it preserve Zariski and etale
local equivalence. The fact that it preserve (A, et) local equivalence then follows similarly to the single
case by the fact that g. preserve by definition A! equivariant presheaves.

(ii): Similar to (i). O

Proposition 22. Let S € Var(C).

(i) The functor ps. : C(Var(C)?/S) — C(Var(C)?*™/S) sends quasi-isomorphism to quasi-isomorphism,
sends equivalence Zariski local to equivalence Zariski local, and equivalence etale local to equivalence
etale local, sends (A, et) local equivalence to (A1, et) local equivalence.

(ii) The functor ps. : C(Var(C)*P"/S) — C(Var(C)**™P" | S) sends quasi-isomorphism to quasi-isomorphism,
sends equivalence Zariski local to equivalence Zariski local, and equivalence etale local to equivalence
etale local, sends (A, et) local equivalence to (A, et) local equivalence.

Proof. Similar to the proof of proposition 20. o
We also have
Proposition 23. Let S € Var(C).
(i) The functor Grg™ : C(Var(C)/S) — C(Var(C)>?"/S) sends etale local equivalence to etale local

equivalence.

(i)’ The functor Grg™* : C(Var(C)*™/S) — C(Var(C)>*"#"/S) sends etale local equivalence to etale
local equivalence.

(i) The functor Grg** : C(Var(C)/S) — C(Var(C)?>?"/S) sends (A',et) local equivalence to (A, et)
local equivalence.

(i)’ The functor Grg* : C(Var(C)*™/S) — C(Var(C)2*"™"/S) sends (A',et) local equivalence to
(Al et) local equivalence.

Proof. (i): Follows from the fact that Grg”. : C(Var(C)>?"/S) — C(Var(C)/S) sends etale fibrant complex
of presheaves to etale fibrant complex of presheaves.

(i)’: Follows from the fact that Grg : C(Var(C)%™P /) — C(Var(C)*™/S) sends etale fibrant complex
of presheaves to etale fibrant complex of presheaves.

(ii): Follows from (i) and the fact that Grg~ : C(Var(C)>?"/S) — C(Var(C)/S) sends A' invariant
complex of presheaves to A! invariant complex of presheaves.

(ii)’: Follows from (i)’ and the fact that Grg : C(Var(C)2*™7 /S) — C(Var(C)*™/S) sends A' invariant
complex of presheaves to A! invariant complex of presheaves. o

We have the following canonical functor :
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Definition 18. (i) For S € Var(C), we have the functor
(=)' : C(Var(C)*™/S) — C(Var(C)**™/8),
F—F' . ((U,2)/S)= (U, 2Z),h) — FF((U Z)/S) = (Tyh*LF)(U/U),
('(( Z",h) = (U, Z),h)) =

(F™(g) : (Cyh* LEY(UU) “TE 2000 e 0y e LE) (U7 U

T(gy")(R"LF)(U'/U")

(CZwpurg W LE)(U'/U")
T(Z')ZxuU' ~AV)(g*h*LF)(U' /U

Tz g"h*LF)(U'/U")))

where iy heLF)(U/U) S the canonical arrow of the inductive limit. Similarly, we have, for S €

Var(C), the functor
(=)' : C(Var(C)/S) — C(Var(C)?/S),
Fr— FU: (X, 2)/8) = (X, 2),h) = F'((X,2)/S) == (Tzh* F)(X/X),
(9: (X', 2),1)) = (X, 2),h)) = (F'(g) : (D}h"LF)(X/X) — (DY, h " LF)(X'/X")))
Note that for S € Var(C), 1(S/S) : Z((S, S)/S) — Z(S/S)'' given by
1(8/8)(U. 2), ) : Z((S. 8)/S) (U, 2), b)) 222 Z(S/S)" (U, 2), h) i= (TYZ(U/V))(U/V)
is an isomorphism.

(i) Let f : T — S a morphism with T, S € Var(C). For F € C(Var(C)*™/S), we have the canonical
morphism in C(Var(C)>*™/T)

u/u)(u/u)

T(f,T)(F):=T*(f,T)(F): f*(F") = (f*F)",

T(f,T)F)((U', 2T = (U, Z"),}h)):

frFEO(U, 2,0 = l lim , (TYh*LF)(U/U)
((U",2"),h")=((Ur, Z7),hr) = (U, 2),h)

e ° ’
LU0eD, (0,1 fyh* LE)(U' JU') = (T, b f*LE)(U' /U

(T, T (f,L)(F)(U' /U")

(LY R LI F)(U' /U = (f*F)" (U, 2'), W)
where fy : U XxgT — U and hy : Up :=U xgT — T are the base change maps, the equality
following fmm the fact that ho fyol= fohrol= foh'. For F € C(Var(C)/S), we have similarly
the canonical morphism in C(Var(C)?/T)
T(f,D)F): f5(F") = (fF)".
(iti) Let h : U — S a smooth morphism with U, S € Var(C). We have, for F € C(Var(C)*™/U), the
canonical morphism in C(Var(C)%*™/S)
Ty(h,T)(F) : hy(FT) = (hy L)',
Ty(h, DY E)Y(U', Z"), 1) : hy(FY((U', Z'), ') = lim (LY *LF)(U' /U
((U".2).h) = (U,V).h)
(T, 1" ad(hy,h*)(LF))(U'/U")

(CY U h* by LEY(U' JU') =: (hs LF) (U, Z') /1)

() Let i : Zy — S a closed embedding with Zy,S € Var(C). We have the canonical morphism in
C(Var(C)**™/S)
T.(i, D) (Z(Z0/ Z0)) + ix((Z(Z0/ Z0))" — (ixZ(Z/2))",
(i, T)Z(Z0/ 20))((U, 2), h) = 12 ((Z(Z0/ 20))" (U, 2), h) = (U 2, 2(Z0/ Z0))(U x5 Zo)

T(is, VYV Z(Zo/Z U Z, 3 .
e VO ZN TSI, (1, 2 Z0 ) Zo)) (U x5 Zo) =: (inZ(2)2))T (U, Z), )
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Definition 19. Let S € Var(C). We have for F € C(Var(C)*™/S) the canonical map in C(Var(C)*™/S)
Gr(F): Gri2 ps. F¥' — F,
Gr(F)(U/S) : TYp* F(U x 8/U x §) 2@ IUXSIUXSE), e iy 11y = F(U)S)

where h : U — S is a smooth morphism with U € Var(C) and h : U LUxS L S is the graph
factorization with | the graph embedding and p the projection.

Proposition 24. Let S € Var(C).
(i) Then,
—ifm: F — G with F,G € C(Var(C)*™/S) is a quasi-isomorphism, m' : F*' — G' is a
quasi-isomorphism in C(Var(C)?*m/8S),

—ifm: F — G with F,G € C(Var(C)*™/S) is a Zariski local equivalence, m" : F¥' — GV is a
Zariski local equivalence in C(Var(C)%*™/S), if m: F — G with F,G € C(Var(C)*™/S) is an
etale local equivalence, m* : F¥' — G' is an etale local equivalence in C(Var(C)?*™/8S),

—ifm: F — G with F,G € C(Var(C)*™/S) is an (Al,et) local equivalence, m* : F'' — GV is
an (A, et) local equivalence in C(Var(C)>*™/S).
(ii) Then,
—ifm: F — G with F,G € C(Var(C)/S) is a quasi-isomorphism, m* : F*' — G is a quasi-
isomorphism in C(Var(C)?/9),

—ifm: F — G with F,G € C(Var(C)*™/8) is a Zariski local equivalence, m' : F¥' — GY is a
Zariski local equivalence in C(Var(C)**™/S), if m : F — G with F,G € C(Var(C)/S) is an
etale local equivalence, m* : F'' — G" is an etale local equivalence in C(Var(C)?/S),

—ifm: F — G with F,G € C(Var(C)*™/S) is an (Al,et) local equivalence, m* : FT' — GV is
an (A, et) local equivalence in C(Var(C)2/S).

Proof. (i): Follows immediately from the fact that for (U, Z), h) € Var(C)**™/S,

e if m: F — G with F,G € C(Var(C)*™/S) is a quasi-isomorphism, 'y h*LF(m) : TLh*LF —
I'Yh*LG is a quasi-isomorphism

e if m: F — G with F,G € C(Var(C)*™/S) is a is a Zariski or etale local equivalence, I',h* LF(m) :
I'Yh*LF — I'yh*LG is a Zariski, resp. etale, local equivalence,

o ifm: F — G with F,G € C(Var(C)*™/S) is an (A, et) local equivalence, I',h*LE (m) : T h*LF —
I'Yh*LG is an (A, et) local equivalence.

(ii): Similar to (i). O

2.8 Presheaves on the big analytical site

For S € AnSp(C), we denote by ps : AnSp(C)*™/S — AnSp(C)/S be the full subcategory consisting
of the objects U/S = (U,h) € AnSp(C)/S such that the morphism h : U — S is smooth. That is,
AnSp(C)*™ /S is the category

e whose objects are smooth morphisms U/S = (U, h), h: U — S with U € AnSp(C),

e whose morphisms g : U/S = (U,h1) — V/S = (V,ha) is a morphism g : U — V of complex
algebraic varieties such that he 0 g = h;.
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We denote again pg : AnSp(C)/S — AnSp(C)*™/S the associated morphism of site. We will consider

5(5) : AnSp(C) ~% AnSp(C)/S 255 AnSp(C)*™/S

the composite morphism of site. For S € AnSp(C), we denote by Zg := Z(S/S) € PSh(AnSp(C)*™/S)
the constant presheaf By Yoneda lemma, we have for F' € C(AnSp(C)*™/S), Hom(Zs,F) = F. For
f:T — S a morphism, with T, S € AnSp(C), we have the following commutative diagram of sites

AnSp(C)/T — AnSp(C)*™ /T (32)

lP(f) lP(f)

AnSp(C)/S —2= AnSp(C)*™ /S
We denote, for S € AnSp(C), the obvious morphism of sites
é(S) : AnSp(C)/S 22 AnSp(C)*™/S BEGIN Ouv(S)
where Ouv(S) is the set of the open subsets of S, given by the inclusion functors é(S) : Ouv(S) —

AnSp(C)*™/S — AnSp(C)/S. By definition, for f : T — S a morphism with S,T € AnSp(C), the
commutative diagram of sites (32) extend a commutative diagram of sites :

&(T) : AnSp(C)/T —2"—~ AnSp(C)™ /T — L. ouv(T) (33)
lp(f) lp(f) lp(f)
e(S)

&(S) : AnSp(C)/S — %~ AnSp(C)*™ /S Ouv(S)

e As usual, we denote by
(f*, o) = (P(f)", P(f)«) : C(AnSp(C)*™/S) — C(AnSp(C)*™/T)

the adjonction induced by P(f) : AnSp(C)*™/T — AnSp(C)*™/S. Since the colimits involved
in the definition of f* = P(f)* are filtered, f* also preserve monomorphism. Hence, we get an
adjonction

(f*, f+) : Cra(AnSp(C)*™/S) = Cra(AnSp(C)*™/T), f*(G, F) := (f*G, [*F)
e As usual, we denote by
(f*, fe) = (P(f)", P(f)«) : C(AnSp(C)/S) — C(AnSp(C)/T)

the adjonction induced by P(f) : AnSp(C)/T — AnSp(C)/S. Since the colimits involved in the
definition of f* = P(f)* are filtered, f* also preserve monomorphism. Hence, we get an adjonction

(f* f+) : Cru(AnSp(C)/S) = Cra(AnSp(C)/T), (G, F) = (f*G, [*F)

e For h: U — S asmooth morphism with U, S € AnSp(C), the pullback functor P(h) : AnSp(C)*™/S —
AnSp(C)*™ /U admits a left adjoint C(h)(X — U) = (X — U — S). Hence, h* : C(AnSp(C)*™/S) —
C(AnSp(C)*™/U) admits a left adjoint

. sm sm : ! i
e : C(AnSP(C)™ [U) > C(AnSP(CY™/S), F s ((Viho) w5 Tim  F(V, )

Note that we have Z(V/S) = hyZy. More generaly for b’ : V' — V a smooth morphism, V',V €
AnSp(C), we have hy(Z(V'/V)) = Z(V'/S) with V'/S = (V',h o h’). Hence, since projective
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presheaves are the direct summands of the representable presheaves, hy sends projective presheaves
to projective presheaves. For F'* € C(AnSp(C)*™/S) and G* € C(AnSp(C)*™/U), we have the
adjonction maps

ad(hy, h*)(G*) : G* — h"hyG*® , ad(hy, h™)(F*®) : h4h"F*® — F°.
For a smooth morphism h : U — S, with U, S € AnSp(C), we have the adjonction isomorphism, for
F € C(AnSp(C)*™/U) and G € C(AnSp(C)*™/S),
I(hy, h*)(F, G) : Hom®(hyF, G) = hoHom® (F, h*G). (34)
e For f: T — S any morphism with 7.,.S € AnSp(C), the pullback functor P(f) : AnSp(C)/T —

AnSp(C)/S admits a left adjoint C(f)(X — T) = (X — T — S). Hence, f* : C(Var AnSp(C)/S) —
C(AnSp(C)/T) admits a left adjoint

fi : C(AuSP(C)/T) — C(AnSp(C)/S), F = (V. ho) — F(V', 1))

lim
(V' ,hoh')—(V,ho)

Note that we have Z(V/S) = hyZy. More generaly for A’ : V' — V a morphism, V',V € AnSp(C),

we have hy(Z(V'/V)) = Z(V'/S) with V'/S = (V',h o h'). Hence, since projective presheaves are

the direct summands of the representable presheaves, hy sends projective presheaves to projective

presheaves. For F'* € C(AnSp(C)/S) and G* € C(AnSp(C)/T), we have the adjonction maps
ad(fy, [*)(G®) : G* = [*fiG* , ad(fy, f*)(F®) : fuf ' F* — F*.

For a morphism f : T — S, with 7,S € AnSp(C), we have the adjonction isomorphism, for

F € C(AnSp(C)/T) and G € C(AnSp(C)/S),

I(fy, f)F,G) : Hom®(fyF,G) = f.Hom®(F, f*G). (35)

e For a commutative diagram in AnSp(C) :

92
———

=V U
b

T- 2.9

D

3

where hy and ho are smooth, we denote by, for F* € C(AnSp(C)*™/U),
Ty(D)(F*) : hasgi F* = gihusF®

the canonical map in C'(AnSp(C)*™/T) given by adjonction. If D is cartesian with hy = h, g1 = ¢
fo=h :Upr—T,q :Ur —U,

Ty(D)(F*) = Ty(g, h)(F*) : hyg *F* = g*hy F*
is an isomorphism and for G* € C(AnSp(C)*™/T)

T(D)(G*) = T(g.1)(G*) : g"h.G* = g "G
is an isomorphism.

e For a commutative diagram in AnSp(C) :



we denote by, for F'* € C(AnSp(C)/X),
Ty(D)(F*®) = fa192F° — g1 frs F*

the canonical map in C(AnSp(C)/T) given by adjonction. If D is cartesian with hy = h, g1 = g
nghIZXT%T,gIZXT—}X,

Ty(D)(F*) = Ty(g, ))(F®) : fif "F* = g" fyF®
is an isomorphism and for G* € C(AnSp(C)/T)

T(D)(G") = T(g.h)(G") : f"9.G" = g.f "G
is an isomorphism.

For f: T — S a morphism with S, T € Var AnSp(C),

e we get for FF € C(AnSp(C)*™/S) from the a commutative diagram of sites (33) the following
canonical transformation

T(e, f)(F®): fre(S)«F* — e(T).f"F*®,

which is NOT a quasi-isomorphism in general. However, for h : U — S a smooth morphism with

~

S,U € AnSp(C), T'(e,h)(F*®) : h*e(S)«F* — e(T).h*F* is an isomorphism.

e we get for F' € C(AnSp(C)/S) from the a commutative diagram of sites (33) the following canonical
transformation

T(e, )(E®) : f'e(S).F* — e(T).f*F*,

which is NOT a quasi-isomorphism in general. However, for h : U — S a smooth morphism with

~

S,U € AnSp(C), T'(e, h)(F*®) : h*e(S)F'* — e(T)h*F* is an isomorphism.
Let S € AnSp(C),
e We have for F,G € C(AnSp(C)*™/S),
— e(9)(F®G)=(e(S)F) ® (e(S)«G) by definition
— the canonical forgetfull map
T(S, hom)(F,G) : e(S) Hom*(F,G) — Hom®(e(S). F,e(5).G).
which is NOT a quasi-isomorphism in general.
By definition, we have for F' € C(AnSp(C)*™/S), e(9)«Eusu(F) = Eusu(e(S)«F).
e We have for F,G € C(AnSp(C)/S),
— e(9)(F®G)=(e(S)F) ® (e(5)«G) by definition
— the canonical forgetfull map
T(S, hom)(F,G) : e(S) Hom®(F,G) — Hom®(e(S).F,e(S).G).
which is NOT a quasi-isomorphism in general.
By definition, we have for F' € C(AnSp(C)/S), e(S)«Fusu(F) = Eysu(e(S)F).

Let S € AnSp(C). We have the support section functor of a closed subset Z C S for presheaves on
the big analytical site.
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Definition 20. Let S € AnSp(C). Let Z C S a closed subset. Denote by j : S\Z — S be the open
complementary subset.

(i) We define the functor
Tz : C(AnSp(C)*™/S) — C(AnSp(C)*™/S), G* — I'zG* := Cone(ad(j*, j.)(G*) : G* — 4.j"G*)[-1],
so that there is then a canonical map vz(G*) : T'zG* — G°.

(i) We have the dual functor of (i) :

7 : C(AnSp(C)™/S) — C(AnSp(C)*™/S), F = T7(F*) := Cone(ad(j;, j*)(G*) : juj"G* — G*),
together with the canonical map 7%(G) : F — T%(G).
(iii) For F,G € C(AnSp(C)*™/S), we denote by
I(y, hom)(F, G) := (I,1(j3,5*)(F,G)) : TzHom(F,G) = Hom(T 4 F,G)
the canonical isomorphism given by adjonction.

Let S € AnSp(C) and Z C S a closed subset.

e Since I'z : C(AnSp(C)*™/S) — C(AnSp(C)*™/S) preserve monomorphism, it induces a functor

Tz : Cri(AnSp(C)*™/S) — Criy(AnSp(C)*™/S), (G, F) s T2(G, F) := (TG, Tz F)

e Since I'}, : C(AnSp(C)*™/S) — C(AnSp(C)*™/S) preserve monomorphism, it induces a functor

I} : Cti(AnSp(C)*™/S) — Cry(AnSp(C)*™/S), (G, F) — Ty (G, F) := (T4G, T4 F)

Definition-Proposition 5. (i) Let g : S’ — S a morphism and i : Z < S a closed embedding with
S’,8,Z € AnSp(C). Then, for (G, F) € Cyyui(AnSp(C)*™/S), there exist a map in Cy;(AnSp(C)*™/S")

T(9,7)(G,F): g°Tz(G,F) = Tzx.5:9" (G, F)

unique up to homotopy, such that vzxss/ (9" (G, F)) o T(g,7)(G, F) = g"vz(G, F).

(ii) Let iy : Zhw — S, ia 1 Zo < Zp be closed embeddings with S, Z1,Zs € AnSp(C). Then, for
(G,F) € Cry(AnSp(C)*™/S),

— there exist a canonical map T(Z2/Z1,7)(G, F) : T2,(G, F) = I'z, (G, F) in Cyy (AnSp(C)*™/S)
unique up to homotopy such that vz, (G, F) o T(Z2/Z1,7)(G,F) = vz,(G, F), together with a
distinguish triangle

T(22/%1,v)(G.F ad(jz,j2+)(Cz, (G, F))
e

) FZl (GaF)

Tz, (G,F) ]‘—‘ZI\Z2 (GvF) — Iz, (GvF)[l]

m Kfil (AnSp(C)Sm/S),

— there exist a map T(Z2/Z1,7")(G,F) : Ty (G, F) =Ty (G, F) in Cty(AnSp(C)*™/S) unique
up to homotopy such that vy (G, F) = T(Z2/Z1,7v")(G, F) oy, (G, F), together with a distin-
guish triangle

ad(jay,45 ) (T, G)
—>

T(Z3/Z1,vY)(G,F)
P\Z/l\Zg (G7 F) P\Z/l (G7 F) 2 F\Z/z (G7 F) — F§1\Z2 (G7 F)[l]

in Ky (AnSp(C)*™/S).
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(iii) Consider a morphism g : (S',Z) — (S,Z) with (S',Z) — (S,Z) € AnSp(C). We denote, for
G € C(AnSp(C)*™/S) the composite

T(Z')ZxsS" ~4V)(Q)

T(D,’Y\/)(G) . g*F§G :—> F\Z/XSS/g*G Fv/g*G

9"z (G)

and we have then the factorization vy, (¢*G) : ¢*G —=———= ¢g*T'%,G A2t

G
% F%IQ*G-
Proof. Similar to definition-proposition 1 or definition-proposition 4. O

Definition 21. For S € AnSp(C), we denote by
Cos (AnSp(C)*™/S) := Ce(s)+ 05 (AnSp(C)*™ /5)

the category of complexes of presheaves on AnSp(C)*™ /S endowed with a structure of e(S)*Og module,
and by

Cog rit(AnSp(C)*™ /S) := Ce(s)~ 05 rit (AnSp(C)*™ /S)

the category of filtered complexes of presheaves on Var(C)*™/Sendowed with a structure of e(S)*Og
module.

Let S € AnSp(C). Let Z C S a closed subset. Denote by j : S\Z < S the open complementary
embedding,

e For G € Coy(AnSp(C)*™/S), I'zG := Cone(ad(j*, j«)(G) : F — j.j*G)[—1] has a (unique) struc-
ture of e(S)*Og module such that vz(G) : T'zG — G is a map in Cp, (AnSp(C)*™/S). This gives
the functor

Iz : Cosru(AnSp(C)*™ /S) = Crios (AnSp(C)*™/S), (G, F) = T'z(G, F) := (I'zG, Tz F),

together with the canonical map vz ((G, F) : I'z(G,F) — (G, F). Let Zy C Z aclosed subset. Then,
for G € Cog(AnSp(C)*™/S), T(Z2/Z,7)(G) : T'z,G — I'zG is a map in Cog (AnSp(C)*™/S) (i.e.
is €(5)*Og linear).

e For G € Co,(Var(C)*™/S), T',G := Cone(ad(jy, j*)(G) : jsj*G — G) has a unique structure of
e(S)*Og module, such that v (G) : G — I';G is a map in Co, (AnSp(C)*™/S). This gives the the
functor

Ty : Cogsru(S) = Cruos(S), (G, F) = T5(G,F) = (I'yG,TLF),

)
together with the canonical map v%((G, F) : (G, F) = '} (G, F). Let Zy C Z a closed subset. Then,
for G € Cog(AnSp(C)*™/S), T(Z2/Z,~")(G) : TyG — Ty G is amap in Cog (AnSp(C)*™/S) (i.e.
is €(5)*Og linear).

Definition 22. Let S € AnSp(C). Let Z C S a closed subset.

(i) We denote by
Cz(AnSp(C)*™/S) C C(AnSp(C)*™/9),

the full subcategory consisting of complexes of presheaves F'* € C(AnSp(C)*™/S) such that ays, H™ (j*F*®)

0 for alln € Z, where j : S\Z < S is the complementary open embedding and a,s, is the sheaftifi-
cation functor.

(i)’ We denote by
Cos,z(AnSp(C)™™/S) C Co, (AnSp(C)*™/S),

the full subcategory consisting of complexes of presheaves F'* € C(AnSp(C)*™/S) such that ays, H" (j*F*)

0 for alln € Z, where j : S\Z < S is the complementary open embedding and a,s, is the sheaftifi-
cation functor.
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(ii)) We denote by
C'fil,Z(AnSp((C)sm/S) C Ofil (AnSp(C)Sm/S)
the full subcategory consisting of filtered complexes of presheaves (F*,F) € Cyy(AnSp(C)*™/S)
such that there exist r € N such that ays,j*EPY(F*, F) =0 for all p,q € Z, where j : S\Z — S is

the complementary open embedding and a,s, is the sheaftification functor. Note that by definition
this v does NOT depend on p and q.

(i)’ We denote by
Cos fit,z(AnSp(C)*™" /S) C Cog ru(AnSp(C)*™ /S)
the full subcategory consisting of filtered complexes of presheaves (F*,F) € Cyy(AnSp(C)*™/S)
such that there exist r € N such that ays,j*EPY(F*, F) =0 for all p,q € Z, where j : S\Z — S is

the complementary open embedding and ays, is the sheaftification functor. Note that by definition
this v does NOT depend on p and q.

Let S € AnSp(C) and Z C S a closed subset.
e For (G, F) € Cyy(AnSp(C)*™/S), we have I'z(G, F),I', (G, F) € Ci,z(AnSp(C)*™/S).
e For (G, F) S Cosfil(AnSp((C)Sm/S), we have Fz(G, F),F\Z/(G, F) S Oosfihz(AnSp(C)sm/S).

Let S € AnSp(C). Let S = Uézls’i an open cover and denote by S; = NierS;. Let i; : S; — S;
closed embeddings, with S; € AnSp(C). For I C [1,---1], denote by St = Il;c1.S;. We then have closed
embeddings ¢y : S — Sy, and for J C I the following commutative diagram

Dry= 51 L>5'1

juT PIJT

Sy =8,

where pry : Sy — Sy is the projection and jr; : Sy <> St is the open embedding so that j; o jr; = j;.
This gives the diagram of analytic spaces (Sr) € Fun(P(N), AnSp(C)) which which gives the diagram of
sites AnSp(C)*™/(Sy) € Fun(P(N), Cat). Denote by m : S;\(Sr\Ss) — St the open embedding.

Definition 23. Let S € AnSp(((;). Let S = Uﬁzlsi an open cover and denote by St = NierSi. Let i; :
S; = S; closed embeddings, with S; € AnSp(C). We denote by the full subcategory Cry(AnSp(C)*™ /(S/(S1))) C
Criu(AnSp(C)*™ /(S1)) the full subcategory

e whose objects (G, F) = ((Gr, F)rcp,..qp,urs), with (G, F) € C'fuysl(AnSp((C)Sm/gl), and ury :
m*(Gr, F) = m*p1.(Gy, F) for I C J, are oo-filtered usu local equivalence, satisfying for I C J C
K, pryugk oury = urg in Cpi(AnSp(C)*™/Sr),

e the morphisms m : ((G, F),ury) — ((H, F),vry) being (see section 2.1) a family of morphisms of
complexes,
m = (m; : (G],F) — (HDF))IC[L---Z]

such that viyomy = prj.myoury in Cfil(AnSp((C)sm/S'[).

A morphism m : (G, F),ury) = ((Hr, F),vry) is said to an r-filtered usu local, equivalence, if all the
my are r-filtered usu local equivalences.

Denote L = [1,...,(] and for I C L, po(ory : S X S; — S, Pron S X S; — S; the projections. By
definition, we have functors

o T(S/(51) : Cru(AnSp(C)*™/S) — Cra(AnSp(C)*™/(S/(51))), (G, F) = (ir.j; F, T(D1s)(j7 (G, F))),
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o T((51)/S) : Cra(AnSp(C)*™/(S/(S1))) = Cra(AnSp(C)*™/S), (G, F), urs) = holimscr pocor«I'¥,Pior) (G1, F).
Note that the functors T'(S/(S;) are NOT embedding, since
ad (i}, i) Gi F) : i3ir-gi F = GiF

are usu local equivalence but NOT isomorphism since we are dealing with the morphism of big sites
P(ir) : AnSp(C)*™ /St — AnSp(C)*™/S;. However, these functors induces full embeddings

T(S/(Sr)) : Dyu(AnSp(C)*™/S) = Dyu(AnSp(C)*™/(S/(5r)))
since for F' € C(AnSp(C)*™/S),
ho }1CH]1: poon«L'siPion (ir<31 F) = poony«L's J7 F'

is an equivalence usu local.
Let f: X — S a morphism, with X, S € AnSp(C). Let S = Uf;:lSj- and X = UL_, X; be affine open

covers and i; : S; < S;, i} : X; < X; be closed embeddings. Let f; : X; — S; be a lift of the morphism
fi= f|X¢ : X; — S;. Then, f; = fIXI : X1 = Nier X; — St = NjecrS; lift to the morphism

fr=Tcrfi: Xr = Wier Xi — Sp = Mier S

Denote by prs : S’J — 5’1 and p}; : )N(J — XI the projections. Consider for J C I the following
commutative diagrams

Dy = SILS’I , Diy = X —Ls X, , Dyr = SIL>§I
B Y I
S, s 8, X;—1~ X, X;—= X,

We have then following commutative diagram

X — 1 X~ X\X;.

. 1
J1g , ’ ’
Pry Pry Pry
"X T

. lry o X > >
ZJZXJ—>X]><X]XXJ\[%XJ<—/XJ\XJ
"y

whose square are cartesian. We then have the pullback functor
f*: Clay 7 (AnSp(C)*™ /S/(S1)) —= Cia) 7 (AnSp(C)*™ / X/ (X1)),
((G[,F),U[J) = f*((G[,F),’LL[J) = (F}/(If}*(G[,F),f?UIJ>
with

p Fk ad( /*1 L) ™ e Ty (p1. 171/)(7)71)
fJUIJ : F}/(Ifl (GI’F) L>p/IJ*pIJF}IfI (GLF) ml_l}

P/IJ*’Y)VcJ(—)

P10Lx ez, 2o T (G F)

UX, P17y P15 (= =) (urs)

PQJ*F}JPI*}J;?(GD F) = p/IJ*F})/(Jf;p?J(GD F) F}/(JJE;(G% F)

Let (G,F) € Cpy(AnSp(C)*™/S). Since, j*i%,j*f*(G,F) = 0, the morphism T(D;;)(j(G, F)) :
Fringi (G, F) — it j* f*(G, F) factors trough

» S w Y3, (=) e TYDiDGEHGF)) . iy s
T(Ds1) (57 (G, )« ffingi (G, F) ——— T, firi (G, F) ——=22 0 G £7(G, F)
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We have then, for (G, F) € Cy;(S), the canonical transformation map

T(f,T(0/1))(G,F)

F*T(S/(SN)(G. F) T(X/(XD)(f*(G, F))

—l

f F TY(D (G, F
(T%, f1ird7 (G, F), f31) (Dy) (7 (G F))

We have similarly to the algebraic case, we have:

Definition 24. (i) Let f : X — S a morphism with X,S € AnSp(C). Assume that there exist a

factorization f: X S5Y xS 5 S, withY € AnSm(C), i : X — Y is a closed embedding and p the
projection. We then consider

Q(X/S) == piT'% Zy xsldy] := Cone(Z((Y x S)\X/S) = Z(Y x S/5))[dy] € C(AnSp(C)*™/S).
By definition Q(X/S) is projective since it is a complex of two representative presheaves.

(i) Let f : X — S and g : T — S two morphism with X,S,T € AnSp(C). Assume that there exist a

factorization f: X Y x 8 & S, with Y € AnSm(C), i : X < Y is a closed embedding and p the
projection. We then have the following commutative diagram whose squares are cartesian

fiX—syYyxSL s
g'T g":—(IXQ)T -‘JT
FoXp— sy xT X T
We then have the canonical isomorphism in C(AnSp(C)*™ /T)
T(f.9.Q) = Ty(g,p)(=) " o Ty(g", J)(=) " :
9 Q(X/S) == g* piT % Ly xsldy] = piT%, Zy xrldy] =: Q(Xr/T)
with j: Y x S\X < Y x S the closed embedding.
We now define the D! localization property :
Definition 25. Let S € Var(C).
(i) A complex F € C(AnSp(C)*™ /8) is said to be D' invariant if for all U/S € AnSp(C)=™) /S,
F(pu) : F(U/S) = F(U x DY/S)
is a quasi-isomorphism, where py : U x D' — U is the projection.

(ii) A complex F € C(AnSp(C)™ /S) is said to be D' local for the usual topology, if for a (hence
every) usu local equivalence k : F — G with k injective and G € C(AnSp(C)™ /S) usu fibrant,
e.g. k: F— E.(F), G is D' invariant for all n € Z.

(iii) A morphism m : F — G with F,G € C(AnSp(C)™ /S) is said to an (D', usu) local equivalence if
for all H € C(AnSp(C)*™) /S) which is A local for the etale topology

Hom(L(m), Eysu(H)) : Hom(L(G), Eysy(H)) = Hom(L(F), Eysu(H))

is a quasi-isomorphism. Equivalently, m : F — G with F,G € C(AnSp(C)*™ /S) is an (D', et)
local equivalence if and only if there exists X1/S, ..., X,/S € AnSp(C)*™) /S such that we have in
Hoe: (C(Var(C)™) /S))

Cone(m) = Cone(Cone(Z(X; x D'/S) — Z(X,/S)) = --- — Cone(Z(X, x D'/S) — Z(X,./S)))
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Proposition 25. With the weak equivalence the (DY, usu) equivalence and the fibration the epimorphism
with DY local and usu fibrant kernels gives a model structure on C(AnSp(C)*™/S) : the left bousfield
localization of the projective model structure of C(AnSp(C)*™/S).

Proof. See [10]. O

We will consider for the construction of the filtered De Rham realization functor the filtered case :
Definition 26. Let S € AnSp(C).

(i) Let r € N. A filtered complex (G, F) € C}y(AnSp(C)™) /8) is said to be r-filtered D' invariant if
for allU/S € AnSp(C)/S and all p,q € Z,

EPG(py) « BP(G, F)(U/S) = EM(G,F)(U x D'/S)

is an isomorphism of abelian group, where py : U xD' — U is the projection. Note that by definition
this v does NOT depend on p and q.

(i) A filtered compler (G,F) € Cpy(AnSp(C)*™)/S) is said to be co-filtered D' invariant if for all
U/S € AnSp(C)*™) /S, there exist r € N such that for all p,q € Z,
EPAG(py) : BP(G, F)(U/S) = BP9(G, F)(U x D/S)
is an isomorphism of abelian group, where py : U x D' — U is the projection (note that by

definition this r does NOT depend on p and q but may depends on U/S). This implies that, for all
U/S € AnSp(C)*™) /S,

H"G(py) : H"(G,F)(U/S) = H"(G,F)(U x D'/S)
is a filtered isomorphism of filtered abelian groups for all n € Z.

(iii) A filtered complex (G, F) € Cy(AnSp(C)*™) /8S) is said to be oco-filtered D' local for the usual
topology if for a (hence every) oo-filtered usu local equivalence k : (G, F) — (H, F) with k injective
and (H, F) € C}i(AnSp(C)™) /8) oo-filtered usu fibrant, e.g. k : (G, F) = Eusu(G, F), (H,F) is

oo-filtered D' invariant.
Lemma 3. Let S € Var(C).

(i) Let (G, F) € Cry(AnSp(C)*™/S) Then, if m : Fi — F» with F1, F, € C(AnSp(C)*™/S) is an usu
local equivalence,

Hom(m, Eys, (G, F)) : Hom®(Fy, Eysu (G, F)) = Hom®(Fy, Eysu (G, F))
s a filtered quasi-isomorphism.

(ii) Let (G, F) € Cpy(AnSp(C)*™/S) be co-filtered D' local for the usual topology. Then, if m : Fy — F
with F1, Fy € C(AnSp(C)*™/S) is an (D', et) local equivalence,

Hom(m, Eys, (G, F)) : Hom®(Fs, Eysu (G, F)) — Hom®(Fy, Eysu (G, F))
is an oco-filtered quasi-isomorphism.

Proof. Similar to lemma 1. O

Proposition 26. Let g : T — S a morphism with T, S € AnSp(C).

(i) The functor g* : C(AnSp(C)*™/S) — C(AnSp(C)*™/T) sends quasi-isomorphism to quasi-isomorphism
and equivalence usu local to equivalence usu local, sends (D', usu) local equivalence to (D*, usu) local
equivalence.

(i) The functor g* : C(AnSp(C)/S) — C(AnSp(C)/T) sends quasi-isomorphism to quasi-isomorphism
and equivalence usu local to equivalence usu local, sends (D', usu) local equivalence to (D', usu)
local equivalence.

Proof. Similar to the proof of proposition 19. o
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2.9 Presheaves on the big analytical site of pairs

We recall the definition given in subsection 5.1 : For S € AnSp(C), AnSp(C)?/S := AnSp(C)?/(S,S) is
by definition (see subsection 2.1) the category whose set of objects is

(AnSp(C)?/8)° :={((X, Z),h),h: X — S, Z C X closed } C AnSp(C)/S x Top

and whose set of morphisms between (X1, Z1)/S = (X1, Z1), h1), (X1, Z1)/S = (X2, Z5), ha) € AnSp(C)?/S
is the subset

Homansp(c)2/s((X1, 21)/8, (X2, Z2)/5) =
{(f Xy — XQ), s.t. hy o f = hy and Z7 C fﬁl(ZQ)} C HomAnSp(C) (Xl, XQ)

The category AnSp(C)? admits fiber products : (X1,21) X(s,7) (X2, 2Z2) = (X1 xg X2, 21 Xz Z2). In
particular, for f: T — S a morphism with S,T € AnSp(C), we have the pullback functor

P(f) : AnSp(C)*/S — AnSp(C)*/T, P(f)((X, Z)/S) == (X1, Z1)/T, P(f)(9) == (9 x5 [)

and we note again P(f) : AnSp(C)?/T — AnSp(C)?/S the corresponding morphism of sites.

We will consider in the construction of the filtered De Rham realization functor the full subcategory
AnSp(C)**™ /S C AnSp(C)?/S such that the first factor is a smooth morphism : We will also consider,
in order to obtain a complex of D modules in the construction of the filtered De Rham realization
functor, the restriction to the full subcategory AnSp(C)??"/S C AnSp(C)?/S such that the first factor
is a projection :

Definition 27. (i) Let S € AnSp(C). We denote by
ps : AnSp(C)**™ /S < AnSp(C)?/S

the full subcategory consisting of the objects (U,Z)/S = ((U,Z),h) € AnSp(C)?/S such that the
morphism h: U — S is smooth. That is, AnSp(C)**™ /S is the category

— whose objects are (U,Z)/S = ((U,Z),h), with U € AnSp(C), Z C U a closed subset, and
h:U — S a smooth morphism,

— whose morphisms g : (U, 2)/S = ((U,Z),h1) — (U',Z")/S = (U',Z"),h2) is a morphism
g:U — U’ of complex algebraic varieties such that Z C g='(Z') and ha o g = hy.

We denote again ps : AnSp(C)?/S — AnSp(C)?*™ /S the associated morphism of site. We have

*(S) : AnSp(C)? "= A 1gh(C)2 /8 L5 AnSp(C)>*™ /S

the composite morphism of site.
(ii) Let S € AnSp(C). We will consider the full subcategory
s : AnSp(C)*P" /S — AnSp(C)?/S
whose subset of object consist of those whose morphism is a projection to S :

(AnSp(C)?77/8)% .= {((Y x S, X),p), Y € AnSp(C), p:Y x S — S the projection} C (AnSp(C)?/S)°.

(i) We will consider the full subcategory
ps ¢ (AnSp(C)**™P"/§) — AnSp(C)**™/S
whose subset of object consist of those whose morphism is a smooth projection to S :

(AnSp(C)>s™Pr /SY0 .= {((Y x S, X),p), Y € SmVar(C), p:Y x S — S the projection} C (AnSp(C)?/S)°
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For f : T — S a morphism with 7,5 € AnSp(C), we have by definition, the following commutative
diagram of sites

AnSp(C)%/T mr AnSp(C)%?" /T . (36)
P(f) AnSp(C)%s™ /T r(f) AnSp(C)2smer /T
AnSp(C)?/S pmL AnSp(C)2*r /S P(f)
\ [ K
AnSp(C)2"Sm/S ©s AnSp(C)Zsmpr/S

Recall we have (see subsection 2.1), for S € Var(C), the graph functor

Grg : AnSp(C)/S — AnSp(C)*?P" /S, X/S + Grg?(X/S) := (X x S, X)/S,
(g: X/S = X'/S) = Crd(g):=(gxIs: (X xS, X)— (X' x5 X))

For f : T — S a morphism with 7,5 € AnSp(C), we have by definition, the following commutative
diagram of sites

AnSp(C)2P" /T o AnSp(C)/T . (37)
P(f) AnSp(C)2smer /T }ﬁv AnSp(C)*™ /T
L Gr lQ
AnSp(C)*?r/S ‘L AnSp(C)/S P(f)
Gr]é2 \
AnSp(C)?sm /S AnSp(C)*™/S

where we recall that P(f)((X, Z)/S) := ((Xr, Zr)/T), since smooth morphisms are preserved by base
change.
As usual, we denote by

(f*, f) == (P(f)*, P(f)«) : C(AnSp(C)**™/S) — C(AnSp(C)**™/T)

the adjonction induced by P(f) : AnSp(C)?*™ /T — AnSp(C)?*™/S. Since the colimits involved in the
definition of f* = P(f)* are filtered, f* also preserve monomorphism. Hence, we get an adjonction

(f*, £2) - Cra(AnSp(C)**™ /8) = Cra(AnSp(C)**™/T), f*(G,F) := (f*G, f'F)

For S € AnSp(C), we denote by Zg := Z((S,S)/(S,S)) € PSh(AnSp(C)**™/S) the constant presheaf
By Yoneda lemma, we have for F' € C(AnSp(C)**™/S), Hom(Zs,F) = F.

For h : U — S a smooth morphism with U, S € AnSp(C), P(h) : AnSp(C)**™/S — AnSp(C)*>*™/U
admits a left adjoint

C(h) : AnSp(C)>*™ /U — AnSp(C)>*™ /S, C(h) (U, Z"),}) = (U, Z'),ho ).
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Hence h* : C(AnSp(C)?*™/S) — C(AnSp(C)?*™/U) admits a left adjoint

. 2,sm 2,sm . : / /
hy : C(ANSP(C)>™" /U) — O(AnSp(C)>™ /), Frs (e (U 2)ho) sl F((U'2)/U)

For F'* € C(AnSp(C)?*™/S) and G* € C(AnSp(C)**™/U), we have the adjonction maps
ad(hy, h*)(G*) : G* — h*hyG* | ad(hy, h*)(F*) : hyh*F* — F*.

For a smooth morphism h : U — S, with U,S € AnSp(C), we have the adjonction isomorphism, for
F € C(AnSp(C)?*™/U) and G € C(AnSp(C)?*™/S),

I(hy, h*)(F,G) : Hom® (h4F, G) = h,Hom® (F,h*G). (38)
For a commutative diagram in AnSp(C) :

92
E—

=V U
b

T- 2.9

D

)

where hy and hy are smooth, we denote by, for F'* € C(AnSp(C)**™/U),
Ty(D)(F*®) : haggs F'* — grhig F*®

the canonical map given by adjonction. If D is cartesian with hy = h, g1 = g fo = b : Ur = T,
g/ Ur — []7 ,
Ty(D)(F*) =: Ty(g, h)(F) : ég F* — g"hyF*®

is an isomorphism.
We have the support section functors of a closed embedding ¢ : Z — S for presheaves on the big
analytical site of pairs.

Definition 28. Leti: Z — S be a closed embedding with S, Z € AnSp(C) and j : S\Z < S be the open
complementary subset.

(i) We define the functor

I'z : C(AnSp(C)**™/S) — C(AnSp(C)**™/8S), G* + T zG* := Cone(ad(j*, j.)(G®) : G* = j.j*G*)[-1],
so that there is then a canonical map vz(G*) : T'zG* — G°.

(ii) We have the dual functor of (i) :
I : C(AnSp(C)**™/S) — C(AnSp(C)*™™/S), F = T;(F*) := Cone(ad(jz, ") (G*) : juj*G* — G*),
together with the canonical map v%(G) : F — ' (G).

(iii) For F,G € C(AnSp(C)**™/S), we denote by

1y, hom)(F, G) = (I, I(js, j*)(F,G)"1) : T 7Hom(F, G) = Hom(TF, G)

the canonical isomorphism given by adjonction.

Note that we have similarly for i : Z < S, i’ : Z/ < Z closed embeddings, g : T — S a morphism
with T, S, Z € AnSp(C) and F € C(AnSp(C)?*™/8S), the canonical maps in C'(AnSp(C)?*™/S)

o T(9.7)(F): g*'TzF = Tzusrg*F, T(g,v")(F) : T%, .rg"F = g*'T 2 F
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T(Z'/Z,A)(F): Tz F —T4F, T(Z')Z,4Y)(F) : T4F — T}, F

but we will not use them in this article.
We now define the usual topology on AnSp(C)?/S.

Definition 29. Let S € AnSp(C).

(i) Denote by T a topology on AnSp(C), e.g. the usual topology. The T covers in AnSp(C)?/S of
(X,2)/S are the families of morphisms

{(ci: (Ui, Z xx U;)/S = (X,2)/8)icr, with (¢; : Uy = X)ier Tcover ofX in AnSp(C)}
(ii) Denote by T the usual or the etale topology on AnSp(C). The 7 covers in AnSp(C)%*™/S of
(U,Z)/S are the families of morphisms
{(ci: (Ui, Z xu U;)/S = (U, Z)/S)ier, with (c; : Uy = U);er Tcover ofX in AnSp(C)}
(iii) Denote by T the usual or the etale topology on AnSp(C). The T covers in AnSp(C)>(™P" /S of
(Y x 8,7)/S are the families of morphisms
{{c; xIs: (Ui x S, Z xyxs Ui xS)/S —= (Y x8,2)/8)ict, with (¢; : Uy = Y );er Tcover ofY in AnSp(C)}
Let S € AnSp((C). Denote by 7 the usual topology on AnSp(C). In particular, denoting a, :

PSh(AnSp(C)%¢™ /8) — Shv(AnSp(C)*™)/S) and a, : PSh(AnSp(C)> ™" /S) — Shv(AnSp(C)>™Pr/S)
the sheaftification functors,

e a morphism ¢ : F — G, with F,G € C(AnSp(C)**™)/S), is a 7 local equivalence if a,H"¢ :
a;H"F — a,H"G is an isomorphism, a morphism ¢ : F — G, with F, G € C(AnSp(C)>mrr/g),
is a 7 local equivalence if a.H"¢ : a, H"F — aH"G is an isomorphism,

e a morphism ¢ : (G, F) — (Go, F), with (G, F), (G2, F) € C;(AnSp(C)%(5™) /), is an r-filtered
7 local equivalence if for all p,q € Z, a,EP9¢ : a,EP%(G1,F) — a,EP9(Gy, F) is an isomor-
phism of sheaves on AnSp(C)%(™ /S, a morphism ¢ : (G1, F) — (G2, F), with (G, F), (Go, F) €
C'i1(AnSp(C)>(=™)Pr /) is an r-filtered 7 local equivalence if for all p, ¢ € Z a, EP9¢ : a, EP4(Gy, F) —
a, EP9(Gy, F) is an isomorphism of sheaves on AnSp(C)%(sm)»r /g,

e ['* € C(AnSp(C)*>(™/8) is r fibrant if for all (U, Z)/S € AnSp(C)>*™/S and all 7 covers (c; :
(Ul,Z Xyu UZ)/S — (U, Z)/S)le] of (U, Z)/S,

F*(c;) : F*((U, 2)/8) — Tot(@ecarar—e F* (U1, Z xy Ur)/S))

is a quasi-isomorphism of complexes of abelian groups, F* € C(AnSp(C)>™P"/S) is 7 fibrant if
for all (Y x S,Z)/S € AnSp(C)>*™" /S and all T covers (¢; x Is : (Ui X S, Z Xyxs U; x S)/S —
(Y X S, Z)/S)le] of (Y X S, Z)/S,

F*(c; x Is) : F*((Y x 8, 2)/8) = Tot(Bearar—e F*(Ur x S, Zr xy Ur)/S))
is a quasi-isomorphism of complexes of abelian groups,

e (F*,F) € Csy(AnSp(C)?*™/S) is r-filtered 7 fibrant if for all (U, Z)/S € AnSp(C)*(™) /S and all
7 covers (¢; : (U, Z xy U;) /S — (U, Z)/S)ier of (U,Z)/S,

EPIE®, F)(ci) : EPU(F®, F)((U, 2)/5) = EP*(Tot(Scarar=e(F*, F)(Ur, Z xv Ur)/5)))

is an isomorphism of abelian groups for all p, ¢ € Z, (F*, F) € C};(AnSp(C)? (™ /S) is r-filtered
7 fibrant if for all (Y x S, Z)/S € AnSp(C)*™Pr /S and all 7 covers (c; x Is : (U; x S, Z Xyxs
U; x S)/S — (Y X S, Z)/S)le] of (Y X S, Z)/S,

EPA(F® F)(e;x1Ig) : EPUF®, FY(Y%xS,2)/S) = EPYTot(Peardi=e(F*, F)(UrxS, ZxyUr)/S)))

is an isomorphism of abelian groups for all p, q € Z.
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Will now define the D! local property on AnSp(C)?/S.
Definition 30. Let S € AnSp(C).
(i) A complex F € C(AnSp(C)*™) /S, is said to be D' invariant if for all (X, Z)/S € AnSp(C)*™) /S
F(px): F((X,Z)/8) = F((X x D', (Z x D'))/S)

is a quasi-isomorphism, where px : (X x D' (Z x D)) — (X, Z) is the projection.

-

Similarly, a complex F € C(AnSp(C)*»™Pr /8) is said to be D invariant if for all (Y x S, Z)/S €
AnSp((C)Q’(Sm)W/S

(i)

F(pyxs): F((Y x 8,2)/S) = F((Y x § xD',(Z x D"))/8)
is a quasi-isomorphism

(ii) A complex F € C(AnSp(C)>™) /S) is said to be D' local for the T topology induced on AnSp(C)2/S,
if for an (hence every) T local equivalence k : F — G with k injective and G € C(AnSp(C)%(=™) /S)
T fibrant, e.g. k: F — E.(F), G is D invariant.

(i)’ Similarly, a complex F € C(AnSp(C)>™P"/S) is said to be D' local for the T topology induced
on AnSp(C)2/S, if for an (hence every) T local equivalence k : F — G with k injective and G €
C(AnSp(C)>tmrr /S) 1 fibrant, e.g. k: F — E.(F), G is D! invariant.

(iii) A morphism m : F — G with F,G € C(AnSp(C)>(™)/S) is said to an (D', usu) local equivalence
if for all H € C(AnSp(C)>™) /S) which is D' local for the usual topology

Hom(L(m), Eysu(H)) : Hom(L(G), Eysy (H)) = Hom(L(F), Eysu(H))
is a quasi-isomorphism.

(iii)’ Similarly, a morphism m : F — G with F,G € C(AnSp(C)>™P" /S) is said to be an (D', usu)
local equivalence if for all H € C(AnSp(C)>™P/S) which is D' local for the usual topology

Hom(L(m), Eysy(H)) : Hom(L(G), Eysu(H)) — Hom(L(F), Eysu(H))
is a quasi-isomorphism.

Equivalently, m : F — G with F, G € C(AnSp(C)**™/S) is an (D, usu) local equivalence if and only if
there exists (X1, 21)/S, ..., (X, Z,)/S € AnSp(C)**™ /S such that we have in Ho.:(C(AnSp(C)%*™/8S))

Cone(m) = Cone(Cone(Z((X1 x D', Z; x D')/S) — Z((X1,21)/9))
— -+ — Cone(Z((X; x D!, Z; x Dl)/s) — Z((X1,21)/9)))

In the filtered case, we consider :
Definition 31. Let S € AnSp(C).

(i) Let r € N. A filtered complex (G, F) € Cy;y(AnSp(C)>(™) /S), is said to be r-filtered D' invariant
if for all (X,Z)/S € AnSp(C)>=m)/§

EP(G, F)(px) : (G, F)(X,2)/8) = EP*(G, F)((X x D', (Z x D'))/8)

is an isomorphism of abelian groups for all p,q € Z, where px : (X x D, (Z x D)) — (X, Z) is the
projection. Note that by definition this r does NOT depend on p and q.
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(1)’

(i)

(i)’

(iii)

(i)’

Letr € N. A filtered complex (G, F) € C}y(AnSp(C)2™Pr /S) is said to be r-filtered D invariant
if for all (Y x S,Z)/S € AnSp(C)>(s™wr /g

ERU(G, F)(pyxs) : EPUG,F)((Y x 8,Z)/8) = EPU(G, F)((Y x D' x 8,(Z x D'))/5)

is an isomorphism of abelian group for all p,q € Z. Note that by definition this r does NOT depend
on p and q.
A filtered complex (G, F) € Cyy(AnSp(C)**™/8S), is said to be oco-filtered D invariant if for all
(X,Z)/S € AnSp(C)>™) /S there exist r € N such that

EPUG, F)(px) : EPU(G. F)((X, 2)/S) = EPY(G, F)((X x D', (Z x D'))/5)

is an isomorphism of abelian groups for all p,q € Z, where px : (X x D!, (Z x D)) = (X, 2)
is the projection (note that by definition this v does NOT depend on p and q but may depends on
(X,Z)/S). This implies that, for all (X,Z)/S € AnSp(C)>™) /S,

H™(G,F)(px) : H"(G, F)((X,2)/8) = H"(G, F)((X x D', (Z xD"))/8)
is a filtered isomorphism of filtered abelian groups for alln € Z.

Similarly, a filtered complex (G, F) € Cy(AnSp(C)>™Pr/S) is said to be co-filtered D' invariant
if for all (Y x S,Z)/S € AnSp(C)>(™Pr /S there exist r € N such that

EPUG, F)(pyxs) : EPUG,F)(Y x S,2)/S) = EPYG, F)(Y x A x S,(Z x A))/S)

is an isomorphism of abelian group for all p,q € Z (note that by definition this r does NOT depend on
p and q by may depend on (Y x S,Z)/S). This implies that, for all (X,Z)/S € AnSp(C)>(=mrr /g,

H"(G,F)(pyxs) : H"(G,F)((Y x 8,2)/S) = H"(G,F)((Y x § xD',(Z x D"))/5)
is a filtered isomorphism of filtered abelian groups for all n € Z.

A filtered compler (G,F) € Cy(AnSp(C)>™)/S), is said to be oo-filtered D' local for the T
topology induced on AnSp(C)?/S, if for an (hence every) co-filtered T local equivalence k : (G, F) —
(H, F) with k injective and (H, F) € C;y(AnSp(C)>(5™) /S), co-filtered T fibrant, e.g. k : (G, F) —
E.(G,F), (H, F) is co-filtered D' invariant.

Similarly, a filtered compler (G, F) € Cyy(AnSp(C)>E™Pr /S s said to be oo-filtered D' local
for the T topology induced on AnSp(C)?/S, if for an (hence every) oco-filtered T local equivalence
k:(G,F) — (H,F) with k injective and (H,F) € Cp;y(AnSp(C)>(™Pr/8)  oo-filtered T fibrant,
e.g. k: (G, F) = E.(G,F), (H, F) is co-filtered D' invariant.

Lemma 4. Let S € Var(C).

(i)

(ii)

Let (G, F) € Cty(AnSp(C)>*™P" /S) Then, if m : Fy — Fy with F1, Fy € C(AnSp(C)*s™Pr/S) is
an usu local equivalence,

Hom(m, Eys, (G, F)) : Hom®(Fs, Eysu (G, F)) — Hom®(Fy, Eysu (G, F))
is a filtered quasi-isomorphism.

Let (G,F) € Cyy(AnSp(C)*>*™P" /S) be oo-filtered D' local for the etale topology. Then, if m :
Fy — Fy with Fy, Fy € C(AnSp(C)**™P"/S) is an (D', usu) local equivalence,

Hom(m, Eys, (G, F)) : Hom®(Fy, Eysu (G, F)) = Hom®(Fy, Eysu (G, F))

is an oco-filtered quasi-isomorphism.
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Proof. Similar to lemma 2 : follows from lemma 3. O

We have, similarly to the case of single varieties the following :
Proposition 27. Let g : T — S a morphism with T, S € AnSp(C).
(i) The functor g* : C(AnSp(C)*>C™ /8) — C(AnSp(C)>C™ /T) sends quasi-isomorphism to quasi-

isomorphism and equivalence usu local to equivalence usu local, sends (D', usu) local equivalence to
(DY, usu) local equivalence.

(ii) The functor g* : C(AnSp(C)>™Pr/S) — C(AnSp(C)>™P" /T sends quasi-isomorphism to
quasi-isomorphism and equivalence usu local to equivalence usu local, sends (D', usu) local equiva-
lence to (D', usu) local equivalence.

Proof. Similar to the proof of proposition 21. O

We also have
Proposition 28. Let S € AnSp(C).
(i) The functor Grs** : C(AnSp(C)/S) — C(AnSp(C)*>?"/S) sends usu local equivalence to usu local

equivalence.

(i)’ The functor Grg** : C(AnSp(C)*™/S) — C(AnSp(C)>?"/S) sends usu local equivalence to usu local
equivalence.

(ii) The functor Grg™ : C(AnSp(C)/S) — C(AnSp(C)*?"/S) sends (D', usu) local equivalence to
(DY, usu) local equivalence.

(i)’ The functor Grg* : C(AnSp(C)*™/S) — C(AnSp(C)>*"#" /S) sends (D', usu) local equivalence to
(DY, usu) local equivalence.

Proof. Similar to the proof of proposition 23. O

We have the following canonical functor :

Definition 32. (i) For S € AnSp(C), we have the functor

(=)' : C(AnSp(C)*™/S) — C(AnSp(C)**™/S),
F+—F":((U,2)/S)=((U,Z),h) = F*'((U,2)/S) := (T4h*LF)(U/U),
(9: (U, 2"),1") = (U, Z),h)) =

i(r% h*LF)(U/U)

(F"(g) : (PZh*LF)(U/U)
T(9~") (W LE)(U' /U")

(g"(Tzh"LE)(U'/U")

(T xpurg" W LE)(U'/U")

T(Z /ZXUU Y )(g*h*LF)(U /U ) (Pvlg*h*LF)(U//U/)))

where iy LFy(w/v) 18 the canonical arrow of the inductive limit. Similarly, we have, for S €
AnSp(C), the functor

(=)' : C(AnSp(C)/S) — C(AnSp(C)*/S),

Fr—F': ((X,2)/8) = (X, 2),h) = F' (X, 2)/8) = (Tzh" F)(X/X),

(9: (X', 2), 1) = (X, 2),h)) = (F(g) : (T3h*LF)(X/X) — (T h *LF)(X'/X")))
Note that for S € AnSp(C), I(S/S) : Z((S,S)/S) — Z(S/S)' given by

u/u)(u/u)

1(5/S)(U. 2), h) : Z((S, $)/S)((U, 2), b)) 222

is an isomorphism.
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(ii) Let f:T — S a morphism with T, S € AnSp(C). For F € C(AnSp(C)*™/S), we have the canonical
morphism in C(AnSp(C)**™ /T

T(f,D)(F):=T*(f,T)(F): [*(F") = (f*F)",

T(f,T)F)((U',Z2)/T = (U, Z), 1)) :

rEOH(U, 2,10 = l lim " (TYh*LF)(U/U)
(U",2"),W)=((Ur , Z1),hr) = ((U,Z),h)

r o ’
LoD, (Y, 1 R LF) (U JUY) = (T b f* LE)(U' JU)

Ty, B T(f,L)(F) (U’ /U /
St SR, Ry L R)U U = (P (U, Z), 1)

where fy :Up :U xgT — U and hp : Up :=U xgT — T are the base change maps, the equality
following from the fact that ho fyol = fohrol = foh/. For F € C(AnSp(C)/S), we have
similarly the canonical morphism in C(AnSp(C)?/T)

T(f.D)(F): f*(F5) = (fFF)".

(ii) Let h : U — S a smooth morphism with U, S € AnSp(C). We have, for F € C(AnSp(C)*™/U), the
canonical morphism in C(AnSp(C)%*™/S9)

Ty(h,T)(F) : hy(F") — (hsLF)",

Ty(h, D) (F)(U', Z"), 1) : hy(FY)((U', Z'), 1) := lim (TY 1 LF)(U' /U
((U7,2/),h) =5 ((U,U),h)

(D" ad(hy,h*) (LF)) (U /U")

(CL AR he LF)(U'/U") =: (hs LF)"((U", Z') /1)

() Let i : Zog — S a closed embedding with Zy,S € AnSp(C). We have the canonical morphism in
C(AnSp(C)**m/S)
T.(i,D)(Z(Z0/ 20)) = ix((Z(Z0] Z0))" — (i:Z(Z/Z))",
T. (i, D) 220/ Z0)) (U, Z), 1) (2 Zo) Z0))F (U, 2), 1) = (D 2o A0/ Z0))(U X5 7o)

T(i4, VYV Z(Zo/Z U Z, . .
e OGNNSO, (1, 7 2o ) 20)) (U x5 Zo) =: (1. Z(Z/Z))" (U, Z), )

Definition 33. Let S € AnSp(C). We have for F € C(AnSp(C)*™/S) the canonical map in C(AnSp(C)*™/S)
Gr(F): Grg2 us«F*' — F,
Gr(F)(U/S) : TYp* F(U x SJU x §) 2 INUXSIUXS), e oy 117y = F(U/S)

where h : U — S is a smooth morphism with U € AnSp(C) and h : U L UxS B S is the graph
factorization with | the graph embedding and p the projection.

Proposition 29. Let S € AnSp(C).
(i) Then,
—ifm : F — G with F,G € C(AnSp(C)*™/S) is a quasi-isomorphism, m" : F' — GV is a
quasi-isomorphism in C(AnSp(C)?*™/8S),

— ifm: F — G with F,G € C(AnSp(C)*™/S) is an usu local equivalence, m' : F*' — GT is an
usu local equivalence in C(AnSp(C)%5™/S),

—ifm: F — G with F,G € C(AnSp(C)*™/S) is an (D', usu) local equivalence, m' : FI' — G
is an (D', usu) local equivalence in C(AnSp(C)?*™/8S).
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(ii) Then,

—ifm : F — G with F,G € C(AnSp(C)/S) is a quasi-isomorphism, m%

quasi-isomorphism in C(AnSp(C)?2/S),

. FU' — GT s

— ifm: F — G with F,G € C(AnSp(C)*™/S) is an usu local equivalence, m' : F* — GY is an

usu local equivalence in C(AnSp(C)*5™/S),

— ifm: F — G with F,G € C(AnSp(C)*™/S) is an (D', usu) local equivalence, m" : F*' — G

is an (D', usu) local equivalence in C(AnSp(C)?/S).

Proof. Similar to the proof of proposition 24.

O

2.10 The analytical functor for presheaves on the big Zariski or etale site
and on the big Zariski or etale site of pairs

We have for f: T — S a morphism with T, S € Var(C) the following commutative diagram of sites

Dia(S) := AnSp(C)/T"" Var(C)/T
AnSp(C)*™/T" an jpm Var(C)*™ /T
AnSp(C)/ 5" l o Var(C)/S P(f)
j \
AnSp (C)sm /gan Ans Var(C)™ /S
and
Dia'*(S) := AnSp(C)?/T" < Var(C)?/T
P(f) AnSp(C)*m/Te" An(‘f) Var(C)»*™/T
AnSp(C)?/s*" LD Var(C)?/S P(f)
\ [ K
AnSp 2 sm/San Ang Var(C)2=5m/S
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For S € Var(C) we have the following commutative diagrams of sites

AnSp(C AnSp(C)?rr/S

Ang AnSp(C)%sm /S ‘j\ AnSp(C)%smrr/S
Var(C J‘: Var(C)2smrr /S Ans

Var(C)?/S Var(C)%smrr /S
and
AnSp(C)2" /S crs AnSp(C)/ . (41)
Ang AnSp(C)%smrr/S J[ AnSp(C)*™/S
C)/ Ang

Var(C)*r" /S le Var(

\
Grré2

Var )2sm /S Var(C)*™ /S

For f : T — S a morphism in Var(C) the diagramm Dia(S) and Dia(T) commutes with the pullback
functors : we have e(S) o P(f) = P(f)oe(T).
For S € Var(C), the analytical functor is

(=)™ : Cos(S) = Cogan,G = G := an§™ G := an}y G ®anz 05 Osan
Let S € Var(C).

e Asan} : PSh(S) — PSh(S%") preserve monomorphisms (the colimits involved being filtered colim-
its), we define, for (G, F') € C(2)#4(95), ang(G, F') := (ang G,ang F') € C(g)71(S*").

o As (=)™ = an"°? : PSho,(S) — PSh(S%") preserve monomorphisms (an} preserve monomor-
phism and (—) ®o, Ogan preserve monomorphism since Ogan is a flat Og module), we define, for
(G, F) € CiypalS), (G, F)™ := (G, an§ F ®0g Ogen) € Ca)u(S™).

Let f:T — S a morphism with T, S € Var(C). Then,

e the commutative diagrams of sites D(An, f) := (Ang, f, Ang, f = f*") gives, for G € C(Var(C)*™/T),
the canonical map in C(AnSp(C)*™/T)

T(An, f)(G) : Anj f,G 22ET AT

Sl Anjg f. Anp. An} G = Ang Ang, f« An} G
ad(Ang Ang.)(f« An} G) f* An} el

e the commutative diagrams of sites D(an, f) := (ang, f ang, f) gives, for G € C(T), the canonical
map in C(T")

T(an, f)(G) : ang f.G

ad(an?,anry)(G)
- anyg fr anp, anp G = ang ang. fx anp G

franp G

ad(ang,ang.)(f« ang. G)
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and for G € Cp, (T), the canonical map in Co.. (T°")

(anj™*? anr.)(G)

T (an, £)(G) : (foG)™ := aniod f,G

xmod x
an ,angy ) (f« anp G)
gmod f* anf. a'n,}qnod G = a'ngwwd ang. f* a'n;;wwd G S T f* aJn,}qnod G =: f* Gaon

an

Definition-Proposition 6. Consider a closed embedding i : Z — S with S,Z € Var(C). Then, for
G* € C(Var(C)*™/S), there exist a map in C(AnSp(C)*™/S)

T(An,v)(G) : AngT'zG - Tz Ang G
unique up to homotopy, such that yz(AngG) o T(An,v)(G) = AngvzG.

Proof. Denote by j : S\Z < S the open complementary embedding. The map is given by (I, T(An, j)(j*G)) :
Cone(Ang G — Ang j.j*G) — (Ang G — j.j* Ang G). O

Definition 34. Let f: X — S a morphism with X,S € Var(C). Assume that there exist a factorization

f:X5YxS8SE S, withYy € SmVar(C), i : X — Y is a closed embedding and p the projection. We
then have the canonical isomorphism in C(AnSp(C)*™/S™)

T(f,9,Q) = Ty(An,p) (=)' o Ty(An, j)(-) " :
Ang Q(X/S) = Angpﬂr}/(ZYxs[dy] —:—> pﬁF}/(anZst[dy] =: Q(Xan/san)
with j: Y X S\X — Y x S the closed embedding.

Definition-Proposition 7. Consider a closed embedding i : Z — S with S € Var(C). Then, for
G € Co4(S), there is a canonical map in Cogan (S*™)

T an,v)(G) : ([zG)*™ = T zan G
unique up to homotopy, such that yzan (G™) o T™%(an,v)(G) = g*vzG.
Proof. Tt is a particular case of definition-proposition 2(i). O

We recall the first GAGA theorem for coherent sheaf on the projective spaces :
Theorem 11. For X € Var(C) and F € Co, (X) denote by

a(F) : ad(any™?, an(X),)(E(F)) : E(F) — anx.(E(F))* = anx. E(F),
the canonical morphism.

(i) Let X € PVar(C) a proper complex algebraic variety. For F € Coho, (X) a coherent sheaf, the
morphism

H"T'(X,a(F)): H*(X,F)=H"I'(X,E(F)) —» H"(X,F*") = H'T'(X, E(F*"))
is an isomorphism for all n € Z.

(ii) Let f: X — S a proper morphism with X, S € Var(C). For F € Coho, (X) a coherent sheaf, the
morphism
H"f.a(F): R"f.F = H"f.(E(F)) - R"f.F*" = H" f{,E(F")

is an isomorphism for all n € Z.

Proof. See [28]. (i) reduces to the case where X is projective and (ii) to the case where f is projective.
Hence, the theorem reduce to the case of a coherent sheaf I € Coho, (PN) on PV. O
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2.11 The De Rahm complexes of algebraic varieties and analytical spaces

For X € Var(C), we denote by tx : Cx — Q% =: DR(X) the canonical inclusion map. More generaly,
for f: X — S a morphism with X, 5 € Var(C), we denote by tx/s : f*Os — Q%5 =t DR(X/S) the
canonical inclusion map.

For X € AnSp(C), we denote by tx : Cx — Q% =: DR(X) the canonical inclusion map. More
generaly, for f : X — S a morphism with X,S € AnSp(C), we denote by tx/s : f*Os — Q%5 =
DR(X/S) the canonical inclusion map.

Let f: X — S a morphism with X, S € Var(C). Then, the commutative diagram of site (an, f) :=
(f,Ang, f = f**, an(X)) gives the transformation map in Cog.. (S*") (definition 1)

T(an(X),E)(—)oT(an,f)(E(Q;(/S))

TO(an, f) : (FE(Q% )5, Fy)™ := ang™! f.B(Q% 5, F})

mE(Q an an
(L E@n(X) (%5, ) Gans 05 Oan —om e 10/520/5)

) .
f*E(QXan/San ; Fb)

We will give is this paper a relative version for all smooth morphisms of the following theorem of
Grothendieck

Theorem 12. Let U € SmVar(C). Denote by ay : U — {pt} the terminal map. Then the map
T (av,an) : D(U, B(Q)) — DU, E(Qy))
s a quasi-isomorphism of complezes.

Proof. Take a compactification (X, D) of U, with X € PSmVar(C) and D = X\U a normal crossing
divisor. The proof then use proposition 13, the first GAGA theorem (theorem 11 (i)) for the coherent
sheaves QF,(nD) on X, and the fact (which is specific of the De Rahm complex) that Q.. (*D") —
J«E(Quan) is a quasi-isomorphism. O

We recall Poincare lemma for smooth morphisms of complex analytic spaces and in particular complex
analytic manifold :

Proposition 30. (i) For h : U — S a smooth morphism with U, S € AnSp(C), the inclusion map
tx/s +h*Os = Qg =: DR(U/S) is a quasi-isomorphism.

(i) For X € AnSm(C), the inclusion map vx : Cx — Q% is a quasi-isomorphism.
Proof. Standard. (ii) is a particular case of (i) (the absolute case S = {pt}). O

Remark 4. We do NOT have poincare lemma in general if h : U — S is not a smooth morphism. Already
in the absolute case, we can find X € Var(C) singular such that the inclusion map vx : Cxan — Q%an is
not a quasi-isomorphism. Indeed, we can find exemple of X € PVar(C) projective singular where

Hp(CX) : Hp(Xan,CXan) l> HPC.

sing

(X)

X being locally contractible since X*™ € CW, have not the same dimension then the De Rham coho-
mology
Hp(Tu?(anv aX)) : Hp(Xv E(QB()) ; Hp(Xan, E(Q;(a"))

X being projective, that is are not isomorphic as vector spaces. Hence, in particular, the canonical map
HP1x : HP(X" Cxan) = HP( X E(Q%an))

is mot an isomorphism.
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Consider a commutative diagram

Do= f:X—>y-—Ls5g

AR

f/;X/L>YIP_>T

with X, X" Y, Y', S, T € Var(C) or X, X', Y, Y', S, T € AnSp(C), 7, i’ being closed embeddings. Denote by

D the right square of Dy. The closed embedding i’ : X’ < Y’ factors through i’ : X’ =% X xy Y’ -% Y’
where i}, i(, are closed embeddings. Then, definition-proposition 3 say that

e there is a canonical map,
EQqy /vy ysy) o T(g", E) (=) o T(g",7) (=) : gN*FXE(Q;//Sv Fy) = Txxy v E(QY 7, Fy)

unique up to homotopy such that the following diagram in Cy ..o ra(Y') = Cpupeogra(Y)
commutes

' E(Q(yr YoT'(g" ,E)(=)oT(¢" ,y)(—)
9 "TxE5 s, Fi Fy) D ]‘—)XXYY,E(Q;///T7FI7) ;

’YX()\L l'YXxYY’()

"y R By /vy crysy)°T (" E)(=) .
9 "B 5, Fy) B9, Fy)

e there is a canonical map,
Tu())(D)’Y : g*mOdLOp*FXE(Q;//S7 Fb) — p;FXXyY’E(Q;///]H Fb)

unique up to homotopy such that the following diagram in Co, r4(7T") commutes

*mod T“?(D)w / (4
Lop*er(Qy/S) p*FXXYY'E(QY’/T) :
’Yx(—)l l’YXXYY’(_)

72 (D)

g*mOdLOP*E(Q;//s) p;E(Q;,,/T)

(iif) there is a map in Cpr.g, i (Y”)
T(X//X Xy Y/, ’7)(E(Q;///T, Fb)) I‘X/E(Qy,/T, Fb) — FXXyY’E(Q;/’/T7 Fb)

unique up to homotopy such that yxx, v+ (=) o T X"/ X xy Y, 7)(=) = vx:(—).

Let h : Y — S a morphism and ¢ : X — Y a closed embedding with S,Y, X € Var(C). Then,
definition-proposition 3 say that

e there is a canonical map
E(Q(Yan/y)/(san/s)) o T(CLTL, ’y)(—) . an(Y)*FXE(Q;,/S, Fb) — FXanE(Q;//S, Fb)
unique up to homotopy such that the following diagram in Cp-0g i (Y ") commutes

E(Qyan an YoT (an,y)(—)
a'n(y)*FXE(Q;//S,Fb)( (yan/y)/(sem/s) (an,7)(

Wx(—)l

an(Y)*E(Q3, g, Fy)

Dxan E(Q5 g, F5)

lwan(—)

E(Q(yan/y)/(san/s)) .
(QY/S7 )
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e there is a canonical map
T (an, h)” : (hTx E(Qy /g, F3))*™ = holxan E(QY, Fy)

unique up to homotopy such that the following diagram in C'(Y)commutes

. an T2 (an,h)” .
(h*FXE(Qy/S;Fb)) h*FXa"E(Qy/Sva)
'YX()\L \L’Yxa"()
T2 (an,h)

(hE(9 5, F))™"

heE(2 5, Fb)

2.12 Resolution of a representable presheaf on Var(C)/S by Corti-Hanamura
presheaves and the functorialities of these resolutions
Definition 35. Let X, € Var(C) and Z C Xy a closed subset. A desingularization of (Xo, Z) is a pair of

complex varieties (X, D) € Var?(C)), together with a morphism of pair of varieties € : (X, D) — (Xo, Z)
such that

e X € SmVar(C) and D := ¢ 1(Z) C X is a normal crossing divisor

e ¢ : X — Xy is a proper modification with discriminant Z, that is € : X — Xg is proper and
€: X\D = X/\Z is an isomorphism.

We have the following well known resolution of singularities of complex algebraic varieties and their
functorialities :

Theorem 13. (i) Let Xo € Var(C) and Z C Xg a closed subset. There exists a desingularization of
(Xo,Z), that is a pair of complex varieties (X, D) € Var®(C)), together with a morphism of pair of
varieties € : (X, D) — (Xo, Z) such that

— X € SmVar(C) and D := ¢ 1(Z) C X is a normal crossing divisor
—€: X — Xy is a proper modification with discriminant Z, that is € : X — X s proper and
€: X\D = X/\Z is an isomorphism.

(ii) Let Xo € PVar(C) and Z C Xy a closed subset. There exists a desingularization of (Xo, Z), that
is a pair of complex varieties (X, D) € PVar®(C)), together with a morphism of pair of varieties
e:(X,D) = (Xo,Z) such that

— X € PSmVar(C) and D := e Y(Z) C X is a normal crossing divisor
—€: X — Xy is a proper modification with discriminant Z, that is € : X — X s proper and
€: X\D = X/\Z is an isomorphism.

Proof. (i):Standard. See [24] for example.
(ii):Follows immediately from (i). O

We use this theorem to construct a resolution of a morphism by Corti-Hanamura morphisms, we will
need these resolution in the definition of the filtered De Rham realization functor :

Definition-Proposition 8. (i) Let h: V — S a morphism, with V, S € Var(C). Let S € PVar(C) be
a compactification of S.

— There exist a compactification Xo € PVar(C) of V' such that h: V — S extend to a morphism
fo=ho:Xo— S. Denote by Z = Xo\V. We denote by j : V < Xq the open embedding and
by io : Z — Xo the complementary closed embedding.
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— Take, using theorem 13(ii), a desingularization € : (X,D) — (Xo,Z) of the pair (Xo, Z),
with X € PSmVar(C) and D = U;_{D; C X a normal crossing divisor. We denote by
ie : Do — X = X,(o) the morphism of simplicial varieties given by the closed embeddings
ir : Dy =NjerD; — X. Then the morphisms f:=hgoe: X — S and fp, := foie: De — 5
are projective since X and Dy are projective varieties.

(i) Let g : V'/]S — V/S a morphism, with V'/S = (V',h'),V/S = (V,h) € Var(C)/S

— Take (see (i)) a compactification Xo € PVar(C) of V such that h : V' — S extend to a morphism
fo=ho:Xo— S. Denote by Z = Xo\V. Then, there exist a compactification X, € PVar(C)
of V! such that I/ : V' — S extend to a morphism f} =h{y: X} — S, g: V' =V extend to a
morphism go : X}, — Xo and f o go = f' that is go is gives a morphism go : X}/S — Xo/S.
Denote by Z' = X{\V'. We then have the following commutative diagram

X, :

7z
g’T
VL Xy < 2 N (2) i

— Take using theorem 13 a desingularization € : (X, D) — (Xo, Z) of (Xo,Z). Then there exist
a desingularization €, : (X', D') = (X{, Z") of (X{,Z") and a morphism g : X' — X such that
the following diagram commutes

X, -2 x, .
x' 7 .x
We then have the following commutative diagram in Fun(A, Var(C))

ie

V= Vi) —= X = X0 Do

gT g]\ q/.T
. ./ i

V/ = ‘/c/(.) % X/ = X(/:(.) L D/o %g.ail(Dsg“)) : Z;o

where ie : Do — Xo the morphism of simplicial varieties given by the closed embeddings
in : Dy — X, and 1, : D, — X/ the morphism of simplicial varieties given by the closed
embeddings i), : D}, — X .

Proof. (i): Let Xoo € PVar(C) be a compactification of V. Let Iy : Xo = 'y, = Xgo x S be the closure
of the graph of h and fy :=pgoly: Xo— Xoo xS =8, ex, = Pxo0 ©lo : Xo — Xoo x S — Xoo be
the restriction to Xy of the projections. Then, X € PVar(C), ex, : Xo — Xoo is a proper modification
which does not affect the open subset V C Xy, and fo = ho : Xo — S is a compactification of h.

(ii): There is two things to prove:

e Let fo : Xo — S a compactification of h : V' — S and fj, : Xgo — S a compactification of
B V' — S (see (i)). Let lp : X§j — I'y C X(y xs Xo be the closure of the graph of g, fj =
(foos fo) o lo : X — X{p xs Xo — S and go := px, o lo : X — Xy x5 Xo = Xo, €xy, "= Pxj 0l
X) — Xy xs Xo = X{ be the restriction to X of the projections. Then ex: : X} — X is

00
a proper modification which does not affect the open subset V' C X{, fj : X{j — S is an other
compactification of &' : V! — S and go : X{ — X, is a compactification of g.
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e Take, using theorem 13, a desingularization ¢ : (X,D) — (Xo,Z) of the pair (Xo,Z). Take
then, using theorem 13, a desingularization €] : (X', D') — (X xx, X{, X Xx, Z') of the pair
(X X x, X(, X xXx, Z"). We consider then following commutative diagram whose square is cartesian

and € :=¢€joe€) : (X', D) — (X{,Z') is a desingularization of the pair (X xx, X{, X xx, Z').

Let S € Var(C). Recall we have the dual functor
Dg : C(Var(C)/S) — C(Var(C)/S), F — Dg(F) := Hom(F, Eet(Zs))
which induces the functor
LDg : C(Var(C)/S) — C(Var(C)/S), F — LDg(F) :=Dg(LF) := Hom(LF, Eet(Zs)).

We will use the following resolutions of representable presheaves by Corti-Hanamura presheaves and
their the functorialities.

Definition 36. (i) Let h: U — S a morphism, with U, S € Var(C). Take, see definition-proposition 8,
fo="ho: Xo— S a compactification of h: U — S and denote by Z = Xo\U. Take, using theorem
18(ii), a desingularization € : (X,D) — (Xo,Z) of the pair (Xo,Z), with X € PSmVar(C) and
D =U;_,D; C X anormal crossing divisor. We denote by ie : De — X = X (4) the morphism of
sitmplicial varieties given by the closed embeddings iy : D = Nier Dy — X We denote by j : U — X
the open embedding. We then consider the following map in C(Var(C)/S)

rx,p)/s(Z(U/S)) : Rix,py,s(Z(U/S))
— Cone(ad(igy, is)(Z(X/X)) : feBet(ieyZ(Da/Da),ury) = frEet(Z(X/X)))
(0,ad(5,jx ) (Eet (Z(X/ X)))) h Eur(Z(

U/U))) = DsZ(U/S)

Note that r(x,py/s is NOT an equivalence (A, et) local by proposition 20 since ps.iesZ(De/Das) = 0,
whereas pg. ad(j*, j«)(FEet (Z(X/ X)) is not an equivalence (A1, et) local.

(i) Let g : U')S — U/S a morphism, with U'/S = (U',h'),U/S = (U,h) € Var(C)/S Take, see
definition-proposition 8(ii),a compactification fo = h: Xo — S of h: U — S and a compactification
fo=n X, = Sofh :U — S such that g : U'/S — U/S extend to a morphism gy :
X(y/S — Xo/S. Denote Z = Xo\U and Z' = X[\U'. Take, see definition-proposition 8(ii), a
desingularization € : (X, D) — (Xo,Z) of (Xo0,Z), a desingularization €, : (X',D") = (X}, Z") of
(X{,2Z") and a morphism g: X' — X such that the following diagram commutes

90
X)—— Xo .

1

x 9. x
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We then have, see definition-proposition 8(ii), the following commutative diagram in Fun(A, Var(C))

e

(42)

U = UC(.) ; X = XC(.) Dsg(o)

gT gT g’.T
-l -/ 7://

U'=Ul, —= X' =X}y +— D, ~——"57 (D, (a)) : iy

We then consider the following map in C(Var(C)/S)
§"(9) : Rix.py/s(Z(U/S))

):
=5 Cone(ad(iag, i3) (Z(X/X)) : fBer (ias(Z(D ./D> 1)) = FEa(Z(X/X)))
ad(g",g«)(—),ad(g",g=)(-))

Cone(g" ad(iez, i) (Z(X/ X)) : fiEet("(iesZ(Ds/Da), urs)) = fiEat(Z(X'/ X))
(Ty(3:80) (=)~ 0)

Cone(ad(i)ay, i) (Z(X' /X)) : fLEet(ihas(Z(g (D) /g (Da)), urs)) = fLEa(Z(X'/X"))
(ad(if/sige ) (LD} /D)), 1)
Cone(ad(iyy, ia ) (Z(X' /X)) : fLBer(iay(Z(D, /DY), ury)) = flEa(Z(X' /X))
— Rix/,pry/s(Z(U'/9))
Then by the diagram (42) and adjonction, the following diagram in C(Var(C)/S) obviously com-

mutes
(X, (zZ(U/S))
R(x,p)/s(Z(U/S)) o DsZ(U/S) = heEet(Z(U/U))
REH(g)l lT(gyE)oad(g*,g*)(Ect(Z(U/U)))
rx/.prys(ZU'/S))
Rixr.prys(Z(U')§)) ——=—2202 DsZ(U'/S) = W, E(Z(U' /U"))

(iii) Let F € C(Var(C)*™/S). We get from (i) and (ii) morphisms in C(Var(C)/S)
H(LF): Rix~ p-)/s(psLF) — Dgp5LF

e Let g : T — S a morphism with 7,5 € Var(C). Let h : U — S a morphism with U € Var(C).
Consider the cartesian square

UTh—l>T

f

U—lss
Take, see definition-proposition 8(ii),a compactification fo = h : Xg = S of h : U — S and a
compactification f} = goh’ : X, — S of goh’ : U’ — S such that ¢’ : Ur/S — U/S extend
to a morphism g, : X\/S — Xo/S. Denote Z = Xo\U and Z' = X[\Up. Take, see definition-
proposition 8(ii), a desingularization € : (X,D) — (Xo,Z) of (Xo,Z), a desingularization €,
(X',D") = (X{,2Z') of (X{,Z") and a morphism g’ : X’ — X such that the following diagram
commutes

x5 x,

1,1

x4 . x
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We then have, see definition-proposition 8(ii), the following commutative diagram in Fun(A, Var(C))

J ie

U= Uc(o) X = Xc(o) Dsg/(o)
g/T g/T @)
Ur = Ur,c(e) L x = X S - D, <—g/§'_1(Dsg/(.)) Sipe

We then consider the following map in C(Var(C)/T), see definition 36(ii)
T(g, R™M)(Z(U/S)) : 9" Rix,p)/s(Z(U/S))
LD, 0 R,y 5 (U /8)) = 979 R,y o (U T))
ad(g",9x)(R(x/,pry 7 (Z(Ur /T))) Rixr .o 22Uz /T))

It gives for F' € C(Var(C)*™/S) the map in C(Var(C)/T)

T(g, R°")(LF) : g*R(x+ p+y/s(p5LF) — R x'« preyr(prg"LF)

Let S1,S2 € Var(C) and p : S; x S — S; the projection. Let h : U — S; a morphism with
U € Var(C).Consider the cartesian square

UXSQASHXSQ

v—" _g

Take, see definition-proposition 8(i),a compactification f = h : Xg — Sy of h : U — S;. Then
fxI:XgxSy — S1x855is a compactification of hx I : Ux Sy — S1 xSy and p’ : U xSy — U extend
to Py = Px, : Xo X S2 = Xo. Denote Z = Xo\U. Take see theorem 13(i), a desingularization
€:(X,D) — (Xo,Z) of the pair (Xo,Z). We then have the following commutative diagram in
Fun(A, Var(C)) whose squares are cartesian

ie

U = Uy X D (43)

QT Pli—;DXT P/,.T
. 7:/

U x Sy = (U % Sa)e(a) —> X X Sy <—— Dy x Sy

Then the map in C'(Var(C)/S; x Sa)
T(p, REM)(Z(U/S1)) : p* Rix.p)s, (Z(U/S1)) = R(xxSs,D4x52)/81 x 55 (LU x S2/S1 x S))
is an isomorphism. It gives for F' € C(Var(C)*™/S;) the isomorphisms in C'(Var(C)/S1 x S2)
T(p, R“*)(LF) : p" Rix+ p+)5, (05, LF) =% R(x+ 55,0 x55)/81 %52 (P8, x5, LF)

is an isomorphism

Let hy : Uy — S, ha : Uy — S two morphisms with Uy, Us, S € Var(C). Denote by p1 : Uy xg Uy —
Uy and pa : Uy X gUz — Uz the projections. Take, see definition-proposition 8(1)), a compactification
flO = h,l : XlO — S of hl : U1 — S and a cornpactiﬁcation fQO = hQ : X20 — S of h,2 : U2 — 5.
Then,
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— f10 X f20 : Xl() Xs XQO — Sisa compactiﬁcation of hl X h,2 : U1 Xs U2 — 5.
— D10 = Px,y0 : X10 X5 Xoo — X10 is a compactification of p; : Uy xg Uz — Uj.

— D20 = DX X10 X5 Xoo — Xoo is a compactification of ps : Uy xg Uz — Us.

Denote 71 = X19\U1 and Z5 = X50\Us. Take, see theorem 13(i), a desingularization €1 : (X3, D) —
(X10, Z1) of the pair (Xi0,Z1). and a desingularization €3 : (X2, E) — (Xa0,Z2) of the pair
(X20, Z2). Take then a desingularization

€121 (X1 x5 X2)N, F) = (X1 x5 X2, (D x5 X2) U (X1 x5 E))
of the pair (X xg Xa, (D xg X2) U (X1 xg E)). We have then the following commutative diagram

f1

X ———

ZD2T sz
(B2)™

X1 XsXQLXQ

(X1 xg Xo)V

and
— fi x fa: X1 xg Xo — S is a compactification of hy X hy : Uy xg Uy — S.
- ()N
- (P2
We have then the isomorphism in C'(Var(C)/S)

:=proern: (X1 Xg XQ)N — X1 is a compactification of py : Uy xg Uy — Uj.
WV oi=paoern: (X1 xg Xo)V — Xy is a compactification of py : Uy xg Uy — Us.

T(®, R§")(Z(UL/S),Z(U2/S)) = R$" (p1) ® RS (p2) :
R(x,,p)/s(Z(U1/85)) ® R(x,.5))s(Z(U2/S)) = Rix,xsx)~.F)/s(L(Ur x5 Ua/S))

Hence, for Fy, F; € C(Var(C)*™/S), we get isomorphisms
T(®, R§")(LFy, LFy) : Rix: pey/s(psLF1) @ Rixs 5e)s(psLF?)
= R(X1X5X2)N)/S(pg(LF1 ® LFQ))
in C(Var(C)/9).

2.13 The derived categories of filtered complexes of presheaves on a site or
of filtered complexes of presheaves of modules on a ringed topos

Definition 37. Let S € Cat a site endowed with topology 7. We denote by D(S) := Horop C(S) the
localization of the category of complexes of presheaves on S with respect to top local equivalence and by
D(7) : C(S) = D(S) the localization functor. We denote for r =1,...00, resp. 7 = (1,...00)%,

Dy r(S) :=Hoprr Crut(S) , Dafirr(S) :==Hoprr Coru(S),

the localizations of the category of filtered complexes of presheaves on S whose filtration is biregular with
respect to r-1 local equivalence. By definition, we have sequences of functors

Cfil(S) — Kfil(S) — Dfil(S) — Dfil)g(S) — = Dfil,oo(S)-
where we recall K7, (S) := K(PShyu(S)).
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Definition 38. Let (S,0g) € RCat where S € Cat is a site endowed with topology 7. We denote by
Do (S) := Horop Co(S) the localization of the category of complexes of presheaves on S with respect to

top local equivalence and by D(7) : Co(S) — Do(S) the localization functor. We denote forr =1,...00,

resp. r = (1,...00)2,

Dogfit,r(S) := Hoprr Cog£it(S) s Dogafir,r(S) := Hoppr Cozgi(S),

the localizations of the category of filtered complexes of presheaves on S whose filtration is biregular with
respect to r-1 local equivalence. By definition, we have sequences of functors

Cosit(S) = Kosfil(S) = Dogfit(S) = Dogfir2(S) = -+ = Dogfit,co(S)-
where we recall Kog i (S) := K(PShog ri(S)).

Let f : 7 — S a morphism of presite, with S, T € Cat endowed with a topology 7. If f is a morphism
of site, the adjonctions

()= 1) CS) S CT), (f* fo) = (f 7 fa) s Ci2yrit(S) = Craypa(T).

are Quillen adjonctions. They induces respectively in the derived categories, for r = (1,...,00), resp.
r=(1,...,00) (note that f* derive trivially)

(f*Rf.): D(S) S D(T) , (f*, Rfs) : Dpia(S) S Dyirr(T).
For F* € C(S), we have the adjonction maps
ad(f*, fo)(F°) : F* — fof*F* ad(f", fo)(F®) : f7fiF* — F°,
induces in the derived categories, for (M, F') € Dy;y(S) and (N, F) € Dy (T), the adjonction maps
ad(f*, Rf.)(M): (M,F) = Rf.f*(M,F), ad(f*,Rf\)(N,F) : f*Rf.(N,F) — (N, F).
For a commutative diagram of sites :

D =

2. x
|
S

with Y, T, S, X € Cat with topology 7y, 71, 7s, 7X, the maps, for F' € C(X),

3

y 92
-
g1

T ——

T(D)(F) : g5 f1sF = fougs F

induce in the derived category the maps in Dy -(T), given by, for (G, F) € Dy (X) with (G, F) =
D(TX7 T)((Gv F))v

. T(D)(M,F) .
giRf1«(M, F) Rfa.g5 (M, F')

g Fr(B(G, F)) ZE2EEDY B(gs(B(G, F)))

Let § € Cat a site with topology 7. The tensor product of complexes of abelian groups and the
internal hom of presheaves on S

(@), Hom® () : C(S)* = C(S),
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is a Quillen adjonction which induces in the derived category
(( ®L ')a R’Hom'(-, )) : Dfil,r(8)2 — Dfil,?“(S)a RHOW.((M, W)v (N7 W)) = ’Hom'((Q, W)v E(Gv F))v

where, @Q is projectively cofibrant such that M = D(7)(Q®) and G such that N = D(7)(G).
Let i : Z — S a closed embedding, with S, Z € Top. Denote by j : S\Z < S the open embedding of
the complementary subset. The adjonction

(ix,3") = (ix,it) : C(Z) = C(S), with in this casei'F 1= ker(F — j,j*F)
is a Quillen adjonction. Since ' preserve monomorphisms, we have also Quillen adjonctions
(iv,i') : Clayput(Z2) = Claypa(S), withi'(G, F) = (i'G, F).
which induces in the derived category (i, derive trivially)

(ix, Ri') : D2y pit(Z) = D2y pa(S), with Ri'(G, F) = i'E(G, F).

3 Triangulated category of motives

3.1 Definition and the six functor formalism

The category of motives is obtained by inverting the (A}, et) equivalence. Hence the A} local complexes
of presheaves plays a key role.

Definition 39. The derived category of motives of complex algebraic varieties over S is the category
DA(S) i= Hogs (C(Var(C)™ /),

which is the localization of the category of complexes of presheaves on Var(C)*™ /S with respect to (A}, et)
local equivalence and we denote by

D(Ag,et) := D(AL) o D(et) : C(Var(C)*™/S) — DA(S)

the localization functor. We have DA™ (S) := D(AL, et)(PSh(Var(C)*™/S,C~(Z))) C DA(S) the full
subcategory consisting of bounded above complexes.

Definition 40. The stable derived category of motives of complex algebraic varieties over S is the category
DA (S) i= Hopy oi(Cs(Var(C)*™/S)),

which is the localization of the category of G,s-spectra (XF® = F* ® G,s) of complexes of presheaves
on Var(C)*™ /S with respect to (A}, et) local equivalence. The functor

2% C(Var(C)*™/S) — Cx(Var(C)*™/S)
induces the functor £° : DA(S) — DA (S).
We have all the six functor formalism by [10]. We give a list of the operation we will use :
e For f:T — S a morphism with S,T € Var(C), the adjonction
(f* f) - C(Var(C)*™ /S) = C(Var(C)™/T)
is a Quillen adjonction which induces in the derived categories (f* derives trivially), (f*, Rf) :

DA(S) = DA(T).
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e For h: V — S a smooth morphism with V, .S € Var(C), the adjonction
(hy, h*) : C(Var(C)*™/V) = C(Var(C)*™/S)

is a Quillen adjonction which induces in the derived categories (h* derive trivially) (Lhy, h*) =:
DA(V) = DA(S).

e Fori: Z — S a closed embedding, with Z, S € Var(C),
(is,i') := (ix,it) : C(Var(C)*™/Z) = C(Var(C)*™/S)

is a Quillen adjonction, which induces in the derived categories (i, derive trivially) (i, Ri') :
DA(Z) <= DA(S). The fact that i, derive trivially (i.e. send (Al,et) local equivalence to (Al et)
local equivalence is proved in [4].

e For S € Var(C), the adjonction given by the tensor product of complexes of abelian groups and the
internal hom of presheaves

((-®-),Hom®(-,-)) : C(Var(C)*"™/S)* — C(Var(C)*™/S),
is a Quillen adjonction, which induces in the derived category
) (( ®L ')a R’Hom'(~, )) : DA(S)2 - DA(S)a

— Let M, N € DA(S), Q°® projectively cofibrant such that M = D(A! et)(Q®), and G* be Al
local for the etale topology such that N = D(Al, et)(G*®). Then,

RHom®*(M,N) =Hom*(Q*, E(G*)) € DA(S). (44)
This is well defined since if s : Q1 — Q2 is a etale local equivalence,
Hom(s, E(G)) : Hom(Q1, E(G)) — Hom(Qs, E(G))
is a etale local equivalence for 1 < i <.
e For a commutative diagram in Var(C) :
D=Y-2.Xx |
fa 1
Y

and F' € C(Var(C)*™/X), the transformation map T'(D)(F) : ¢ fi«F — f2.g5F induces in the
derived category, for M € DA(X), M = D(A', et)(F) with F A! local for the etale topology,

i} T(D)(M) i}
giRf1M Rfogs M

N T kocoT(D)(E(F T N
91 [1+E(F) ————— J2. E(Ci (g3 E(F)))

If D is cartesian with f1 = f, g1 =9 fo=f": Xr =T, ¢ : Xr — X, we denote

~ T(D)(F) = T(f,g)(F) : ¢"f.F — flg"F,
~ T(D)(M) = T(f,g)(M) : " Rf.M — Rflg" M.

We get from the first point 2 functors :
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e The 2-functor C(Var(C)*™/.) : Var(C) — Ab Cat, given by
S = C(Var(C)™/S), (f : T = 8) = (f: C(Var(C)*"/5) = C(Var(C)*™/T)).
e The 2-functor DA(-) : Var(C) — TriCat, given by
S+—=DA(S), (f:T— S)— (f": DA(S) — DA(T)).

The main theorem is the following :
Theorem 14. [{/[10] The 2-functor DA(-) : Var(C) — TriCat, given by
S+—=DA(S), (f: T — S)— (f*:DA(S) — DA(T))
is a 2-homotopic functor ([4])
From theorem 14, we get in particular

e For f: T — S a morphism with T, S € Var(C), there by theorem 14 is also a pair of adjoint functor
(fi, ') : DA(S) = DA(T)

— with fi = Rf. if f is proper,
— with f' = f*[d] if f is smooth of relative dimension d.
For h : U — S a smooth morphism with U, S € Var(C) irreducible, have, for M € DA(U), an

isomorphism

LhyM — hyM|d), (45)
in DA(S).

e For i : Z — X a closed embedding with Z, X € Var(C), denote by j : S\Z < S the open
complementary subset. Then :

— the functor (i*,j*) : DA(S) — DA(Z) x DA(S\Z) is conservative,

— on the other hand, it is easy to see that, for F' € C(Var(C)*™/Z), the adjonction map
ad(i*,i.)(F) : i*i,F — F is an equivalence Zariski local, hence for M € DA(S), the induced
map in the derived category

ad(i*, i) (M) : i*i, M = M

is an isomorphism.

e For f: X — S a proper map, g : T — S a morphism, with T, X, S € Var(C), and M € DA(X),

/

T(f,9)(M):g"Rf.M — Rf.g "M
is an isomorphism in DA(T) if f is proper.

Definition 41. The derived category of extended motives of complex algebraic varieties over S is the
category

DA(S) := Hoy_.,(C(Var(C)/5)),

which is the localization of the category of complexes of presheaves on Var(C)/S with respect to (A}, et)
local equivalence and we denote by

D(A}, et) := D(Ag) o D(et) : C(Var(C)/S) — DA(S)
the localization functor. We have DA™ (S) := D(AL, et)(PSh(Var(C)/S,C~(Z))) C DA(S) the full sub-

category consisting of bounded above complezes.
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Remark 5. Leti: Z < S a closed embedding, with Z,S € Var(C).
(i) By theorem 14, for X/S = (X, h) € Var(C)*™/S),
(0,ad(i*,4,)(Z(X/S))) : TYZ(X/S) — i.Z(X 7/ Z)
is an equivalence (A, et) local.
(ii) For X/S = (X, f) € Var(C)/S),
(0,ad(i*,4,)(Z(X/S))) : TYZ(X/S) — i.Z(X 7/ Z)

is NOT an equivalence (A, et) local in general, since for example if f(X) = Z C S, ps«Z(X/S) =0
but D(AY, et)(ps«isZ(Xz/Z) = iwps«Z(Xz/Z)) # 0 € DA(S), hence it is NOT an equivalence
(AY et) local in this case by proposition 20. In particular DA(S) dos NOT satisfy the localization
property.

(i1)” For X/Z = (X, f) € Var(C)/Z), the inclusion
T(is, is) : 15Z(X)Z) — i, ZL(X/Z)

is NOT an equivalence (A, et) local by proposition 20 since ps«iyZ(X/Z) = 0 but D(A!, et)(ps+i~Z(X/Z) =

Definition 42. (i) Let f : X — S a smooth proper morphism with X, S € Var(C) of relative dimension
d=dx —ds. Then, we have the equivalence (Al, et) local in C(Var(C)*™/S)

T(fy, LX) X)) = [Ax]: LZ(X/X) = foEa(Z(X/X))(d)[2d]
given by the diagonal
[Ax] € CHY(X x5 X) = Hompa(s)(fZ(X/X), feEet (Z(X/X))(d)[2d]).

(ii) Let f: X — S a proper surjective morphism with X, S € Var(C) of relative dimension d = dx —dg.
Then, we have the equivalence (A, et) local in C(Var(C)/S)

T(fy, LX) X)) = [Ax]: LZ(X/X) = foEa(Z(X/X))(d)[2d]
given by the diagonal
[Ax] € CHY(X x5 X) = Hompa(s) (Z(X/X), foEer(Z(X/X))(d)[2d]).
Note that if f: X — S is not surjective, d < 0 and

Hompa (s)(fZ(X/X), foEet(Z(X/X))(d)[2d]) = CHY(X x5 X) = 0.

(i)’ Let f: X — S a proper surjective morphism with X, S € Var(C) of relative dimension d = dx —dg.
Then, we have, fori: Z — X a closed embedding, the equivalence (A, et) local in C(Var(C)/S)

T(fy, f)(Z(2) X)) = [Az] - HZ(Z]/X) = [ Ea(Z(Z2)X))(d)[2d]

given by the diagonal (note that Z(Z/X) is trivially A* invariant since Z(Z/X)(S/S) = Z(Z) X ) (Al x
S/S) =0, hence f.Eet(Z(Z)X))(d)[2d] is Al local for the etale topology)

[Az] € CHY(Z x5 Z) = Hompas) (JZ(Z/ X), [+ Eer(Z(Z] X)) (d)[2]).
Note that if f: X — S is not surjective, d < 0 and

Hompa (s)(fZ(Z/X), foEet(Z(Z)X))(d)[2d]) = CHY(Z x5 Z) = 0.
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3.2 Constructible motives and resolution of a motive by Corti-Hanamura
motives

We now give the definition of the motives of morphisms f : X — S which are constructible motives and
the definition of the category of Corti-Hanamura motives.

Definition 43. Let S € Var(C),

e the homological motive functor is M(/S) : Var(C)/S — DA(S), (f : X — 5) — M(X/S) :=
hIM(S/S),

e the cohomological motive functor is MV(/S) : Var(C)/S — DA(S), (f : X = S) — M(X/S)" :=
RfM(X/X) = f+E(Zx),

e the Borel-Moore motive functor is MBM(/S) : Var(C)/S — DA(S), (f: X — §) — MPM(X/S) .=
e the (homological) motive with compact support functor is M.(/S) : Var(C)/S — DA(S), (f: X —
S) = M.(X/S) := Rf.f'M(S/S).

Let f: X — S a morphism with X, S € Var(C). Assume that there exist a factorization f : X LyxSh
S, with Y € SmVar(C), i : X — Y is a closed embedding and p the projection. Then,

Q(X/S) := pyT'x Zy xs[dy] € C(Var(C)*™/9)
(see definition 10)is projective, admits transfert, and satisfy D(AL, et)(QPM(X/S)) = MBM(X/S).
Definition 44. (i) Let S € Var(C). We define the full subcategory DA (S) C DA(S) whose objects

are constructible motives to be the thick triangulated category generated by the motives of the form

M(X/S), with f : X — S a morphism, X € Var(C).

(ii) Let X,S € Var(C). If f : X — S is proper (but not necessary smooth) and X is smooth, M(X/S) is
said to be a Corti-Hanamura motive and we have by above in this case M(X/S) = MBM(X/S)[c] =
M(X/S)Y[e], with ¢ = codim(X, X x S) where f: X — X x S — S. We denote by

CH(S) ={M(X/S)}x/s=x.p),rpr.xsmy C DM(S)

the full subcategory which is the pseudo-abelian completion of the full subcategory whose objects are
Corti-Hanamura motives.

(iii) We denote by
CH’(S) C CH(S)

the full subcategory which is the pseudo-abelian completion of the full subcategory whose objects are
Corti-Hanamura motives M (X/S) such that the morphism f : X — S is projective.

For bounded above motives, we have
Theorem 15. Let S € Var(C).
(i) There exists a unique weight structure w on DA™ (S) such that DA™ (9)“=% = CH(S)
(i1) There exist a well defined functor
W(S) : DA™(S) = K~ (CH(S)) , W(S)(M) = [M)]

where M(®) € C~(CH(S)) is a bounded above weight complex, such that if m € Z is the highest
weight, we have a generalized distinguish triangle for all i < m

Ty MO — MO +1)] = - = M™[m] - M©Y>? (46)

Moreover the maps w(M)ZY : MZ% — M induce an isomorphism w(M) : holim;M=* = M in

DA~ (S).
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(ii) Denote by Chow(S) the category of Chow motives, which is the pseudo-abelian completion of the
category

— whose set of objects consist of the X/S = (X, f) € Var(C)/S such that f is proper and X is
smooth,
— whose set of morphisms between X1/S and X3/S is CH™ (X; xg X3), and the composition
law 1is given in [11].
We have then a canonical functor CHg : Chow(S) — DA(S), with CHs(X/S) := M(X/S) :=
Rf.Z(X/X), which is a full embedding whose image is the category CH(S).

Proof. (i): The category DA(S) is clearly weakly generated by CH(S). Moreover CH(S) C DA(S) is
negative. Hence, the result follows from [6] theorem 4.3.2 III.

(ii): Follows from (i) by standard fact of weight structure on triangulated categories. See [6] theorem
3.2.2 and theorem 4.3.2 V for example.

(iif): See [12]. O

Theorem 16. Let S € Var(C).
(i) There exists a unique weight structure w on DA™ (S) such that DA™ (S)*=0 = CH°(S)
(i) There exist a well defined functor
W(S) : DA™(S) = K~ (CH"(S)) , W(S)(M) = [M*]

where M) € C~(CH"(S)) is a bounded above weight complex, such that if m € Z is the highest
weight, we have a generalized distinguish triangle for all i < m

Ty : MO — MOV +1)] = - = M™[m] - M©WZ? (47)
Moreover the maps w(M)ZY : MZ% — M induce an isomorphism w(M) : holim;M=* = M in

DA™ (S).
Proof. Similar to the proof of theorem 15. O

Corollary 1. Let S € Var(C). Let M € DA(S). Then there exist (F,W) € Cyy(Var(C)*™/S) such that
D(A',et)(F) = M and D(A',et)(Gr) F) € CH'(S).

Proof. By theorem 16, there exist, by induction, for i € Z, a distinguish triangle in DA(S)
Ty MO[] My ppGrD) Mty Tmt ypm) ]y ppwi (48)

with MU [j] € CH(S) and w(M) : holim;M=* = M in DA™ (S). For i € Z, take (F});>i, Fu>i €
C(Var(C)*™/S) such that D(A!, et)(F;) = MW[j], D(A', et)(Fp>;) = M™Z" and such that we have in
C(Var(C)™™/5),

Fusi = Cone(F; 5 Fppy & oo 22 By (49)
where m; : F; — Fj;1 are morphisms in C(Var(C)*™/S) such that D(Al et)(m;) = m;. Now set
F = holim; F,>; € C(Var(C)*™/S) and W, F := F,,>; < F, so that (F,W) € Cy;(Var(C)*™/S) satisfy
D(AY,et)(Gr) F) = M®[p] € CH’(S). O
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3.3 The restriction of relative motives to their Zariski sites
Let S € Var(C). The adjonction

(e(9)*,e(S)«) : C(Var(C)*™/S) = C(S)
is a Quillen adjonction and induces in the derived category

o (e(S)*,e(9)s) : Hozer(Var(C)*™/S) = D(T) := Hoqr C(S), since e(S). sends Zariski local equiv-
alence on the big site Var(C)®™ /S to Zariski local equivalence in the small Zariski site of S,

e (e(S)*, Re(S)s) : DA(S) S D(T) := Ho,qr C(S).

We will use in the defintion of the De Rahm realization functor on DA(S) the following proposition
concerning the restriction of the derived internal hom functor to the Zariski site :

Proposition 31. Let M, N € DA(S) andm : M — N be a morphism. Let F'*,G®* € PSh(Var(C)*™ /S, C(Z))
such that M = D(Ag,et)(F®) and N = D(AL,et)(G*). If we take G* (AL, et) fibrant and admitting

transfert, and F'* cofibrant for the projective model structure, we have
Re(S)«RHom® (M, N) = e(S)sHom®(F*,G*)
in D(S).

Proof. Since F'® is projectively cofibrant and G* is (projectively) (A}, et) fibrant, we have RHom® (M, N) =
Hom*(F*,G*). Then, Hom®(F*,G*) is A§ local and admits transfert. On the other hand, we have

L1 Dey(Cor Var(C)*™ /S) = L1 Dzar(Cor Var(C)*™/S) C D(Var(C)*™/5S)
by theorem 10 (ii). This gives the equality of the proposition. O

We will also have :

Proposition 32. For f: T — S a morphism and i : Z — S a closed embedding, with Z,S,T € Var(C),
we have

(i) Re(S).Rf. = Rf.Re(T). and e(S)*Rf. = Rf.e(T)*
(ii) Re(S).RTz = RTzRe(S), .

Proof. (i):Follows from proposition 16 (i) and the fact that f. preserve (Al et) fibrant complex of

presheaves.

(ii):Follows from proposition 16 (ii) and the fact that 'z preserve (Al et) fibrant complex of presheaves.
O

3.4 Motives of complex analytic spaces

The category of motives is obtained by inverting the (Dls, usu) local equivalence. Hence the Dls local
complexes of presheaves plays a key role.

Definition 45. The derived category of motives of complex algebraic varieties over S is the category
ADDA(S) = HO]D)é,usu (C(ADSP(C)Sm/S)),

which is the localization of the category of complexes of presheaves on AnSp(C)*™ /S with respect to
(DY, usu) local equivalence and we denote by

D(DY, usu) := D(A§) o D(et) : C(AnSp(C)*™/S) — AnDA(S)
the localization functor. We have DA™ (S) := D(D, usu)(PSh(AnSp(C)*™/S,C~(Z))) C DA(S) the full

subcategory consisting of bounded above complezes.
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Theorem 17. Let S € AnSp(C). The adjonction (e(S)*,e(S)) : C(AnSp(C)*™/S) — C(S) induces an
equivalence of categories

(e(S)*, Re(S).) : AnDM(S) = D(S).
In particular, for F € C(AnSp(C)*™/S), the adjonction map ad(e(S)*,e(S))(F) : e(S)*e(S)«F — F is

an equivalence (D', usu) local.
Proof. See [1]. O
We deduce from this theorem the following :

Proposition 33. Let S € AnSp(C). Let F,G € C(AnSp(C)*™/S). If G is D' local, then the canonical
map

T(e,hom)(F, Q) : e(S)Hom(F,G) — Hom(e(S).F,e(S).q)
is an equivalence usu local.
Proof. The map T (e, hom)(F,G) is the composite

Hom(ad(e(S)*,e(S)«)(F),G)

T(e,hom)(F, Q) : e(S)Hom(F,G) e(S)Hom(e(S)* e(S).F,G)

I(e(S)",e(S)«)(F,G) Hom(e(S). F, e(S).G)

where the last map is the adjonction isomorphism. The first map is an isomorphism by theorem 17 since
G is D! local. O

4 The category of filtered D modules on commutative ringed
topos, on commutative ringed spaces, complex algebraic va-
rieties complex analytic spaces and the functorialities

4.1 The The category of filtered D modules on commutative ringed topos,
on commutative ringed spaces, and the functorialities

4.1.1 Definitions et functorialities

Let (S,0s) € RCat with Og commutative. Recall that Qo4 := DY (Zs/Z2) € PSho,(S) is the universal
derivation Og-module together with its derivation map d : Og — Qo,, where Zg = ker(sg : Og ® Og —
Ogs) € PShogxo4(S) the diagonal ideal.

In the particular case of a ringed space (S,0g) € RTop, sg: Os ® Og = AL (pjOs ® p50s) = Og is
the structural morphism of diagonal embedding Ag : (S,0s) < (S x S,pi0s @ p50s), p1 : S x S —= S
and pg : S X § — S being the projections. More generally, for £k € N, k > 1 we have the sheaf of k-jets
J*¥(0s) := A%Zs/Z&T with in particular J'(Os) = Ts. We have, for s € S, J*(Og)s = ms/m* where
ms C Og,s is the maximal ideal if Og  is a local ring.

Definition 46. (i) Let (S,0g) € RCat with Og a commutative sheaf of ring and S is endowed with a
topology 7. We denote by

D(Os) =< Og, Deros (Os, 05) >C CLTHOW”L(Os, Os)

the subsheaf of ring generated by Og and the subsheaf of derivations Derpy(Og,0g) = Tg =
DYQos, ar : PSh(S) — Shv(S) being the sheaftification functor.

(ii) Let f: X — S be a morphism of site, with X,S € Cat endowed with topology T, resp. 7/, and Og €
PSh(S, cRing) a commutative sheaf of ring. We will note in this case by abuse f*Og := a,f*Og
and f*D(Og) := a,f*D(0g), a, : PSh(X) — Shv(X) being the sheaftification functor.
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Let f : X — S a morphism of site, with X', S € Cat endowed with topology 7, resp. 7/, and Og €
PSh(S, cRing) a commutative sheaf of ring. Consider the ringed space (X, f*Og) := (X, a,f*Og) € RCat,
ar : PSh(X) — Shv(X) being the sheaftification functor. Then, the map in PSh(X)

T(f, hom)(Os,0s) : f*Hom(Os,Os) = Hom(f*Os, f*Os)
induces a canonical morphism of sheaf of rings
T(f, hom)(Os,0s) : ar f*D(0s) =: f*D(Os) = D(a- f*Os) =: D(f*Os).
In the special case of ringed spaces, we have then :

Proposition 34. Let f : X — S is a continous map, with X, S € Top and Og € PSh(S,cRing) a
commutative sheaf of ring. Consider the ringed space (X, f*Og) := (X, a,f*Og) € RTop, a, : PSh(X) —
Shv(X) being the sheaftification functor. Then, the map in PSh(X)

T(f,hom)(Os,Os) : f*Hom(Os,Os) = Hom(f*Os, f*Os)

induces a canonical isomorphism of sheaf of rings

T(f,hom)(Os,Os) : f*D(Os) := a, f*D(0Os) = D(a-f*Os) =: D(f*Os).
Proof. For all z € X,

T(f,hom)(Os,08)s  (f*D(0s)) = D(Os ) = (D(f*0s))

Hence, since a. f*D(0Og) and D(a, f*Og) are sheaves,

T(f,hom)(Os,05) : f*D(Os) := a, f*D(Os) = D(a-f*Os) =: D(f*Os).
is an isomorphism o

We will consider presheaves of D(Og) modules on a ringed topos (S, Og) :

Definition 47. Let (S,0Og) € RCat with Ogs a commutative sheaf of ring.

(i) We will consider PShpo4)(S) the category of presheaves of (left) D(Og) modules on S and Cpog)(S) :=
C(PShpo4)(S)) its category of complexes. We will consider PShpogyer (S) the category of presheaves
of right D(Os) modules on S and Cpog)er (S) := C(PShp(og)er (S)) its category of complexes. We
denote again by abuse

PShD(Og)fil (8) = (PShD(OS)(S), F) = (PSh(D(OS)7F0rd)(8), F)

the category of filtered (D(Og), F°"%)-module, with, for —p < 0, F°*%~PD(0g) = {P € D(Os),ord(P) < p}
and Fr%?D(Og) =0 for p > 0,
— whose objects are (M, F) € (PSho,(S), F) together with a map of filtered presheaves of Og
modules md : (M, F) ®04 (D(Og), F°'%) — (M, F), i.e. a map in (PSho,(S), F),
— whose morphism ¢ : (My, F) — (M, F) are as usual the morphisms of presheaves ¢ : My —

My which are morphism of filtered presheaves (i.e. ¢(FPMy) C FPMs) and which are D(Og)
linear (in particular Og linear).

Note that this a NOT the category of filtered D(Og) modules in the usual sense, that is the (M, F) €
(PShog(S), F) together with a map md : (M,F) ®oy D(Og) — (M, F) in (PSho,(S), F), since
Ferd js NOT the trivial filtration. More precisely the Og submodules FPM C M are NOT D(Og)
submodules but satisfy Griffitz transversality. We denote by

PShpogyofi(S) C PShpog)ri(S), PShpog)1,0)7i(S) C PShpogyzri(S) := (PSh(pog),pora)(S), Fs W)

the full subcategory consisting of filtered D(Og) module in the usual sense, resp. the full subcategory
such that W is a filtration by D(Og) submodules.
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(ii) We denote again by
CD(OS)fil(S) C C(PShD(OS)(S),F) R CD(OS)Zfil(S) C C(PShD(OS)(S),F, W)
the full subcategory of complexes such that the filtration(s) is (are) regular. We will consider also

Cp0s)0£il(S) C Cpog)£i(S), Cpos)1,0)£it(S) € Cpog)2ri(S)

the full subcategory consisting of complexes of filtered D(Og) modules in the usual sense (i.e. by
D(Og) submodule), respectively the full subcategory consisting of complexes of bifilterd D(Og) mod-
ules such that WPM C M are D(Og) submodules i.e. the filtration W is a filtration in the usual
sense, but NOT F wich satify only Griffitz transversality.

Proposition 35. Let (S,0g) € RCat with a Og commutative sheaf of ring.
(i) Let M € PShp(S). Then, there is a one to one correspondence between

— the D(Og) module structure on M compatible with the Og module structure, that is the maps
md : D(Og) ®os M — M in PSho,(S) and

— the integrable connexions on M, that is the maps V : M — Qo ®og M satisfying VoV =0
with V : Qog ®os M — Q3 ®os M given by V(w @ m) = (dw) @ m +w A V(m)

(i1) Let (M, F) € PShogu(S). Then, there is a one to one correspondence between

— the D(Og) module structure on (M, F) compatible with the Os module structure, that is the
maps md : (D(Og), F*"%) @04 (M, F) — (M, F) in PSho, a(S) and

— the integrable connezions on M, that is the maps V : (M, F) — Qos ®os (M, F) satisfying
V oV =0 and Griffith transversality (i.e. V(FPM) C Qos ®os FP~IM ).

Proof. Standard. O

The following proposition tells that the O-tensor product of D modules has a canonical structure of
D module.

Definition-Proposition 9. (i) Let f : (X,0x) — (S, 0s) a morphism with (X,0x), (S,0s) € RCat
with commutative structural sheaf of ring. For N € PSho p(sr04)(X) and M € PSho . pis04)(X),
N ®oy M has the canonical D(f*Og) module structure given by, for X° € X,

v eT(X°, D(f*Og)),m e (X°, M),n e (X°, N), v.(n®@m) = (y.n) @m +n® (y.m).
This gives the functor
PShoy,p(s+0s)fit(X) x PShoy p(s+0s)rit(X) = PShoy p(s-0s)ri(X), (M, F), (N, F)) —
(M,F)®ox (N,F),FP(M,F) @0y (N, F) :=Im(®qezF'M @0, FP7IN - M Q0 N)

(it) Let f:(X,0x) — (S,0g) a morphism with (X,0x),(S,0g) € RCat with commutative structural
sheaf of ring. For N € Cpoy),p(f05)(X) and M € Cpox)er(X), N @poy) M has the canonical
f*D(0Og) module structure given by, for X° € X,

v eT(X° D(f*Og)),m e (X°, M),n e I(X°, N), v.(n®@m) = (v.n) @ m.
This gives the functor

Cpox),D(f+0s)fil(X) X Cpox)sit(X) = Cpros)ria(X), (M, F), (N, F))
(M, F) ®D(OX) (N, F),FP(M, F) ®D(OX) (N, F) = Im(®qequM ®D(OX) FPTIN — M®D(OX) N)

Note that, by definition, we have for (M, F) € (PShpog)fa(S)), the canonical isomorphism

(M,F) ®p(os) (D(0s), F7™") = (M, F), m@ P — Pm, m — (m®1)
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Proof. Immediate from definition. O

We now look at the functorialites for morphisms of ringed spaces, using proposition 34. First note
that for f : (X,0x) — (S,0g) a morphism, with (X, Ox), (S,0g) € RTop with structural presheaves
commutative sheaves of rings, there is NO canonical morphism between D(f*Og) = f*D(Og) (see
proposition 34) and D(Ox).

We have the pullback functor for (left) D-modules :

Definition-Proposition 10. (i) Let f : (X,0x) — (S,0s) a morphism with (X,0x),(S,0g) €
RTop with structural presheaves commutative sheaves of rings. Recall that f*D(Og) = D(f*Og) in
this case. Then for (M, F') € PShpog)fu(S),

fmeUM,F) == (Ox, Fy) @05 f*(M, F) € PSho, ra(X)
has a canonical structure of filtered D(Ox) module given by
fory €eT(X° Toy),n@m € (X° Ox Q05 [FM), v.(n@m) := (y.n) @ m+n df (y)(m)
with df := DG Qo /<05 : Tox — T-05 = [*Tog and f*(M, F) € PShy-pog)ri(X) = PShp(s-04) i (X)-

(i) More generally, let f : (X,0x) — (S,0g) a morphism with (X,0x),(S,0s) € RCat with struc-
tural presheaves commutative sheaves of rings. Assume that the canonical morphism T(f,hom)(Og, Og) :
[*D(0Os) = D(f*Ogs) is an isomorphism of sheaves. Then for (M, F) € PShpog)ru(S),

oM, F) = (Ox, Fy) @05 [*(M, F) € PShoy a(X)
has a canonical structure of filtered D(Ox) module given by
fory e (X% To, ), n@m € '(X° Ox Q05 [FM), v.(n®@m) := (y.n) @ m+n df (y)(m)
withdf :=DgQoy /<05 : Tox — Ty-0s = [*Tos and f*(M, F) € PShy-pog)rir(X) = PShp(s-0g) i (L)
Proof. Standard. O

Remark 6. o Let f:(X,0x) — (S,0s) a morphism with (X,0x), (S,0g) € RTop with structural
presheaves commutative sheaves of rings. Recall that f*D(Og) = D(f*Og).Then by definition
frme4Os, Fy) = (Ox, Fy).

o More generally, let f : (X,0x) — (S,0g) a morphism with (X,0x),(S,0s) € RCat with struc-
tural presheaves commutative sheaves of rings. Assume that the canonical morphism T(f,hom)(Og, Og) :
f*D(0s) — D(f*Os) is an isomorphism of sheaves. Then by definition f*™°%(Og, F,) = (Ox, F}).

For the definition of a push-forward functor for a right D module we use the transfert module
Let f: (X,0x) — (S,0s) be a morphism with (X,0x), (S,Og) € RTop with structural presheaves
commutative sheaves of rings. Then, the transfer module is

(D(Ox = f*0s), F") := f"°UD(0s), F'?) := f*(D(0s), F"") @ -05 (Ox, Fy)
which is a left D(Ox) module and a left and right f*D(Og) = D(f*Og) module.

Lemma5. Let f1: (X,0x) = (Y,0y), fo: (Y,0y) — (S,0g) be two morphism with (X, O0x), (Y,0y)(S,0g) €
RTop. We have in CD(OXMfQofl)*D(oS)fu(X)

(Dox—(faofi) 05, F7) = f1(Doy s £:05, F7) @ p(0y) (Dox—fr0v» FO4)
Proof. Follows immediately from definition. O

For right D module, we have the direct image functor :
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Definition 48. Let f : (X,0x) — (S,0s) a morphism with (X,0x),(S,0g) € RTop with structural
presheaves commutative sheaves of rings. Then for (M, F) € Cp(oxyerfi(X), we define

omod(M, F) = f.(Dox 05, F"* ®p(oy) (M, F)) € Cpog)u(5)

For a closed embedding of topological spaces, there is the V-filtration on the structural sheaf, it will
play an important role in this article

Definition 49. (i) Let (S,0g) € RTop a locally ringed space. Let Z = V(Iz) C S a Zariski closed
subset. We set, for S° C S an open subset, p € Z,
= Vzp0s(5°) :== 0s(5°) if p > 0,
— Vz,_40s(5°) :=1%(5°) C Os(S°) forp=—q <0.
We immediately check that, by definition, this filtration satisfy Griffitz transversality, that is (Og,Vyz) €
PShD(Os)fil(S)' For a morphism g: ((Tv OT)? Z/) — ((Sa 05)7 Z) with ((Ta OT)) Z)a ((Sa 05)7 Z) €
RTop? locally ringed spaces, where Z and Z' are Zariski closed subsets, the structural morphism

ag : 9*Og — Or is a filtered morphism :

ag: 9" (0s,Vz) = (O, Vz'), h = a4(h)

(i1) Let (S,0g) € RTop. Leti: Z — S a closed embedding. The Vz-filtration on Og (see (i) gives the
filtration, given by for p € Z,

Vz, Hom(Og, Og) := {P € Hom(Os, Os), s.t.PTE IZ*P}

on Hom(Og, Og), which induces the filtration Vz ,Dg := DgNVz, Hom(Og, Og) on Dg C Hom(Og, Og).
We get (Dg,Vz) € PShy;i (S, Ring) and we call it the Vz-filtration on Dg.

(iii) Let (S,0g) € RTop a locally ringed space. Let i : Z = V(Zz) — S a Zariski closed embedding
and Oz = i*Og/Tz. We say that (M,F) € PShpog)ra(S) is specializable on Z if it admits an
(increasing) filtration (called a Vz-filtration) (M, F, V') € PShp(og)2fi(S) compatible with (Dgs, Vz),
that is Vzﬁst.V(IM C VerqM.

(iii)’ Under certain hypothesis, a Vz-filtration on (M, F) if it exist is unique in this case we denote
(M, F,Vz) € PShpog)2ru(S). If m : (M1, F) = (M, F) is a morphism, with (M, F), (M2, F') €
PShp(og)ru(S) admiting a unique Vyz filtration, we have m(VJFPMy) C VJF? My, that is we get
a morphism m : (My,F,Vz) — (Mas, F,Vz). See proposition 89 for the particular case of smooth
complex algebraic varieties we will be mainly interested with.

(iv) Let (S,0g) € RTop a locally ringed space. Leti: Z =V (Iz) — S a Zariski closed embedding and
Oz = i"Og/Tz. For (M, F) € PShp(og)ru(S) is specializable on Z, consider for a V7 filtration
(M, F,V) € PShpog)2fiu(S), the quotient map in PShog i (S)

qvo: (M, F) — (M,F)/V<o(M, F) =: Gry,o(M, F).
Since by definition Tz;Veo(M,F) C Veo(M, F), qvo factors trough in PShi-og ri(Z2)

P qvo i (M, F) 292y prmod (pp gy VOB, e (M, F)

where

—qz:(M,F)=(M,F)®04s Os = (M,F) Qo4 ixOz is the quotient map, which is given by for
S° C S an open subset and m € T'(S°, M), gz(m) :=m®1,
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— spy (M, F) : i*™4(M,F) — i* Gryo(M, F) is given by for S° C S an open subset, m €
I'(S°, M) and h € T(S°,i.0z),
spy (M, F)(m @ h) == hqyo(m) = qvo(hm),

where h € T(8°,0g) is lift of h, and of course spy (M, F) : i*™°( M, F) — i* Gry.o(M, F) is
unique in PShi«og i (Z) such that i*qyvo = spv (M, F) oi*qz since qz is surjective.

The quotient i* Gry,o(M, F) has a structure of Dz module since for S° C S an open subset and
9. €e(ZNS°,Ty) CT(S°Ts), we have 9. € I'(S,Vz0Dg) since for f =3 t;h; € T'(S°,Iz),
where (t;) = Zz(S°) are generators of the ideal Iz(S°) C Og(S°) and h; € T'(S°, Os), we have

T

0:(> tihi) = > (D:(ti)hi + ti0=(hi)) = Y _ t:(0=(hi)) € T(S,Iz)

i=1

as 0, (t;) = 0 (only the vector field of Tog which are transversal to To, C Tog increase the grading),
Then, obuviously, by definition,

spy (M, F) : i*™°YM, F) — i*(M, F)/Veo(M, F) =: i* Gry,o(M, F)
is D(Ogz) linear, i.e.is a map in PSh;-o4 po,)i(Z) and we call it the specialization map.

Definition-Proposition 11. Let (S,0gs) € RTop a locally ringed space. Consider a commutative dia-
gram

7y = V() —2—~ (S, 05)
Z=V(I) —s 7, = V(D)

where the maps are Zariski closed embeddings and which is cartesian (i.e. T = (I1,Za), in particular
Z =7Z1N2Z3).

(i) Let (M, F') € PShpog)u(S) admitting a unique Vyz-filtration, a unique Vyz, -filtration and a unique
Vg, -filtration (see definition 49). Let p,q € Z. Then

— Grv,, p(M, F) is a D(Ogz,) admitting a unique Vz-filtration,
— Gryy, (M, F) is a D(Ogz,) admitting a unique Vz-filtration,

and the quotient map in PSho,, fu(S)
Q- Ger2,q(M7 F) — Gry, 4 Gry,, p(M,F)

factors trough

qvy,p G%’lq,z2(M7F)
Wap GI"VZ2,q(M7 F) —= Gry, Grvzyq(M, F) ———— Gry, 4 Gry,, p(M,F)

and G%ﬁ% (M, F) is an isomorphism in PShp(o,)fi(S).

(i) If m : (My, F) — (M2, F') is a morphism with (M, F'), (M2, F) € PShpog)fa(S) admitting a
unique Vyz-filtration, a unique Vg, -filtration and a unique Vyz,-filtration (see definition 49). Then
for all p,q € Z the following diagram commutes

C%.z, (MF)

GYVZ,p Gl”vzrq(Ml, F) Gl“VZ7q GrI’VZ1 )p(M, F)

lGerwP GTVZZ,q(m) lGYVZ,q Grvzl,p(m)

G%’f,zz (M27F)
Gry, p Grv,, (M2, F)

GYVZ,q GrI’VZ1 7p(M2, F)
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Let (S,0g) € RTop a locally ringed space. Consider a commutative diagram

l1 7:1
Z1=V(I) —= 21 =V(L) (S,0s)

//T ’ T T
4 ./
1

Z'=V(T) Z=V(I)—> 7, = V()

where the maps are Zariski closed embeddings and whose squares are cartesian (i.e. T = (71,T2) and
7' = (11,Z), in particular Z = Z1 N Zy and Z' = Z1 N Z). Let (M,F) € PShpog)ra(S) admitting a
unique Vz-filtration, a unique Vz, -filtration a unique Vz -filtration, a unique Vz; -filtration, and a unique
Vz,-filtration (see definition 49). Then for all p,q € Z, Gry,, , Gry, ,(M,F) = Gry,, ,(M, F) and
1 1
GZF,Z(GIE?,ZQ (Ma F)) = G%{{Z2(M2aF)
Proof. Obvious. O
We will also consider the following categories
Definition 50. Let (X,0x) € RCat. We denote by Co, i, p(0x)(X) the category

o whose objects (M, F') € Coy i1, p(0x)(X) are filtered complexes of presheaves of Ox modules (M, F) €
Coy ri(X) whose cohomology presheaves H™ (M, F') € PSho fu(X) are emdowed with a structure
of filtered D(Ox) modules for all n € Z.

e whose set of morphisms Home,, .\ o ) (M, F), (N, F)) C Home, ., x)((M, F), (N, F)) be-
tween (M, F),(N,F) € Coy fi,p(0x)(X) are the morphisms of filtered complexes of Ox modules
m: (M,F)— (N, F) such that H*m : H"(M,F) — H"(N, F) is D(Ox) linear, i.e. is a morphism
of (filtered) D(Ox) modules, for all n € Z.

4.1.2 The De Rham complex of a (left) filtered D-module and the Spencer complex of a
right filtered D-module

Using proposition 35, we define the filtered De Rham complex of a complex of filtered (left) D-modules :

Definition 51. (i) Let (S,0Os) € RCat with Os commutative. Let (M, F) € Cpog)si(S). By propo-
sition 35, we have the complex

DR(Os)(M, F) := (0, Fb) ®@os (M, F) € Cru(S)
whose differentials are d(w ® m) = (dw) @ m +w A (Vm).

(i) More generally, let f : (X,0x) — (S,0g) with (X,0x),(S,0s) € RCat. The quotient map
q:Qoyx = Qoy 505 nduce, for G € PSho, (X) the quotient map

¢*(G) = NP 19, ®Roy G — qux/f*os ®oy G.

Let (M, F) € Cpoy)su(X). By proposition 35, we have the relative De Rham complex
DR(Ox/[*Os)(M, F) = (Q%,s, I}) ®ox (M, F) € Cr-04 rur(X)

whose differentials are d(gP(M)(w @ m)) := ¢?TH(M)((dw) @ m) + ¢? (M) (w @ (Vm)).

(i1i) Let (X,0x)/F € FolRTop, that is (X,0x) € RTop endowed with a foliation with quotient map
q:Qo0x — Qoy 5. Let (M, F) € Cpoyx)ru(X). By proposition 35, we have the foliated De Rham
complex

DR(Ox /F)(M, F) = (0 /7, Fy) @ox (M, F) € Cra(X)
whose differentials are d(g(M)(w ® m)) := ¢(M)((dw) @ m) + ¢(M)(w ® (Vm)).
By definition,
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o with the notation of (ii) if ¢ : (My, F') = (M2, F') is a morphism in Cpo)ri(X),
DR(Ox/f"0s)(¢) == I ® ¢) : (x5, F) ®ox (M1, F) = (x5, F) ®ox (M2, F)
is a morphism in Cy-og rit(X),

e with the notation of (ii) DR(Ox)(Ox) = DR(Ox) and more generally in the relative case DR(Ox /f*Og)(Ox) =
DR(Ox/f*Og), and with the notation of (iii) DR(Ox/F)(Ox) = DR(Ox /F).

Dually, we have the filtered Spencer complex of a complex of filtered right D-module :

Definition 52. (i) Let (S,0s) € RCat with Os commutative. Let (M, F) € Cpogyorri(S). By
proposition 35, we have the complex

SP(Os)(M, F) = (T(.)San) ®og (M, F) S Cfil(S)
whose differentials are, for X € S, and 01 A -+~ N9 @ m € T'(X, ngl ®os M),
Ay A= ANOr@m): (w DX, Q5. = > W@ A=A+ 0)m = w([0;,0;])m).
i i<j

(i1) More generally, let f : (X,0x) — (S,0g) with (X,0x),(S,0s) € RCat. The quotient map
q:Q0x — Qoy /505 induce, for G € PSho, (X) the injective map

¢"P(G) =N RITG, o, ®ox G—=TH, ®oy G.
Let (M, F) € Cpoy)orsi(X). By proposition 35, we have the relative Spencer complex
SP(Ox/f*Os)(M, F) := (%5, Fy) ®ox (M, F) € Cpr055ua(X)
whose differentials are the one of SP(Ox)(M, F) given in (i) by the embedding ¢ : SP(Ox/f*Og)(M, F) —
SP(Ox)(M, F).

(i1i) Let (X,0x)/F € FolRTop, that is (X,0x) € RTop endowed with a foliation with quotient map
q:Qo0x — Qoy 5. Let (M, F) € Cpoxyerfi(X). By proposition 35, we have the foliated Spencer
complex

SP(Ox/F) (M, F) :=(T5, 7, Fo) @ox (M, F) € Cru(X)
whose differentials are of SP(Ox)(M, F) given in (i) by the embedding q* : SP(Ox /F)(M, F) —
SP(Ox)(M, F).
By definition, with the notation of (ii) if ¢ : (M1, F') = (Ma, F') is a morphism in Cpoyor it (X),

SP(Ox/f*0s)(9) = (I @ ¢) : (Txs: Fy) @ox (M1, F) = (Tx s, Fy) @0y (M, F)

is a morphism in Cy-og45ir(X).

Proposition 36. (i) Let f: (X,0x) — (S,0s) a morphism with (S,Og), (X,0x) € RTop. Assume
that the canonical map T'(f,hom)(Ox,Ox): f*D(Ox) — D(f*Ox) is an isomorphism of sheaves.
For (M,F) € Cpox)er,f+p(os)fit(X) and (M',F),(N,F) € Cpooy)fi(X), we have canonical
isomorphisms in Cr«pog) fil
(M/?F)®OX (NaF)®D(Ox) (MaF) = (M/aF)(g)D(Ox) ((M?F)®OX (NaF))
((M/aF) ®OX (MvF)) ®D(Ox) (NaF)

(i) Let f: (X,0x) — (S,0s) a morphism with (S, Os), (X, Ox) € RTop. For (M, F) € Cpox)fu(X),
we have a canonical isomorphisms of filtered f*Ogs modules, i.e. isomorphisms in Crrog i (X),

(Q.Ox/f*Ongb) ®0x (Mv F) = ((Q.Ox/f*Os’Fb) ®ox D(OX)) ®D(Ox) (Mv F)
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Proof. These are standard fact of algebra. O

Definition-Proposition 12. Consider a commutative diagram in RCat

D= (X,0x)——(5,0s) .

I

(X', 0x) —L= (T, 0r)

with commutative structural sheaf of rings. Assume that the canonical map T(g',hom)(Ox,Ox) : ¢ *D(Ox) —
D(g *Ox) is an isomorphism of sheaves.

(i) For (M, F) € PShp(oy)si(X), the graded map in (PSh, ., (N x X'), F)
Doy 19 0x)/(0r /g 05) M F) =m0 (R0, 1-04) /(01 197 0) @ 1)
g (( .Ox/f*OS’Fb) ®oy (M, F)) — (Q:)X//f,*OT7Fb) ®0,, 9 *mod(M, F)
given in degree p € N by, for X'° € X' and X° € X such that g'*(X°) « X'°,
D 10N o o7 P Io\ .
Q041 19+0x)/(0r fg705) M X ) =m0 (U 6.0 (0r 19 05) © DET) -
wemel (X% Q5 ®oy M) — Qo 7905 W) @ (M 1)
is a map of complexes, that is a map in C(togy+0g it (X').
(i) For (M,F) € OD(OX)fil(X); we get from (i) by functoriality, the map in C(fog/)*osfil(X/)
Q04119 0x)/(Or /g7 05) M F) =m0 (Lo, 1 04) /07 /g7 05) © 1)
g *((Q.Ox/j'*OS’Fb) Rox (M, F)) — (be//f,*OT’Fb) ®Ox/ g *mod(M, F)

(iii) For (M, F) € Cpoyx)ru(X), we get from (i) the canonical transformation map in Coyria(T)

TO(D)(M,F) : g Lo (f.E(% /- 04 Fo) @0x (M, F))) &

T(g',E)(—)oT(D)(E(QS )+ 04®0x (M.F)))

(0" B/ pr05: Fb) ®0x (M, F))) ®g-05 O

Em(OX//g’*ox)mor/g*os)(M’F))

(FLE(9" (0 /105 Fb) ®ox (M, F)))) ®g-05 Or
(f"/‘E((QZDx//f/*OT’Fb) ®ox (M’ F))) ®g+0s Or i> f’/ﬁE((QZDX//f/*OT’ Fb) ®OX’ g,*mOd(Ma F))

with m(n ® s) = s.n.

Proof. (i): We check that the map in (PSh,.o, (N x X7), F)

Q04 /g 0x) /(0 /g7 05) (M F) =m0 (o, 1+05) /(0 197 05) @ T)
g (( .Ox/f*OS’Fb) ®ox (M, F)) — ( :)X//f,*OT,Fb) Q04 g *mOd(M, F)

is a map in Cfog)+0gfi(X’). But we have, for X'° € X' the following equality in I‘(X,O,Q%t:, R0y
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g’*modM)

Ao, g+ 0x)0n fgr05) M@ @M 0 = dQ, ., (W) @ (M @)
= QG 0, W) © (m®1)+ﬂg g0y W) @ V(m@1)
= Qo A @me)+9p L, (W)@ V(n) el
= Qo dw)@me)+ gt o (we V(m) @1
(O 157030 147 05) MD(Aw) & 4w & V(m))
p+1

(Oxr /'O )(Or J g~ 05y M) (d(w @ m))

since for 9" € To,, (X'°),
Vo (m® 1) = Vdg/(az)(m) R1I+meVyl= Vdg/(al)(m) ®1:

see in definition-proposition 10 the definition of the D(Ox/) module structure on the Ox: module
g *modM =g *M ®g’*OX OX’-

(ii) and (iii): There is nothing to prove. O

Remark 7. Consider a commutative diagram in RCat

D= (X,Ox)%(S,Os) .
T
(le OX/) - (Tv OT)

Assume that the canonical map T(g’,hom)(OX,OX) : ¢*D(0Ox) — D(g*Ox) is an isomorphism of
sheaves. Under the canonical isomophism (=) ®@1: (¢, /.04, Fb) = (2, /-0 F) ®ox (Ox, Fp), we
have (see definition-proposition 12 and definition 1)

® Q0,/4'0x)/(0r/505)(0%) = X0, 1g05)/(0r1509) * 9 "oy /1708 = Vo, 11200

e T9(D)(Ox)=T2(D) : g*mOdLo(f*E(Q.oX/f*osvFb)) — fLE(Q, Oxr/f'*Or , Fy).

Definition 53. Consider a commutative diagram in RCat

D= (X,Ox) —— (S,Os) .
(leOX/)f—/>(TvOT)

with commutative structural sheaf of rings. Assume that the canonical map T'(g',hom)(Ox,Ox) :
D(g'*Ox) is an isomorphism of sheaves. For (N,F) € CD(OX/),g/*D(OX)fil(X/>’ we have by definition-
proposition 12 the map in Cr-og rit(X)

"xmod _1

ad(g %, g1) ()
T2(g', @)(N, F) : Q% p-05 ®0x g2(N, F) ———"——

mo§2 ' (N,F))

(O /9" 0x)/(Op /g% 0g) (Ix(

gfk(g *(Q.Ox/f*o_g ®OX giN) ®g'*0x OX/

,*7710
ad(g *™°%,g})(N,F)

g;( bX/f*OS ®OX g Hxmod /(N F)) gi(Q.OX//f*OT ®OX’ (N7 F))

with m(n ® s) = s.n and g.N € Cp(ox)(X), the structure of D(Ox) module being given by the canonical

morphism ad(g'*, g.)(D(Ox)) : D(Ox) — ¢.g *D(Ox) applied to g.N € Cyr g+ D(0x)(X)-
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We finish this subsection by a proposition for ringed spaces similar to proposition 9

Proposition 37. Let f : (X,0x) — (S5,0s) a morphism with (X,0x),(S,0s) € RTop with com-
mutative sheaves of rings. Assume that Qo /-0, € PShoy (X) is a locally free Ox module of finite
rank.

(i) If ¢ : (M,F) = (N, F) is an r-filtered top local equivalence with (M,F),(N,F) € Cpox)ra(X),
then
DR(OX/f*OS)((b) : (be/f*Os’Fb) ®ox (Ma F) - (Q.Ox/f*Os’Fb) Xor (Nv F)

is an r-filtered top local equivalence.

(i1) Consider a commutative diagram in RTop

D= (X,0x) ——(S,0s) .

o

(X', 0x) == (T.0r)
with commutative structural sheaf of rings. For (N,F) € Cp(ox,)fi(X'), the map in Cpog i (X)
koTJ(g, ®)(B(N,F)) : () /p-0s: o) ®0x BN, F) = gLE(Q8,, ) f+00+ Fb) @0, E(N,F))

is a filtered top local equivalence (see definition 53).

Proof. (i):Follows from proposition 9 (i) since 0%, /05 € C*(X) is then a bounded complex with

Q0 /105 € PShox (X) alocally free Ox module of finite rank.

(ii):Follows from proposition 9 (ii) since 28, /.o, € C®(X) is then a bounded complex with Qb /505 €
PSho, (X) a locally free Ox module of finite rank. O

4.1.3 The support section functor for D module on ringed spaces

Let (S,0gs) € RTop with Og commutative. Let Z C S a closed subset. Denote by j : S\Z < S the open
complementary embedding,

e For G € Cpoy)(S), I'zG := Cone(ad(j*, j«)(G) : F — j.j*G)[—1] has a (unique) structure of
D(Os) module such that vz(G) : TzG — G is a map in Cp(pg)(S). This gives the functor

Iz : Cpog)ri(S) = Cpoogyra(S), (G,F) —Tz(G,F)

together with the canonical map vz(G, F) : Tz(G,F) — (G, F). Let Zy C Z a closed subset, then
for G € Cpog)(5), T(Z2/Z,7)(G) : T'z,G = T'zG is a map in Cpoy)(S).

e For G € Co,(S), I'LG := Cone(ad(j,7*)(G) : 71j*G — G) has a unique structure of D(Og)
module, such that v3(G) : G — I';G is a map in Cpog)(S). This gives the functor

Ly : Cpog)fi(S) = Cpog)rul(S), (G, F)—Ty(G,F),

together with the canonical map 7% (G, F) : (G, F) — T'L(G, F). Let Zy C Z a closed subset, then
for G € Cpog)(9), T(Z2/Z,7")(G) : TG — Ty, G is a map in Cp(og)(S).

e For G € OD(OS)(S)7

ry"G: = DYLoTZEDYG)
;= Cone(D§ Lo ad(jx, j*)(E(DSG)) : D Loj.j* E(DSG) — D Lo E(DYG))
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has also canonical D(Og)-module structure, and ”yz’h(G) G — F}’hG is a map in Cp(og). This
gives the functor

T": Cpiog)si(S) = Cposypa(S), (G, F)—Ty"(G, F),
together with the canonical map vé’h(G, F): (G, F)— I‘é’h(G, F).

e Consider Z§ C Og the ideal of vanishing function on Z and 7z C Dy the right ideal of Dg generated
by Z%. We have then 77 C I, where Z7 C Dg is the left and right ideal consisting of sections
which vanish on Z. For G € PShp(o)(S), we consider, S° C S being an open subset,

T2G(S°) =< {fm,m € G(S°), f € Tz(S°)} >C G(S°)

the D(Og)-submodule generated by the functions which vanish on Z (Zz is a right D(Og) ideal),
This gives the functor,
Ty =Ty Cpogs)ru(S) = Coos)iu(S),
(G, F) = T5°(G, F) := Cone(bz (G, F) : Tz (G, F) = (G, F)), bz(=) := br, ()

together with the canonical map vé’O(G, F): (G, F)— I‘\Z/’O(G, F). which factors through

v2(G) bs/z(G)

v9(G) : G ryaG ry°G.

with bg/z(—) = bé/Zand we have an homotopy equivalence cz(G) := ¢z, (G) : I‘\Z/’OG — G/I4G.
Lemma 6. Let (Y,Oy) € RTop and i : X — Y a closed embedding.
(i) For (M, F) € Cpooy)fa(Y) and (N,F) € PShp(o, yorfu(Y') such that a.N is a locally free D(Oy))

module of finite rank, the canonical map
Ty, @)(E(M, F), (N, F)) i= (I, T(, ®)(E(M, F), (N, F))) :
(Tx E(M, F)) ®p(oy) (N, F) = Ix E(M, F) @poy) (N, F))
is an equivalence top local.

(i) For (M, F) € Cpoyyen ru(Y) and (N, F) € PShp o, yom i (Y) such that a; N is a locally free Oy
module of finite rank, the canonical map

T (v, @)E(M, F),(N,F)) := I, T(j,®)(E(M,F),(N,F))) :
(FXE(MJF)) X0y (NvF) - FXE((MvF) X0y (NvF))
s a filtered top local equivalence.

Proof. Follows from proposition 9. Also note that T(j, ®)(—, —) = T™°(j,®)(—, —). O

We now look at the pullback map and the transformation map of De Rahm complexes together with
the support section functor. The follwoing is a generalization of definition-proposition 3 :

Definition-Proposition 13. Consider a commutative diagram in RTop

Do= f:(X,0x) ——= (Y,0y) —= (S,0s)

o

/1 (X!, 0x/) —= (Y',0y/) = (T, Or)

with i, i being closed embeddings. Denote by D the right square of D. We have a factorization i’ : X' a,

20

X xYY' =Y', where i, i} are closed embedding.
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(i) For (M, F) € Cpoy)fa(Y), the canonical map,

E(Qo,,14"+0y)/(0r /g-05) (M F)) 0 T(g", E)(=) 0 T(g",7)(~) :

g”*I\XE((QE)Y/p*OS 9 Fb) ®Oy (Mu F)) — PXXYY(E((Q.Oy//ZJ’*Oq" Fb) ®Oy/ g”*mOd(Mu F))
unique up to homotopy such that the following diagram in Cyr.poypiu(Y') = Cpregeogpu(Y') com-
mutes

( (MF ( ”7E (_)OT(QN " emo
00 Fr) @0y (M B TS EIBA, oo, F) @0y, (7M. F)))

’YX()l/ l'YXXYY’(_)

E(Q (M,F)oT(g" ,E) "
B, 00 ) B0y (M, F)) ol Elas, Fy) ®0,, ¢ "M, F))

g *TxE((Q

//p *Orp’

(1) For M € Cp(Y), there is a canonical map
TO(D)(M,F)? : ¢ Lop.Tx E((2%,, /- 04+ Fb) @0y (M, F)) —

p;FXXyY’E((Q:)Y’/p’*OTuFb) ®Oy/ g”*mOd(M7 F))

unique up to homotopy such that the following diagram in Coypu(T) commutes

*mo O(D)(M "xmo
dLOp*FXE((QOY/p *Og? F ) ®OY M F ?% pf%XXYY/ v /p %O an) ®Oy/ (g d(Ma F))) :
VX(—)l VXXYY’(—)
*M O L] TO(D)(M F) ° H*TTLO
g dLop*E((QOy/p*OsaF ) Koy (M F)) —>p* ((QO //p'*Or an) ®Oy/ g d(M7 F))

(iii) For N € Cp(Y x T'), the canonical map in Cyr.o, pu(Y")
T(X'/X xy Y, 9)(=) : T E(21 )7, Fy) @0y, (N, F)) = Txoey v E(Q0, 0, Fb) ®0y (N, F))

is unique up to homotopy such that Yxxyy' (=) o T(X'/X Xy Y, y)(—=) = vx/(—).

(iv) For M = Oy, we have TO(D)(Oyxs)’ = T2 (D)Y and TO(X xy Y'/Y")(Oy/)? = TO(X xy
Y'/Y')Y (see definition-proposition 3).

Proof. Immediate from definition. We take for the map of point (ii) the composite

TO(D)(M, F)" : """ Lop.Tx E(,, /04, Fb) ®0y (M, F)) %

. . T(g" \E)(=)oT(g” 1) (=)eT(DYE(QY,, /prog-Fb))
G DLXE((Q, /05, Fb) ®0y (M, F)) @400 Or Qv 08

. E(Q(oy,/g”*Oy)/(OT/y*Os(M’F)))

(pkaXXYY,E(g (( .Oy/p*Os7Fb) ®oy (M7 F)))) ®g*0s Or
p;FXXYY,E((Q:)Y//ZD/*OT’Fb) ®oy. g”*mOd(Mv F)) ®g+0s Or -
Pl sy v BU a0 Fb) @0y, g™ (M, F)),

with m(n ® s) = s.n. O
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Let p : (Y,0y) — (5,0g) a morphism with (Y,0y),(S,0s) € RTop. Let i : X — Y a closed
embedding. Denote by j : Y\X < Y the complementary open embedding. Consider, for (M, F) €
Cpoy)fa(Y), the map in Cpogrit(Y) (see definition 53):

k © Tu?(jv(g))(E(M’ F)) : ( .Oy/p*OSan) ®OY ]*]*E(Mv F))
DR(Oy /p"0s)(ad(j" ,j.)(-))

j*]*(( .Oy/p*o_g?Fb) X0y j*]*E(Mu F)) = j*j*(Qby/P*Os7Fb) ®oy ]*j*]*E(M7 F)
koDR(Oy /p*Os)(ad(j",j«)(j" E(M)))

FEG Q0 jpr0s, Fb) @oy JE(M, F)) = jE(§* (0, /p05) Fb) ®0y E(M, F)))

Definition 54. Let p : (Y,0y) — (S,0s) a morphism with (Y,0y),(S,0s) € RTop. Leti: X — Y
a closed embedding. Denote by j : Y\X — Y the complementary open embedding. We consider, for
(M, F) € Cpoy)fa(Y) the canonical map in Cp-o0g i (Y)

T (v, ®)(M, F) := (I,k o T (j,®)(E(M, F))) :
(8, /p00s Fo) @0y TXE(M,F) = TxE((Q%, /0 00+ Fb) @0y E(M,F)).

Proposition 38. Let p: (Y,0y) — (S,0s) a morphism with (Y,0y),(S,0g) € RTop. Leti: X <Y
a closed embedding. Then, if Qo jp-04 s a locally free Oy module, for (M, F) € Cpoy)ra(Y)

(i) the map
TO(7,@) (M, F) : (%, /00 o) @0y Tx E(M, F) = TxE((Q, /pe0. Fy) ®0y E(M, F))
is a 1-filtered top local equivalence,
(i1) the map in Dp-og i (Y)
T (v,®) := DR(Oy [p*Os)(k) ' o T, (v, ®)(M, F) :
(20, /pr0g: Fb) ®oy Ix E(M, F) = I'x E((Q%, /-0, Fb) ®oy (M, F))
is an isomorphism.
Proof. By proposition 37,

o Grh.(koT$ (j,®)(E(M, F))) : Q'oy/p*os®oyj*j*Fp"E(M) — J'*E(j*(Qby/p*oS@OyF”“E(M)))
is a top local equivalence and

* DR(Oy/p*Os)(k) : Q8 /0, @0y (M, F) = Q8 .5, ®o, E(M, F) is afiltered top local equiv-
alence.

O

4.2 The D-modules on smooth complex algebraic varieties and on complex
analytic maninfold and their functorialities in the filtered case

For convenience, we will work with and state the results for presheaves of D-modules. In this section,
it is possible to assume that all the presheaves are sheaves and take the sheaftification functor after the
pullback functor f* for a morphism f: X — S, X, S € Var(C) or X, S € AnSp(C), and after the internal
hom functors and tensor products of presheaves of modules on S € Var(C) or S € AnSp(C).

For S = (S,0s) € SmVar(C), resp. S = (S5,0g) € AnSm(C), we denote by

e Dg:=D(0Og) C Homc4(Og,Og) the subsheaf consisting of differential operators. By a Dg module,
we mean a left Dg module.
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e we denote by

— PShp(S) the abelian category of Zariski (resp. usu) presheaves on S with a structure of left
Dg module, and by Holp(S) C Cohp(S) C PShp(S) the full subcategories whose objects are
coherent, resp. holonomic, sheaves of left Dg modules,

— PShpor(S) the abelian category of Zariski (resp. usu) presheaves on S with a structure of
right Dg module, and by Holper(S) C Cohper(S) C PShper(S) the full subcategories whose
objects are coherent, resp. holonomic, sheaves of right Dg modules,

e we denote by

— Cp(S) = C(PShp(S)) the category of complexes of Zariski presheaves on S with a structure
of Dg module,
Cp)h(S) C CD7C(S) C CD(S)

the full subcategories consisting of complexes of presheaves M such that a, H™ (M) are coherent
(resp. holonomic) sheaves of Dg modules, a, being the sheaftification functor for the Zariski,
resp. usual, topology,

— Cpor(S) = C(PShper (5)) the category of complexes of Zariski presheaves on S with a structure
of right Dg module,
C’Dop)h(s) C CD0P7C(S) C C’DOP (S)

the full subcategories consisting of complexes of presheaves M such that a, H"™ (M) are coherenr
(resp. holonomic) sheaves of right Dg modules,

e in the filtered case we have

— Cpyra(S) € C(PShp(S), F,W) := C(PShpog)(S), F, W) the category of (bi)filtered com-
plexes of algebraic (resp. analytic) Dg modules such that the filtration is biregular (see defi-
nition 47,

Cp2)£it,n(S) C Cp(2)fit,e(S) C Cpayru(S),

the full subcategories consisting of filtered complexes of presheaves (M, F') such that a, H™ (M)
are coherent (resp. holonomic) sheaves of Dg modules

— Cporit(S) C Cpyit(S) the full subcategory such that the filtarion is a filtration by Dg sub-
module (which is stronger then Griffitz transversality), Cp(1,0)r:(S) C Cpasa(S) the full
subcategory such that W is a filtarion by Dg submodules (see definition 47),

Cp,0)fit,n(S) = Cp2gin(S) N Cp1,0)£ia(S) C Cpayir,n(S),

the full subcategory consisting of filtered complexes of presheaves (M, F, W) such that a, H™ (M)
are holonomic sheaves of Dg modules and such that WPM C M are Dg submodules (re-
call that the Og submodules FPM C M are NOT Dg submodules but satisfy by definition
md: F"Dg® FPM C FPT"M),

— Cpor(2)fi(S) C C(PShper(S), F,W) := C(PShp(og)er(S), F,W) the category of (bi)filtered
complexes of algebraic (resp. analytic) right Dg modules such that the filtration is biregular,
as in the left case we consider the subcategories

Cpor(2)£il,n (S) C Cpor(2)£it,c(S) C Cpor(2yi(S),

the full subcategories consisting of filtered complexes of presheaves (M, F') such that a, H™ (M)
are coherent(resp. holonomic) sheaves of right Dg modules.

For S = (S5,05) € AnSm(C), we have the natural extension Dg C D C Homcg(Og,Os) where
D% C Homey(Os,Og) is the subsheaf of differential operators of possibly infinite order (see [18]) for the
definition of the action of a differential operator of infinite order on Og) Similarly, we have
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e Upe(2yi(S) C C(PShpe(S), F, W) := C(PShpe (5), F, W) the category of (bi)filtered complexes
of D modules such that the filtration is biregular,

Cpeo(2)fit,n(S) C Cpes(2)fit,e(S) C Cpoo(2)fi(S),

the full subcategories consisting of filtered complexes of presheaves (M, F') such that a, H" (M) are
coherent (resp. holonomic) sheaves of D modules.

o Cpoogfil(S) C Cpeesir(S) the full subcategory such that the filtarion is a filtration by Dg submod-
ule, Cpeo(1,0)£i1(S) C Cpeoyrit (S) the full subcategory such that W is a filtarion by D submodules,

Cpee(1,0)fit,n(S) = Cpooayit,n(S) N Cpoe 1,0y £ (S) € Cpagit,n(S),

the full subcategory consisting of filtered complexes of presheaves (M, F, W) such that a,H"(M)
are holonomic sheaves of DZ” modules and such that WPM C M are Dg submodules

o Cpo.on(2)fit(S) C C(PShpe.on(S), F, W) := C(PShpex.er (5), F, W) the category of (bi)filtered com-
plexes of right D modules such that the filtration is biregular,

Cpoo.on(2) fit,h (S) C Cpos.on(2)fit,e(S) C Cpos.on(ay it (S),

the full subcategories consisting of filtered complexes of presheaves (M, F') such that a, H" (M) are
coherent (resp. holonomic) sheaves of Dg modules.

For f: X — S a morphism with X, S € SmVar(C) or with (X, S) € AnSm(C),
e we denote by

— PShy«p(X) the abelian category of Zariski (resp. usu) presheaves on S with a structure of left
f*Dg module, and Cy-p(X) = C(PShs-p(X)),

— PShp +p(X) the abelian category of Zariski (resp. usu) presheaves on S with a structure of
left f*Dg module and left Dx module, and CD_’f*D(X) = O(PShD_’f*D(X)),

— PShpor, s+p(X) the abelian category of Zariski (resp. usu) presheaves on S with a structure
of left f*Dg module and right Dx module and Cpor +p(X) = C(PShper f«p (X)),
e we denote by
— Cpepri(X) C C(PShyp-p(X), F) := C(PShy« pog)(X), F) the category of filtered complexes
of algebraic (resp. analytic) f*Dg modules such that the filtration is biregular,

— Cp,ppri(X) € C(PShp,r+p(X),F) the category of filtered complexes of algebraic (resp.
analytic) (f*Dg, Dx) modules such that the filtration is biregular,

— Cpor p+ppit(X) C C(PShper, s+p(X), F) the category of filtered complexes of algebraic (resp.
analytic) (f*Dg, DY) modules such that the filtration is biregular.

For f: X — S a morphism with X, S € AnSm(C), we denote by

o Cpepoopit(X) C C(PShpepe (X), F) := C(PShypx (X), F') the category of filtered complexes of
f*DZ modules such that the filtration is biregular,

o Cpoo frpoofi1(X) C C(PShpe f-pe(X), F) the category of filtered complexes of (f*DZ, DF) mod-
ules such that the filtration is biregular,

o Cpes.op, pepoo fit(X) C C(PShpee.or p+pee (X), F') the category of filtered complexes of (f*DZ, DY)
modules such that the filtration is biregular.
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For S € AnSm(C), we denote by
Js 1 Cp(ayit(S) = Cpeeaya(S), (M, F) s Js(M,F) = (M,F)@p, (D, F%)
the natural functor. For (M, F) € Cpe 4(S), we will consider the map
Js(M,F): Js(M,F) = (M,F)®p, (DF,F”"") — (M,F),m® P+ Pm

Of course Js(Cp1,0y7i1(S)) C Cpe(1,0)7i(S). More generally, for f : X — S a morphism with X, S €
AnSm(C), we denote by

Ixss : Cpep2)fit(X) = Cpepooiaypu(X), (M, F) = Jx/s(M,F) := (M, F) ®+(pg,p) [ (DS, F)
the natural functor, together with, for (M, F) € Cp«peo iy (X), the map Jg(M, F) : Jg(M,F) — (M, F).

Definition 55. Let S € SmVar(C), resp. S € AnSm(C). Let Z C S a closed subset and denote by
j:S\Z < S the open embedding.

(i) We denote by

— PShp z(S) C PShp(S), the full subcategory consisting of presheaves M € PShp(S), such that
JM =0,

— Cp.z(S) C Cp(S9), the full subcategory consisting of complexes presheaves M € Cp(S) such
that a;7*H"M =0 for alln € Z,

— Cp.zn(S) :=Cp z(S)NCpn(S) C Cp(S) the full subcategory consising of M € Cp(S) such
that a H™"(M) are holonomic and a,j*H"M =0 for alln € Z,

— Cp.z.:(5) := Cp z(S)NCp (S) C Cp(S) the full subcategory consising of M € Cp(S) such
that a; H*(M) are coherent and a;j*H"M =0 for all n € Z.

(ii) We denote by

— Cpytit,z(S) C Cpayrul(S), the full subcategory consisting of (M, F) € Cpyu(S) such that
there exists 1 € N such that a.j*EP9(M, F) =0 for all p,q € Z, note that by definition this r
does NOT depend on p and q,

— Cp@)tit,z.n(S) = Cp2yrir,z(S) N Cp2yir,n(S) C Cpayru(S) the full subcategory consising of
(M, F) such that a. H*(M) are holonomic for all n € Z and such that there exists r € N such
that a.j*EP4(M,F) =0 for all p,q € Z,

— Cp@)tit,z.c(S) = Cp2)fit,z(S) N Cp2)si,c(S) C Cpayru(S) the full subcategory consising of
(M, F) such that a, H*(M) are coherent for all n € Z and such that there exists r € N such
that a;j*EPY(M, F) =0 for all p,q € Z.

(iii) We have then the full subcategories
= Cp,0)£i1,z(S) = Cp1,0)i(S) N Cpayri, z(S) C Cpagiu(S),
— Cp,0)fit, 2,1 (S) = Cp1,0y£it(S) N Cp2git, zn(S) C Cpayi(S)-

Similarly :

Definition 56. Let S € AnSm(C). Let Z C S a closed subset and denote by j : S\Z — S the open
embedding.

(i) We denote by
— Ope(2)£i1,z(S) C Cpes(2)7i(S). the full subcategory consisting of (M, F') € Cpe(S) such that
7 M is acyclic
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— Cpee(2)£il,z,h(S) = Cpeo(2)£i1,z(S) N Cpoe(2)£it,n () C Cpoo(2)u(S) the full subcategory con-
sising of (M, F') such that a, H"(M) are holonomic and a,j*E>9(M, F).

(ii) We have then the full subcategories
= Cpoo(1,0)5i1,2(S) = Cpoe(1,0)7it(S) N Cpayit, z(S) C Cpeayi(S),
— Cpe1,0)5i1,2,h(S) := Cpoo(1,0)£i1(S) N Cpoespit, z,n(S) C Cpoo(2)ya(S)-
Definition 57. (i) Let f : X — S a morphism with X, S € SmVar(C), or with X,S € AnSm(C), we
have, for r =1,...00, resp. 7 = (1,...00)%, the categories
Dp pep@)fit,r(S) = Horrtop Cp, r+p2) fit(S) s Dpor p+p(2)fit,r(S) := Hoprtop Cpor p+p(2) it (),
the localizations with respect to r-filtered Zariski, resp. usu, local equivalence.

(i1) Let S € SmVar(C), or S € AnSm(C). We denote by

Dp(2)fit,00,n(S) € Dp(2)fit,00(S), Dp(1,0)fit,00,0(S) C Dp2fit,eo(S)

the full subcategories consisting of the image of Cpa)tii,n(S), resp. Cp1,0)ri,n(S), by the localiza-
tion functor

D(top) : Cpayri(S) = Dp2) it (S)

that is consisting of (M, F) € Cpyru(S) such that a, H*(M) are holonomic, for all n € Z, resp.
consisting of (M, F,W) € Cpasu(S) such that a.H"(M) are holonomic and WPM™ C M™ are Dg
submodules for all n € Z.

(iii) Let S € AnSm(C). We denote by

— Dpa)fit,c0,rh(S) C Dp(2)fit,e0,n(S), the full subcategory consisting of (M, F) € Cpsq(S) such
that a. H™(M) are regular holonomic for all n € Z.

= Dp(1,0)fit,00,rn(S) = Dp2yit,co,rn(S) N Dp(1,0)fit,00,h(S) € Dpagitee,n(S), the full subcategory
consisting of (M, F,W) € Cpayu(S) such that a, H*(M) are regular holonomic and WPM™ C
M are Dg submodules for all n € Z.

Similarly,

Definition 58. (i) Let f: X — S a morphism with X, S € AnSm(C), we have, forr =1,...00, resp.
r=(1,...00)2, the categories

Dpeo p+poe(2)fit,r () 1= Hoprtop Cpoo pepoo(2) it (S) , Dpocion, prpoo(2) fit,r (S) := Hoprtop Cpos.on, f+poe(2) it (),
the localizations with respect to r-filtered usu local equivalence.

(11) Let S € AnSm(C). We denote by

Dpoo(2) fit,00,h (S) C Dpoe(2)fit,00 () Dpoc(1,0)fil,00,0(S) € Dpoafit(S)

the full subcategories consisting of the image of Cpeo(2)fit,n(S), resp. Cpee(1,0yri,n(S), by the local-
ization functor

D(top) : Cp(2)pu(S) = Dpee(2)fit,00 (5)-
We begin this subsection by recalling the following well known facts
Proposition 39. Let S € SmVar(C) or S € AnSm(C).

(i) The sheaf of differential operators Dg is a locally free sheaf of Os module. Hence, a coherent Dg
module M € Cohp(S) is a quasi-coherent sheaf of Og modules.
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(i) A coherent sheaf M € Cohpy(S) of Os module admits a Dg module structure if and only if it
is locally free (of finite rank by coherency) and admits an integrable connexion. In particular if
i:Z — S is a closed embedding for the Zariski topology, then i,Oz does NOT admit a Dg module
structure since it is a coherent but not locally free Og module.

Proof. Standard. O

In order to prove a version of the first GAGA theorem for coherent D modules, we will need to
following. We start by a definition (cf. [16] definition 1.4.2) :

Definition 59. An X € SmVar(C) is said to be D-affine if the following two condition hold:
(i) The global section functor I'(X,-) : QCohp(X) — Mod(I'(X, Dx)) 1is exact.
(it) If T(X, M) =0 for M € QCohp(X), then M = 0.

Proposition 40. If X € SmVar(C) is D-affine, then :
(i) Any M € QCohp(X) is generated by its global sections.

(i1) The functor T'(X,-) : QCohp(X) — Mod(T'(X, Dx)) is an equivalence of category whose inverse is
L e MOd(P(X, Dx))— Dx Ar(x,Dx) L € QCohp(X).

(i11) We have T'(X,-)(Cohp(X)) = Mod(T'(X, Dx))y, that is the global sections of a coherent Dx module
is a finite module over the differential operators on X.

Proof. See [16]. O
The following proposition is from Kashiwara.
Proposition 41. Let S € AnSm(C).

(i) For K € C.(S) a complex of presheaves with constructible cohomology sheaves, we have Hom(L(K), E(Og)) €
Cpe 1 (S5).

(i) The functor Js : Cp2)fi(S) — Cpe(2)ru(S) satisfy Js(Cpyrirn(S)) C Cpeo(ayrir,n(S), derive
trivially, and induce an equivalence of category
Js : Dp(2)fit,eo,rn(S) = Dpeo(2)fit,c0,n(5)-

whose inverse satify, for (M, F') € Holpe(2)ti1(S) a (filtered) holonomic D module, that JgH (M, F) =
(Myeq, F') C (M, F) is the Dg sub-module of M which is the regular part.

(i) We have Js(Cp,0)fit,rn(S)) C Cpee,0)fit,n(S) and Js(Dp(1,0)fit,c0,rh(S)) = Dpee(1,0) fit,00,n (S)-
Proof. Follows from [18]. O

Let S € SmVar(C) or S € AnSm(C), and let i : Z — S a closed embedding and denote by j : S\Z — S
the open complementary. For M € PShp(S), we denote Zz M C M the (left) Dg submodule given by,
for S° C S an open subset, Zz M (S°) C M (S°) is the (left) Dg(S°) submodule

I;M(S°) =< {fm,feIz(5°),meM(S°)}>C M(S°)

generated by the elements of the form fm. We denote by bz (M) : ZyM — M the inclusion map and
cz(M): M — M/ZzM the quotient map of (left) Dg modules. For M € PShp(S), we denote MZy C M
the right Dg submodule given by, for S° C S an open subset, Zz M (S°) C M(S°) is the right Dg(S°)
submodule

I;M(S°) =< {mf,f €Zz(S°),me M(S°)} >C M(S°)

generated by the elements of the form mf. We denote by bz (M) : ZyM — M the inclusion map and
cz(M): M — M/ZzM the quotient map of right Dg modules.
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4.2.1 Functorialities

Let f : X — S be a morphism with X, S € SmVar(C), or let f : X — S be a morphism with X, S €
AnSm(C). Then, we recall from section 4.1, the transfers modules

e (Dx_g5, Ford) = f*mod(Dg Ford) .= f*(Dg, F7") @ p+04 (Ox, ) which is a left Dy module and
a left and right f*Dg module

e (Dxis, F) = (Kx,F) ®0oy (Dx—5, F") @04 f*(Ks, Fy). which is a right Dx module and
a left and right f*Dg module.

Let f: X — S be a morphism with X, S € AnSm(C). Then, the transfers modules of infite order are

o (DY g, Ford) := frmod(DP, Ford) := f*(D¥,F°r?) @04 (Ox, F,) which is a left D module
and a left and right f*DZ module

o (DY, g, FrY) := (Kx, F})®0y (D¥_ 5, F) @ <04 [*(Ks, Fp). which is a right D module and
a left and right f*Dg” module.

We have the following :

Lemma 7. Let f1: X =Y, fo: Y = S be two morphism with X, S,Y € SmVar(C), orlet f1 : X =Y,
fo: Y = S be two morphism with X,S,Y € AnSm(C).

(i) We have (Dx s, F"%) = f}(Dy 5, F”"®) ®y; by (Dx oy, FY) in Cp (y0p,)-ppun(X) and
(DX‘)S,Ford) _ fl*(DY‘)S7Ford) ® s Dy (DX*}Y,Ford) _ fl*(DyaS,FOTd) ®;€ny (DX‘))/"FOTd)'
mn DD7(f20f1)*Dfil,r(X)'

(ii) We have (Dx s, Fo%) = f{(Dy 5, F7%) @ s py (Dxey, F%) in Cpos (yop)-pra(X) and
(Dxes, F"™) = f{(Dyos, F") @ f: by (Dxey F) = fi (Dycs, F'") b, (Dxey, F'),
in Dpov (fy0f,)*Dfit,r(X).

Proof. Follows immediately from definition. The first assertions of (i) and (ii) are particular cases of
lemma 5. See [16] for example. O

In the analytical case we also have
Lemma 8. Let f1 : X =Y, fo: Y — S be two morphism with X, S,Y € AnSm(C).

(i) We have (D%OHS,F"”’Z) = ff(D;’/OHS,FOTd) ®fy Dge (D _y, Ford) in Cp (frofr) Do fir(X) and
(D?ﬁstord) = fl*(Di)/oﬂSvFOTd) ®ffD;°/° (DX%YvFOTd) = fl*(DgfoﬂSvFOTd) ®JL‘1"D§° (Dg(oﬂYvFord)'
mn DDOO,(fgofl)*Doofil,T(X)'

(i) We have (DY _g, F") = f{ (DS, 5, F°™) @D (DX ey, F%) in Cpe.on (fy0 4,y pit(X) and
(DXes: F) = f1 (D5, F™) @ e (DX y, F') = f1(D¥ 5, F7) @ pee (DFy, F),
in D’Doo,op_’(f2ofl)*Doofil)T(X).

Proof. Similar to the proof of lemma 7 O

For closed embeddings, we have :
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Proposition 42. (i) Let i : Z < S be a closed embedding with Z,S € SmVar(C). Then, Dz_.g =

(i)

(iii)

1*Dg/DsTz and it is a locally free (left) Dz module. Similarly, Dz s = i*Dg/Z;Dgs and it is a
locally free right Dz module.

Leti: Z — S be a closed embedding with Z,S € AnSm(C). Then, Dz_,s = i*Dg/DsZz and it is
a locally free (left) Dz module. Similarly, Dz« s = i*Dg/ZzDg and it is a locally free right Dy
module.
Leti:Z — S be a closed embedding with Z,S € AnSm(C). Then, DY, ¢ =i*Dg/DFT; and it is
a locally free (left) DY module. Similarly, DY, ¢ =i*Dg /IzDZ and it is a locally free right DY
module.

Proof. (i): See [16].
(ii):See [25].
(iil):Similar to (ii). O

We now enumerate some functorialities we will use, all of them are particular case of the functoriality
given in subsection 2.3 for any ringed spaces :

Let f : X — S be a morphism with X,S € Var(C), or let f : X — S be a morphism with
X,S € AnSp(C). Then, the inverse image functor

F*mod: PShog (S) — PShoy (X), M = UM = Ox @04 [*M
is a Quillen adjonction which induces in the derived category the functor
L% Doy (S) = Doy (X), M = LM := Ox ®%.0, f*M = Ox ®¢-05 f*LoM,
The adjonction (f*™°¢ f.) : PSho4(S) < PSho, (X) is a Quillen adjonction, the adjonction map
are the maps

ad(f*,f«)(M " LT %
— for M € Co.(8), ad(fmod, f)(M) : M 2TV, p punp Jm o (54 M @4-0. Ox) =
fef*™ed M where m(m) =m ® 1,

ad(f", fu)(M)®s+ 05 Ox

— for M € Co, (X), ad(f*™°?, f)(M) : fr™olf M = f*f.M @05 Ox
M ®p05 Ox = M, where n(m ® h) = h.m is the multiplication map.

Let S € SmVar(C) or S € AnSm(C).
— For M € Cp(S), we have the canonical projective resolution ¢ : Lp(M) — M of complexes of
Dg modules.

— For M € Cp(S), there exist a unique strucure of Dg module on the flasque presheaves E*(M)
such that E(M) € Cp(S) (i-e. is a complex of Dg modules) and that the map k : M — E(M)
is a morphism of complexes of Dg modules.

Let S € AnSm(C).

— For M € Cp=(S), we have the canonical projective resolution q : Lpe (M) — M of complexes
of D modules.

— For M € Cp~=(S), there exist a unique strucure of D module on the flasque presheaves
E*(M) such that E(M) € Cp=(S) (i.e. is a complex of DF modules) and that the map
k: M — E(M) is a morphism of complexes of D modules.

123



e Let S € SmVar(C) or let S € AnSm(C). For M € Cpem(S), N € C(S), we will consider the
induced D module structure (right Dg module in the case one is a left Dg module and the other
one is a right one) on the presheaf M ® N := M ®z, N (see section 2). We get the bifunctor

C(S) x Cp(S) = Cp(S),(M,N)—» M ®N
For S € AnSm(C), we also have the bifunctor C(S) x Cpe(S) = Cp(S), (M,N)+— M & N.

e Let S € SmVar(C) or let S € AnSm(C). For M, N € Cpp (S), M ®0s N (see section 2), has a
canonical structure of Dg modules (right Dg module in the case one is a left Dg module and the
other one is a right one) given by (in the left case) for S° C S an open subset,

menel(S°, Moy N),y€I'(5° Dg), v.(m®@n) :=(ym) @n—me~y.n
This gives the bifunctor
Cpon) (S)2 = Cpon (S8), ( M,N)—» M ®ocs N

More generally, let f : X — S a morphism with X, S € Var(C) or with X, 5 € AnSp(C). Assume
S smooth. For M, N € Cp.pepn (X), M @05 N (see section 2), has a canonical structure of f*Dg
modules (right f*Dg module in the case one is a left f*Dg module and the other one is a right
one) given by (in the left case) for X° C X an open subset,

menel(X°MQsos N),y e '(X? f*Dg), v.(m®@n) :==(y.m)@n—my.n
This gives the bifunctor
Crepion (X)? = Cpopon (X), (M, N) = M ®f-0s N

For f : X — S a morphism with X,5 € AnSp(C) and S smooth, we also have the bifunctor
Cf*’Doo,(op) (X)2 — Of*Doo,(op) (X), (M, N) = M ®p0g5 N.

e Let S € SmVar(C) or let S € AnSm(C). For M € Cper(S) and N € Cp(S), we have M @p, N €
C(S) (see section 2). This gives the bifunctor

Cpor (S) x Cp(S) = C(S),(M,N) = M ®@ps N
For S € AnSm(C), we also have the bifunctor Cpe.or (S) x Cpe(S) — C(S), (M, N) = M &ps N.
e Let S € SmVar(C) or let S € AnSm(C). The internal hom bifunctor
Hom( ) = Homa, (-,-) : C(S)? — C(S)

induces a bifunctor

Hom(-,-) :=Homyz,(-,-) : C(S) x Cp(S) = Cp(S)
such that, for ' € C(S) and G € Cp(S5), the Dg structure on Hom®(F, Q) is given by

v €T'(8% Ds) — (¢ € Hom"(F%., Giso) = (v ¢ 1 € F*(S%) = v ¢7(5%)(ar))
where ¢P(5°)(a) € I'(S°, G). For S € AnSm(C), it also induce the bifunctor
Hom(-,+) := Homgzs(+,-) : C(S) X Cp=(S) = Cp=(S5)

e Let S € SmVar(C) or let S € AnSm(C). For M, N € Cp(S), Homo, (M, N), has a canonical
structure of Dg modules given by for S° C S an open subset and ¢ € T'(S°, Hom(M, Og)), v €
I'(S°, Dg), (7.¢)(m) := v.(¢(m)) — ¢(y.m) This gives the bifunctor

Homg, (-, —) : Cp(S)? = Cp(9)°P, (M, N) Homg (M, N)
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In particular, for M € Cp(S), we get the dual
DY (M) := Hom®_ (M, Og) € Cp(S)

with respect to Og, together with the canonical map d(M) : M — ]D)g’Q(M). Let f: X — S
a morphism with X,S € SmVar(C) or with X, S € AnSm(C). We have, for M € Cp(S), the
canonical transformation map
T(f, D°)(M) : f*"'DGM = (f*Homos (M, Os)) ®5-0s Ox
T™°%(f,hom)(M,0s)

Homo (f*M -0 Ox,0x) =: DY (f"*IM).

Let S € SmVar(C) or let S € AnSm(C). We have the bifunctors

— Hom}, (=, —) : Cp(5)* = C(S), (M,N) = Hom}, (M,N), and if N is a bimodule (i.e. has
a right Dg module structure whose opposite coincide with the left one), Hompg (M, N) €
Cpor(S) given by for S° C S an open subset and ¢ € I'(S°, Hom(M, N)), v € T'(S°, Ds),
(@) (m) := (d(m)).y

— Hompg(—,—) : Cper(S9)? — C(S), (M,N) — Homps(M,N) and if N is a bimodule,
HomDS(M N) € Cp(9)

For M € Cp(S), we get in particular the dual with respect Dg,
DsM :=Homp, (M, Ds) € Cp(S) ; DEM := Homp, (M, Ds) @0, DSw(Ks)[ds] € Cp(S)

and we have canonical map d : M — ]D%M . This functor induces in the derived category, for
M e DD(S),

LDsM := RHomp,(LpM,Ds) ®0s DSw(Ks)[ds] = DELpM € Dp(S).

where DQw(S) : DYw(Ks) - DYKgs = Kg' is the dual of the Koczul resolution of the canonical
bundle (proposition 62), and the canonical map d : M — LD%M. For S € AnSm(C), we also have
the bifunctors

— Hompe (=, —) - Cp=(S)? — C(S), (M,N) Hom%peo (M, N), and if N is a bimodule,
Hompx (M, N) € Cp=(S),
-)

— Hompg(—, Cpee.or(S)> = C(S), (M,N) — Hompg(M,N) and if N is a bimodule,
Hongo (M N) € Cpos,op (S)

For M € Cp(S), we get in particular the dual with respect D
D¥ M = Hompe (M, DF) € Cp=(S) , DF* M := Hompe (M, DF)®0,DJw(Ks)[ds] € Cp=(S)

and we have canonical maps d : M — D?’2M, d: M — D?’K’2M. This functor induces in the
derived category, for M € Dpe(S),

LDFM := RHompz (M, DF) @0, D3w(Ks)[ds] = DFX Lpw M € Dpe(S),
and the canonical map d: M — LD?’QM.

Let f: X — S a morphism with X, S € SmVar(C) or with X,S € AnSm(C). For N € Cp ;+p(X)
and M € Cp(X), N ®p, M has the canonical f*Dg module structure given by, for X° C X an
open subset,

veI(X% f*Dg),m e '(X°, M),n e T'(X° N), v.(n®@m) = (y.n) @ m.
This gives the functor
Cp,f+p(X) x Cp(X) = Cp+p(X), (M,N)» M®p, N
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Let f : X — S a morphism with X, S € AnSm(C). For N € Cpe_ s+pos(X) and M € Cpe(X),
N ®pg M has the canonical f*Dg module structure given by, for X C X an open subset,

veI(X% f*Dg),m e '(X°, M),n e T'(X° N), v.(n®@m) = (y.n) @ m.
This gives the functor
CDooﬁf*Doo(X) X CDoo(X) — Of*’Doo(X), (M, N) — ]\4@[))05D N

Let f : X — S be a morphism with X,S € SmVar(C), or let f : X — S be a morphism with
X,S € AnSm(C). Then, for M € Cp(S), Ox @05 f*M has a canonical Dx module structure
given by given by, for X° C X an open subset,

mene(X° Ox @04 ffM),y€'(X? Dx), v.(m®n) = (y.m) @ n —m df (y).n.
This gives the inverse image functor

frmod: PShp(S) — PShp(X), M+ f*™IM := Ox @04 f*M = Dx_,5 @pps "M
which induces in the derived category the functor

Lf*™m°?: Dp(S) = Dp(X), M Lf™M = Ox ®f.0, f*M = Ox @05 f*LpM,
We will also consider the shifted inverse image functor

Lfrmedl=l = pfrmedldg — dx] : Dp(S) — Dp(X).

Let f: X — S be a morphism with X, S € AnSm(C). Then, for M € Cp=(S), Ox Q04 [*M

has a canonical DS module structure induced by the finite order case. This gives the inverse image
functor

frmed s PShpee (S) = PShpe (X), M — ™M = Ox @f+05 f*M = Dx_,5 ®f-pz f*M
which induces in the derived category the functor
L% : Dpe(S) = Dp(X), M — Lf*™'M :=Ox ®%.0, f*"M = Ox ®f-05 [*Lp=M,
We will also consider the shifted inverse image functor
Lrmed=l.— [ f*med[dg — dx] : Dpee(S) = Dpee(X).

Let f : X — S be a morphism with X, S € SmVar(C), or let f : X — S be a morphism with
X,S8 € AnSm(C). For M € Cp(X), Dxs®p, M has the canonical f*Dg module structure given
above. Then, the direct image functor

0 o : PShp(X) = PShp(S), M = funodM = f(Dxes®@py M)

*mod *

induces in the derived category the functor

/f = Rfwmod : Dp(X) — Dp(S), M — /fM = Rf.(Dxcs ®p, M).

Let f: X — S be a morphism with X, S € AnSm(C). For M € Cp~(X), Dxs ®p, M has the
canonical f*Dg module structure given above. Then, the direct image functor

omod : PShpee (X) — PShpee (S), M+ fumodM := fu(DF, s @p M)

*mod *

induces in the derived category the functor

/ = Rf*mod : D’DOO(X) — l)’DOO(S’)7 M’—)/M = Rf*(Dgéi_S ®Ib§o M)
f f
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e Let f: X — S be a morphism with X, S € AnSm(C). The direct image functor with compact

support
20 :PShp(X) = PShp(S), M+ fineaM := fi(Dsc x ®py M)

induces in the derived category the functor

/ﬂ — Rfimod: Dp(X) = Dp(S), M /fM — Rfi(Dxos 95, M).

e Let f: X — S be a morphism with X,S € AnSm(C). The direct image functor with compact

support
Simod : PShpee (X) = PShpee(S), M = fimeaM = fi(DF_x @ps M)

induces in the derived category the functor

/ :RflmodD’DOO(X)%D’DOO(S), M’—)/M:Rfl(Dgéi_S ®Ib§o M)
J! f

e Let S € SmVar(C). The analytical functor of a Dg modules has a canonical structure of Dgan
module:
(=) : Cp(S) = Cp(S™), M — M := an§™* M := M ®anz 05 Ogen

which induces in the derived category
(=) : Dp(S) = Dp(5*"), M = M*" := ang™** M)
since ang™°¢ derive trivially.
The functorialities given above induce :

e Let f: X — S be a morphism with X,S € Var(C), or let f : X — S be a morphism with
X, S € AnSp(C). The adjonction map induces

— for (M, F) € Cogru(S), the map in Dogri(S)

koad(f*,f«)(M,F)
—_— s

ad(Lf*™° Rf)(M,F): (M, F) fE(f*(M,F)) = Rf.f*(M,F)

L0 RIS (ML F) ©F.0, Ox) = REJ*(M.F),
where m(m) =m® 1,

— for (M, F) S COXfil(X)7 the map in DOXfil(X)

ad(Lf* Rf,)(M,F) : Lf*"**Rf.(M,F) = f*f.E(M,F) ®%.o, Ox

ad(f*,f) (B(M,F))®Fs o, Ox

(M, F) ®%.0, Ox = (M, F),
where n(m ® h) = h.m is the multiplication map.

e For a commutative diagram in Var(C) or in AnSp(C) :

D=Y_-2.Xx

f2 \Lﬁ
S

g1
T ——

)
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we have, for (M, F) € Co, ru(X), the canonical map in Doy i (T)

ad(Lf3™°% Rf2.)(Lg;™°? f1. E(M,F))

T™°4(D)(M, F) : Lgi™°¢f1.(M, F)
Rfou Lf3™ L™ Rf1. (M, F) = Rfa. Lgs™ L f{ ™" Rf1.(M,F)
ad(Lfy™°d Rf1)(M,F

5 Rz Lgs™ (M, F)
the canonical transformation map given by the adjonction maps.

o Let S € SmVar(C) or S € AnSm(C). For (M, F) € Cy;u(S) and (N, F) € Cyyi(S), recall that (see
section 2)
FP((M,F)® (N, F)) := Im(&,F'M ® FP~IN — M @ N)

This gives the functor
('a') : szl(S) X ODjzl(S) — ODjzl(S) ) ((MaF)a (NaF)) = (MvF) Y (NaF)

It induces in the derived categories by taking r-projective resolutions the bifunctors, for r =

1,...,00,

() : Dofitr(S)xDyire(S) = Dogirr(S) , (M, F), (N, F)) = (M, F)®"(N,F) = Lp(M, F)®(N, F).
For S € AnSm(C), it gives the bifunctor

() = Cra(S) x Op=ya(S) = Cpe<pu(S) , (M, F),(N, F)) = (M, F) @ (N, F),
and its derived functor.

e Let S € SmVar(C) or S € AnSm(C) and O € PSh(S, cRing) a sheaf of commutative ring. For
(M, F) € Coyzu(S) and (N, F) € Coy rur(5), recall that (see section 2)

F?((M, F) ®oy, (N, F)) := In(®,F'M @0, F*"IN — M @0, N)

It induces in the derived categories by taking r-projective resolutions the bifunctors, for r =
1,...,00,

('7') : DD.fil7T(S)2 — DDfil,T(S) ) ((MvF)v (NvF)) = (MvF) ®(L)s (NvF)

More generally, let f : X — S a morphism with X, S € Var(C) or with X, S € AnSp(C). Assume
S smooth. We have the bifunctors

() : Dgpfit(X)? = Dyeppa(X) , (M, F),(N,F)) — (M,F)®%.0,(N,F) = (M,F)®05Lf-p(N, F).

e Let S € SmVar(C) or let S € AnSm(C). The hom functor induces the bifunctor
Hom(—, =) : Cpyiu(S) x Cri(S) = Cp(1,0)£i(S), (M, W), (N, F)) = Hom((M, W), (N, F')).
For S € AnSm(C), the hom functor also induces the bifunctor
Hom(—, =) : Cpe i (S) x Cra(S) — Cpee(1,0)7(S), (M, W), (N, F)) = Hom((M, W), (N, F)).

Note that the filtration given by W satisfy that the W? are Dg submodule which is stronger than
Griffitz transversality.

e Let S € SmVar(C) or let S € AnSm(C). The hom functor induces the bifunctor

HOIIlOS(—7 —) : Cpfil(S)Q — CDinl(S), ((M, W), (N, F)) — ’Homos((M, W), (N, F))
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e Let S € SmVar(C) or let S € AnSm(C). The hom functor induces the bifunctors

- HomDs(_a _> : ODfil(S)2 — Oinl(S)v ((Mv W)a (Na F)) = HomDs((Ma W)v (Nv F))v
- HOInDS(—, —) : CDoni[(S)2 — Cgfil(S), ((M, W), (N, F)) — HomDs((M, W), (N, F))

We get the filtered dual
D5 () : Cpaypir(S) = Cpa)pu (), (M, F) = Dg (M, F) := Hompg (M, F), Ds) ®0s D§w(Ks)[ds]

together with the canonical map d(M, F) : (M, F) — DQS’K(M, F). Of course D (-)(Cp(1,0)£u(S)) C
Cp(1,0)fi(S). Tt induces in the derived categories Dpyii (S), for r = 1,..., 00, the functors

LDs(-) : Do) fitr(S) = Dpa)jir (8), (M, F) = LDs(M, F) := D§ Lp(M, F).
together with the canonical map d(M, F) : Lp(M, F) — D%" Lp(M, F).
e Let S € AnSm(C). The hom functor also induces the bifunctors
— Hompg (=, =) : Op=yi(S)* = Capu(S), (M, W), (N, F)) = Hompg (M, W), (N, F)),
— Hompg (=, =) : Cperpit(5)* = Caya(S), (M, W), (N, F)) = Hompe (M, W), (N, F)).
We get the filtered dual
DI () : Cpeo2)fit(S) = Cpoo2)4ar(S)P, (M, F) = DG (M, F) := Hompz (M, F), DY) ®05 D§w(Ks)[ds]

together with the canonical map d(M, F) : (M, F) — Dg*(M, F). Of course D?’K(-)(Cpoo a,0fi(S)) C
Cpeo(1,0)£i1(S). It induces in the derived categories Dp i (S), for 7 = 1,..., 00, the functors

LD () : Dpoo(a) it (S) = Dpoe(2) it (S)°P, (M, F) v LD (M, F) = DF" Lp= (M, F).

together with the canonical map d(M, F) : (M, F) — LDY*(M, F).

e Let f: X — S be a morphism with X, S € SmVar(C), or let f : X — S be a morphism with
X, S € AnSm(C). Then, the inverse image functor

f*mOd : CD(2)fil(S) - OD(2)fil(X)7
(M, F) = f*"UM,F) := (Ox, Fy) @+05 [*(M,F) = (Dx 5, F""") @f-pg [*(M, F),
induces in the derived categories the functors, for r = 1,...,00 (resp. 7 € (1,...00)?),

L™ Dpay i (S) = Doz g (X),
(M,F) = Lf*"M = (Ox,F}) @%.0, [*(M,F) = (Ox,F,) @05 f*Lp(M, F).
Of course f*mOd(CD(Lo)fil(S)) C CD(l,O)fil(X)' Note that

— If the M is a complex of locally free Os modules, then Lf*™°d(M,F) = f*m°d(M,F) in
Dp(2)fil,00 (S).

— If the Gr}, M are complexes of locally free Og modules, then Lf*™°4(M,F) = f*m°d(M, F)
in Dp2)riu(S)-

We will consider also the shifted inverse image functors

Lrmed=l.— [ frmodlgg — dy] Dop2)fit,r(S) = Do) pit,r(X).
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Let f: X — S be a morphism with X, S € AnSm(C). Then, the inverse image functor
Frmoh s Cpoc 2y £it(S) = Cpos 2y pat(X), (M, F) = f*™4M, F) := (Ox, Fy) @05 f*(M,F),
induces in the derived categories the functors, for r = 1,...,00 (resp. r € (1,...00)?),

Lf*"" s Dpoe (3) it p(8) = Dpoea) i (X),
(M7 F) N Lf*mOdM - (OX, Fb) ®%*Os f*(Mu F) = (OX, Fb) ®f*Os f*LDoo (M7 F)

Of course f*mOd(C'Doo(lyo)fil(S)) C Cpeo(1,0)fa(X). Note that We will consider also the shifted
inverse image functors

Lf*mod[—] = Lf*mOd[dS _ dX] . DD“’(Q)fil,’I‘(S) — DD°°(2)fil,r(X)'

Let f : X — S be a morphism with X,S € SmVar(C), or let f : X — S be a morphism with
X, S € AnSm(C). Then,the direct image functor

*mod (PShD( ) F) — (PShD(S)vF)v (M7 F) = f*mod(Mv F) = f*((DS%XvFOTd) ®Dx (M7 F))

induces in the derived categories by taking r-injective resolutions the functors, for r =1,..., 00

/ = R fumod : Dp2)fit,r(X) = Dp(2)fi,r(S), (M, F) — /(M7 F)=Rf.((Dsex,F") @p, (M, F)).
f f

Let f1 : X - Y and fo : Y — S two morphism with X,Y,S € SmVar(C) or with X,Y,S €
AnSm(C). We have, for (M, F') € Cpyi(X), the canonical transformation map in Dp(g) s, (S)

T(/2 o/l,/fzofl)(M,F) :

/ / (M, F) i= Rfo.(Dy s, F") &5, Rfi.(Dxey, F7™) &b (M, F)))
TR, Ry Rfvu(fi (Dys, F) @b, (Dxey, F) @k (M, F)))
= RfZ*Rfl*((fl (DY<—57 Ford) ®%y (DX<—Y7 Ford)) ®%)x (Mv F))

~ RfpRfin(Dxes, F%) ok (M, F)) = / (M, F)
f20f1

Let f: X — S be a morphism with X, S € AnSm(C). Then,the direct image functor
*mod (PShD“’( ) F) — (PShp=(5), F), (Mv F) f*mod(Mv F) = f*((DgoerFOTd)Q@D?(M’ F))

induces in the derived categories by taking r-injective resolutions the functors, for r =1,..., oo,
,/f = Rf*mod : DD“’(2)fil,r(X) — DDOO(Q)fil,T(S)u (Mu F) = ,/f(M, F) = Rf*((DgoeXu Ford) ®é§o (M, F))

We have, similarly, for (M, F') € Cpe (X ), the canonical transformation map in Dpe (2)fir, (S)

T(/Qo/l,/fQOfl)(M,F):/Q/I(M,F)ﬁ/f(zoﬁ(M,F)

Let f: X — S be a morphism with X,S € AnSm(C). Then,the direct image functor with compact
support

f!?god : (PShD(X)vF) - (PShD(S)vF)v (M F) = f'mod( ) = f!((DSerFOTd) ®Dx (Mv F))
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induces in the derived categories by taking r-injective resolutions the functors, for r =1,..., oo,
/ = R fimod : Dpfi,r(X) = Dpyru,(S), (M,F)w— /(M7 F) = Rfi((Dsex, F°r?) ®éx (M, F)).
f! I

We have, similarly, for (M, F') € Cpyy(X), the canonical transformation map in Dp(2) s, (S)

T(/z!o/l!,/(hofl)!)(M,F):/2!/1!(M,F)—> (f2ofl)!(M,F)

Let f: X — S be a morphism with X,S € AnSm(C). Then,the direct image functor with compact
support
od ¢ (PShD“’(X)aF) - (PShD“’(S)aF)a (Mv F) = fOO (Mv F) = f!((Dgg—XvFord)(@D?(Ma F))

!mod * !mod

induces in the derived categories by taking r-injective resolutions the functors, for r =1,..., oo,
/ = R fimod : Dpofit,r(X) = Dpoe i r(S), (M, F) — /(M, F)= Rf!((DgOHX,FOTd) ®f,§(o (M, F)).
f! f

We have, similarly, for (M, F) € Cpe i (X), the canonical transformation map in Dpee(2)fi,r(S)

T(/Q!o/l!,/(fzofl)!)(M,F):/2!/1!(M,F)—> (f2of1)!(M,F)

Let S € SmVar(C). The analytical functor for filtered Dg-modules is
()" : Cpypal(S) = Cp2ypa (™), (M, F) = (M, F)*" := ang(M, F) ®ang 05 (Ogan, F).
It induces in the derived categories the functors, for r =1, ..., o0,
()™ : Dpgaypite(S) = Dy (S, (M, F) s (M, F)™ i= an§(M, F) @k, . (Ogan, Fy).

ang Os

Let f : X — S be a morphism with X, S € SmVar(C), or let f : X — S be a morphism with
X,S € AnSm(C). Then the functor

FFmed s Cpoga(S) = Cpaga(X), (M, F) w— f*™°%UM, F) := DX Lpf***LpDE (M, F)

induces in the derived categories the exceptional inverse image functors, for »r = 1,...,00 (resp.
re(l,...0)3%),

LfFmed . Dp2ysit,r(S) = Dpa) it (X),
(M, F) — Lf*m°YM, F) := LDx Lf*"°LDg(M, F) := f*™Lp(M, F).

Of course f’@m"d(CD(lyo)fil (8)) € Cp(1,0)fu(X). We will also consider the shifted exceptional inverse
image functors

LFmed=l .= [ frmod(dg — dx] : Dp2)fir,r(S) = Dp2)fur(X).
Let f: X — S be a morphism with X, S € AnSm(C). Then the functor

fg‘mOd : CD°°(2)fil(S) — CD°°(2)fil(X)7 (M7 F) = fg‘mOd(M7 F) = D)Ig)mLDf*mOdLDDg)m(M? F)
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induces in the derived categories the exceptional inverse image functors, for r = 1,...,00 (resp.
re(1,...00)%),

Lf*™%: Dpeo(2) it () = Dpoe(aygit,e(X),
(M, F) — Lf*m°4(M, F) := LDELF*"LDY (M, F) := f*™°4(M, F).

Of course f%mOd(O’Doo(l70)fil(S)) C Cpe(1,0)7i(X). We will also consider the shifted exceptional
inverse image functors

LFmedl=l .= [ f*medlqg — dy] : Dpee(a) it (S) = Dpeoa) pir. (X)-

e Let 1,55 € SmVar(C) or S1,S2 € AnSm(C). Consider p : S1 X S3 — S7 the projection. Since p
is a projection, we have a canonical embedding p*Ds, < Ds, xs,. For (M, F) € Cp(2)7u(S1 x S2),
(M, F) has a canonical p*Dg, module structure. Moreover, with this structure, for (M;, F) €
Cp(2)5i(S1)

ad(p ™ p)(My, F) : (My, F) — pup*™°% (M, F)

is a map of complexes of Dg, modules, and for (M2, F') € Cp(2)i(S1 x S2))
ad(p™™°?, p)(Mz, F) : p*"'p. (Mg, F) = (Mys, F)

is a map of complexes of Dg, x5, modules. Indeed, for the first adjonction map, we note that
p*m°4(My, F) has a structure of p*Dg, module, hence p,p*™°%(M;, F) has a structure of p,p*Dsg,
module, hence a structure of Dg, module using the adjonction map ad(p*,p.)(Ds,) : Ds, —
p«p*Dg,. For the second adjonction map, we note that (Mis, F') has a structure of p* Dg, module,
hence p. (M2, F') has a structure of p,p* Dg,, hence a structure of Dg, module using the adjonction
map ad(p*,p«)(Ds,) : Ds, = p«p*Ds,.

e Let 51,55 € AnSm(C). Cousider p : S7 x Sy — S7 the projection. Since p is a projection, we have a
canonical embedding p* DY — DT, 5 . For (M, F) € Cpe(2)5a(S1 x S2), (M, F') has a canonical
p* D module structure. Moreover, with this structure, for (M, F') € Cpee () fi1(S1)

ad(p*™°?, p)(My, F) : (My, F) = p.p*™* (M, F)
is a map of complexes of D modules, and for (M2, F') € Cpee(2)5i(S1 x S2)
ad(p*™%, p)(M12, F) : p™*p, (M2, F) — (M2, F)
is a map of complexes of D3, ¢, modules, similarly to the finite order case.

We following proposition concern the commutativity of the inverse images functors and the commu-
tativity of the direct image functors.

Proposition 43. (i) Let f1: X =Y and fo : Y — S two morphism with X,Y,S € SmVar(C).

— Let (M, F) S CD(Z)fil,T(S)- Then (fg o fl)*mOd(M, F) = fl*mOdf;mOd(M, F)
~ Let (M, F) € Dpgayya o (S). Then L(js o ;)™ (M, F) = Lf;"o(L {574 (M, F))

(ii) Let fr: X =Y and fa:Y — S two morphism with X,Y,S € SmVar(C). Let M € Dp(X). Then,

T</2°/,;/fzof3(M):/2 /1<M>% ey

is an isomorphism in Dp(S) (i.e. if we forget filtration,).
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(iii) Let i : Zo — Z1 and i1 : Zy < S two closed embedding, with Zs,7,,S € SmVar(C). Let
(M,F) e CD(2)fil(ZQ)- Then, (i1 ©i0)xmod(M, F') = i1xmod(i0xmod(M, F)) in OD(Q)fil(S)-

Proof. (i): Obvious : we have

o frmodfzmod(M F) = fi(f5(M,F)®s;0s0y)®r0y Ox = fif5(M,F)®j: jr05 1Oy @fr0y Ox =
(f20 f1)*™4(M, F)

o LffmLfzmo(M,F) = f{(f3(M,F) ®fo, Oy) ®f0, Ox = i f3(M,F) ®% r0, {0y @feo,
Ox = L(f20 f1)*"%(M, F)

(ii): See [16] : we have by lemma 7

M := Rfs.Rf1.(Dxs ®p, M)
faof1

= * Rf2.T(£1,8)(Dy«s,Dxy®p, M)~
= RfoRf1u((fi Dy s @F:py Dxcy) ®h, M) -

Rf2* (DYHS ®%Y Rfl*(DX(iY ®éx M)) - / /flM

where, Dy, g being a quasi-coherent Dy module, we used the fact that for N € C'fl*D(X) and N € Cp(Y)
T(f1,&)(N',N): N' @b, RfN = Rf(fiN' @k p, N)

is an isomorphism if N’ is quasi-coherent, which follows from the fact that f1. commutes with arbitrary
(possibly infinite) direct sums (see [16]).
(iii): Denote iz = i1 0ig: Zo — S. We have

Z.2>'=mod(]\4; F) = Z2*((1\4; F) ®DZ2 (DZQHA‘.% Ford)) _:_>

S ord <5k ord il*T(i07®)(_)71
i1450+ (M, F') @D, (Dzy¢-2,, F"") ®izDy, i6(Dzy¢-5, F)) —————

il*modiO*mod((Ma F))
using proposition 7 and proposition 10. o

Remark 8. Let f1 : X — Y and fo : Y — S two morphism with X,Y,S € SmVar(C). Then, for
(M, F) € Dp2)fi1,00(X), ff2 ffl (M, F) is NOT isomorphic to fszfl (M, F) in general, the filtrations on
the isomorphic cohomology sheaves may be different.

Proposition 44. Let f: X — S a morphism with X, S € SmVar(C). Then,
(i) For (M, F) € Cp(a)si,n(S), we have Lf*™ (M, F) € Dp(s)fit,c0,n(X)-
(i) For (M, F) € Cp(a)pin(X), we have [(M,F) € Dp(a) it c0,n(S)-

Proof. Follows imediately from the non filtered case since we look at the complex in the derived category
with respect to oo-Zariski local equivalence. It says that the pullback and the pushforward of an holonomic
D module is still holonomic. See [16] for the non filtered case. O

The following easy proposition says that the analytical functor commutes we the pullback of D modules
and the tensor product. Again it is well known in the non filtered case. Note that for S € SmVar(C),
D¢ = Dgan.

Proposition 45. (i) Let f:T — S a morphism with T, S € SmVar(C).

— Let (M, F) € Cpaypar(S). Then (f*mo4(M, F))™ = f*med(pf, Fyon.,
— Let (M, F) € Dpsir(S), forr =1,...00. Then, (Lf*™°d(M, F))an = Lf*mod(M, F)an,
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(11) Let S € SmVar(C)

— Let (M, F),(N,F) € Cpsu(S). Then, (M, F) ®0. (N, F))*™ = (M, F)™ @0, (N,F)".

— Let (M,F),(N,F) € Dpyir(S), forr=1,...00. Then, ((M, F)®és (N, F))* = (M, F)“”@ésan
(N, F)on,

Proof. (i): For (M, F) € Cp,u(S), we have, since f*anf = an% f*"*,
(f*mOd(M, F))an — an(X)*(f*(M7 F) ®f*OS OX) ®al’1(X)*OX OXan
fan* ang (M, F) ®fan*osan ®0Xan = fan*’,nod(]\411"7 F)

For (M, F) € Dp, tiur(S), we take (M, F') € Cp ¢u4(S) an r-projective f*Og module such that Dyop (M, F) =
(M, F) so that

(Lf*mOd(M, F))an _ (f>s<7nod(]\47 F))an _ fan*mod(Man,F) _ Lfan*mod(Man,F)
(ii): For (M, F),(N,F) € Cp,ru(S), we have
(M, F) ®ogs (N, F))*" : = ang((M,F) ®os (N, F)) @ang 05 Ogan
= ang(M,F) ®anz, O ang(N, F) ®an3, Og Ogan

= ang’ (Ma F) ®an§ Os ®OSCL" ®Osan ang (N, F) ®an§ Os OS“"
: (Man7F) ®Osan (Nan7F)

It implies the isomorphism in the derived category by taking an r-projective resolution of (M, F') (e.g
(Lp(M),F) = Lp(M, F)). O

Proposition 46. (i) Let f1: X =Y and fo: Y — S two morphism with X,Y, S € AnSm(C).

— Let (M, F) S CD(Q)]ZZ(S) or let (M, F) S CD°°(2)fil(S)' Then (fgofl)*mOd(M, F) = fl*mOdf;mOd(M, F)

— Let (M, F) S DD(Q)fil,T(S) or let (M, F) S DD“’(2)fil,r(S)' Then L(fg o fl)*mOd(M, F) =
Lfymed(Lf3med(M, F)).

(i) Let f1 : X =Y and fo: Y — S two morphisms with X,Y,S € AnSm(C). Let M € Dp(X). If f1
is proper, we have ff2of1 M= ff2 (ffl M).

(i1)” Let f1 : X =Y and fo: Y — S two morphisms with X,Y,S € AnSm(C). Let M € Dpw(X). If
f1 is proper, we have fszfl M = ff2 (ffl M).

(iti) Let f1 : X =Y and fo : Y — S two morphisms with X,Y,S € AnSm(C). Let (M, F) € Dp(X).
We have [ g, M = [ ([ 70 M)-

(i1i)” Let f1 : X =Y and fo: Y — S two morphisms with X,Y,S € AnSm(C). Let M € Dp(X). We
have f(fzofl)! M= ff2!(ff1! M).

(iv) Letig: Zy — Zy and i1 : Z1 — S two closed embedding, with Z2, Z1,S € AnSm(C). Let (M, F) €
CD(2)fil(Z2)- Then, (i1 ©90)xmod(M, F) = i1xmod(iosmod(M, F')) in CD(2)fil(S)-

(v)” Letig : Zo — Z1 and iy : Z1 < S two closed embedding, with Zs,Z1,S € AnSm(C). Let (M, F) €
Cpe(2yit(Z2). Then, (i1 0i0)xmod(M, F) = i14mod(ivoxmod(M, F)) in Cpec (25 ().

Proof. (i): Similar to the proof of proposition 43(i).
(ii): Similar to the proof of proposition 43(ii) : we use lemma 7 and the fact that for N € Cy:p(X) and
N’ € Cp(Y), the canonical morphism

T(f1,@)(N',N): N' ®p, Rf1.N = Rf1.(ffN' ®%p, N)
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is an isomorphism if f; is proper (in this case f11 = f14).
(ii): Similar to the proof of proposition 43(ii) : we use lemma 8 and the fact that for N € Cj:pe (X)
and N’ € Cp= (YY), the canonical morphism

T(f1,@)(N',N) : N' @pe Rf1.N = Rf1.(fi N' ®F: pee N)

is an isomorphism if f; is proper (in this case f11 = f1.).
(iii): Similar to the proof of proposition 43(ii) : we use lemma 7 and the fact that for N € Cy:p(X) and
N’ € Cp(Y), the canonical morphism

T(f, ®)(N',N): N'®@p, RfuN — Rfu(fiN' &% p, N)

is an isomorphism.
(iii)*: Similar to the proof of proposition 43(ii) : we use lemma 8 and the fact that for N € Cj:pe (X)
and N’ € Cp=(Y), the canonical morphism

T(f1,, @) (N',N) : N' @pee RfuN = Rfu(ff N' @% pee N)
is an isomorphism
(iv): Similar to the proof of proposition 43(iii) :we have
Z.2>'=mod(]\4; F) = Z2*((1\4; F) ®DZ2 (DZQ(*S)7 Ford) —:_>

14,7 or . x or 1.1 (10,R)(— -1
i1io« (M, F) ®Dz, (Dzyz,, F d) Qis Dz, io(Dz,«s), F d) %

using lemma 7 and proposition 10.
(iv)’:Similar to (iv): we have

il*modiO*mod((Mv F))

izemod(M, F) = i2.(M, F) @pg (D%, s, F""")) =

)) il*T(i07®)(7)71

irxio«((M, F) @pg (D% 5, . Fo% ®ig Dy, is(DY g, F i14modtoxmod((M, F))

using lemma 8 and proposition 10.
O

Proposition 47. (i) Let f: X — S a morphism with X,S € AnSm(C). For (M, F) € Cp)tu,n(S),
we have Lf*™°4(M, F) € Dp ) fit,c0,n(X). For (M, F) € Cpeo(2)fiu,n(S), we have Lf*™°(M,F) €
Dpes(2) fit,00,n (X)-

(i) Let f: X — S a proper morphism with X,S € AnSm(C). Then, for (M, F) € Cp2)fun(X), we
have [(M, F) € Dp(2)fit,c0n(S)-

(iii) Let f: X — S a morphism with X,S € AnSm(C). Then, for (M, F) € Cpe(2)i,n(X), we have
J;(M,F) € Dpoe(3) fit,00,1(S5)-

Proof. (i)and (ii):Follows imediately from the non filtered case since we look at the complex in the derived

category with respect to oo-usu local equivalence. It says that the pullback and the proper pushforward

of an holonomic D module is still holonomic. See [16] for the non filtered case.

(iii):In the case the morphism is proper, it follows from the finite order case (ii). In the case of an open

embedding, it follows from proposition 41(i) : we have for j : S° < S an open embedding,

J«E(Ogo) = ju Hom(Zgo, E(Ogo)) = Hom(jiZge, E(Og)) € Cpse 1(95).
and on the other hand
T(.]v ®)(_a _) = TmOd(ja ®)(_7 _) : /(M5 F) = j*E(Mv F) = ]*E(]*OS ®Oso (Mv F))

J
= j+E(Os0) ®0s (M, F)

is an isomorphism by proposition 9. o
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For X,Y € SmVar(C) or X,Y € AnSm(C), we denote by
* Coy (X) x Coy (Y) - OOXXY(X x Y)v (Mv N) = M- N:=0Oxxy ®p3 Ox®p3 Oy pj;{M ®p;ﬁ/N7
(] CD(X) X CD(Y) — OD(X X Y), (M, N) — M- -N:=0Oxxy Bp* Ox @pt Oy p5xM @ py N

the natural functors which induces functors in the filtered cases and the derived categories, px : X XY —
X and py : X XY — Y the projections.
We have then the following easy proposition :

Proposition 48. For X € SmVar(C) or X € AnSm(C), we have for (M, F),(N,F) € Coy,ru(X) or
(M7 F)7 (N7 F) € CD,fil(X);

(M, F) ®0y (N, F) = AY"(M, F) - (N, F)
Proof. Standard. O

Definition 60. Let f : X — S a morphism with X,S € AnSm(C). We have the canonical map in
C+p poe (X) modules :

T(f,00) : (Dx—5, F"N@p, (DF, Fr?) = (D¥_ 5, FY), (hx®Ps)®Px — (Px.hx®Ps+hx®df (Px)Ps

where hx € I'(X°,0x), Ps € I'(X°, f*Dgs) and Px € I'(X°, D). This gives, for (M, F) € Cp(a)sa(S),
the following transformation map in Cpes 2y i (X)

*1M.0 * or 0o or IQT(f,00
T(f,00)(M, F) : Jx(f*™4(M, F)) := f*(M, F) ®f-py (Dx s, F" @p, (D3, Ford) 220022,

f*(MaF) ®f*Ds (Dg{O—»S’FOTd) = f*(MaF) ®f*Ds f*Dg‘o Qf Dy (D%o_)stord) = f*mOdJS(MaF)
where we recall that Js(M,F) = (M, F) ®p, (D, F°r?).

We now look at some properies of the dual functor for D modules : For complex of D module with
coherent cohomology we have the following:

Proposition 49. (i) Let S € SmVar(C). For M € Cp (S), the canonical map d(M) : M — D%LpM
is an equivalence Zariski local.

(ii) Let S € AnSm(C). For M € Cp(S), the canonical map d(M) : M — D%Lp(M) is an equivalence
usu local.

iii) Let S € AnSm(C). For (M,F) € Cp=(S), the canonical map d(M) : M — D%Lp«=(M) is an
equivalence usu local.

Proof. Standard :follows from the definition of coherent sheaves. See [16] for exemple. O

Let S1, 52 € SmVar(C) or 51,52 € AnSm(C) and p : S12 := S1 X Sy — 51 the projection. In this case
we have a canonical embedding Dg, < p.Ds,,. This gives, for (M, F) € Cpsy(S1 x S2), the following
transformation map in Cp ;1 (Sh)

T*(va)(Mv F) ZP*ng (Mv F) = p*HomD512 ((Mv F)vDSu) ®0512 D(S)lgw(KSu)[dSu]

T.(p,hom)(—,—)
p—> HomP*Dsm (p*(M, F)vp*DSm) ®P*Oslz DgSlzw(p*Kslz)[d512]

= Hompg, (p(M, F), Ds,) ®0s, D w(Ks, )[ds,] = DE p.(M, F)

We have the canonical map

p(D) :p*mostl :p*DSI ®P*Osl Osy, = Dgypy v® f = [y

136



induced by the embedding p*Dg, < Dg,,. This gives, for (M, F) € Cpyi(S1), the following transforma-
tion map in Cpfil(sl X SQ)

T(p, D)(Mv F) : p*mod]])g(l (Mv F) = p*HOWLDSl ((Ma F)a DSI) ®;D*Osl p*mOdDglw(Ksl)[dsl]

T (p,hom)(—,—)®I * * *1M.0
P—> HomP*Dsl (p (M7 F)vp DSI) ®;D*Osl p dDgleS1)[dS1]

(¢’—’¢®IOS I *1.0 *1M.0 *mo
—12> HomDslz (p d(Ma F)ap dDSl) ®;D*Osl p dDglw(Ksl)[dsl]

I®K71(S /S12) *MO *1Mo
et HomD512 (p d(Mv F)vp dDS1) ®p*Osl D(S)lgw(KSu)[dSu]

q(p* Os /OS ) *1M.0 *1M0
—_— HomD512 (p d(M7 F)vp dDSl) ®0512 D(S)lgw(KSu)[dSu]

Hom(p*™°4(M,F),p(D))

HomDsm (p*mOd(Mv F)v DSI2) ®0512 Dglgw(KSm)[dSm] = ng (p*mOd(Mv F))

whre K ~1(51/S512) is given by the wedge product with a generator of A%2Tg,, /g, —+ ngl.
In the case 51,52 € AnSm(C), we also have the embedding p*Dg — Dg, . This gives in the same
way, for (M, F) € Cpsi(S1 x S2), the following transformation map in Cp s (51)

T.(p, D*)(M, F) : p.DE,S (M, F) — D ¥ p. (M, F).
The map
p(D>) : p*™'Ds, = p* D3, @p-0s, Os,, = D&, 7@ f = [

induced by the embedding p*Dg} — DS, gives in the same way, for (M, F) € Cpe7;(S1), the trans-
formation map in Cpee £41(S1 X S2)

T(pv Doo)(Ma F) : p*mOd]Dg?K(Ma F) = p*mod( %?(Mv F) ®Osl Dglw(K51)[d51]) -
Hong"lz (p*mOd(Ma F)a Dg’?g) ®Osl2 Dglgw(Ksl2 [d512] = Dgol;K(p*mod(M, F))a
given in the same way then T'(p, D)(M, F).
Proposition 50. (i) Let g : T — S a morphism with T, S € SmVar(C). We have, for M € Dp(S)

canonical maps
_ T’(g,D)(M) . LDSLg*modM N Lg*modLDSM
- T'(9,D)(M) : Lg*™°?LDgM — LDgLg* ™M

Moreover, in the case where g is non caracteristic with respect to M (e.g if g is smooth), these maps
are tsomorphism.

(i1) Let S1,S2 € SmVar(C), p : S1 xSy — Sy the projection. For M € Dp(S1), we have T(p, D)(Lp(M)) =
T'(p, D)(M) in Dpgu(S1 x S2) (c.f.(i)).

Proof. (i):See [16] for the first map. The second one follows from the first by proposition 49(i) and (iii).
(ii):See the proof of (i) in [16] O

We have the followings :

Proposition 51. Let fi : X = Y and f> : Y — S two morphism with X,Y,S € SmVar(C). Let
M € Cp.n(S). Then, we have L(fzo f1)*™4M = Lfim™°d(Lf5m°4M) in Dp p(X).

Proof. Follows from proposition 43 (i), proposition 44 and proposition 49. O
Proposition 52. Let f1 : X =Y and fo: Y — S two morphism with X,Y,S € AnSm(C).
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(i) Let (M) € Cpy(S). Then, we have L(fz o f1)*™°4(M) = Lfim°Y(Lf3m°4(M)) in Dp p(X).
(i) Let M € Cpe 1(S). Then, we have L(fa o f1)*™°IM = Lfi™o4Lf5™°M) in Dpe 1 (X).
Proof. Follows from proposition 46 (i), proposition 47 and proposition 49. O
In the analytic case, we have the following transformation map which we will use in subection 5.3:

Definition 61. Let S € AnSm(C). We have for (M, F) € Cpru(S) the canonical transformation map
m C’Doofil(s) N

T(D, 50)(M, F) :
evpg (hom,®)(—,—,—)®TI

JS(Dg(Mv F)) = HomDs((Mv F)vDS) ®Ds (DgovFord) ®os Dgw(KS)[dS]

o0 I(D¥/Ds)((M,F),DX)®I
HO?’TLDS(LD(M,F),DS)@OS Dgw(Ks)[dS] (D /Ds)(( ),DS)

Hompe (M, F) @ps (DF, F?), DF) ®0s Dw(Ks)lds] = DF " Js(M, F).

which is an isomorphism.

4.2.2 The (relative) De Rahm of a (filtered) complex of a D-module and the filtered De
Rham direct image

Recall that for f: X — S a morphism with X, S € Var(C) or with X, S € AnSp(C),

denotes (see section 2) the relative De Rham complex of the morphism of ringed spaces f : (X,0x) —

(S, 05), with Q?(/S = /\pQX/S S PShOX (X) and QX/S = coker(f*QS — Qx) S PShOX (X) Recall

that QB(/S € Cy04(S) is a complex of f*Og modules, but is NOT a complex of Ox module since the

differential is a derivation hence NOT Ox linear. Recall that (see section 4.1), for (M, F') € Cpoy)ru(X),
we have the relative (filtered) De rham complex of (M, F')

DR(X/S)(M, F) = (Q;(/Sva) ®ox (M, F) € Cf*osfil(X)v
and that if ¢ : (My, F) — (M2, F') a morphism with (M, F'), (M2, F') € Cpox)fia(X),
(I®¢) : DR(X/S)(MlvF) = ( ..X/SvF) ®ox (MlvF) - DR(X/S)(M27F) = ( ..X/SvF) ®ox (M27F)

is by definition a morphism of complexes, that is a morphism in C'y«o4 ri1(X). For (N, F) € Cpox)er fi(X),
we have the relative (filtered) Spencer complex of (N, F))

SP(X/S)(N,F) = (T%/s, Fb) ®ox (N, F) € Cy-0srua(X),
and that if ¢ : (N1, F') = (N2, F') a morphism with (N1, F), (N2, F) € Cpoxyer fit(X),
(I®@): SP(X/S) (N1, F) :=(T%,s5,F) ®ox (N1, F) = SP(X/S)(Na, F) := (T%/s, F) ®o (N2, F)
is by definition a morphism of complexes, that is a morphism in C-og4 i (X).

Proposition 53. Let f: X — S a smooth morphism with X, S € Var(C) or with X, S € AnSp(C), denote
d = dx —ds. The inner product gives, for (M, F') € Cpoy)fi(X), an isomorphism in Cy-ogra(X) and
termwise Ox linear

T(DR,SP)(M,F): Tx;s ®0x (M, F) ®ox Kx/s = Q%% ®0x (M, F),0 @m @ k v 1(d)x ® m

Proof. Standard. O
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For a commutative diagram in Var(C) or in AnSp(C) :

D= x—1.5

|

X/j_>T

we have (see section 2) the relative differential map of ¢’ given by the pullback of differential forms:
Q(X'/X)/(T/S) : gl*QX/S — QX’/Tv given by for X,O C X/, X°D g/(X/O)(i.e.glil(Xo) D) X,O),
w € F(XO, (94 ) — Q(X’/X)/(T/S) (XIO)((U) = [g/*w] S F(X/O, (94 )

X/S X'/T

Moreover, by definition-proposition 12 (section 4.1), for (M, F) € Cp(o)fu(X) the map
Q(X’/X)/(T/S)(M7 F) : g/*(Q..X/S ®OX (M, F)) — Q..X’/T ®OX' g *mOd(M, F)

given in degree (p, i) by, for X'°c X an open subset and X C X an open subset such that g/_l(XO) D

’

X' (ie. X2 g'(X'°), w e T(X°, 0% ¢) and m € T(X°, M),

Qxryx) /1) (M, F)w@m) = g "we (me1)

is a map of complexes, that is a map in Cy-og i (X'). This give, for (M, F') € Cpoy)fi(X), the following
transformation map in Coy i (T)

*1MO ° T(g,L -
TO(D)(M, F) : ™" Lo (£ E (s @0y (M. F))) T2E,

T(g',B)(—)oT(D)(E(Q%,s®0x M))

(9" f+E( 3{/5 ®ox (M, F))) ®g-05 Or

. moB(® () . mo
(fLE(g"™ (Q%/s ®ox (M, F)))) ®g-05 Or R FLEQ% /r ®oy, g M, F)),

with m/(m) = m® 1. Under the canonical isomorphism Q%/s = 0% /s ®ox Ox given by w = w®1, we
have (see remark 7)

T (D)(Ox) =T (D) : g Lo (fE(Q%/s)) = FLE(Q%/1)-

Let f: X — S a morphism with X, S € Var(C). Again by definition-proposition 12 (section 4.1), for
(M, F) € Cp(ox)ri(X) the map

Q(Xan/X)/(San/S) (M, F) . G/TL;((QB(/S ®OX (M, F)) — Q;{an/san ®Oxan Mo

given in degree (p,) by, for X° C X and X° D X°° an open subsets of X for the usual, resp. Zariski
topology, w € T'(X?, Q’)’(/S) and m € T'(X°, M?),
Q(Xan/X)/(San/s)(M, F)(w ®m = Ww ® (m® 1)

is a map of complexes, that is a map in Cy-ogan pa(X™). This gives, for (M, F) € Cpoy)ra(X), we
have the following transformation map in Cogan £ir(S*")

T (an, £)(M, F) : (fE(Q% s ®0x (M, F)))™ = an§(f. B(Q/s ®0x (M, F))) ®ang 05 Osen
T(an(X),E)(=)oT(an,f) (B s®0x M)

(f+E(an’ (2% /s @ox (M, F)))) @ang 05 Ogen

moE(Q(Xan/X)/(San/s)(M,F))

[ E(Q% /s ®ogr (M, F))
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with m(n ® s) = s.n.Under the canonical isomorphism Q%/s = Q%5 ®ox Ox given by w — w® 1, we
have (see remark 7)

T (an, f)(Ox) = T (an, f) : (fB(Q%s)™" = feE(Qan san)

Let f : X — S a morphism with X,S € Var(C) or with X,S € AnSp(C). In the case where X is
smooth, for (M, F) = (M*,F) € Cpyy(X), the differential of the relative De Rham complex of (M, F)

DR(X/S)(Mv F) = (QB(/SvF) ®ox (M, F) = TOt((QS(/SvF) ®ox (M.vF)) € Cf*Osfil(X)
are given by

o dppi1: Q?(/S ®oyx Mt — Q’;;ls ®oy M, with for X° C X an open affine subset with (z1,...,2,)

local coordinate (since X is smooth, T is locally free), m € I'(X°, M%) and w € I'(X?, Q’)’(/S),

dp p+1(w @ m) 1= (dw) @ m + Z(dwi Aw) ® (0;)m
i=1

o diit1: Q%5 ®ox Mt — 0% /s ®ox M1 with for X° C X an open subset, m € I'(X°, M%) and

w e F(XO, Q?(/S)’ di7i+1(w & m) = (w & dm)
For Dx only, the differential of its De Rahm complex (Q;{/S, F) ®0, Dx are right linear, so that
(%5, F») @0y (Dx, F°™) € Cpov -0 pir(X)

In the particular case of a projection p : Y x S — S with Y, S € SmVar(C) or with ¥, S € AnSm(C)
we have :

Proposition 54. Let Y, S € SmVar(C) or Y, S € AnSm(C). Let p: Y x S — S the projection. For
(M, F) S CDfi[(Y X S),

DR(Y x §/S)(M,F) := (9%, 5/5: Fb) @0y s (M, F) € Cpr05u(Y % 5)
is a naturally a complex of filtered p* Dg modules, that is
DR(Y x S§/S)(M, F) := (575, Fb) @0y s (M, F) € Cpepgu(Y X 5),
where the p* Dg module structure on Qf,xs/s R0y s M™ is given by for (Y x 8)° CY xS an open subset,
(7 € D((Y % S)°, Tyxs), & @m € T((Y % 8)°, 0 ¢ ®0y.s M) 5 7.(6 @ m) 1= (& @ (7.m).
Moreover, if ¢ : (M1, F) — (M2, F) a morphism with (M, F), (M2, F) € Cpra(Y x 5),
DR(Y x 5/8)(¢) := (I ® @) : (575 Fb) ®0y s (M1, F) = (5755 Fb) ®0y s (M2, F)
is @ morphism in Cp=pyu(Y x 5).
Proof. Standard. O

In the analytic case, we also have

Proposition 55. Let Y, S € AnSm(C). Letp:Y xS — S the projection. For (M, F) € Cpe (Y x S),

DR(Y x §/S)(M,F) := (%, 5/5, Fb) ®0y w5 (M, F) € Cprogfu(Y x 5)
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is naturally a complex of filtered p* D modules, that is
DR(Y x S§/S)(M, F) := (%} s/5, Fb) @0y s (M, F) € Cprp g (Y X 5),
where the p* DY module structure on Q;;xs/s ®0y s M™ is given by for (Y x S)° CY xS an open subset,
(veT((Y x 9, Tyxs),w@me (Y x S)O,ngs/s ®0y s M™)) = y.(O@m) == (@& (y.m).
Moreover, if ¢ : (M1, F) — (M2, F) a morphism with (M, F), (M2, F) € Cpeeyu(Y x 5),
DR(Y x 5/5)(¢) := (I ©¢) : (D575, Fb) @0y s (M1, F) = (5755 ) @0y 5 (Mo, F)
is a morphism in Cp«peo iy (Y x S).
Proof. Standard : follows from the finite order case (proposition 54). O

We state on the one hand the commutativity of the tensor product with respect to Dg and with
respect to Og, for S € SmVar(C) or S € AnSm(C) in the filtered case, and on the other hand the
commutativity between the tensor product with respect to Dg by Dg and the De Rahm complex :

Proposition 56. (i) Let f : X — S a morphism with X,S € SmVar(C) or with X,S € AnSm(C).
For (M',F) € Cporfi,f+p(X) and (M, F),(N,F) € Cpsu(X). we have canonical isomorphisms of
filtered f*Dg modules, i.e. isomorphisms in Cyp(X),

(MlvF)®Ox (NvF)®Dx (MvF) = (MlvF)®Dx ((MvF) ®ox (NvF))
= ((M/aF) ®ox (MvF)) ODx (NaF>

(i1) Let f :+ X — S a morphism with X,S € Var(C) or with X,S € AnSp(C). For (M,F) €
Cpox)si(X), we have a canonical isomorphisms of filtered f*Os modules, i.e. isomorphisms
m Cf*Osfil(X);

(Q;(/S’Fb) ®ox (Mv F) = ((Q;{/San) ®ox (D(OX)an)) ®D(Ox) (Mv F)

(ii) Letp : Y x S — S a projection with Y, S € SmVar(C) or with X,S € AnSm(C). For (M,F) €
Cpra(Y x S), the isomorphisms of filtered p*Og modules of (i)

(Q;’XS/S7Fb) ®0y xs (M, F)=(( ;’><S/S7Fb) @0y v s (Dy xs, Fb) @Dy s (M, F)
are isomorphisms of filtered p* Dgs modules, that is isomorphism in Cpspru(Y x S).

Proof. (i) and (ii) are particular case of proposition 36.
(iii): follows immediately by definition of the p* Dg module structure. O

We now look at the functorialities of the relative De Rham complex of a smooth morphisms of smooth
complex algebraic varieties :

Proposition 57. Consider a commutative diagram in SmVar(C) or in AnSm(C) :

D= yxS-2 -9

g”—(g('{xg)T QT

Y/ x T 2T
with p and p' the projections. For (M, F) € Cpyu(Y x S) the map in Cpr. g puq(Y' < T)

Qyrxryyxs)/@/s) (M, F) = g™ (8« 575, Fy) @0y s (M, F)) = (51 y7 Fo) @0y, 0 g UM, F)
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given in definition-proposition 12 is a map in Cyr.peppy(Y' x T). Hence, for (M, F) € Cppa(Y x 5),
the map in Co,ru(T) (with Lp instead of Lo)

TS(D)(M) : g*mOdLD(p*E((Q;/xS/Sv Fb) R0y x5 (M7 F))) — p;E((Q;/’XT/Tv Fb) ®Oy/><T g *mOd(M7 F))?
is a map in Cpsu(T).
Proof. Follows imediately by definition. O

In the analytic case, we also have

Proposition 58. Consider a commutative diagram in AnSm(C) :

D= YyxS-2 ~g

g”—(gé’xg)T -‘JT

Y/ x T 2T
with p and p' the projections. For (M, F) € Cpwyu(Y x S) the map in C . pu(Y' x T)

Qyrryy<s)y/ays) (M, F) 0 g (8« 5785 ) @0y s (M, F)) = (1), Fo) @0y, g M, F)

is @ map in Cyr.ppoepy(Y' x T). Hence, for (M, F) € Cpepu(Y x S), the map in Co,pa(T) (with Lp
instead of Lo)

TS(D)(M) : g*mOdLD(p*E((Q;/xS/Sv Fb) R0y x5 (M7 F))) — p;E((Q;/’XT/Tv Fb) ®Oy/><T g *mOd(M7 F))?
is a map in Cpos iy (T).
Proof. Follows immediately by definition. O

Similarly, we have

Proposition 59. Letp:Y xS — S a projection with Y, S € SmVar(C). For (M, F) € Cpsu(Y x S) the
map in Cpx0gan (Y x 597)

Qyanxsan /vy xs)/(sen/s) (M, F) : an(Y xS)* (2}, 555 Fb) @0y s (M, F)) = (Qfan  gan jgan F5)®@0gn (M, F)
is a map in Cpo py (Y x S4). For (M, F) € Cppy(Y x S), the map in Cogzan i (S*")
T (an, h) (M, F) : (pE((Q% x 5755 Fb) @0y s (M, F)™ = peE(Q 575, Fy) @ogr, (M, F)™)
is a map in Cpp(S™").
Proof. Similar to the proof of proposition 57. o

Proposition 60. Letp:Y x S — S a projection with Y, S € SmVar(C) or with Y, S € AnSm(C).

(i) If p : (M, F) — (N, F) is an r-filtered Zariski, resp. usu, local equivalence with (My,F), (M2, F) €
CDfiI(Y X S), then

DR(Y x S/S)(¢) :( ;/XS/S’FZ)) @Oy v s (M, F) - Q;/XS/S @Oy x5 (N7 F)

is an r-filtered equivalence Zariski, resp. usu, local in Cpppu(Y x S).
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(ii) Consider a commutative diagram in SmVar(C) or in AnSm(C)

D=YxS2 5.

I

Vv S

with p the projection. For (N, F) € Cp+priu(V), the map in Cpog(Y x S) (see definition 53)
ko TJ (L, @)(E(N,F)) : (575 Fb) @0y s LEWN, F) = L((Q5, F) ®o, E(N, F))
= LE(QV/s, Fb) ®oy E(N, F))
is a filtered equivalence Zariski, resp. usu, local in Cpp (Y x S).

Proof. (i):Follows from proposition 54that it is a morphism of p*Dg module. The fact that it is an
equivalence Zariski, resp usu, local is a particular case of proposition 37(i).

(ii):Follows from proposition 54 and the first part of proposition 57 that it is a morphism of 2* Dg module.
The fact that it is an equivalence Zariski, resp usu, local is a particular case of proposition 37(ii). O

In the analytical case, we also have
Proposition 61. Letp:Y x S — S a projection with Y, S € SmVar(C) or with Y, S € AnSm(C).

(i) If ¢ : (M, F) — (N, F) is an r-filtered usu local equivalence with (M, F),(Ma, F) € Cpe ru(Y x S),
then
DR(Y x 5/S)(¢) : ( ;/XS/S’Fb) ®0yxs (M, F) — Q;/XS/S ®0y s (N, F)

is an r-filtered equivalence usu local in Cp«pos it (Y x S).

(ii) Consider a commutative diagram in AnSm(C)

D=YxS2 5.

I

vt g

with p the projection. For (N, F) € Cpee j+pee i (V), the map in Cp-04(Y x S) (see definition 53)
ko TS (1L @)(E(N, F)) : (U550 Fy) @0y s LE(N, F) = L((2,5, Fy) @0y B(N, F))
= LE((Qy,s, Fb) ®o, E(N, F))
is a filtered equivalence usu local in Cppoo (Y X S).
Proof. Follows from the finite order case : proposition 60. o

Dually of the De Rahm complex of a Dg module M, we have the Spencer complex of M. In the
particular case of Dg, we have the following:

Proposition 62. Let S € SmVar(C) or S € AnSm(C).

o We have the filtered resolutions of Kg by the following complex of locally free right Ds modules:
w(S) : w(Ks) = (Q%, Fb)[dS]®Os (Ds, Fb) — (Ks, Fb) and W(S) : w(Ks, Ford) = (Q%, Fb)[dS]®Os
(Ds,FOTd) N (Ks,FOTd)

e Dually, we have the filtered resolution of Og by the following complex of locally free (left) Dg

modules: w"(S) : w(Os) := (A*Ts, Fy)|ds] ®os (Ds, Fy) — (Os, Fy) and w"(S) : w(Og, F4) :=
(A*Ts, Fy)[ds] ®0s (Ds, For?) — (Og, Ford).
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Let S1,S2 € SmVar(C) or Sy, 52 € AnSm(C). Consider the projection p =p; : S1 X Sy — S7.

o We have the filtered resolution of Dg, xs,—s, by the following complexes of (left) (p*Ds, and right
Dg, xs,) modules :

w(S1 X 82/51) 1 (28, 5,78, [d55), Fb) ®0s, 5, (Dsyx55, F) = (D, xs,¢-5,, F).

e Dually, we have the filtered resolution of Dg, x s,—s, by the following complezes of (left) (p*Ds,, Dg, x s,)
modules :

wv(Sl X SQ/Sl) : (/\.TS1><S2/51 [dsz]va) ®Osl><sz (DSIX52,F0rd) - (D51><52%51aF0Td>a

Proof. See [16]. O
In the analytical case, we also have
Proposition 63. Let S € AnSm(C).

o We have the filtered resolutions of Kg by the following complex of locally free right Ds modules:
w(S) : w(Ks) = (g, Fy)lds] ®os (DF, F) — (Ks, Fy).

e Dually, we have the filtered resolution of Og by the following complex of locally free (left) Dg
modules: w¥(S) : w(Og) := (A*Ts, Fy)[ds] ®os (D, F"Y) — (Og, Fy).

Let S1,S2 € AnSm(C). Consider the projection p = py : S1 X S2 — S1.

e We have the filtered resolution of DS, 5. g, by the following complexes of (left) (p* DS, and right
DZ , 5,) modules :

W(Sl X 52/51) : (Q:‘;lxsg/sl[dSQ]an) ®051XSQ (Dg‘?ngvFord) - (D?;xszesl,Ford)-

e Dually, we have the filtered resolution of D, s, .5 by the following complexes of (left) (p* DY, D s,)
modules :

wv(Sl X 52/51) : (/\.TS1><S2/51 [dSQ]7Fb) ®051XSQ (D?S? ngvFOTd) - (Dg‘?ng—»SlvFord)v

Proof. Similar to the finite order case : the first map on the right is a surjection and the kernel are
obtained by tensoring D> with the kernel of the kozcul resolution of Kg (note that D is a locally free
hence flat Og module). O

Motivated by these resolutions, we make the following definition

Definition 62. (i) Let i : Z — S be a closed embedding, with Z,S € SmVar(C) or with Z,5 €
AnSm(C). Then, for (M, F) € Cpsu(Z), we set

iwmod(M, F) := 140, (M, F):=i.(M,F)®p, (Dzes, F") € Cpsu(S)

*mod

(ii) Let S1,S2 € SmVar(C) or S1,S52 € AnSm(C) and p : S; x So — Sy be the projection. Then, for
(M, F) € Cpriu(S1 x S2), we set

= Pnoa(M, F) = p(DR(S1 x S2/S1)(M,F)) = p.((QU, 15,/5,+ Fb) ®0s, s, (M, F))[ds,] €
Cpriu(Sh),

— Pamod(M, F) := p. E(DR(S1 x S2/51)(M, F)) := p*E((QéleQ/Slva) @0, x5y (M, F))[ds,] €
Cpriu(Sh).

144



(iii) Let f : X — S be a morphism, with X, S € SmVar(C) or X,S € AnSm(C). Consider the factoriza-
tion f: X 5 X xS 2% S, where i is the graph embedding and ps : X x S — S is the projection.
Then, for (M, F) € Cpsu(X) we set

- fyﬁg(Ma F) = pS*modi*mod(Ma F) S CDfil(S)7

- .,FDR(M, F) = fLOR(M, F) = pswmodixmod(M, F) € Dpjil,00(S).

By proposition 64 below, we have ffFDRM = ffM € Dp(X).

(i) Let f: X — S be a morphism, with X, S € SmVar(C) or X, S € AnSm(C). Consider the factoriza-
tion f: X 5 X xS 25 S, where i is the graph embedding and ps : X x S — S is the projection.
Then, for (M, F) € Cpsu(X) we set

- !I:nlgg(Ma F) = DgLDfErg)I;DgLD(Ma F) = DgLDpS*modi*mod]D)ngLD(Mv F) € CDfil(S)a
- ;!_‘DR(Mu F) = !f‘n[g(f(Mu F) = DgLDpS*modi*modD§stD(M7 F) S DDfil,oo(S)'
In the analytical case we also consider :

Definition 63. (i) Leti: Z — S be a closed embedding with Z,S € AnSm(C). Then, for (M,F) €
Cperu(Z), we set

i*mOd(Ma F) = igmod(Ma F) = Z*((M5 F) ®D§° (D%O(—SaFOTd)) S CDmfil(S)

(i1) Let S1,S2 € AnSm(C) and p : S1 x Sz — S1 be the projection. For (M, F) € Cpey1(S1 X S2), we
consider

- pgmod(Mv F) = p*(DR(Sl X 52/51)(M7 F)) = p*((Qélxsﬂslva) ®051XSQ (M7 F))[dsz] €
Cpee i1 (S1),
— Pamod(M, F) := p. E(DR(S1 x S2/51)(M, F)) := p*E((lexsz/Sl,Fb) ®0sg, x 55 (M, F))[ds,] €
Cpe £41(S1).
(i11) Let S1,S2 € AnSm(C) and p : S1 x Sa — Si be the projection. For (M,F) € Cpsi(S1 x S2) or
(M, F) S Cpoofil(Sl X 52), we set
- p!omod(MJ F) = p!(DR(Sl X 52/51)(M= F)) = p!((Q;1x52/Sl=Fb) ®Osl><52 (M= F))[dsz] €
Cpri(S1),
= Pimod(M, F) := pE(DR(S1 x S2/51)(M, F)) := pE((Q%, 5, /5,5 Fb) @05, s, (M, F))[ds,] €
Cpri(Sh).

(iv) Let f : X — S be a morphism, with X,S € AnSm(C). Consider the factorization f : X SN

X x S 25 S, where i is the graph embedding and ps : X x S — S is the projection. Then, for
(M,F) € Cpefit(X) we set

- f:g)]j(Ma F) = pS*modi*mod(Ma F) € CD“’fil(S);

- ffDR(M, F) = fEDR(NMF) := psumodismod(M, F) € Dpe fi1,00(S),
— fEDR(MF) := psumodismod(M, F) € Cps=4(S),
- fI;DR(Ma F) = !Is:ggi(Mv F) = pS!modi*mod(Ma F) S DDoofil,oo(S)-

By proposition 65 below, we have fff;DRM = ff! M € Dpe(X) and ffFDRM = ffM € Dp=(X).
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(v) Let f : X — S be a morphism, with X,S € AnSm(C). Consider the factorization f : X SN
X x 8§ 25 S, where i is the graph embedding and ps : X x S — S is the projection. Then, for
(M, F) € Cppu(X) we set

— [EPE(M, F) = psimodismod(M, F) € Cpru(S),

!mod

- FDR(Mu F) : FDR (M7 F) = pS!modi*mod(Mu F) € DDfil,oo(S)-

f! = Jlvmod
L FDR
By proposition 65 below, we have ff! M = fj’! M € Dp(X).
Proposition 64. (i) Let i : Z — S a closed embedding with S,Z € SmVar(C) or with S,Z €
AnSm(C). Then for (M, F) € Cpyu(Z), we have

/(Mv F):= Ri.(M,F) ®p, (Dzes, F?) = i.((M,F) ®p, (Dzes, F') = ixmod(M, F).

(i1) Let S1,S2 € SmVar(C) or S1,S2 € AnSm(C) and p : S12 := 51 X S — Sy be the projection. Then,
for (M, F) € Cpyyu(S1 x S2) we have

/ (M,F): = Rp.(M,F)®p, . (Dsixsyes F%)
p

= p*E((Q§1X52/517Fb) ®Osl><52 (D5'1><527F0Td) ®D51><5‘2 (Mv F))[dsz]
= pE((Q%, x 5,75, Fb) ®0s, x5, (M, F))[ds,] =: pemoa(M, F).

where the second equality follows from Griffitz transversality (the canonical isomorphism map respect
by definition the filtration).

(iii) Let f : X — S be a morphism with X, S € SmVar(C) or with X,S € AnSm(C). Then for
M € Cp(X), we have ffFDRszfM.

Proof. (i):Follows from the fact that Dz, g is a locally free Dz module and that 4, is an exact functor.
(ii): Since qu/sl [ds,], Fb) ®0s,, Ds,, is a complex of locally free Dg, x5, modules, we have in D ;;(S1 x
S3), using proposition 62,

(DS1><5'2<—S1 ) Ford) ®%S1><Sz (Ma F) = (9512/51 [d52]7 Fb) ®0512 (DS127FOTd) ®D512 (M7 F)

(iii): Follows from (i) and (ii) by proposition 43 (ii) in the algebraic case and by proposition 46(ii) in the
analytic case since a closed embedding is proper.
O

In the analytical case, we also have :

Proposition 65. (i) Let i : Z — S a closed embedding with S,Z € AnSm(C). Then for (M, F) €
Cpfi(Z), we have [,(M,F) = imoa(M, F).

(i1) Let S1,S2 € AnSm(C) and p : Si2 := S1 x S — Sy be the projection. Then, for (M,F) €
Cpee ri1(S1 x S2) we have

/p(M, P

Rp*((M, F) ®é§ixsg (Dg‘?ngeSpFord))

= p*E((lexSQ/Slva) ®Oslxs2 (D51><527F0Td) ®Dsl><sz (Ma F)[d52])
PE((S, x 5,75, Fb) ®0s, x5, (M, F)[ds,]) =: pamoa(M, F).
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(i)’ Let S1,S52 € AnSm(C) and p : S12 := S1 X So — Sy be the projection. Then, for (M,F) €
Cpri(S1 x S2) or (M, F) € Cpsiy(S1 x S2), we have

[OLE): = Ra(MF)ob,, ., (Dsxsics, P
p

= p!E((lexSﬂSlva) ®Oslxs2 (D51><527F0Td) ®Dsl><sz (Mv F)[dsz])
= p!E((Qg’lXSg/Sl?Fb) ®Oslxs2 (Mv F)[dsz]) = p!mod(Ma F)

(iti) Let f : X — S be a morphism with X, S € AnSm(C). For M € Cpe(X), we have fFDR

andfFDRM:ff!M. For M € Cp(X), we h(wefFDRM:fﬂM

Proof. (i):Follows from the fact that D3’ g is a locally free D3’ module and that i, is an exact functor.
(ii): Similar to the proof of proposition 64(ii):follows from proposition 63.

(ii)’: Similar to the proof of proposition 64(ii):follows from proposition 63.

(iii):The first assertion follows from (i), (ii) and (i)’ by proposition 46. The second one follows from
proposition 64(i) and (ii)’ and by proposition 46.

M=[,M

O
Proposition 66. Let f1 : X — Y and fo:Y — S two morphism with X,Y,S € SmVar(C).
. FDR FDR FDR
(Z) Let (M,F)ECD(Q)ﬁ[(X). Then fj ofr MF) fl (M F)GDD(Q)fZlOO(S)
(ii) Let (M, F) € Cpgaypan(X). Then [0 (M, F) = EFR o (M, F) € Dy pioo(S).
Proof. See [21]. O
Proposition 67. Let f1 : X =Y and f2 : Y — S two morphism with X,Y,S € AnSm(C).
, FDR FDR FDR
(i) Let (M, F) € Cpx(aypa(X). Then [y (M, F)= [, (M, F).
g FDR FDR (FDR
(i) Let (M, F) € Cpeo(ayun(X). Then [; o (M, F)= [, 5 (MF).
Proof. Similar to proposition 66. O

Definition 64. (i) Let f : X — S be a morphism, with X, S € SmVar(C) or X,S € AnSm(C).

Consider the graph factorization f : X Lxxsh S, with [ the graph embedding and p the
projection. We have the transformation map given by, for (M, F) € Cpru(X),

R L B e i e e

(ii) Let j : S° < S an open embedding with S € Var(C). Consider the graph factorization j : S° LN
S0 x S S, with I the graph embedding and p the projection. We have, for (M, F) € Cpru(S°),
the canonical map in Cpra(S),

. . kow(S°%xS5/S)
T(]Er?o@ﬂ]*)(Mv F): ]ffog(Mv F) = p*E((QSOXS/Sva) ®0s0xs Limod(M, 7)) ’
or T(,®) (=) .
PeE((Dsoxses5, F) @pgor s lu(Dsocsoxs @pgo E(M, F)) o), J«E(M, F)

We have, for (M, F) € Cpyiy(S), the canonical map in Cpri(S),

ad(p*™°%,p.)(M,F)

ad(j” jfn?o};li)(Mv F): (M, F) E((QE'OXS/S’Fb) ®0s0ys p*mOd(Mv F))
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4.2.3 The support section functors for D modules and the graph inverse image

Let S € SmVar(C) or S € AnSm(C). Let i : Z — S a closed embedding and denote j : S\Z — S
the complementary open embedding. More generally, let & : Y — S a morphism with Y, .S € Var(C) or
Y,S € AnSp(C), S smooth, and let ¢ : X < Y a closed embedding and denote by j : Y\X — Y the
open complementary. We then get from section 2 the following functors :

e We get the functor

Lz : Cpa)ru(S) = Cp2)ru(S)
(M,F)—Tz(M,F) := Cone(ad(j*, j.) (M, F)) : (M, F) — j.j" (M, F))[-1],

together we the canonical map vz (M, F) : Tz (M, F) — (M, F), and more generally the functor

Px : Cpepysa(Y) = Crepyra(Y),
(M,F)—Tx(M,F):= Cone(ad(j*, j.) (M, F)) : (M, F) — j.j" (M, F))[-1],

together we the canonical map yx (M, F) : Tx(M,F) — (M, F).

o We get the functor

Ty : CpayralS) = Opyra(S),
(M, F) = T(M, F) := Cone(ad(ji, j*) (M, F)) : jij*(M, F) — (M, F)),

together we the canonical map vy (M, F) : (M, F) — T'},(M, F), and more generally the functor

I% : Chop@ysa(Y) = Crepayra(Y),
(M, F)— F};/((M, F) = Cone(ad(jg,j*)((M, F)): ]lj*(M, F)— (M, F)),

together we the canonical map vy (M, F) : (M, F) — T (M, F).
e We get the functor
T": Cpaya(S) = CpeyalS), (M, F)— Ty (M, F) := D Lpl'z E(DE (M, F)),
together with the factorization

7% (Lp(M,F)) koD* I(j1,5*)(—)od(—)

1" (Lp(M, F)) : Lp(M, F) IYLp(M,F) Iy"Lp(M,F),

and more generally the functor

D" Chepyri(Y) = Crepeyra(Y), (M, F) = D" (M, F) =Dy PX Ly pDx By P (M, F)),
together with the factorization

X (Lp*p(M,F))

V" (L (M, F)) : Ly- p(M, F) 222 0LED,

koD" " P K I(jy,5*)(—)od(~)

Y% Lyp(M,F)

" Lyep(M, F).

e We get the functor

P}’O : Op2ysi(S) = Cpayra(9),
(M, F) = T%O (M, F) = Cone(bz (M, F)) : To(M, F) — (M, F)),
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together we the factorization

v b M,F
YO, F) (1, F) ZED my (g, ) B2 10, ),

Since M — M /TzM is a right exact functor, M F}’OM send Zariski, resp. usu, local equivalence
between projective complexes of presheaves to Zariski, resp. usu local equivalence, and thus induces
in the derived category

LF}’O : Dptit,00(S) = Dpyit,e0(S),
(M, F) s TP Lp(M, F) := Cone(bz(Lp(M, F)) : T;Lp(M, F) — Lp(M, F)).

e We get the functor

r$: Cp2)7i(S) = Cpayru(S),
(M, F) — T'Y(M, F) := Cone(by (M, F)) : (M, F) — (M, F) ®0s DX (ZzDs)),

together we the factorization

Vs (M,F) (M,F)

YO (M, F) : (M, F)T'$ Lz(M,F) 2220 (M F).

e We have, for (M, F) € Cpysu(S), a canonical isomorphism
I(D,49) (M, F) : DT ;% (M, F) = TYDE (M, F)
which gives the transformation map in Cp i (S)
T(D,7°)(M,F) : Ty °DE (M, F) - DETY (M, F)

Let S € AnSm(C). Let i : Z — S a closed embedding and denote j : S\Z < S the complementary
open embedding. More generally, let A : Y — S a morphism with Y,.S € AnSp(C), S smooth, and let
1: X =Y aclosed embedding and denote by j : Y\X < Y the open complementary.

e We get the functor

L'z : Cpos(2)1it(S) = Cpeo(2) it (S):
(M,F)—Tz(M,F) := Cone(ad(j*, j«) (M, F)) : (M, F) — j.j" (M, F))[-1],

together we the canonical map vz (M, F) :Tz(M,F) — (M, F), and more generally the functor

Lx : Cpepoo(2)pit(Y) = Crepoo 2y pa(Y),
(M,F)—Tx(M,F) := Cone(ad(j*, j.) (M, F)) : (M, F) — j.j" (M, F))[-1],

together we the canonical map yx (M, F) : Tx(M,F) — (M, F).
e We get the functor

L'y : Cpee2)yru(S) = Cpse(2)ru(S),
(M, F) = Iy (M, F) := Cone(ad(ji, j*) (M, F)) : jij*(M, F) — (M, F)),

together we the canonical map vy (M, F) : (M, F) — T'},(M, F), and more generally the functor

I‘} : Ch*D“’(?)fil(Y) — Ch*D“’(?)fil(Y)a
(M, F) — T\ (M, F) := Cone(ad(j1, ;*)((M, F)) : j1j*(M, F) — (M, F)),

together we the canonical map vy, (M, F) : (M, F) — '\ (M, F).
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e We get the functor
T" : Cpoc(a)rir(S) = Cpoo oy (S), (M, F) s Ty (M, F) := DI Lp=T 2 E(DY (M, F)),
together with the factorization

koD 1I(j1,5")(—)od(—)

7% (Lpee (M,F))

vy (Lp=(M,F)) : Lp=(M,F) Y Lp~ (M, F) Iy "Lpe= (M, F),

and more generally the functor
L% Chepe(aypia(Y) = Chepe(pit(Y), (M, F) = TR (M, F) := DYy K Ly p T x (DY 5 (M, F)),
together with the factorization
Y (Lp* poo (M,F
Ve (L e (M, F)) : Ly poe (M, F) 22022 OLED,

wpoo K
koD™ P I (51,57 ) (<)

Y% Lp-pe (M, F)

) PV Ly e (M, F).

e We get the functor
rye . Cpoo(2)fit(S) = Cpoo(2)ru(S),
(M,F) — I‘}’O(M, F):=Cone(bz((M,F)) : Zz(M,F) — (M, F)),
together we the factorization

v bs) s (M,F
Y OM, F) - (M, Fy 2080, by g, py 220D, b0y ey,

o We get the functor
TG : Cpoe(2)fit(S) = Cpoe(2yar(S),
(M, F) — T'Y(M, F) := Cone(by (M, F)) : (M, F) — (M, F) ®0s DX (ZzDs)),
together we the factorization

Vs z(M,F) (M, F)

~Y9(M,F) : (M, F)I' Lz(M,F) 2220 (M F).

e We have, for (M, F) € Cpef,(S), a canonical isomorphism
I(D,5°)(M, F) : g™ Ty (M, F) = T9Dg " (M, F)
which gives the transformation map in Cpee £4(.5)
T(D,7°)(M, F) : T D5 (M, F) = DF" TG (M, F)
In the analytic case, we have
Definition 65. Let S € AnSm(C). For (M, F) € Cpsi(S), we have the map in Cpes 7,1(S)

T(OOW)(Ma F) = (IvT(j7®)(_7 _)) :
Js(Tz(M,F)) :=Tz(M,F)®ps (DT, F) = T7((M,F) @ps (DF,F"%)) =:TzJs(M, F)

Let i: Z — S a closed embedding, with Z, S € SmVar(C) or Z, S € AnSm(C). We have the functor
i* - Cpri(S) = Cpra(Z), (M, F) = i*(M, F) := Homi-ps ((Dsez, F°"),i* (M, F))

where the (left) Dz module structure on i* M comes from the right module structure on Dg. 7, resp.
Oz. We denote by
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e for (M, F) € Cpyru(S), the canonical map in Cpyii(S)
ad(ismod; i*) (M, F) : iumodi® (M, F) :=i.(Homi+ ps(Dsez,F?),i*(M,F)) ®p, (Dscz, F'"))
= (M, F),¢® P — ¢(P)
e for (N, F) € Cpsy(Z), the canonical map in Cpyyi(Z)
ad(ismod, i) (N, F) : (N, F) = *ismoa(N, F) := Hompg(Dscz,i"i((N, F) @p, (Dsez, F°™?)))
n— (P—n®P)

The functor i induces in the derived category the functor :
Ri*: Dpa)fir+(S) = Dpa)fir(2),
(M, F) — Ri*(M, F) := RHomps((Dz.s, F"%),i* (M, F)) = Homps(Dzes, FY), E(i*(M, F))).

Proposition 68. Leti: Z — S a closed embedding, with Z,S € SmVar(C) or Z,S € AnSm(C). The
functor iwmoa : Cp(Z) — COp(S) admit a right adjoint which is the functor i* : Cp(S) — Cp(Z) and

ad(ismod; i*)(N) : N = i¥iymoaN and ad(ismod, i*)(M) : iwmoqi* M — M
are the adjonction maps.

Proof. See [16] for the algebraic case. The analytic case is completely analogue. O

One of the main results in D modules is Kashiwara equivalence :
Theorem 18. Leti: Z < S a closed embedding with Z,S € SmVar(C), or with Z,S € AnSm(C).

(i) The functor ismeq : QCohp(Z) — QCohp(S) is an equivalence of category whose inverse is it =
a,i* : QCohp(S) — QCohp(Z). That is, for M € QCohp(S) and N € QCohp(Z), the adjonction
maps

ad(ixmod, 1) (M) = iwmoai* M =5 M | ad(ivmod, i) (N) : i*ismoaN > N
are 1somorphisms.

(ii) The functor L = Gwmod : DD,c(Z) = Dp (S) is an equivalence of category whose inverse is Rit -
Dp (S) = Dp(Z). That is, for M € Dp (S) and N € Dp (Z), the adjonction maps

ad(/i,Riﬂ)(M):/RiﬂM%M, ad(/,Riﬂ)(N):Riﬁ/iN%N

2 2

are isomorphisms.

We have a canonical embedding of rings Dz < Dz_,s := i*Dg®;~0, Oz. We denote by Ci«p z(Z) the
category whose objects are complexes of presheaves M of ¢* Dg modules on Z such that the cohomology
presheaves H™ M have an induced structure of Dz modules. We denote by

JdK Kos(i*Oz) — i*OZ

the Kozcul complex which is a resolution of the Og module i,Oz of lenght ¢ = codim(Z, S) by locally
free sheaves of finite rank. The fact that it is a locally free resolution of finite rank comes from the fact
that Z is a locally complete intersection in S since both Z and S are smooth. We denote again

9K = i*qK : Ki*Os (Oz) = i*Kos(i*Oz) — i*i*Oz = OZ
We denote by Kl (Oz) := Homi-04(Ki-04(0z),i*Os) its dual, so that we have a canonical map
ax + Kii04(0z) = Oz[—d].

Let M € Cp(S). The i*Dg module structure on Hom;+og (Ki+05(0z),i*M) and K;+04(0z) ®ix0g 1* M
induce a canonical Dz module structure on the cohomology groups H"Hom«o4(Ki04s(0z),1* M) and
H"(Ki*os (Oz) ®i*0g ’L*M) for all n € Z.

The projection formula for ringed spaces (proposition 9) implies the following lemma :
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Lemma 9. Let i : Z — S a closed embedding with Z,S € Var(C) or with Z,S € AnSp(C). Denote
by j : U := S\Z < Z the open complementary embedding. Then, if i is a locally complete intersection
embedding (e.g. if Z,S are smooth), we have for M € Co,, (U), Li*"°Rj. M = 0.

Proof. We have

T(4,®)(Lo(j: E(M)),0z) "

i Li*™°Rj. M := i.(i* Lo (j. E(M)) ®i-05 Oz)
7(5,®)(E(M),Kog (i-Oz))

Lo(j+E(M)) ®0s i+Oz

J«(E(M) ®0y j"Kos(ix0z)),

qo(ixqr )"

E— (]*E(M)) ®og 1+ Kix0g (OZ)

T(i,®)(Lo(j«E(M)),Oz) being an equivalence Zariski, resp. usu, local by proposition 10 and follows
from the fact that j* Ko, (i.Oz) is acyclic. But

T(j,®)(E(M), Kos(ix0z)) : (j+ E(M)) ®0s Kog(ix0z) = j«(E(M) @0y jixKix0s(0z))

is an equivalence Zariski, resp. usu, local by proposition 9 since Ko (i.Oz) is a finite complex of locally
free Og modules of finite rank. O

Definition-Proposition 14. Let i : Z < S a closed embedding with Z,S € SmVar(C). Denote by
¢ = codim(Z, S). Then, for M € Cp (S), we have by Kashiwara equivalence the following map in Cp(S)

) ad(i*modvin)(_)71

Kz/s(M):TzE(M Gemodi* Lz E(M)

Hom(qk ,E(i1*M))oHom(Oz,T(i,E)(M)

LH> Z*7nod7fﬁ(-E(]\4)) i*modKi\iOS (OZ) ®i*Os M

which is an equivalence Zariski, resp. usu, local. It gives the isomorphism in Dp(S)
Kz/s(M) : R zM = ivmoaK %0, (02) = tumoaLi* ™ Mc]

Proof. Follows from theorem 18 lemma 9 : see [16] for the algebraic case, the proof in the analytic case
is completely similar. O

Definition 66. Let f : X — S be a morphism, with X, S € SmVar(C) or X,S € AnSm(C). Consider

the factorization f : X L X xS S, where i is the graph embedding and ps : X x S — S s the
projection.

(i) Then, for (M, F) € Cp2)a(S) we set
et (M F) = T B(pg™ "7 (M, F)) € Op(aypinoe (X % S),
It induces in the derived category
R ol (M F) = ol (M, F) = T B(pg™ " (M, F)) € Dpga) it,oo (X x 9),
By definition-proposition 14, we have in the algebraic case Li*™°d f*mod T N[ = [ f*xmed N[ ¢ Dp(X).

(i) Then, for (M, F) € Cpa)fu(S) we set

LfFmed =l (v Ry = T" Lngmod[‘] (M, F) :=D5LpI'x E(DE Lng’"Od[_] (M, F)) € Dp2) i1, 00 (X x5).

In the analytical case we also have

Definition 67. Let f : X — S be a morphism, with X,S € AnSm(C). Consider the factorization
X5 X xS 258, where i is the graph embedding and ps : X x S — S is the projection.
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(i) Then, for (M, F') € Cpe(a)fu(S) we set
Frmed=lN (0L P o= Dx E(pg" " (M, F)) € Cpm gy it o0 (X % S),
It induces in the derived category
Rfrmed=l0 (0, F) o= prmed =L (A F) = FXE(pngd[_] (M, F')) € Dpe(2)fi1,00(X x 5),
(ii) Then, for (M, F) € Cpe(2yri(S) we set
LIt (0, Fy == T Lpps N (M, F) := DE LoD x E(DE Lppy" " (M, F)) € Dpoe(2) it 0 (X X 5).
4.2.4 The 2 functors and transformations maps for D modules on the smooth complex

algebraic varieties and the complex analytic manifolds

By the definitions and the propositions 43, 44, 66, for the algebraic case, and the propositions 46, 47, 67,
for the analytic case,

e we have the 2 functors on SmVar(C) :

— Cp2)sa(+) : SmVar(C) = Cpeaysul-), S+ Cpaypa(S), (f : T = S) > fr™od (f: T = S)—
f*mod[f]

— DD(Z)fil,r(') : SmVar((C) — DD(Z)fil,r(')a S = DD(2)fil,r(S)u (f T — S) — Lf*mOd, (f :
T — )+ Lfrmod=],
FDR

— Dp)fit,ec(+) : SmVar(C) = Dp(2)fit,0(); S+ Dp(2)fit,ee(S), (f T = 8) = [ 77,
e we have the 2 functors on AnSm(C) :

— Cpsu(+) : AnSm(C) — Cp(ayra(-), S+ CpeyrulS), (f : T = 8) — frmod (f: T — S) —
f*mod[f],

— DD(Z)j'il,r(') : AnSm((C) — DD(2)fil,r(')7 S — DD(2)fil,r(S)7 (f T — S) — Lf*mOd, (f T —
S) — wanod[f]7
FDR

= Dp()fit,e () : AnSm(C) = Dp(2)pitec(t);, S = Dp(a)pit,ee(S), (f T = 8) = [,
e we have also the 2 functors on AnSm(C) :
= Cpe(gypa(-) : AnSm(C) — Cpo(gypir(), S = Cpos(gypa(S), (f : T — 8) = f*mo0 (f: T —
S) — f*mod[f]7

— DDm(Q)j'il,r(') : AHSIH((C) — DD°°(2)fil,r(')u S — DDm(Q)j'il,r(S)u (f T — S) — Lf*mOd,
(f: T — 8) s Lfrmodl-],
FDR

— DDm(Q)j'il,r(') : AnSm((C) — DDm(Q)j'il,r(')a S — DD°°(2)fil,r(S)7 (f T — S) — 11 s

inducing the following commutative diagrams of functors :

f?—)f*mo'i f?—)Lf*mOd
SmVar(C) —— CD(2)fil(') , SmVar(C) —————— DD(2)fz'l,r(')
| I Jo I T~
f}—)f*mOd J f’HLf*mOd 7

AnSm(C)

Cp(2)fit(-) —= Cpe(2ysa(-)  AnSm(C) Dp2)fit,r(-) —= Dpee(2)fitr(+)

where, for S € AnSm(C),
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® Dp)fit,eo,rh(S) C Dp(a)fit,e0,n(S) is the full subcategory consisting of filtered complexes of Dg
module whose cohomology sheaves are regular holonomic,

o J:Cpa)fia(S) = Cpee(2)ra(S) is the functor (M, F) — J(M, F) := (M, F) ®ps D, which derive
trivially.

We first look at the pullback map and the transformation map of De Rahm complexes (see definition
12 and definition-proposition 13) together with the support section functor :

Proposition 69. Consider a commutative diagram and a factorization

p

Do= X—Ls9Dy= f:X—>V x5S S

ng HT g,T g”_IXgT gT
f/ -/ /

X' —T X sy xT2 T

with X, X",Y,S,T € Var(C) or X,X",Y,S,T € AnSp(C), i, i’ being closed embeddings, and p, p' the

-/

projections. Denote by D the right square of Dy. We have a factorization i’ : X' 4, Xr =X XyxsY x
T i Y x T, where i, i} are closed embedding. Assume S,T,Y,Y" are smooth.
(i) For (M, F) € Cpsu(Y x S), the canonical map in C ., 45(Y xT) (c.f. definition-proposition 13),
E(Qyxm)/(xxs))/1/s) (M, F)) o T(g", E)(=) o T(g",7)(—) :
9 TxB( Qx5 o) ®0y s (M, F)) = Doy B sryrs F) @0y r (M, F))
is a map in Cp.ppy(Y x T).

(i) For (M,F) € Cpru(Y x S), the canonical map in Corru(T) (c.f. definition-proposition 18 with
Lp instead of Lo)

TS(D)(Ma F)’Y : g*mOdLDp*FXE(Q;/XS(g)OYxs (Mv F)) - p;FXTE(Q;/XT/T X0y xr g”*mOd(Mv F))
is a map in Cpra(T).
(iii) For (N, F) € Cpfu(Y x T), the canonical map in C .o 1Y x T)
T(XI/XT77)(_) : FX’E((Q;/XT/T7 Fb) @Oy w1 (N, F)) - ]‘—‘XTE((Q;/XT/T7 Fb) @Oy w1 (Nv F))
is a map in Cpupgpy(Y xT) .

(iv) For M = Oy, we have T (D)(Oyxs)” = TS (D)" as complezes of Dy modules and TS (Xr/Y x
T)Oyxr)’ =T (X7/Y x T)". as complexes of p * Dy modules.

Proof. Follows by definition from proposition 57. o

In the analytical case, we also have

Proposition 70. Consider a commutative diagram and a factorization

Do= X—1o8Dy= f:X—syxsL s

g/T ‘QT g/T g//_IXgT ‘QT
! ' ¢

X' ——T X sy xT2 ST

with X, X")Y,S,T € AnSp(C), i, ¢’ being closed embeddings, and p, p' the projections. Denote by D the
i f

right square of Dy. We have a factorization i : X' 2 X7 = X Xyxs Y x T -5 Y x T, where iy, 1) are
closed embedding. Assume S,T,Y,Y’ are smooth.
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(i) For (M, F) € Cpepu(Y x S), the canonical map in Cp.o 14(Y x T) (c.f. definition-proposition
13),
E(Qy 1)) (xx8))/1/8) (M, F)) o T(g", E)(—=) o T(g",7)(—) :
g *FXE((Q;’XSU Fb) Q0y s (Mv F)) - FXTE((Q;/XT/T’ Fb) ROy xr 9 *mOd(M, F))
is @ map in Cp.poe py(Y x T).
(i) For (M,F) € Cpesy(Y x S), the canonical map in Co,ra(T) (c.f. definition-proposition 13 with
Lpe instead of Lo)
TS(D)(M, F)’Y : g*mOdLDoop*FXE((Q;’XSa Fb)®OY><S(M7 F)) - p;FXTE((Q;/XT/Tv Fb)®OYng//*mOd(M, F))
is a map in Cpes py(T).

(iii) For (N, F) € Cpeepu(Y x T, the canonical map in Cpy.op py(Y x T)

(
T(X') X7, 7)(=) : Tx E(QS 1)1 @0y wr (N, F)) = Txp E(QY /7 @0y r (N, F))
is @ map in Cp.poepy(Y X T) .
(iv) For M = Oy, we have TS (D)(Oyxs)” = T (D)7 as complexes of DI modules and TS (Xr/Y x
T)(Oyx7)? = TO(X1/Y x T)Y. as complexes of p * D modules.
Proof. Follows from proposition 69. o
Similarly, we have :

Proposition 71. Let p : Y x S — S a projection and i : X — Y x S a closed embedding with
S,Y € SmVar(C).

(i) For (M,F) € Cpry(Y x S) the canonical map in Cprog (Y™ X SU) (see definition-proposition
13)

E(Qyanxsan/yxs)/(sen/s)(M, F)) o T (an,v)(—) :
CxE(QF 575 1) ®oy (M, F)))*™ = Txan (%« 5/5, Fb) ®0yan gan (M, F)™)
is a map i Cr=pra (Y™ % S).

(1) For (M,F) € Cpsu(Y x S) the canonical map in Cog i (S*") (see definition-proposition 13)
TO(an, ) (M, FY" : (. Tx E((R 5750 Fo) @0y (M, F)))™ = p.Tscon E(© 5/ Fo)0yan (M, F))
is a map in Cpyy(S*™).

(iii) For M = Oy, we have TS (an, h)(Oy)Y = TS (an,h)" as complexes of Dg modules

Proof. Follows by definition from proposition 59 O

Let p: Y xS — S aprojection with Y, S € SmVar(C) or with ¥, S € AnSm(C). Let j: V < Y xS an
open embedding. Consider (see proposition 60), for (M, F') € Cpyi(Y x .S), the canonical transformation
map in Op*pfil(y X S)

ko T, (7, ®)(B(M, F)) : (575 Fb) ®0y juj* B(M, F)
DR(Y x5/8)(ad(5",5x)(—))

j*j*((Q;/xS/Su Fb) ®OY j*j*E(Mv F)) = j*j*(Q;/xS/Sa Fb) ®Oy ]*j*j*E(M7 F)
KoDR(Y x$/8)(ad(j* ) (B(M, F)))

j*E(j*(Q;/XS/S7Fb) @O0y x5 ]*E(Mv F)) = j*E(j*((Q;/XS/S7Fb) @Oy x5 E(Mv F)))
We have then :
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Proposition 72. Let p: Y x S — S a projection with Y, S € SmVar(C) or with Y,S € AnSm(C). Let
i: X =Y xS a closed embedding. Then, for (M,F) € Cpra(Y x S)

(1) the canonical map in Cppry(Y) (definition 54)
T (7, ®) (M, F) == (I,k o T, (, ®)(E(M, F)))
(w575 Fb) ®0y s Px E(M, F) = Tx E((Q5 55+ Fb) @0y s E(M, F)),
is a (1-)filtered Zariski, resp usu, local equivalence.
(11) the map of point (i) gives the following canonical isomorphism in Dp+py(Y)

. T, (v,®) (M, F)
Tg("Ya@)(Mv F): (QYXS/S’Fb) ®0y s IxE(M, F) R

DR(Y xS/S)(k)~*
_—

FXE((Q;’XS/S’Fb) ®0y x5 E(M, F)) FXE((Q;’XS/Sva) ®0y s (M, F)).

Proof. (i): By proposition 60

hd Tg(]a ®)(M7 F) : (Q;/XS/Sv Fb) @0y x s .]*.]*E(Ma F) — j*E(]*((Q;/XS/Sv Fb) B0y xs E(Mv F))) isa
filtered Zariski, resp usu, local equivalence in Cp-p (Y x S) and

® DR(Y x5/8)(k) : (% 5/5: Fb) @0y s (M, F) = (5 5/5, F5) ®0y s E(M, F) is a filtered Zariski,
resp usu, local equivalence in Cp«p (Y x S).

(ii): Follows from (i). O
In the analytic case, we also have

Proposition 73. Let p : Y x S — S a projection with Y,S € AnSm(C). Let i : X — Y a closed
embedding. Then, for (M,F) € Cpe (Y x S)

(1) the canonical map in Cpepsy(Y)
T (7, @) (M, F) := (I, T, (j, @) (E(M, F)))
(Q;/XS/S’ Fy) ®0y s TxE(M, F) — FXE((Q;/XS/S’ Fy) ®oy s E(M, F)).
is a map in Cppo i1 (Y % S). Proposition 72 says that it is a filtered equivalence usu local,
(11) the map of point (i) gives the following canonical isomorphism in Dpspes (Y x S)
o . 7.0 (7,8)(M,F)
Ty (v, ®) (M, F) : (QYXS/S7FZ7) ®0y s IxE(M, F) —————

DR(Y xS/S)(k)~!
_—

FXE((Q;/XS/S’Fb) ®0y x5 E(M, F)) FXE((Q;/XS/Sva) ®0y s (M, F)).

Proof. (i): By proposition 61

o TO(j,®)(M) : QY 575 ®Oyws JxJ EM) = jE(G* (2 5/5 @0y x5 E(M))) is an equivalence usu
local in Cp«p (Y x S) and

® DR(Y x S/S)(k) : Q5 5/5 ®0yxs M — Q% 5/5 @0y s E(M) is an equivalence usu local in
Cpp (Y % S).

(ii): Follows from (i). O

In the projection case, we consider the following canonical maps : Let 51,52 € SmVar(C) or let
51,52 € AnSm(C). Denote by p = p;1 : S12 = 51 x S2 — 57 and py : S12 = S1 X So — S; the projection.
We consider
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o p(M1,F) : (M1,F) = pumoap™™ (M1, F) in Cpz)pa(S1), for (M1, F) € Cp i) (S1), which is
the composite

p(M, F) : (M, F) 22200,

p«p* (My, F) 5 p*((lez/Slva) Qp+0s, p* (M, F))
= pe((%,,/5,+ Fy) ®0s,, (M1, F) = Pumoap™ (M1, F)
where mq : p* My — p* M, ®p+0s, 9:912/51 is given by mi(m) =m® 1,

o p(Mi2, F) : p*™Up,0a(Mi2, F) — (Mi2, F) in Cpypi(S1 x Sa), for (M2, F) € Cp(S1 x Sa),
which is the composite

p(Mig, F) : p*™ ) p (M, F) = P'Pu((Mig,r) @0s,, (231575, b)) ©pr0s, Osia
ad(p*ﬁp*)(*)®p*osll

(M12’F) ®0512 Q512/51 ®P*OS1 0512 = (M127F) ®p*Osl Q512/51 % (M127F)
where mqg : Mo ®p+0s, Q;m/sl — M5 is the multiplication map:

— maz(Mia ®p+0s, ng/sl) =0 for p # 0 and

— mig : Mo ®P*OS1 9%12/51 = M, ®P*OS1 0512 — M- is given by m12(m & f) = fm
We have then p(p*™°=1(My, F)) o p*™edl=Ip(My, F) = Lyemoat-1(ar, 7y~ It gives the following maps

o pi(Mis) : (Mg, F) — prmedl-] Sy (Mig,py in Dpa) (St x S2), for (M2, F) € Cppun(S1 x S2),
given by

d(M2,F) ) LDs(p(—)oq)

p1(Mig) © (Mg, F) LD%(My2, F

T(p,D)(=) " *MOo *mod|—
MH? DELppemoa E(DE Lp(Mia, F)) = prmedl ]/(M12,F)
b

DE Lpp*med=lp, . 0a E(DE Lp (M, F))

° pg(Ml,F) : fp! p*mOd[_](Ml,F) — (Ml,F) n Dpfil(Sl), for M € Cpfil,h(Sl), given by

(DE k)oT(p,D)(—) "

p(My, F): / p el (My, F) = DE Lppamed E(DE p™=1Lp (M, F))
p!

K K 1
DX pumoap™ ! IDE L (My, F) 2220 22C DD, ey, py LI

(MlvF)

so that p*™*=)(pi(My, F)) o pi(p*™°=N(My, F)) = Lyemoai-1 (0, py-

Definition 68. (i) Consider a commutative diagram in SmVar(C) which is cartesian, together with
its factorization

D=(fig)= XXT—oTxSD=(f,g)= f/: XxT -2 XxTxS*=Tx5,

1 b

X S f:X ‘ X xS8 S

where the squares are cartesian, f = po i being the graph factorization and q, ¢’ the projections.
We have, for (M, F) € Cp(2)fi,00(X), the following transformation map in Cp(2)fi,eo(T x S) :

TDmod(f7 Q)(M, F) . q*modp*E((QXxS/San) R0Oxxs i*mod(M, F))
TS (4,0) (umod (M, F)) " vmod.:
e . p::E((QXxTxS/TxSan) QO0xxrxs 4 dl*mod(MvF))

p;/E((QXXTXS/TXSa Fb) ®OX><T><S i;/modq *mOd(Ma F))

P« B(TP™ (i,¢"") (M, F)®1)
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where

TDmOd(i,q//)(M, F) . q”*mOdi*mod(Ma F) — q”*modi*((]\47 F) ®Dx i*mOd(DXXS’uFOTd))
et ") (= - "xmo kM0 or
T, g (M, F) @by i (Dxxs, F)

= ,i*(q'wnod(]\47 F) ®q'*DX q/*i*mOd(DXX57FOTd)) =
i (q " UM, F) @y g i U Dx sty FY) =t thoad ™4 (M, F)

(i1) Consider a commutative diagram in SmVar(C) which is cartesian, together with its factorization

’ p/

D:(fvg): XTf—>TD:(fag): f/:XT%XXT%T )

g’l lg ll/ ll”—]xl ll
f " "

X =5 Sl XXT - XxTx8L—=TxS

lq/ lqﬁ_IXq lq

fiX Lo xxs—2 S

where the squares are cartesian, f = poi, g = qol being the graph factorizations. We have, for
(M, F') € Dp(2)fit,00(X), the following transformation map in Dp(2)fi,e0(T X S) :

TP f, g)((M, F)) :
FDR
Rg*mOd’F(M, F)/f (]\47 F) = FTE(q*modp*E((QXXS/Sa Fb) ROxxs i*mod(Mv F)))
T E(TP™0%(f,q)(M,F)) . " xmo
- ! LB E((Qx x1x8/Tx5: Fb) @0x s temoad " (M, F)))

= DT x w1 E((Qx xrx5/Tx5, Fb) ®0x w1y igmodq/*mOd(Mv F))

TS (v,®)(—) . " emo
e pUB(Qx xrxcs/ x5 Fb) @0 rns DX x T E(moad *4 (M, F)))

FDR
— p:E((QXXTXS/TXS7 Fy) ®0x s (ifklmodq *mOerTE(Mv 1)) = / Rg *mOd7P(M7 F)

’

(i1)” We have, for M € Dp(X), the following transformation map in Dp(T) :
TPmod(f, 9)(M) :

*1M O *1MO *1M o I(M) k1O k1O l*mo
oM, F)/(M) = pmody d/M LD, pemody d/q;modq a0
f f f

_:_> l*mOdq*mOdQ*mod/ q/*modM q(-) l*mod/ q'*modM

1"

1xmod 44 l,n,l/ )1 ry o = /
ad( wmod)(—) l*mod/ 4 dl ﬁq *modM = lﬁl*mod/ l *modq*modM
.f//

*M O
’

ad(l* Lemod)(—) /l/*modq*modM —. ; g'*mod(M)

where 1*™4 ad (1'%, 1/

Anod) (=) is an isomorphism by lemma 9.

In the analytic case, we have :
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Definition 69. Consider a commutative diagram in AnSm(C) which is cartesian together with a factor-
1zation

D=(fg) = Xr L~ T D=(f,9)= f:Xr =Y xT 2 T

T e

X——=S5 fiX—syxsLt>g

)

where Y € AnSm(C), i, i’ are closed embeddings and p, p’ the projections.
(i) We have, for (M, F) € Dp(2)fi,00,n(X), the following transformation map in Dp o) fit,c0(T % S)
FDR FDR
T g (M E) Byt [y s [ Ryt an
define in the same way as in definition 68
(i) For (M, F) € Dpe(2)fil,00(X), the following transformation map in Dpec(2)fit,e0 (T X S)

FDR FDR

(M, F) — / Rg*™0%T (M, F)

’

TPmod(f g)(M, F)) : Rg*™odT /
f

is defined in the same way as in (i) : see definition 68.
In the algebraic case, we have the following proposition:
Proposition 74. Consider a cartesian square in SmVar(C)

D= X;-2sX

1y

g
B ——

(Z) For (M, F) S DD(2)fil,oo,c(X);
FDR FDR
zﬂDrnod(f7 g)((M, F)) . Rg*mod,l—‘/ (M, F) l> / Rg *mod,F(M’ F)
f . ’
is an isomorphism in Dp () fi1,00(T).
(i) For M € Dp .(X),
TDmOd(f, g)(M) . g*mod/ M ;/ g/*modM
f ’
is an isomorphism in Dp(T).
Proof. Follows from the projection case and the closed embedding case. O
In the analytic case, we have similarly:

Proposition 75. Consider a cartesian square in AnSm(C)



(i) Assume that f, hence f' is proper. For (M, F) € Dp(a)fit,c0n(X),

FDR ,
(M, F) = / Rg *™o4T(M, F)

’

FDR

T £, g) (M, F)) s Ry [
f

is an isomorphism in Dp(a) fit,00(T)-

(i) For (M, F) € Dpe(2)fil,00,n(X),

’

FDR FDR ,
TDmod(f7 g)((M, F)) . Rg*mod,f“/f (M, F) it / Rg *mod,F(M, F)

is an isomorphism in Dpe(2) fir,e0(T').

Proof. (i):Similar to the proof of proposition 74.
(ii):Similar to the proof of proposition 74.

Definition 70. Let f : X — S a morphism with X, S € SmVar(C).
(i) We have, for (M, F) € Cpsu(S) and (N,F) € Cpru(X), we have the map in Cp i (S)

TPmod0(x £)((M,F), (N, F)) :
(M, F) ®0s [onoa(N, F) := (M,F) ®0g f+((N,F) ®py (Dxs,F?))

HELED, 1 (17 (M, F) @505 (N, F) @y (Dxcs, F) =
f*(f*mOd(Mv F) ®ox (N7 F) @Dy (DX<—57 Ford)) = fs?mod(f*mOd(Mv F) ®ox (N7 F))

(i1) Consider the cartesian square
D=X—%XxS§ |,

lf leIS
As
S—=>9x%xS

where iy = (f x Is) o Ax : X — X x S is the graph embedding. Then, for (M, F) € Cpa)su(S)
and (N, F) € Cpya(X), we have the map in Dp(2) i, (S)

FDR

FDR
TP @, f)(M,F), (N, F)) i/f (N, F) ®ox fEBH(M,F)) —/f RN @ pgM)
TP A XIS (), psmod [ .
ZLDIQNNT /(f BN @Dz = /f (N, F)) &5, (M, F).
X1lg

Clearly if i : Z < S is a closed embedding with Z,S € SmVar(C) or with Z,S € AnSm(C), then
TD’O(®,Z)(M, N) = TD(®,Z)(M, N) m DD(Q)jzl,oo(S)

We have then the following :

Proposition 76. (i) Let i : Z — S is a closed embedding with Z, S € SmVar(C), then for (M, F) €
Cpsa(S) and (N, F) € Cppa(Z)

TD7O(®aZ.)((M7 F)v (Nv F)) : (Mv F) ®os Z.*mOd(]Vv F) = i*mOd(i*mOd(Ma F) X0y (Nv F))

is an isomorphism in Cp gy (S).
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(ii) Let f : )(( )—) S a morphism with X, S € SmVar(C). Then, for (M, F) € Cpysu(X) and (N, F) €
Cp2)ralS),
i FDR ; . FDR :
T, PP, (R - [y e, SO S ([ b, v
is an isomorphism in Dp(2)fi1,00(S).
Proof. (i): Follows from proposition 10.
(ii):Follows from proposition 74(i). O

Let f : X — S a morphism with X,S € SmVar(C). Consider the graph embedding f : X AN
X x 85 S, with X,Y, S € SmVar(C). We have, for (M, F) € Cpi(X), the canonical isomorphism in
Cp(2)rar (S")

an’y”0 UL (p U (M, F) @0y, 5 (Oxxs,Vx)) =
" Lpp (M, F)™ @0 an san (Oxanxsen, Vyan))

We then define and study the transformation map between the direct image functor and the analytical
functor for D-modules :

Definition 71. Let f : X — S a morphism with X, S € SmVar(C).
(i) We have for (M, F') € Cp(2)5a(X) the canonical map in Cp(z)q(S*")

mo *1Mo or TmOd a";f -
TP (an, f)(M, F) : ang*!(f.E((Dxs, ') @py Lp(M, F))) 22D,
f«(E((Dxes, F) @py Lp(M,F))* = fuE(Dxane gan @pyan Lp(M™, F))

(ii) Consider the graph embedding f : X LXx8h S, with X,Y,S € SmVar(C). We have, for
(M, F) € Cpyu(X), the canonical map in Cp2)i(S™)

TDmOd(‘””? M F) - anngd(p*E((Q;,XS/S, Fy) @Oy x5 bxmod(M, F)))

T (an,p) (ixmoa (M, F))

PE((Q5 5750 Fb) @0yan csan (Lemod (M, F))™")

Pxmo TDmOdO(anvi)((MﬂF)) [ ) N an
- P+E((Q 5750 Fb) @0yan csan temod((M F)™)).

In order to prove that this map gives an isomorphism in the derived category in the non filtered case
if f is proper and M coherent, we will need the following (c.f.[16]):

Theorem 19. A product X x S of a smooth projective variety X and a smooth affine variety S is
D-affine.

Proof. See [16] theorem 1.6.5. O

A main result is that we have the following version of the first GAGA theorem for coherent D-modules

Theorem 20. Let f: X — S a morphism with X,S € SmVar(C). Let M € Dpa)pio(X), for r =
1,...00. If f is proper,

TPmod(an, f)(M, F) : ( / M) = (M
f jan

is an isomorphism.
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Proof. We may assume that f is projective, so that we have a factorization f: X — PN x § £ S where
i is a closed embedding and p the projection. The question being local on S, we may assume that S is
affine. Since PV x S is D-affine by theorem 19, we have by proposition 40(iii) a complex F' € Cp(PY x S)
such that ismeaM = F ~ F € Dp (PN x S) and each F" is a direct summand of a free Dpn g module
of finite rank. The theorem now follows from the fact that fp Dpnyg ~ Dg[—N] and the fact that

(DS)II’H, = DSan. D
We also have

Definition 72. (i) Let f : X — S a morphism with X,S € SmVar(C) or with X, S € AnSm(C). We
have, for M, N € Cpsu(X), the canonical transformation map in Dp fi1 00 (S)

TP (f,hom)((M, F),(N,F)) : Rf.RHoms-ps((M,F), (N, F)) —
TO(f,hom)(E(~),E(-))

Rf.RHomp, ((M,F)®py Lp(Dx«s,F”%),(N,F)®py Lp(Dx«s,F’?)
RHome (Rf*((M, F) X Dx LD(DX<—57 Ford))v Rf*((N7 F) ®Dx LD(DX<—57 Ford))) =

RHomDX(/f(M,F),/f(N,F))

(i) Let f : X — S a morphism with X, S € AnSm(C). We have, for (M, F),(N,F) € Cpsy(X), the
canonical transformation map in Dp ri,c0(S)
TP (fi,hom)((M, F), (N, F)) : Rf.Homy-ps (M, F), (N, F)) -
) T°(f1,hom)(E(—=),E(—))

Rf.Homp, (M,F)®py Lp(Dxs,F),(N,F) ®@py Lp(Dxeg, F
RHOmDX (Rf’((Mu F) ®DX LD(DX<—57FOTd))7Rf!((N7 F) ®DX LD(DX&SuFOTd))) =

RHome(/ﬂ(M, F),/ﬂ(N, F))

Definition 73. Let f: X — S a morphism with X,S € SmVar(C) or with X, S € AnSm(C). We have,
for (M, F),(N,F) € Cpsu(S), the canonical transformation map in Cpiy(X)

TP(f, hom)((M, F), (N, F)) : f*Homp, (M, F), (N, F))
T o (MEVNEY, 40 (M, F), (f*(N, F))
)

)

— Hompy (f*(M,F)®¢-pg Li+p(Dx s, F), f*(N,F) @ pg L D(DX%S;FOTd
_:_> HomDX (f*mOd(M, F) *mod(N F

which is the one given by Kashiwara (see [19]).

In the algebraic case, we have, in the non filtered case, the six functor formalism for holonomic
D-modules :

Theorem 21. Let f : X — S a morphism with X, S € SmVar(C).
(i) We have, for M € Dp ;(X) and N € Dp 1,(S) a canonical isomorphism in Dp(S)
JPmod(, prmedl=] / )(M,N) : Rf.RHomp, (Lf*™U=IN, M) = RHomp, (N, / M).
! f

(ii) We have, for M € Dp p(X) and N € Dp (S) a canonical isomorphism in Dp(X)

JPmed( / , Lfmod=0 (M N) : RMompy ([ M,N) = Rf.RHompg (M, Lf™4-IN).
1! f!

162



Proof. Follows from the projection case and the closed embedding case. O
Corollary 2. Let f: X — S a morphism with X, S € SmVar(C). Then,
(L frmodl-] fj : Dp n(S) = Dp n(X) is a pair of adjoint functors.
(ff!’ Lf*medl=]) . Dp 1,(S) — Dp u(X) is a pair of adjoint functors.
Proof. Follows immediately from theorem 21 by taking global sections. O

Consider a commutative diagram in SmVar(C),

D= X —=T .

X——==5

We have, for M € Cp ,(X), the following transformation maps

: ad(Lf el fL)(-)
Tleod(D)(M) . Lg*mod[—]/M ff /

’

'smod[— *mod[— ad(Lf;mOd[i]’f (M) "%mod|—
/f, LgFDR[ ]Lf 4 ]/fM ! P LgFDR[ M

Lf'%mod[—]Lg%mod[—] /fM =

and

/ ad( [, Lf* ™M) (=) / =
T2Dmod(D)(]\47 F) . /f” Lg *mod[f]M ffA /f” Lg *mod[f]LJc*mod[f] ] M =

a "sxmod[—]y(_ FDR
d(ff/vaf )(=) Lg*mod[f] / M
f

/ Lf’*mod[f]Lg*mod[f]M
fr J!

Proposition 77. Consider a cartesian square in SmVar(C)

’

D= Xp—21-X
f'l lf
T——S5
Assume that f (and hence f') is proper. Then, for (M, F) € Dp2)fit,c0,n(X),
o TPmed(f,g)(M) : Lg*modl=] [ M = [, Lg*mod=IM and
o TP (f,9)(M) =[5, Ly IM =5 Lgrmodt [ M
are isomorphisms in Dp(T).
Proof. Follows from proposition 74 and the fact that the map TP™°%(f, g)(M) is given by the composite

mo ¥mo *1M,.0 T(fe,f1)(—

TP £, ) (M)ldr = ds] : L™ [ (M. F) = LD Lg D [ ar ZEDO,
f !

(LD TP™0%(f,9)(Dx M)~

LDy Lg*™ed / LDxM
f

T(f,f)(=) / LDXTLg’%modDX (]\47 F) — / Lg’%modM

’

DT/ Lg'*modDXM
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and the map TP™°4(f, g)(M, F) is given by the composite

. d(—)OT(.f*;f!)(_)
TP g) 0oy —as]: [ —

, Dmod -1
/ Lg *mOdM % L]D)TLg*mOd/ LD)(M = Lg*mOd(M, F) M
, ! 7

Lg/*modM _ LDT/ ID)XT Lg/*modM

’

O

4.3 The D modules on singular algebraic varieties and singular complex an-
alytic spaces

In this subsection by defining the category of complexes of filtered D-modules in the singular case and
there functorialities.

4.3.1 Definition

In all this subsection, we fix the notations:

e For S € Var(C), we denote by S = U;S; an open cover such that there exits closed embeddings
i;S; < S; with S; € SmVar(C). We have then closed embeddings iy : Sy := Nie1S; — St = 1Lics Sy
Then for I C J, we denote by jr; : S; < St the open embedding and p; : S; — S the projection,
so that pyyoiy =iy 0 jr;. This gives the diagram of algebraic varieties (S7) € Fun(P(N), Var(C))
which gives the diagram of sites (S;) := Ouv(S;) € Fun(P(N),Cat). For I C .J, we denote by
m : S;\(S7\Ss) < S; the open embedding.

e For S € AnSp(C) we denote by S = U;S; an open cover such that there exist closed embeddings i; :
S; < S; with S; € AnSm(C). We have then closed embeddings iy : S; = N1 S; — Sp = erSr.
Then for I C J, we denote by jr; : S; < St the open embedding and p; : S; — S the projection,
so that pyyoiy =iy ojrs. This gives the diagram of analytic spaces (S;) € Fun(P(N), AnSp(C))
which gives the diagram of sites (S;) := Ouv(S;) € Fun(P(N),Cat). For I C J, we denote by
m : S;\(S7\Ss) < S; the open embedding.

The first definition is from [27] remark 2.1.20, where we give a shifted version to have compatibility
with perverse sheaves.

Definition 74. Let S € Var(C) and let S = U;S; an open cover such that there exist closed embeddings
i;S; < S; with S; € SmVar(C) ; or let S € AnSp(C) and let S = U;S; an open cover such that there exit
closed embeddings i; : S; — S; with S; € AnSm(C). Then, PShD(g)ﬁl(S/(S'])) C PShD(Q)fil((S’])) is the
full subcategory

e whose objects are (M, F) = (M1, F)icp,..q), S1.7), with

- (M, F) e PSh'D(g)fi[(S’]) such that Ts, M1 = 0, in particular (Mg, F') € PShp(2)fi,s, (S1)

— srg :m* (M, F) = m*pjj*(MJ,F)[dgl — dg‘]] for I C J, are isomorphisms, pry : Sy — Sr
being the projection, satisfying for I C J C K, prj«Sjx © S1J = SIK ;

e the morphisms m : (M,F) — (N,F) between (M,F) = (M, F)rcp,..qp»515) and (N, F) =
((N1, F)1cp,..qp,m17) are by definition a family of morphisms of complexes,

m = (my: (M7, F) = (N1, F))icp,..q

such that r1y omy = pry.myosry in Cp.s,(Sy).
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We denote by 3 ~ ~
Holp(2)7i(S/(S1)) C Cohp(2)71(S/(Sr)) C PShpa)£i(S/(Sr))

the full subcategory consisting of (Mg, F), syry) such that My is coherent, resp. holonomic. We have the
full subcategories

Holpr,0)7u(S/(S1)) € Holpasiu(S/(S1)), PShp0)5a(S/(Sr)) C PShpzsia(S/(St))
consisting of ((My, F, W), s1;) such that WP My are Dg, submodules.

A morphism m = (mg) : (My),s1;) — ((N7),r7s) in C(PShp(S/(S;))) is a Zariski, resp. usu,
local equivalence if all the m; are Zariski, resp. usu, local equivalences. A morphism m = (mj) :
((My,F),s15 — (N1, F),rry)) in C’(PShD(g)M(S/(S‘I})) is an r-filtered Zariski, resp. usu, local equiva-
lence if all the m; are r-filtered Zariski, resp. usu, local equivalence.

Let S € Var(C) or S € AnSp(C).

e If S € Var(C), let S = U!_,S; an open cover such that there exist closed embeddings 4; : S; < S;
with S; € SmVar(C), and let S = U, #—197 an other open cover such that there exist closed
embeddings i;s : Sy — Sy with S; € SmVar((C)

o If S € AnSp((C) let S = UL_,S; an open cover such that there exist closed embeddings i; : S; <
S; with S; € AnSm(C), and let S = UL _, Sy an other open cover such that there exist closed
embeddings iy : Sy — Sy with S € AnSm(C).

Denote L =[1,...,I], L' =[1,..., U] and L” :=[1,...,]JU[1,...,l']. We have then the refined open cover
S = Urer Sk and we denote for II_II’ cL”, Sjup = ﬂkgupSk and S = erju[/Sk, so that we have
a closed embedding i;,1/ : Sfup — S]u[/ FOI‘ Turl’ c JuJ’, denote by Prur,juJg: - S]uj/ — S]u[/ the
projection. We then have a natural transfer map

T§/L : PShpii(S/(S1)) = PShpra(S/(Sr)),
((M;,F),s15) — (ho }ieHLlpI’(IuI’)*(p??}&dp)(MIa F))/Zs, . 510),

with, in the homotopy limit, the natural transition morphisms

pr (o a7 prr ) 0 e (M, F))
smod|—
PI/(JuI/)*(PJ(JUEI)](MJ, F))/Zs, _>pI’(IuI’)*(p](]uI[/)](MlaF))/ISMI/

for J C I, and

spgs : holimrer, m pI’(IuI’)*(p]Zu][/)](Mla F)/ZLs, ) —

holimyer, pI/J/*(ppJ/d[ ]m pl/(IuI’)*pIZZd[[/;]((MIaF)/ISIuI/»/ISJ/
. *mod[—
— holimzer prr«Dyr (1.7)« (p]([u}/)](Mlu F)Is, .)

Definition-Proposition 15. Let S € Var(C) and let S = U;S; an open cover such that there exist closed
embeddings i;S; — S; with S; € SmVar(C) ; or let S € AnSp(C) and let S = U;S; an open cover such

that there exist closed embeddings i;S; — S; with S; € AnSm(C). Then PSh'D(Q)fil(S/(S’])) does not
depend on the open covering of S and the closed embeddings and we set

PShp(a)7i1(S) := PShp(a)ra(S/(Sr))

We denote by C @ pa(S) = C(PShD(g)ﬁl(S/(S’I))) and by DD(2)le(S) = HOF”OP(C%(Q”’H(S)) its
localization with respect to r-filtered Zariski, resp. usu, local equivalences.
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Proof. It is obvious that TSL/LI : PShpfi(S/(Sr)) = PShp(S/(Sr+)) is an equivalence of category with
inverse T4 /% - PShp 1(S/(51:)) — PShp(S/(Sr)). O

We now give the definition of our category :

Definition 75. Let S € Var(C) and let S = U;S; an open cover such that there exist closed embeddings
i; : Si < S; with S; € SmVar(C) ; or let S € AnSp(C) and let S = U;S; an open cover such that there

exist closed embeddings i; - S; — S; with S; € AnSm(C). Then, CD(Q)I'Z-Z(S/(S’I)) C CD(Q)I'Z-Z((S’I)) is the
full subcategory

e whose objects are (M, F) = (M1, F)cp,..q), urg), with

— (M1, F) € Cpair,s; (S1) (see definition 55),
—ury:m* (M, F)— m*pjj*(MJ,F)[dSI — dg‘]] for J C I, are morphisms, pry: S; — Si being
the projection, satisfying for I C J C K, prj*ujk oury = urg in ODfil(g[) ;
e the morphisms m : (Mg, F),ur;) — ((Nr,F),vry) between (M, F) = (Mg, F)rcp,...qp, urs) and
(N,F) = ((N1, F)rcp,..qp,v17) being a family of morphisms of complexes,
m = (my: (M, F) = (N1, F))icp,

such that vy omr = prj«myoury in C’Dfil(gj).

We denote by 05(2)fil(S/(S’])) C C’D(g)fi[(S/(g[)) the full subcategory consisting of objects (M, F),ury)

such that the uyy are co-filtered Zariski, resp. usu, local equivalences.

Let S € Var(C) and let S = U;S; an open cover such that there exist closed embeddings i; : S; — 5‘1
with S; € SmVar(C) ; or let S € AnSp(C) and let S = U;S; an open cover such that there exist closed
embeddings i, : S; — S; with .S; € AnSm(C). Then, We denote by

Cg(z)fil,h(s/(gl)) C Cg(z)fiz,c(s/(gl)) C Og(z)fu(s/(gl))

the full subcategories consisting of those (M7, F'), urs) € C5 ) 1y (S/(Sr)) such that (M;, F) € CD(Q)filysbc(S’I),
that is such that a, H" M are coherent for all n € Z and all I C [1,---1]. resp. such that (M, F) €
Cp(2)fil,5;,h(S1), that is such that a, H" My are holonomic for all n € Z and all I C [1,---1].. We denote

by R R } )
5(1,0)j’iz(5/(51)) C Cpayu(S/(S1)), 5(1,0)fil,h(5/(51)) C Cpaypiun(S/(S1))

the full subcategories consisting of those ((My, F,W),ury) € Cngil(S/(S'])) such that WPM; are Dg,
submodules (resp. and a, H" M| holonomic).

A morphism m = (my) : (M), urs) — ((N7),vr5) in Cp(S/(Sy)) is a Zariski, resp. usu, local equiv-
alence if all the m; are Zariski, resp. usu, local equivalence. A morphism m = (my) : (M, F),ur; —
((Ng, F),vry)) in CD(Q)fil(S/(S'I)) is an r-filtered Zariski, resp. usu, local equivalence if all the m; are
r-filtered Zariski, resp. usu, local equivalence.

In the analytic case, we also define in the same way :

Definition 76. Let S € AnSp(C) and let S = U;S; an open cover such that there exist closed embeddings
i Si — S; with S; € AnSm(C). Then, Cpeo(2)£:1(S/(S1)) C Cpee(2)7i((S1)) is the full subcategory

e whose objects are (M, F) = ((Mr, F)icp,..q), urg), with

— (My,F) € Cpeir.s,(S1) (see definition 56),

—ury:m* (M, F)— m*pjj*(M[,F)[dSI —dg‘]], for J C I, are morphisms, pry: Sy — S; being
the projection, satisfying for I C J C K, prj«ujk oury = urg in C’Doofi[(gj) ;
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e the morphisms m : (Mg, F),ur;) — ((Nr,F),vry) between (M, F) = (Mg, F)rcp,...qp urs) and
(N, F) = ((N1, F)rcp,..q1,v17) being a family of morphisms of complexes,

m = (mr: (M, F) = (N1, F))1c,..
such that vry omy = prj«myoury in CDmfil(g[).

We denote by C’gw(Q)fil(S/(S'j)) C ODOO(Q)fil(S/(S’])) the full subcategory consisting of objects (M, F),ury)
such that the ur; are co-filtered usu local equivalence.

Let S € AnSp(C) and let S = U;S; an open cover such that there exist closed embeddings i; : S; < S;
with S; € AnSm(C). We denote by

Cpoe () £itn(S/(S1)) C O () i1, (S/(51)) C Con 2y 7 (S/(S1))

the full subcategories consisting of (M, F),ury) € Cgoo@)fil(S/(S’I)) such that (M, F) € C’Doo(g)fil’SIﬁ(g]),
that is such that a,.H" M| are coherent for all n € Z and all I C [1,---1], resp. such that (M, F) €
Cpeo(2)fit, s, (S1), that is such that a, H" M} are holonomic for all n € Z and all I C [1,---1]. We denote

by
05”(170)fil(s/(31)) C Cg”Zfz'l(S/(Sl))v ng(l,o)fil,h(s/(sl)) C Cgoozfil,h(s/(sf))

the full subcategories consisting of those ((My, F,W),ury) € Cg2fil(8/(§1)) such that WPM; are Dg,
submodules (resp. and a, H™ M| holonomic).

A morphism m = (mz) : (M7),urs) = ((N7),vrs) in Cpe(S/(S1)) is said to an usu local equivalence
if all the my are usu local equivalences. A morphism m = (my) : (M7, F),ury — (N1, F),vr;))
in Cpeea)fit(S/ (Sr)) is said to an r-filtered usu local equivalence if all the m; are r-filtered usu local
equivalences.

Definition 77. Let S € Var(C) and let S = U;S; an open cover such that there exist closed embeddings
i; + Si = S; with S; € SmVar(C) jorletSe AnSp(C) and let S = U;S; an open cover such that there
exist closed embeddings i; : S; — S; with S; € AnSm(C). We denote by

DD(2)fil,OO (S/(S’I)) = HOFOO,tOp(CE(Q)fil (S/(g[)))
the localizations with respect to oco-filtered Zariski, resp. usu, local equivalences. We have
DD(LO)fil,oo,h(S/(gl)) C Dpafiteon(S/(S1)) € Dpagireo(S/(S1))

the full subcategories which are the image of Cpayin(S/(Sr)), resp. of CD(170)ﬁl7h(S/(S’1)), by the local-
ization functor D(top) : CFg) 14 (S/(S1)) = Dp(2)fit,e0 (5/(S1))-

In the analytic case, we also have

Definition 78. Let S € AnSp(C) and let S = U;S; an open cover such that there exist closed embeddings
;0 S; = S; with S; € AnSm(C). We denote by

Dpeo(2) fit,o0 (S/(S1)) 1= Hopriop(Chee (21 (S/(S1)))

the localizations with respect to usu local equivalence. We have then
Do (1,0 fit,00.1(S/(S1)) € Dpseafit,oon(S/(S1)) C Dpesafitn(S/(S1))

the full subcategories wich are the image of Cpsagi,n(S/(S1)), resp. Cpo(1,0)pit.n(S/(Sr)), by the local-
ization functor D(usu) : Cpe o) 14 (S/(S1)) = Dpec(2) fit,00 (S/ (51)).-
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Definition 79. Let S € Var(C) and let S = U;S; an open cover such that there exist closed embeddings
;S; — Si with S; € SmVar(C). Or let S € AnSp(C) and let S = U;S; an open cover such that there
exist closed embeddings i;S; — S; with S; € AnSm(C).

(i) We denote by 3 .
Cp(2)7a(S/(51))° € Cpay 7 (S/(S1))
the full subcategory consisting of (Mg, F),ury) € OD(Q)fil(S/(S’])) such that

H™((M;, F),ury) = (H*(M;,F), H"urs) € PSh 974 (S/(S1))

that is such that the H"uyy are isomorphism. We denote by DD(Q)I'H(S/(S’I))O := D(top) (CD(Q)I'Z-Z(S/(S'I))O)
its image by the localization functor.

(ii) We have the full embedding functor
151 ¢ Opra(S) = Cpay7a(S/(51)) = Cp o) 7a(S/(51)),
(Mp, F),s1) = (M1, F),s1)
By definition, Lg/(gl)(C%(l,o)fil(s/(gf))) C Cg(l,o)fil(s/(gl))' This full embedding induces in the

derived category the functor

%5 D fitee(S) = Do) 00 (5/(S1)) = Dy fit,e (S/(51)),
(M7, F),s15) = (M1, F),s17).

Proposition 78. Let S € Var(C) and let S = U;S; an open cover such that there exist closed embeddings
;S; — Si with S; € SmVar(C). Or let S € AnSp(C) and let S = U;S; an open cover such that there
exist closed embeddings i;S; — S; with S; € AnSm(C). Then,

Lg/(gl) : DOD(z)fu,oo(S) — DD(Z)fil,oo(S/(g[))

is a full embedding whose image is D’D(2)fil)oo(s/(s’]))0, that is consists of (My, F), s1y) € OD(Q)fil(S/(g[>)
such that R
H™((My,F),s15) == (H"(M, F),H"(s1)) € PShi,(S/(Sr)).

and
L?S‘ = L?;/(SVI) : DOD(z)fz'l,oo(S> = DD(2)fil,oo(S/(g1))O
the induced equivalence of categories.
Proof. Standard. O
We finish this subsection by the statement a result of kashiwara in the singular case.

Definition 80. Let S € AnSp(C) and S = UL_, i an open cover such that there exist closed embeddings
i; 2 S; — S; with S; € AnSm((C)

(i) We denote by ) ) .
Cp(1,0)fit,rh(S/(S1)) C Cparirn(S/(Sr)) C Cparia,n(S/(Sr))

the full subcategories consisting of (M, F,W),ury) € CD(Q)fil(S/(S'I)) such that aysy H" M are
regular holonomic, resp. and WP My are Dg, submodules. We denote by

Dp1,0)fit,00,r0(S) C Dpagitco,rn(S) € Dpafit,con(S)
the image of OD(l)O)fil)rh(S/(S’])), resp. Cpagirrn(S/(S1)), by the localization functor D(usu) :
ey ya(8/(51)) = Doy S/(51).
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(i) We will consider the functor

Js : Cpyra(S/(S1)) = Cpeo(2)7u(S/(S1)),
(My, F)yurg) = Js((Mp, F),ury) == (Jg, (M1, F), J(ury)) == (M1 ®ps DS, F), J(ury))

with, denoting for short dry :==dg —dg,,

J(ur, T, S (—
Jurs) s J01 ) 28205 10, (M, F)ldy]) L2200,

Of course Js(Cp1,0)1(S/(S1))) C Cpee(1,0)4(S/(S1))-

Proposition 79. Let S € AnSp(C) and S = UL_,S; an open cover such that there ezist closed embeddings
;0 S; = S; with S; € AnSm(C). Then the functor

Js : Cpaypa(S/(S1)) = Cpe(2y5a(S/(Sr),

pro«d (My, F)[drs].

satisfy Js : Cg(Q)fil(S’/(S'I)) C Cgoo@)fil(S’/(S'I)) and induces an equivalence of category
Js : D) fit,eorn(S/(S1)) = Dpoe (@) fit,00n(S/(S1)).

and Js(Dp1,0)fit,co,rn (S/(S1)) © Dpsein (1,0 fit, 0 (S/(S1)).

Proof. Follows immediately from the smooth case (proposition 41). O

4.3.2 Duality in the singular case
The definition of Saito’s category comes with a dual functor :

Definition 81. Let S € Var(C) and let S = US; an open cover such that there exist closed embeddings
i+ Si = S; with S; € SmVar(C) ; or let S € AnSp(C) and S = US; an open cover such that there exist
closed embedding i; : S; < S; with S; € AnSm(C). We have the dual functor :

D§ : OODfil(S/(gl)) — C%fil(s/(gf))v (M7, F),s15) — (ng (M, F),s%,),
with, denoting for short dry :=dg, —dg,,

D" (s7;) T, (prs,D)(—
(I ng (M, F) — Dé{le*(MJa F)drs] L D)), pIJ*Dg] (M, F)[drs]

It induces in the derived category the functor
LD§ : Dp1a(S/(S1)) = Dippaa(S/(S1), (M1, F),s15) = DEQ((Mi, F), 515),
with ¢ : Q((My, F),s15) = (M1, F),s15) a projective resolution.
In the analytic case we also define

Definition 82. Let S € AnSp(C) and S = US; an open cover such that there exist closed embedding
;0 S; = S; with S; € AnSm(C). We have the dual functor :

D™ : Opeir(S/ (1)) = Cpoega(S/(S1))s (M1, F),ury) = (D5 % (M1, F), uf,),
with u% defined similarly as in definition 81. It induces in the derived category the functor
DG : Do a(S/(S1)) = Do a(S/(S1)), (M1, F),urg) = (DS Q((Mr, F), ufj),

with g : Q((M1, F), s1y) = (M1, F),s15) a projective resolution.
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4.3.3 Inverse image in the singular case

We give in this subsection the inverse image functors between our categories.

Let n : S° < S be an open embedding with S € Var(C) and let S = U;S; an open cover such that
there exist closed embeddings i; : S; < S; with S; € SmVar(C) ; or let n : S° < S be an open embedding
with S € AnSp(C) and let S = U;S; an open cover such that there exist closed embeddings i; : S; < S;
with S; € AnSm(C). Denote S¢ :=n~'(S;) = S; N S° and n; := nyse + 87 < S° the open embeddings.
Consider open embeddings 7 : S’}’ < S; such that S’}’ NSy = S¢, that is which are lift of n;. We have
the functor

n* ODfil(S/(gl)) — CDfil(So/(g?))a
(M,F) = ((M[,F),urs) — n*(M,F):= (n1)*(M, F) := (nj (M, F),n*ury)

which derive trivially.

Let f X — S be a morphism, with X, S € Var(C), such that there exist a factorization f; X KN
Y xS 25 S with Y € SmVar(C), [ a closed embedding and pg the projection, and consider S = ut_,S; an
open cover such that there exist closed embeddings i; : S; < S;, with S; € SmVar(C) ; or let f X =S

be a morphism, with X, S € AnSp(C), such that there exist a factorization f;X Ly xS 5 S with

Y € AnSm(C), I a closed embedding and ps the projection and consider S = ut_,S; an open cover

such that there exist closed embeddings i; : S; < S;, with S; € AnSm(C). Then, X = U._, X; with
X; := f~1(S;). Denote by prs:S; — S; and Py Y x S; — Y x S} the projections and by

E[J: g]\SJng ,E}JZ YXS‘J\XJ YXS’J,Ef]J XJL)S’J
lpu lpr.r lp}‘, l/p'” lp'” lPIJ
5‘]\(5[\5}"):% 5'1 Y x S’]\(X]\ij):% Y x S’] Y x S’I jI—> S’I

the commutative diagrams. The (graph) inverse image functors is :

f*"wd[ Cszl(S/(SI)) = COppa(X/(Y x SI))’

(M, F) = ((My, F),ury) = fo/00 (M, F) o= (Dx, By Ny, ), £ )

with, denoting for short dy; := dg, —dg

g’

R s (7))

Tx, By pr . (M, F)[dr,))

£y gy D By (M, F)) Sy

St
Ix, E(T(p;7e%, ng)(*)fl)[dYerIJ]

E(pIJ*pngd(MJa F)ldy +drs])

*mod
— 01 lx, E(pg Sy, F)ldr).
It induces in the derived categories the functor

R0 Doy it oo (S/(S1)) = Doy pin,ee (X/ (Y % Sp)),
(M, F) = (M1, F),urg) = [0 (M F) o= (Dx, B (M1, F)), £ ).

It gives by duality the functor

Lm0 Do) pitoe (S/(S1))° = Do) fit,ee (X/ (Y x S1))°,
(M, F) = ((Mq, F),ur;) = LU0 (M, F) = LDE R LDE ™ (M, F).

where (2 : DOD(?)fil,oo(S/(gl)) =5 Do) fit,eo(S/(S1))° is the isomorphism of definition 79.
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Let f: X — S be a morphism, with X, S € AnSp(C), such that there exist a factorization f; X 4

Y xS 2% S with Y € AnSm(C), [ a closed embedding and ps the projection and consider S = Ul_ 15’ an
open cover such that there exist closed embeddings i; : S; < S;, with S; € AnSm(C). Then, X = Ul_, X;
with X; := f71(S;). We have also the functors,

f*mod[ CDOOfd(S/(SI)) — ODDszl(X/(Y X g[)),

(M, F) = (M5, F),ury) = £ (M, F) o= (D, (g (Mo, F), £ )

with, denoting for short dyy := ng — dSI’

FXIE(pgjnOd[i])(ulJ) *mod[—]
FXIE(p” pIJ*(MJaF)[dIJ])

gy D, B (Mo, F)) &

St
Lx; B(T(p75 " pg,) (=)~ ")dy +d1]

FXIE(pIJ*pngd(MJa F)ldy +dr;])
= *mod
= D, By My, F))ldr).
It induces in the derived categories, the functor

R D 9) it 00 (S/ (1)) = Doe (2) pit, o0 (X/ (Y % S1)),

(M, F) = ((My, F),urg) = RF™UE (M, F) o= (D, By My, F)), £ ),

It gives by duality the functor
Lot D (9) i1, 00 (S/(S1)” = Do 2y fin,00(X/ (Y % S1))°,
(M, F) = (My, F),ur;) = LfFmod=I0 (0 F) i= LDF R prmod =1 LK, %71 (M, F).
where (%, : DOD\,,O(2 fl.lyoo(S/(S'[)) = Dpoo(g)j'ilm(S/(S'l))O is the isomorphism of definition 79.
The following proposition are then easy :

Proposition 80. Let f : X —Y and f2 Y — S two morphism with X.,Y,S € Var(C). Assume there

exist factorizations f1: X Sy Yy 2L Y and fo: Y Y xS S withY', Y € SmVar(C), Iy,1s
closed embeddings and ps,py the projections. We hcwe then the factorization

(IgoIy1)oly
_—

foofi: X Y/ xY" xS 258,

We have, for (M, F) € Og(QW(S/(S*,)), R(fs 0 f1)med=10 (M, F) = Rf;mod -1.r Rf*mod[ (M, F).

Proof. Follows from the the fact that for (M, F) = (M, F),urs) € Cg 5 fil(S/(S’I)),

(Cx, B0y, B g, ), o0 e ) =
(Cx, E((fir o far)*™ o) (M1, F)), (flJszl)*mOd[ luf ;)
by proposition 43(i) and the fact that X; ¢ fi;'(Y7). O

Proposition 81. Let f; : X =Y and f2 Y = S two morphism with X,Y, S € Var(C). Assume there

exist factorizations f1: X Ny Yy 2L Y and oY Y xS S withY', Y € SmVar(C), Iy, 1o
closed embeddings and ps,py the projections. We hcwe then the factorization

laol ol
Leolyr)ohy yrr oyt g P8y g,

f2 o f1 . X
We have, for (M, F) € C35)4(S/(S1)) or (M, F) € Cpu g (S/(51), R(f20 f1)mol=E (M, F) =
Rf*mod[ o Rfl*mod[ 1,r (M, F)

Proof. Similar to the proof of proposition 80. o
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4.3.4 Direct image functor in the singular case

We define the direct image functors between our category.
Let f : X — S be a morphism with X, S € Var(C), and assume there exist a factorization f : X 4
Y xS 25 8 withY € SmVar(C), | a closed embedding and ps a the projection ; or let f: X — §

be a morphism with X, S € AnSp(C), and assume there exist a factorization f : X Lyxs g
with Y € AnSm(C), [ a closed embedding and pg a the projection. Let S = U._,S; an open cover such
that there exist closed embeddings i; : S; — S; with S; € SmVar(C) ; resp. let S = ulizlsi an open
cover such that there exist closed embeddings i; : S; — S; with S; € AnSm(C). Then X = UL_ X;
with X; := f~1(S;). Denote, for I C [1,---1], S; = NiesS; and X; = Nye;X;. For I C [1,---1], denote
by S; = M;erS;, We then have, for I C [1,---1], closed embeddings i; : S; — S; and the following
commutative diagrams which are cartesian (we take Y = P™:¢ in the algebraic case)

~ Pg3 ~

fI:f|XI:XIlI—>YXSIpL>SI , Y xS, L= 8,
\ li} lil p/”J/ J/p”

~ pSI ~ ~ ng ~

Y xS ——= 57 Y xS —— 51

with ;1 l|x,, i7 = I xis, ps, and pg, are the projections and pj; = I xpr;. Then fr:= P3, Y xS; — Sy
is a lift of f; = f|x,. We define the direct image functor on our category by

Fhomi : Cpypa(X/ (Y % S1)) = Cpay 7 (5/(S1)),
((va F)7u1J> = (f[i?mljd(Mla F)a fk(uI])) = (pS’I*E(( ;/XS'I/S'I’Fb> ®OY><5‘I (va F)[dy])a fk(uI]))
with, denoting for short d;; :=dg, —dg,,

Furn)ldy] = pg, B9 5, 5, F) ®o0, 5, (M1, F))

P, E(DR(Y xS51/51)(ur1))

P5 B 5,5, Tb) @0, s Prs.(My, F)d11])
P5 . E(pr1-(%, 5,5, 1) ®o,, 5 (My, F)ld1])

— 05, B 5,5, 1) ®o, 5 (Mg, F))ldr].

TS (prs.®)(M;,F)
%

It induces in the derived categories the functor
FDR ~
/f t Dp)fit,o0(X) = Dp@fiteo(S), (M1, F),ury) — (flmaa(M1, F), f*(urs))

Let f: X — S be a morphism with X, .S € AnSp(C), and assume there exist a factorization f : X 4
Y xS 25 S with Y € AnSm(C), [ a closed embedding and pg a the projection. Let S = Ul_,S; an open
cover such that there exist closed embeddings i; : S; — S; with S; =€ AnSm(C). Then X = Uﬁlei
with X; := f71(S;). We also have the functors

FEPR  Cpooay7a(X/ (Y % S1)) = Cpee(2)7a(S/(S1)),
(M, F),urs) = (FERR, (M, F), f*(ur)) = (p5,.((2. 5, /5, o) ®o, o (Mr, F)ldy]), f*(urs))

where f*(ury)[dy] is given as above,

FDR
/ t Dpoc(2) fit,o0 (X) = Dpoe(2) fit, 00 (5),
!

(M, F),ury) v (FERR (M, F), fF(ury)) = (P35, (D3, 5,5, Fb) @0, 5, (M1, F)ldy]), f*(ur1))
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where f*(ur;)[dy] is given as above.
In the algebraic case, we have the followings:

Proposition 82. Let fi : X - Y and fo : Y —) S two morphism with X, Y, S € QPVar(C) quasi-

projective. Then there ezist factorizations f1: X -5 Y' xY 25 Y and fs Ly yr v § P55 S with
Y/ =PNo c PVN)Y” =PN2 c PV open subsets, 1,12 closed embeddings and ps,py the projections. We

have then the factorization fyo fi1: X Lzoly)olt yr oy § 255 S, Leti: S < § a closed embedding

with S = P™° C P an open subset.

fFDR(fFDR

(i) Let (M,F) € Cpaysa(X/(Y' x Y" x S)). Then, we have ff (M,F) = .

Dp2)fit,00(S/(51)).

(M, F)) in

(ii) Let (M, F) € Cp)pun(X/(Y' x Y" x 8)). Then, we have [/, = [ UL )
in Dp(2) fit,00n (S/(51))-
Proof. (i):By the smooth case : proposition 66, we have en isomorphism
FDR FDR FDR FDR FDR FDR
/ / (M, F) / / / (M. F) ;:/ (M, F).
2 Dy’ x5 Ds (f20f1)
(ii):Follows from (i). O

In the analytic case, we have the followings:

Proposition 83. Let f1 : X = Y and fo : Y — S two morphism with X,Y,S € AnSp(C) quasi-
projective. Then there exist factorizations f1 : X LY xY 25 Y and fa:Y Ly yr x 8 P55 S with
Y/ =PNe c PV Y = PNo c PN open subsets, 11,1 closed embeddings and ps, py the projections. We
have then the factorization fa o f1 : Loty ol s oy § 25, 8 Leti: S < § a closed embedding
with S = P™° C P" an open subset.

(i) Let (M, F) € Cpo(a) s (X/(Y' x Y % 8)). Then, we have Jromt (M, FY = [7 PR ([P (M, F))
in Dpes(2)fit,00 (S/(ST))-
(ii) Let (M, F) € Cpoe(a)pun(X/ (Y x V" x 8)). Then, we have [0 (M, F) = [ 7" ([;"7 (M, F))

m DD°°(2)fil,oo(S/(gI))'
Proof. (i): By the smooth case : proposition 67, we have en isomorphism
FDR FDR FDR FDR FDR FDR
/ / (M, F) / / (M, F) = (M, F) ::/ (M, F).
2 Pyrxs Ps (f20f1)

(ii):Follows from (i). O

4.3.5 Tensor product in the singular case

Let S € Var(C) and let S = US; an open cover such that there exist closed embeddings i; : S; — S; with
Si € SmVar(C) ; or let S € AnSp(C) and S = US; an open cover such that there exist closed embeddings
i; + S; = S; with S; € AnSm(C). We have the tensor product functors

(=) ®52 (=) : ChalS/(S1) = Cosa(S/(Sn)),
(M1, F),urg), (N1, F),vr0)) = (M1, F) @0, (N1, F)ldg, ], urs @ vi),
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with, denoting for short d;; :=dg, —dg, and dr := dg_,

T *mod) —)ld *1M.0
ury @ury: (Mp, F) ®og (Ni, F)ldi] Wiy ) O] pripir*(My, F) ®og, (N1, F))[di]
= PP (M1, F) ®og | i (N1, F))di]

137 1) (=, =) (ur )T (P} % p1) (=, =) (v1)[di]

pri«((My, F) ®og (Ny, F))lds + dr].

Let S € AnSp(C) and S = US; an open cover such that there exist closed embeddings i; : S; < S;
with S; € AnSm(C). We have the tensor product functors

(=) @50 (=) : Cee 11 (S/(S1)) = Cpee ga(S/(S1)),
((Mp, F),urg), (N1, F),vr)) = (M1, F) @05 (N1, F), urs @ viy),

with u;; ® vry as above.

Proposition 84. Let S € Var(C). Denote Ag : S < S x S the diagonal embedding. Let S = US; an
open cover such that there exist closed embeddings i; : S; — S‘l closed embedding with S’Z € SmVar(C) ;
or let S € AnSp(C) and S = US; an open cover such that there exist closed embedding i; : S; — S; with
S; € AnSm((C) We have, fO’l“ ((M], F), U]J), ((N[, F), 'U[J) S Cpfil(S/(S])),

(M1, F),urg) ©5) (N1, F),v10) = AF"U((My, F), urs)- (N1, F), v1))
Proof. Follows from proposition 48. O

4.3.6 The 2 functors of D modules on the category of complex algebraic varieties and on
the category of complex analytic spaces, and the transformation maps

Definition 83. Consider a commutative diagram in Var(C) which is cartesian :

Assume there exist factorizations f : X b, VixS25 8, ¢:T =N Yo xS 55 S, withY1,Ys € SmVar(C),
1,1l closed embeddings and ps, ps the projections. Then, the above commutative diagram factors through

D= f:Xp—2 syixT—T

ll; llg—lXZQ ‘/l2
1 =Ixl

X XY i R Y x Yax S 2 v, x S

lpx lpyl xS lps

fX—>-}/1><Sps—>

whose squares are cartesian. Let S = U;S; be an open cover such that there exist closed embeddings
i; 1 S; < S; with S; € SmVar((C) Then X~= U; X; and T = L{ZTl wzéh X; = f_l(Sl) and T; = f_l(Si).
Moreover, f; = fix, + Xi — Si lift to f; = pg, Y1 X S; — Si and g; = g1, Ty — Si lift to
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gi :=pg, : Y2 X S; — S;. We then have the following commutative diagram whose squares are cartesian

f/:X[Tl—/>Yl><T[pT—>T[

llél ll,z,f llﬂ
1/=Ix

l ~Py,« 3 -
X XYy =V, x Yy x §; 225y, x 55

lpx lele'I l(}[

irol ~ ~
X, irolr Yy x 8, fr 3,

We then define, for (M, F) = (Mg, F),urs) € Cp(2)ypa(X/(Y1 x S1)), the following canonical transfor-
mation map in Dpa)fit,eo(T/ (Y2 % S1)), using proposition 72,

TP (f,9)(M, F) :
FDR
Rg*mod,F (M F) — (FT E(g*mOdp~ E((Q. R Fb) Ro _ (M[ F))) g*modfk(ulj))
; s . T I Sr* Y1xSr/Sr’ Y1 xSy ’ I ’

(TS (ps, 51) (M1, F)

. *mod "k ¢, *mod
(FTIE(pY2X§I*E((QY1 ><}/2><5'1/}/2><S[7 Fb) ®OY1><Y2><S'I pY1><5'I (MI7 F)))7 f (lexf;’J (UIJ)))

(T (@) (pyred (M1, F) !

(pY2><§'I*E((Q;/1><y2><5§[/y2><5'17Fb) ®Oyl><y2><§1 FY1 XTIE(p;T;gI((MD F))))? f k(gJ*mOd(u?J)))
FDR
— / Rg *mod,F(M, F)
In the analytic case, we have

Definition 84. Consider a commutative diagram in AnSp(C) which is cartesian :

f/

T —>=

X T .
)
x—l.g

_—

D= (f,g9) =

Assume there exist factorizations [ : X LN VixSEL 8, g:T LN Yo x S 25 S, with Y1,Ys € AnSm(C),
l1,1ly closed embeddings and ps, ps the projections.
(i) We have, for (M, F) € Dp2)¢il,00,n(X/(Y1 xS1)), the following transformation map in Dp2)fit,e0(T/ (Y2 x
S51))
FDR FDR

TDmOd(f, g)((M, F)) . Rg*mOd)F‘/f (1\47 F) _ ; Rg/*mOd’F(Ma F)

define in the same way as in definition 83
(i1) fj‘or (M, F') € Dpoo(a) fit,00 (X/ (Y1 X S1)), the following transformation map in Dpos(2) fit,00 (T'/ (Yo x
S51))

FDR FDR

TDmOd(f, g)((M, F)) . Rg*mod,f‘/f (M, F) . ; Rg’*mod,F(M7 F)

is defined in the same way as in (i) : see definition 83.
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In the algebraic case, we have the following :

Proposition 85. Consider a commutative diagram in Var(C)

D=(fg)= Xp =T .

Ll

X——=S5

which is cartesian. Assume there exist factorizations f : X LR VixSEL S, g:T N Yy x 8 225 S, with
Y1,Y2 € SmVar(C), I1,ls closed embeddings and ps, ps the projections. For (M,F) = (M, F),urj) €

Cpe) it (X/ (Y x Sp)),

FDR FDR
TDmod(f7 g) . Rg*mod,l“/ (]\47 F) N Rg *mod,l‘(]\47 F)
I I
is an isomorphism in Dp(9) fi1,00(T /(Y2 x Sr)).
Proof. Similar to the proof of proposition 74: the maps
T (p3,, 90) (M1, F) : §7"p5, B 5, )5, F) @0y, s (M1, F)) =

P E(Qy 1, 7,0 Fy) @0, 917" (M1, F))

are oo-filtered Zariski local equivalences since gj : Y3 X S — S; are projections. O

Proposition 86. Consider a commutative diagram in AnSp(C)

f!

T —>

X T
)
x—1.5

_—

D:(fag):

which is cartesian. Assume that f (hence f') is proper and that there exist factorizations f : X b,

VixS 28 ¢g:T L, Yy x S 25 S, with Y1,Ys € AnSm(C), 11,1y closed embeddings and ps, ps the
projections.

(i) For (M,F) = ((My,F),ur;) € Cp@sun(X/(Y1 x Sp))

FDR FDR

TDmOd(f, g) . Rg*mod,f‘/ (M, F) N / *Rglwnod,f‘(]\47 F)
f I’
is an isomorphism in Dp () fi1,00(T/ Y2 X 5’1)
(i) For (M,F) = ((Mr,F),ur;) € Cpes(ayir.n(X/(Y1 x Sr))
FDR FDR

TDmOd(f, g) . Rg*mod,f‘/

(M,F) — / Rg ™™t (M, F)
f

/

is an isomorphism in Dpes(2)i1,00(T/ (Y2 X S1)).

Proof. (i):Similar to the proof of proposition 85.
(ii):Similar to the proof of proposition 85. O
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Definition 85. Let f : X — S be a morphism, with X, S € Var(C), such that there exist a factorization

i X Ly xS S withy ¢ SmVar(C), I a closed embedding and ps the_projection, and consider
S = UL_,S; an open cover such that there exist closed embeddings i; : S; — S;, with S; € SmVar(C) ;
Then, X = Ul_, X; with X; := f~(S;). We have, for (M,F) = ((My,F),urs) € Cp(2) 7i1(S/(Sr)), the

canonical transformation map in D'D(g)fil(Tan/(T}ln))

T an, yr)(M, F) :

f*mOd[f]’F(M, F))* .= (T, E(p ;mod[ ](M[,F)))a", (f*mOd[i]u]J)an)

(TmOd(a"xV (=) *1M,0 an smod|[—], an
o (Lren E((pg Ty, )y, prmod=lugn)

*mod a *1M.0 an *mod[— an
= (D Bpy I (Mg™, F)), f - hug) = prredEhE (g, F)e)

where the equality is obvious (see proposition 45).

Definition 86. Let f : X — S a morphism with X, S € Var(C). Assume there exist a factorization

f: X Ly xS S withy e SmVar(C), | a closed embeddmg and ps the projection. Let S =
UZ 15i be an open cover such that there exist closed embeddings i; : S; < S; closed embeddings with
S; € SmVar(C). We have, for (M, F) = (M, F),urs) € Cprua(X/Y x Sp), the following transformation
map m Dpfil(Xan/(Y X S[)an)

FDR

TDmOd(ana f)(Ma F) : (/f (Mv F))an = (pS’I* ((Q;/XS /5;  Fy ) ®OyX§I LD(MIaF)))ana (fk(u?]))an)

(TS (ps, -an) (M1, F)

FDR
(P7 . E ((Q;/XT /T ) DOy x7pyan Lp(My, F)™), f*((uf,)™)) = /an (M, )™

Theorem 22. Let f : X — S a morphism with X,S € Var(C). Assume there exist a factorization

f:X LyxSE Swithy € SmVar(C), I a closed embedding and ps the projection. Let S = ut_,S; be
an open cover such that there exist closed embeddings i; : S; — S; closed embeddings with S; € SmVar(C).
Let M € Dpyi.o(X/Y x Sp). If f is proper,

(an, f)(M /M = fan(M)‘m

is an isomorphism.
Proof. By theorem 20, T.C (pg,an)(Mr) are usu local equivalences. (]
In the analytic case, we have the following canonical transformation maps

Definition 87. Let f : X — S be a morphism, with X, S € AnSp(C), such that there exist a factorization

X Ly xS S withy e AnSm(C), I a closed embedding and ps the projection, and consider
S = UL_,Si an open cover such that there exist closed embeddings i; : S; — S;, with S; € AnSm(C) ;
Then, X = Ul_, X; with X; := f~(S;). We have, for (M,F) = ((M;,F),urs) € Cp() 7it(S/(Sr)), the
canonical transformation map in Dpee ry(T/ (TI)) obtained by the canonical maps given in definition 60
and definition 65 :

T(f,00)(M, F) : Jp(f*" !0 (M, F)) = (J5, (Dr, B(py " (M, F))), J(£ )

(T(OO7 )(_ sxmod|—

s (Pry B(Jg, (0 (MY, F))), Niy)
(T(pg,,o0)(=))
_

(FTIE( ;mod[ ]JS'I (M],F)), f*mOd[_]J(UIJ)) —. f*mOd[_]’P(JS(M7 F))
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4.4 The category of complexes of quasi-coherent sheaves whose cohomology
sheaves has a structure of D-modules

4.4.1 Definition on a smooth complex algebraic variety or smooth complex analytic space
and the functorialities

Let X € SmVar(C) or let X € AnSm(C). Recall that (see definition 50 section 4.1) Co, ru,p(X) is the
category

e whose objects (M, F) € Coy ri,p(X) are filtered complexes of presheaves of Ox modules (M, F') €
Coy rit(X) whose cohomology presheaves H™ (M, F') € PSho, rii(X) are emdowed with a structure
of filtered Dx modules for all n € Z.

e whose set of morphisms Home,, .., »(x) (M, F), (N, F)) C Home, .., (x)((M, F), (N, F)) between
(M, F),(N,F) € Coy rup(X) are the morphisms of filtered complexes of Ox modulesm : (M, F) —
(N, F) such that H"m : H*(M,F) — H"(N, F) is Dx linear, i.e. is a morphism of (filtered) Dx
modules, for all n € Z.

More generally, let h : X — S a morphism with X, S € SmVar(C) or with X,S € AnSm(C). Then,
Ch+0s fit,n=p(X) the category

e whose objects (M, F) € Chrogsi,h+p(X) are filtered complexes of presheaves of h*Og modules
(M,F) € Chogrit(X) whose cohomology presheaves H"(M,F) € PShp+ogfiu(X) are emdowed
with a structure of filtered h* Dg modules for all n € Z.

e whose set of morphisms Homg, ., ., . (x) (M, F), (N, F)) C Homg, ., ., cx)((M, F), (N, F)) be-
tween (M, F),(N,F) € Cprogrit,n=p(X) are the morphisms of filtered complexes of h* Dg modules
m: (M,F) — (N,F) such that H"m : H"(M,F) — H"(N,F) is h*Dg linear, i.e. is a morphism
of (filtered) h*Dg modules, for all n € Z.

Definition 88. Let S € SmVar(C) or S € AnSm(C). Let Z C S a closed subset. Denote by j : S\Z — S
the open complementary embedding.

(i) We denote by Cos p,z(S) C Cog,p(S) the full subcategory consisting of (M, F) € Cog p(S) such
that such that 7*H™(M,F) =0 for all n € Z.

(11) We denote by Cogfi,p,z(S) C Cogri,p(S) the full subcategory consisting of (M, F) € Cogri,p(S)
such that there exist r € N such that j*EP1(M,F) = 0 for all p,q € Z, note that by definition r
does NOT depend on p and q.

We look at functoriality

e Let S € SmVar(C) or § € AnSm(C). Let (M,F) € Cogriu,p(S). Then, the canonical morphism
q:Lo(M,F)— (M, F)in Cogru(S) being a quasi-isomorphism of Og modules, we get in a unique
way Lo(M, F) € Cogru,p(S) such that ¢ : Lo(M, F) — (M, F) is a morphism in Cogri,p(S)

e Let f: X — S be a morphism with X,.S € SmVar(C), or let f : X — S be a morphism with X, S €
AnSm(C). Let (M,F) € Cogpup(S). Then, f*™4H"(M,F) := (Ox,F,) @05 f*H"(M,F) is
canonical a filtered Dx module (see section 4.1 or 4.2). Consider the canonical surjective map
q(f) « HMf*mod(M,F) — f*modfn(M,F). Then, q(f) is an isomorphism if f is smooth. Let
h:U — S be a smooth morphism with U, S € SmVar(C), or let h: U — S be a smooth morphism
with U, S € AnSm(C). We get the functor

h*mOd : COsfil,D(S) — COUfil,D(U)a (M, F) — h*mOd(M, F),
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e Let S € SmVar(C) or S € AnSm(C), and let i : Z — S a closed embedding and denote by
j : S\Z < S the open complementary. For M € Co, p(S), the cohomology presheaves of

Tz M := Cone(ad(5*, j.)(M) : M — j,j*M)[~1]

has a canonical Dg-module structure (as j*H"M is a j*Dg module, H"j.j*M = j,.j*H™ M has an
induced structure of Dg module), and vz (M) : Tz M — M is a map in Cog p(S). For Zo C Z a
closed subset and M € Co4 p(S), T(Z2/Z,v)(M) : Tz,M — T'zM is a map in Co, p(S). We get
the functor

Iz : Cogfi,p(S) = Cosri,n(S),
(M,F)—Tz(M,F) := Cone(ad(j*, j.) (M, F)) : (M, F) — j.j" (M, F))[-1],

together we the canonical map vz (M, F) :Tz(M,F) — (M, F)

More generally, let h : Y — S a morphism with Y, .S € Var(C) or Y, S € AnSp(C), S smooth, and
let i : X — Y a closed embedding and denote by j : Y\X < Y the open complementary. For
M € Cpog,n+p(Y),

I'xM := Cone(ad(j*, j.)(M) : M — j.j*M)[—1]

has a canonical h* Dg-module structure, (as j*H™M is a j*h*Dg module, H"j,j*M = j,j*H"M
has an induced structure of j*h*Dg module), and yx (M) : Tx M — M is a map in Cp=og p<p(Y).
For X5 C X a closed subset and M € Crrog np(Y), T(Z2/Z,v)(M) : Tx,M — I'x M is a map in
Chrog.n*p(Y). We get the functor

Ix : Chogfit,hp(Y) = Chrog pit,n+p(Y),
(M, F) — PX(M, F):= Cone(ad(j*,j*)((M, F)): (M, F)— j*j*(M, F))[—l],

together we the canonical map yx (M, F) : Tx(M,F) — (M, F)

Let f : X — S be a morphism with X,S € SmVar(C), or let f : X — S be a morphism with

X, S € AnSm(C). Consider the factorization f : X Lxxsh S, where [ is the graph embedding
and p the projection. We get from the two preceding points the functor

Fobt s Cograp(S) = Cox pup(X x S), (M, F) = f*°%N (M, F) :=Txp*™*(M, F),

and

frmetT s Cog pa(S) = Cox pap(X x ), (M, F) = fmU (M, F) i= Tx E(p™ (M, F))[~dx],

which induces in the derived categories the functor

Rf*™od=I Do ip(S) = Doy pup(X x S), (M, F) — Rf*™= (M, F) .= Tx E(p*™°'} (M, F)).

For (M, F) € Cogup(S) or (M, F) € Cogsi(S), the canonical map in Co, (X x S)
ad(i*™°? i,)(=) : LoD x E(p*™°4(M, F)) = i,i*™°‘ Lol x E(p*™°4(M, F))

gives in the derived category, the canonical map in Doy rit,00(X X S)

I(f*mT) (M, F) : RfF™4C (M, F) = LoT x E(p*™ (M, F)) ad(i*™°% i) ()

i, LoD x E(p*™°Y(M, F)) = i,i*™° Lo (p*™°4(M, F)) = Lf*™°%(M, F)

where the isomorphism is given by lemma 9.
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e Let S € SmVar(C). We have the analytical functor :
(—)an : Cosfihp(s’) — Cosfil’D(San), (M, F) — (M, F)an = anngd(M, F) = (M, F)®an’§ OSOSM
which induces in the derived category

(—)* : Dogga,p(S) = Dogru,p(S™™), (M, F) — (M, F)* := ang"*(M, F))

*mod

since ang™° is an exact functor.

We have, for f: T — S with TS € SmVar(C) or with T, S € AnSm(C), the commutative diagrams
of functors

Cpri(S) —2> Copun(S) . Dprir(S) —=> Dosip.r(S)
lf*mod[],l‘ \Lf*wnod[],r‘ lRf*mod[],F lRf*mod[],F
Cpra(T) 2 Coyrup(T) Dpysir(T) s Doyipr(T)

where og and or are the forgetfull functors.
4.4.2 Definition on a singular complex algebraic variety or singular complex analytic space
and the functorialities

Definition 89. Let S € Var(C) and let S = U;S; an open cover such that there exist closed embeddings
i; + Si = S; with S; € SmVar(C) jorletSe AnSp(C) and let S = U;S; an_open cover such that there
exist closed embeddings i; : S; — S; with S; € AnSm(C). Then, Cosu,n(S/(S1)) is the category

e whose objects are (M, F) = (M1, F)cp,..q), urg), with

- (MI7F) S COSIfil'D,SI (gl);
—ury :m*(M;, F) — m*p[J*(MJ,F)[dSJ —dg}] for J C I, are morphisms, pry : S; — Sy being
the projection, satisfying for I C J C K, prj«ujk oury = urg in COSIlfiLD(S’[) ;
e whose morphisms m : (My, F),ur;) = ((Nr, F),v1y) between (M, F) = (M1, F)icp,..qp, urs) and
(N, F) = ((N1, F)rcp,..q1,v17) are a family of morphisms of complezes,
m = (my: (M7, F) = (N1, F))icp,..q

such that vry omy = prj«myoury in COSIf,L'LD(S]).

We denote by C’vail’D(S/(S'I)) C Corup(S/(Sr)) the full subcategory consisting of objects (M, F), urs)

such that the uyy are oo-filtered Zariski, resp. usu, local equivalences,and
Doyi1 D00 (S/(51)) = Hot oo CG 1. p(S/(S1))
the derived category.

Let f : X — S be a morphism, with X, S € Var(C), such that there exist a factorization f;X KN

Y xS 2% S with Y € SmVar(C), [ a closed embedding and pg the projection, and consider S = Ut_,S; an
open cover such that there exist closed embeddings i; : S; < S;, with S; € SmVar(C) ;orlet f: X — S

be a morphism, with X, S € AnSp(C), such that there exist a factorization f;X Ly x 825 S with
Y € AnSm(C), I a closed embedding and pg the projection and consider S = UL_;S; an open cover
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such that there exist closed embeddings i; : S; — Si, with S; € énSm(C). Then, X = UL_, X; with
X; == f~1(S;). Denote by pr;: S; — Sy and pj; : Y x Sy — Y x S the projections and by

Ery=  S;)\S;,—2L -3, | Ej; = Y xS)\Xy v x Sy, Efrg Xy LA Sy
lpu lpu lp’” lp'” lP}J lp”

~ —m ~ ~ m’=m/, ~ =~ f &

S[\(S]\ST)L>S[ YXS]\(X[\XJ)#-YXS] Y xSt LS St

the commutative diagrams. We then have the filtered De Rham the inverse image functor :
frmot=lT s Corap(S/(Sh)) = Cosap(X/(Y x Sr)), (M,F) = (M5, F),ur;) =

JrmetE M, ) = (o, By (g, ), S5 )
with, denoting for short dy; := d§J —dg

I

R N (7))

£ gy T B (Mg, ) T, By prs.(My, F)ld1))

S
Ix, E(T(Pi}”"dvpgl)(*)71)[dy+d1.7]

U, E(py 705" (M, F)[dy + di7])
= smod|[—
= P Dx, By ) (M, F)ld),
It induces in the derived categories, the functor

Rf*mOd[i]’F : DOfil,D,oo(S/(S’I) — DOfil,D,oo(X/(Y X gl))a
(M,F) = ((Mr,F),ury) —
Rf*mOd[_]’F — f*WOd[—],F(M7 F) — (I—\XIE(pngnod[*] (Mla F)), f;mod[*]ulj)_

By definition, for f : T — S with 7,8 € QPVar(C) or with 7,5 € AnSp(C)?F, after considering a

factorization f : T Ly xS SwithY € SmVar(C), [ a closed embedding and pg the projection, the
commutative diagrams of functors

Cpyra(S/(Sr)) %~ Cosup(S/(S1)) . Dpsus(S/(S1) ——— Doga,p,(S/(S1))
lf*mod[],l" lf*mod[],l" lle*mod[],F lle*mod[],F

Cpsa(T/(Y x S1)) —= Cosap(T/(Y x S1))  Dpjiee(T/(Y % 81)) —> Dogup.(T/(Y x 5r))

where og and or are the forgetful functors.
Let f : X — S be a morphism, with X, S € Var(C), such that there exist a factorization f; X LN
Y xS 25 S with Y € SmVar(C), I a closed embedding and pg the projection, and consider S = ut_,S;
an open cover such that there exist closed embeddings 4; : S; < S;, with S; € SmVar(C) ; Then,
X = Uélei with X; := fﬁl(Si). We have, for (M,F) = ((M[,F),U],]) € CofiLD(S/(S[))v, the
canonical transformation map in Doy p (T /(T5"))Y
7™ an,yp) (M, F) :
f*mod[_]’F(M, F))an — ((FTIE(p*STOd[*] (Mla F)))an7 (f*mod[_]ulJ)an)

(T (anyry ) (-))

*mod|— an *mod|—]|, an
(Crgn B((p" (M, )™, frmodlugs)

= *mod[— an *mod|[—], an smod|[— an
— (FT?”E(pS’I [ ](MI aF))af d[ ]UIJ) = f d[ ]I((MvF) )

where the equality is obvious.
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5 The category of mixed Hodge modules on complex algebraic
varieties and complex analytic sapces and the functorialities

For S € Top a topological space endowed with a stratification S = I_Ig:1 Sk, by locally closed subsets Sy, to-
gether with the perversity p(Sk), we denote by P(S, W) C Dy;(S) the category of filtered perverse sheaves
of abelian groups. For a locally compact (hence Hausdorf) topological space, we denote by D.(S) C D(S)
the full subcategory of complexes of presheaves whose cohomology sheaves are constructible.

5.1 The De Rahm functor for D modules on a complex analytic space
Let S € AnSm(C). Recall we have the dual functor
Ds : C(S) = O(S), K s Dg(K) := Hom(K, B(Zs))
which induces the functor
LDg : D(S) — D(S), K v LDg(K) := Dg(LK) := Hom(LK, E,(Zs)).
Let S € AnSm(C).

e The functor
M € PShp(S) — DR(S)(M) := Q% ®os M € Cey(S)

which sends a Dg module to its De Rham complex (see section 4) induces, after shifting by dg
in order to send holonomic module (degree zero) to perverse sheaves, in the derived category the
functor

DR(S)!): Dp(S) = Dey(S), M
DR(S)[i] (M) = DR(S)(M)[ds] = Q; ®og M[ds] ~ Kg ®%)s M ~ 'HomDS (DsLDM, E(Os))[ds]

and, by functoriality, the functor
DR(S)™): Dpogit,eo(S) = Deg fit,oo(S),
(M, W) = DR(S)H M, W) := (9%, Fy) ®0s (M, W)[ds] = Ks ®p, (M, W)

e On the other hand, we have the functor
Ccs(S) = Cpe(5), K — Homeg(LeDs(LK), E(Og))[—ds]
together with, for K € Cc,(5), the canonical map
s(K) : K — DR(S)7)(Jg " Home (Le(DsLK), E(Os))[—ds])

— Homp, (DE LpJg "Home, (Le(DsLK), E(Os)), E(Og)),
c € T'(S% L(K)) — s(K)(c) = (¢ € (8%, LpHom(Lc(K), E(Os))) = ¢(c))

where S°° C §° C S are open subsets.

The main result is Riemann-Hilbert equivalence :
Theorem 23. Let S € AnSm(C).

(i) The functor Js : Dp 1(S) = Dpes p(S) is an equivalence of category. Moreover, for K € C(S5),
we have Hom(L(K), E(Og)) € Cpe= (95).
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(ii) The restriction of the De Rahm functor to the full subcategory Dp 1 (S) C Dp(S) is an equivalence
of category
DR(S)™): Dp () = Deg o(S)

whose inverse is the functor
K € Cey o(S) = J~ Homey (DsL(K), E(Os))[—ds],
the map s(K) : K = DR(S)7/(J"Home, (LeDsL(K), E(Os))) being an isomorphism.
(iii) The De Rahm functor DR(S)!=) sends regular holonomic modules to perverse sheaves.
Proof. See [18]. O
Let S € AnSp(C) and S = UézlSi an open cover such that there exists closed embeddings i; : S; < S;.
e The De Rham functor is in this case
DR(S) 2 Dpoit,eo(S) = Degfitoo(S), M = (My, W), ury)
DR(S)/(M, W) := (DR(S)" (M1, W), DRU (ury)) := (Q, ®o,, (M1, W), DR (uz))
with, denoting for short d; = dg,
DR (uy) : 0 ®og, (M, W)[di] ey i), P1+P1s8%, ®os (M1, W)ldi]

Prr«Q5, 5, ldr]
—

P11, ®og, D5 (M1, W)lds)

pro I35 pry)(—,—)(urs)|di]

p15:Q5, ®os (M, W)ldy + drJ]

e Considering the diagrams
Dry= S; =5

Sy LN St

we get the functor

Ceara(S) T G 1a(S/(S1)) = Coogn(S/(S1)),
(K. W) v (Home,, (LeDg, (Liraj; (K, W), B(Og,))[~dg, ], ur (K, W)

where
U]J(K, W) : Homcsl (L(c]D)glL(i[*j}k (K, W)), E(Ogl))[—dSI]

ad *mOdy - smod|— . %
ST, ey T Home, (LeDg, Llirji (K. W), E(Og, ) [~ds,

Hom(—,Eo(pry))oT (prj,hom)(—,—) % . s
PrJ [ 2% pIJ*'HOTTL(CgI (pIJLcDSIL(Z]*]I(K, W)),E(OSJ))[—ng]

Hom(T (prs,D)(=)"",—)) * .
= prisHomeg (LeDg, pryL(ir.j7 (K, W)), E(Og,))[—dg,]

Hom(LcDg , T(D1s) (j} (K, W), E(O3,,))

prssHome, (LeDg, L(iy«j;(K,W)), E(Og,))[=dg,|.
Moreover, for (K, W) € Cp;(S), we have
(Home,, (LeDg, L(irj; (K, W), E(Og,))[~ds, ], urs (K, W)) € Cp=oyin(S)"
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and a canonical map in Dy (S) = Dy (S/(Sr))
S(K) : T(S/(Sl))(K7 W) = (L(il*j;(Ku W))vl) -
DR(S)7(Jg Home, (LeDg, Lliri (K, W)), E(Og,))[~dg, ], urs (K, W))

Corollary 3. Let S € AnSp(C). Let S = U_,S; an open cover such that there exists closed embeddings
i; + Sy — S;. The restriction of the De Rahm functor to the full subcategory D%mh(S) C D%(S) is an
equivalence of category

DR(S)): DY ,1,(8) =+ Deg ()
whose inverse is the functor
K — Jg' (Home,, (LeDg, L(ir.j7 K), E(Og,))[~dg, ], urs (K))
the map
s(K) - T(S/(S0))(K, W) := (L(ir«j7 (K, W)), I) =
DR(S)I(Jg Home,, (LeDg, L(irji (K, W), E(Og,))[~dg,], urs (K, W))
being an isomorphism.
Proof. Follows from theorem 23(ii), see [27]. O

Proposition 87. (i) Let S € AnuSm(C).Then, for M € Cp .(S), there is a canonical isomorphism
T(D,DR)(M) : DSDR(S) /(M) = DR(S)=/(DE LpM)

(ii) Let S € AnSp(C). Let S = UL_,S; an open cover such that there exists closed embeddings i; : S; —
Si. Then, for M = (My,ur;) € C .(S/(S1)), there is a canonical isomorphism

T(D,DR)(M) : DSDR(S)=/ (M) = DR(S)Z/(LDE M)

Proof. (i):See [16].

(ii):Follows from (i), see [27]. O
We have the following transformation maps :
e Let g : T'— S amorphism with 7', .S € AnSm(C). We have, for (M, W) € Cpofi,c(S), the canonical

transformation map in Dy o(T) :

T(g, DR)(M, W) : g* DR(S)"/(M, W) := ¢" (2% ®oy Lp(M, W))[ds]
Qr/s(Lp(M,W))[ds]

0% ®op g Lp (M, W)[ds]
= Q% @0, ¢ Lp (M, W)[ds] =: DR(T) ) (Lg*™o=) (M, W)
Note that this transformation map is NOT an isomorphism in general. It is an isomorphism if g is

a smooth morphism. If g is a closed embedding, it is an isomorphism for M non caracteristic with
respect to g.

e Let j:.5° < S an open embedding with S € AnSm(C). We have, for (M, W) € Cpoyi1,c(5°?), the
canonical transformation map in Dy .(S) :

T.(j, DR)(M, W) : DR(S)I7)(j. (M, W)) := Q% ®0, j. (M, W)|ds]
T (5,®) (Lo (M,W))[ds]

72(Q% Q040 Lp(M, W))[ds] =: j.DR(S)!=1 (M, W)

which is an isomorphism (see proposition 72).
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e Let g : T — S a morphism with 7, S € AnSp(C). Assume there exist a factorization g : T 4
Y x S 2% S with Y € AnSm(C), I a closed embedding and ps the projection. Let S = U;S; an
open covers such that there exist closed embeddings i; : S; < S; with S; € AnSm(C). We have, for
M = (My,ury) € Cp.o(S/(Sr)), the canonical transformation map

T'(9, DR)(M) : T(T/(Y x 51))(g'DR(S) (M, W)
1

— (I, B(37 (2%, ®os, Lp(M1,W))), i DR(urs))

(Q(YxS' /8 )(LD(MIxW))) . ~ %m0 *mo
— (Tr, B, 5, ®oy, 5, 97" (M1, W)), DR(3;""u1))

(TS (v,®)(F; ™ Lo (M,W))) o *mo *mo
= : (5, ®o,. TG (M1, W), DR(G;™"u1,))

= DR(T)! /(R E (M, W)
which is an isomorphism.

Proposition 88. Let f : T — S a morphism with T, S € Var(C). Assume there exist a factorization
f:T Ly x8 2 S withy SmVar(C), I a closed embedding and ps the projection. Let S = U;S;
an open covers such that tiNLere exist closed embeddings i; : S; < S; with S; € SmVar(C). Then, for
M = (M, ury) € Cp,n(S/(S1)),
DR(T) (T (an, r)(M)) :
DR(D)FI(Rfm oI T M) o= DRT) (D, B (), (£ )mm))
— *mod|[— an *mod an *mod|— ,an

= DRD!R I (M) = DR (Lo B M), £ )
is an isomorphism.
Proof. See [16]. O

In the algebraic case, we have by proposition 88 the following canonical isomorphisms:

Definition 90. (i) Let f: T — S a morphism with T, S € Var(C). Assume there exist a factorization
f:T Ly xS 25 S withY € SmVar(C), [ a closed embedding and ps the projection. We have,

for M = (My,ur;) € Cpn(S/(S1))°, the canonical map

T'(f,DR)(M"™)

T'(f,DR)(M) : f'DR(S)7 (M) DR(T)T (Rt (arem))

DR(T)N(T™ % (an,yr) (M)

DR(T)[—] ((Rf*mod[—],FM)an) = DR(T)[—] ((Rf*mOd[_]’FM)an).
which is an isomorphism by proposition 88.

(i) Let f : T — S a morphism with T,S € Var(C). Assume there exist a factorization f : T 4

Y xS 2 S withY e SmVar(C), [ a closed embedding and ps the projection. We have, for
M = (My,ury) € Cp.n(S/(S1))°, the canonical transformation map

T(f,DR)(M) : DR(T)7 (LI TM)™) := DR(T) (LD R T LDE M)*™)

T(D,DR)(-) LDET!(f,DR)(—)

LDF DR(T)(Rfrmod- 1T LDE M)*™))
LDE f'T(D,DR)(—)~?!

LDF f'DR(S)7(LDE Mem)
LD f'LDE DR(S)I(M) = f*DR(S)I (M)

which is an isomorphism by (i) and proposition 87.
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(iii) Let f: T — S a morphism with T, S € QPVar(C). Consider a factorization f : T Lyxs?tss
with Y = PN C ]IfN an open subset, | a closed embedding, and pg the projection. We have, for
M € Cp p(T)Y x 8)°, the canonical transformation map

7.4, DRYAM) : DR [ aaym) S Ry g D) f ) SR

Rf. DR(T)T((ad(LfFmed=0T [y (M) ™)
' L Rf.DR(T) (Me")

REDRT)(Ls T [ e
;
which is an isomorphism by GAGA in the proper case and by the open embedding case (c.f. propo-
sition 88).

(iv) Let f: T — S a morphism with T, S € QPVar(C). Consider a factorization f : T Lyxs?ts
with Y = PN¢ ¢ PN an open subset, | a closed embedding, and ps the projection. We have, for
M € Cp p(T), the canonical transformation map

T\(f,DR)(M) : RADR(T)=(Mem)

RADRD (RO [ (e

ngDR(T)[*](ad(ff! Rf*mod[*],l")(M)an)

Tl(vaR)(flM) 1 _ ad f!;f! - —
SR R DR ) 2R D) an
which is an isomorphism by (i) and proposition 87.
5.2 The filtered Hodge direct image, the filtered Hodge inverse image, and
the hodge support section functors for mixed hodge modules

We consider in the algebraic and analytic case the following categories :
e Let S € AnSm(C). The category Cp(1,0)fi1,rn(S) X1 Cra(S) is the category
— whose set of objects is the set of triples {((M, F,W), (K, W), «)} with
(M, F,W) € Cow,o)arm(S), (K, W) € Cra(S), a: (K, W)@ Cs — DR(S) (M, W)

where DR(S)H is the De Rahm functor and « is an isomorphism in D;(S),

— and whose set of morphisms are
(b = (¢Da¢C) : ((MlaFa W)v (Klvw)aal) - ((M27F7 W)a (K27W)aa2)

where ¢p : (My, F,W) — (Ma, F,W) and ¢¢ : (K1, W) — (K2, W) are morphisms such that
az 0o DR(S)7(¢p) = ¢ o ay in Dyiy(S).

We have then the full embedding
PShp(1,0)fit,rn(S) X1 Pra(S) = Cp1,0yit,rn(S) X1 Dyir(S)
The category Dp(1,0)fit,c0,rh(S) X1 Dya(S) is then the category
— whose set of objects is the set of triples {((M, F,W), (K, W), «)} with
(M, F,W) € Dp(1,0)fit,00,n(S), (K, W) € Dyua(S), a: (K, W) ®Cs — DR(S)I((M, W)

where DR(S)H is the De Rahm functor and « is an isomorphism in D ;(S),
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— and whose set of morphisms are
(b = (¢Da¢C) : ((MlaFa W)v (K17W>5051) - ((M27F7 W)a (K27W)aa2)

where ¢p : (M1, F,W) = (Ma, F,W) and ¢¢ : (K1, W) — (K3, W) are morphisms such that
az 0 DR(S)!N(¢p) = ¢c 0 a1 in Dy ().

together with the localization functor

(D(usu), D(usu)) : Cp(1,0yfit,rn(S) X1 Crit(S) = Dp(1,0)fit,00,rn(S) X1 Dyt (S)

e Let S € AnSp(C). Let S = UiesS; an open cover such that there exists closed embeddings i; :
S; — S; with Sy € AnSm(C). The category Cp(1,0)fi1,rn(S/(S1)) X1 Cra(S) is the category

— whose set of objects is the set of triples {(((Mr, F,W),ury), (K,W),«)} with
((MI,F, W),’LL[J) € CD(l,O)fil,rh(S/(gl))a (Ka W) € Cfll(S)v
a: T(S/(51)(K,W)®Cs — DR(S)"N (M7, W), ur,)

where DR(S)[7) is the De Rahm functor and « is an isomorphism in D ;(S),

— and whose set of morphisms are

¢ = (¢p,¢c) : (Mrr, F,W),ury), (K1, W), a1) = (Mar, F\W),ury), (K2, W), az)

where ¢p : (M1, F,W) = (Ma, F,W) and ¢¢ : (K1, W) — (K3, W) are morphisms such that
az 0o DR(S)T(¢p) = ¢ o ay in Dyiy(S).

We have then full embeddings

PShOD(l,O)fil,rh(S/(gf)) x1 Pra(S) = COD(l,O)fil,rh(S/(gI)) X1 Dya(9)

0

=L Op 0yt (S/(51))° %1 Dya(S) < Cogr.oypian(S/(S1)) x1 Dya(S)
The category DD(l,O)fil,oo,rh(S/(gl)) X1 Dy (S) is then the category
— whose set of objects is the set of triples :{((M, F,W),urs), (K,W),a)} with

(M7, F,W),u1s) € Dp(1,0)fite0rn(S/(S1)), (K, W) € Dsu(S),
a: (K,W)®Cs — DR(S)I (M1, W), ury))

where DR(S)I7) is the De Rahm functor and « is an isomorphism in D ;(S),

— and whose set of morphisms are
¢ = (¢p,dc) : (My, F, W), urg), (K1, W), a1) = (Ma, F,W), urs), (K2, W), a2)

where ¢p @ (M1, F,W),ury) = (Mg, F,W),ury) and ¢¢ : (K1,W) — (K2, W) are mor-
phisms such that az o DR(S)!"I(¢p) = ¢¢ 0 .

together with the localization functor

(D(usu), D(usu)) : Cp o) ien(S/(S1)) X1 Cra(S) = Dp,0)fit.eern(S/(S1)) X1 Dya(S)
We have then a full embedding

D10y fit.oown(S/(81)) X1 Drit(S) == Dp(1,0)fit,o,rn(S/(S1)° %1 Dya(S)
 Dp(1,0) fit,o0rn(S/(S1)) %1 Dyar(S)
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e Let S € SmVar(C). The category Cp(1,0)fit,rn(S) X1 Cra(S™) is the category
— whose set of objects is the set of triples {((M, F,W), (K, W), «)} with
(M,F,W) € Cpa.0)pitrn(S), (K, W) € Cra(S™), a: (K,W)® Csan — DR(S)ZN((M, W)*")
where DR(S)!~) is the De Rahm functor and « is an isomorphism in D t;(S%"),
— and whose set of morphisms are
¢ = (¢p,¢c) : (M1, F,W), (K1, W), a1) = (M2, F, W), (K2, W), a2)

where ¢p : (My, F,W) — (Ma, F,W) and ¢¢ : (K1, W) — (K2, W) are morphisms such that
Qg O DR(S)[f] ((bp) = gf)c oo in Dfil(San).

We have then the full embedding
PShp1,0)i,rn(S) X1 Pra(S*") = Cp,0yfit,rn(S) X1 Dypir(S™)
The category Dp1,0)fil,00,rh(S) X1 Dt (S*") is then the category
— whose set of objects is the set of triples {((M, F,W), (K,W),a)}
(M, F,W) € Dp(1,0)fit,00,rn(S), (K, W) € Da(5°"), a: (K, W) ® Cs — DR(S) (M, W)*)
where DR(S)H is the De Rahm functor and « is an isomorphism in D ¢;(S*"),
— and whose set of morphisms are
¢ = (¢p,¢c) : (M1, F,W), (K1, W), a1) = (M2, F, W), (K2, W), a2)

where ¢p : (M1, F,W) = (Ma, F,W) and ¢¢ : (K1, W) — (K3, W) are morphisms such that
a0 DR(S)TH(¢%") = ¢ 0 oy in Dy (S™™).

together with the localization functor
(D(zar), D(usu)) : Cp(1,0)fit,rn(S) X1 Cra(S*) = Dp,0)fit,c0,rn(S) X1 Dyir(S)
o LetS e Var(C). Let S = U;¢1.S; an open cover such that there exists closed embeddings i; : S; — S;
with St € SmVar(C). The category Cp1,0)si,rn(S/(S1)) X1 Crit(S") is the category
— whose set of objects is the set of triples {(((My, F,W),ur;), (K,W),«)} with
(M, F,\W),ury) € CD(l,O)fil,rh(S/(gl))a (K, W) € Cra(5™),
a:T(S/(S)(K,W)®Cs — DR(S)N (M1, W), ur;)*™)

where DR(S)H is the De Rahm functor and « is an isomorphism in D ¢;(S*"),

— and whose set of morphisms are
(b — (¢D7¢C) : (((leaFa W)quJ)a (Klaw)ual) — (((M217F7 W)quJ)a (KQ,W),OCQ)

where ¢p : (My, F,W),ur;) = (Mg, F,W),ur;) and ¢¢ : (K1,W) — (K2, W) are mor-
phisms such that as o DR(S)I7(¢%') = ¢c o ay in Dyy(S97).

We have then full embeddings

PShOD(l,O)fil,rh(S/(gl)) X1 Pru(S™) = C%(l,o)fil,rh(s/(‘gf)) X1 Dy (S")

0 Opoyiten(S/(51))° %1 Dya(S*™) < Cproypitn(S/(S1)) x1 Dyan(S™)

The category D’D(l)o)fil)oo)rh(s/(g[>> X1 Dy (S%) is then the category

188



— whose set of objects is the set of triples {(((Mr, F,W),urs), (K,W),«)} with
(Mp, F,W),urs) € DD(l,O)fil,oo,rh(S/(gI))u (K, W) € Dga(5"),
a: (K,W)® Cgen — DR(S)N (M7, W), urs)™)

where DR(S) is the De Rahm functor and « is an isomorphism in D ;(.S),

— and whose set of morphisms are
(b = (¢D7¢C) : (((M17F7 W)quJ)a (Klaw)ual) — (((M27F7 W)quJ)a (KQ,W),OCQ)

where ¢p @ (M1, F,W),ury) = (Mg, F,W),ury) and ¢¢ : (K1,W) — (K2, W) are mor-
phisms such that as o DR(S)(¢%) = ¢ 0 .

together with the localization functor

(D(zar), D(usu)) : CD(l,O)fil,rh(S/(gl)) x1 Cru(S*") — DD(LO)fil,oo,rh(S/(gl)) X1 Dy (S*")
We have then a full embedding

D%(l,o)fil,oo,rh(s/(gl)) x1 Dy (S™") 2 DD(l,O)fil,oo,rh(S/(gl))o x1 Dy (S)
< Dp(1,0) fit,o,rn(S/(S1)) X1 D (S*™)

Proposition 89. Let S € SmVar(C) or S € AnSm(C). Let Z = V(I) C S a Zariski closed subset.
Consider (M, F) € PShpaysu(S). Then, a Vz-filtration for (M, F) (see definition 49) if it exists is
unique. In particular if m : (M1, F) — (M2, F) a morphism with (My, F), (Ma, F') € PShp(g)za(S), we
have m(VJFPMy) C VZFP My, that is we get m : (M, F,Vz) — (M2, F,Vy).

Proof. Standard. See [8] for example. O
The main tool is the nearby and vanishing cycle functors

Definition 91. Let S € SmVar(C) or S € AnSm(C). Let D = V(s) C S a (Cartier) divisor, where
s € T'(S,L) is a section of the line bundle L = Lp associated to D. We then have the zero section
embedding i : S — L. We denote Ly = i(S) and j : L° := L\Ly < L the open complementary subset.
Denoting Cpa) i1 (S)*P" C Cp(2)7u(S) the full subcategory consiting of objects for which the Vp filtration
exist, which is then unique by proposition 89, we have the nearby cycle functor

¥Yp1: Cp(2)1i(S)™ — Cpayra(D/(S)), (M, F) = Yp1(M, F) := Grvg 1 txmod(M, F)
and the vanishing cycle functor
ép1 : Cp(2) it (S)°F = Cpayra(D/(S)), (M,F)— ¢p1(M,F) := Grys,0xmoa(M, F).

This induces the functors

¥p1 : PShp 0y pir,rn(S) X1 Pra(S*") — PShpayitrn,n(S) X1 Prit,p(S"),
((Ma Fa W)v (Ka W)v a) — le((Mv Fv W)a (K7 W)a Oé) = (U)Dl(Ma Fa W)va(Kv W)a 1/1D(04))

and the vanishing cycle functor

¢p1 : PShp 1,0y pir,rn (S) x1 Dy (S*") — PShpayirrn,p(S) X1 Prit,p(S*"),
((M7 F7 W)u (K7 W),Oé) — ¢D1((M7 F7 W)u (K7 W),Oé) = (¢D1(M7 F7 W)7¢D(K7 W),¢D(Oé))

We have the category of mixed Hodge modules over a complex algebraic variety or a complex analytic
space S defined by, for S smooth, by induction on dimension of .S, and for S singular using embeddings
into smooth complex algebraic varieties, resp. smooth complex analytic spaces:

189



Definition 92. [27]
(i) Let S € SmVar(C) or S € AnSm(C). The category of Hodge modules over S is the full subcategory

ts : HM(S) < PShp i n(S) x1 P(S),

given inductively by

— forig : so = S a closed point, ioxtpy : HMs(S) = HS < PShop it rh,s (S) X1 Psy(S) consist
of Hodge structures

— (M, F),K,a) € PShp i -n(S) x5 P(S) belongs to HM(S) if and only if for all proper maps
f:8°—= Al j:S8°< S being an open subset, it is specializable along S° C S° x A, that is
the Vgo-filtration exists (see proposition 89 for the uniqueness of the Vgo-filtration), and

Gp-100),1 (5" (M, F), 5" K, j"a) € HM-1(0y(S°) < PShp it pn,5-1(0)(S?) X1 Pp-1(0)(5°)
see definition 91.

(i) Let S € SmVar(C) or S € AnSm(C). The category of mized Hodge modules over S is the full
subcategory
LS : MHM(S) — MHW(S) — PShD(l,O)fil,rh(S) X7r Pfil(S),

consisting of objects (M, F,W),(K,W),a) € PShp oyrurn(S) X1 Pru(S) which for all proper
maps f: S° — A, j: S° < S being an open subset, (M, F, W) is specializable along S° C S° x A!,
that is the Vso-filtration exists (see proposition 89 for the uniqueness of the Vgo-filtration), and

satisfy

(Gr}Y (M, F,W),Gr})Y (K,W),Cr}" o) € HM(S).
As usual, for Z C S a closed subset and j : S\Z — S the open complementary subset, we denote
MHMz(S) € MHM(S) the full subcategory consisting of (M,F,W),(K,W),a) € MHM(S)
such that j* (M, F,W), (K, W), a) := (j*(M, F,W), j*(K,W), j*a) = 0.

(iii) Let S € Var(C) or S € AnSp(C) non smooth. Take an open cover S = U;S; so that there are closed
embedding Sy — Sy, with S; € SmVar(C), resp Sy € AnSm(C). The category of mized Hodge
modules over S is the full subcategory

Ls : MHM(S) = MHW(S) < PShp(1,0)it,-4(S/(S1)) x1 Pru(S)
consisting of objects
(Mp, F,W),urg), (K, W), @) € PShiy1 oy a1 (S/(S1)) X1 Prar(S)

such that (M, F,W),T(S/(51))(K,W),a) € (MHMSg,(S5)) (see (ii)). The category MHM(S)
does NOT depend on the open cover an the closed embedding by proposition 91.

e Let S € SmVar(C). We consider the canonical functor
w5 : C(MHW(S)) < Cp(1,0) () x1Cra(5*") % Cpa,oypu(S), (M, F,W), (K, W), @) = (M, F, W)
where pg is the projection functor. Then ms(MHW/(S)) C PShp(1,0)4(S) is the subcategory

consisting of (M, F,W) € PShp,0)i(S) such that ((M,F,W),(K,W),a) € MHW(S) is a W
filtered Hodge module for some (K, W) € C;;(S). It induces in the derived category the functor

s . D(MHW(S)) L_S> DD(I,O)j'il,oo(S)XIDfil(San) p_S> DD(l,O)j'il,oo(S)u ((Mu Fa W)7 (Ku W),CY) = (M7 F7 W)

after localization with respect to oo-filtered Zariski and usu local equivalence.
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e Let S € Var(C) non smooth. Take an open cover S = U;S; such that there are closed embedding
S — Sy, with S; € SmVar(C). We consider the canonical functor

w5 : C(MHW (S)) = Cp1,0)7a(S/(S1)) x1 Crur(S™) 255 Cpa,0)pu(S/(S1)),
(((M],F, W),UIJ), (K, W),Oé) — ((M],F, W),UIJ)

where pg is the projection functor. Then wg(MHW(S)) C PShD(LO)ﬁl(S’/(S'I)) is the subcategory
consisting of ((M,F,W),ury) € PShD(LO)ﬁl(S’/(S'I)) such that ((My, F,W),ury),(K,W),«a) €
MHW(S) is a W filtered Hodge module for some (K, W) € Cry(S). It induces in the derived
category the functor

w5 : D(MHW (S)) <% Dp(1,0)fit.00(S/(S1)) X1 D5t (5") =% Dpa,0)ir(9);
(((Mquu W)7U'IJ7 (K,W),Oé) — ((M7F7W)7UIJ)

after localization with respect to oo-filtered Zariski and usu local equivalence.

We have from the work of Beilinson the following :

Theorem 24. (i) Let S € SmVar(C). Then the full embedding
ts : MHM(S) = PShp,0)ir,rn(S) X1 Pra(S*") = Cpayitrn(S) x1r Dy (S*")
induces a full embedding
ts : DIMHM(S)) = Dp(1,0)fit,c0,rh(S) X1 Dyu(S*")
whose image consists of (M, F,W), (K, W),a) € Dp,0)fil,c0,rh(S) X1 Di(S") such that
(H™(M,F,W), H"(K,W), H"a) € MHM(S)
foralln € Z.

(ii) Let S € Var(C). Let S = U;e1S; an open cover such that there exists closed embedding i; : S; < S;
with S; € SmVar(C). Then the full embedding

vs s MHM(S) < PShip(y g it (S/(S1)) X1 Pris(S*™) < Cpagiren(S/(S1)) x1 Cra(S™")
induces a full embedding
ts: D(IMHM(S)) — DD(l,O)fil,oo,rh(S/(gl)) x1 Dy (S™)

whose image consists of (M, F,W),ury),(K,W),a) € DD(l,O)fil,oo,rh(S/(gl)) X1 Dy (S9™) such
that
(H" (M, F,W), H"(ur)), H"(K,W),H"a) € MHM(S)

foralln € Z.

Proof. (1):We proceed by induction on the dimension of S. For S = {pt}, it is the theorem for absolute
Hodge complexes, see [9]. We then proceed as in [5] for perverse sheaves.
(ii):Follows from (i). O

We have from [27] the following proposition which shows us how to construct inductively mixed Hodge
modules, as we do for perverse sheaves :
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Proposition 90. (i) Let S € AnSm(C). Let D = V(s) C S a (Cartier) divisor, where s € T'(S, L)
is a section of the line bundle L = Lp associated to D. We then have the zero section embedding
i:S8 — L. We denote Lo = i(S) and j : L° := L\Ly < L the open complementary subset. We
denote by MHW (S\D)** x ;j MHW (D) the category whose set of objects consists of

{M,N,a,b), M € MHW (S\D)**, N € MHW (D),a: p1M — N,b: N — p; M}

where MHW (S\D)** ¢ MHW (S\D) is the full subcategory of extendable objects, i.e. (bi)filtered
Dgs module which are specializable along D. The functor (see definition 91)

(*, ép1,¢,0) : MHW(S) — MHW (S\D)** x ; MHW (D),
(M, E, W), (K, W),a) — ((j*(M, F,W), j*(K,W),j*a), ¢p1 (M, F,W), (K, W), &), can, var)

is an equivalence of category.

(i) Let S € SmVar(C). Let D = V(s) C S a (Cartier) divisor, where s € T'(S,L) is a section of
the line bundle L = Lp associated to D. We then have the zero section embedding i : S — L.
We denote Ly = i(S) and j : L° := L\Lo < L the open complementary subset. We denote by
MHW (S\D) x; MHW (D) the category whose set of objects consists of

{M,N,a,b), M € MHW (S\D),N € MHW (D),a : ¢p1M — N,b: N = )p1 M}
The functor (see definition 91)

(j*, ép1,c,v) : MHW(S) — MHW(S\D) x ; MHW (D),
(M, F,W), (K, W),a) = ((7*(M, F,W), j* (K, W), j"a), ¢p1 (M, F, W), (K, W), a), can, var)

is an equivalence of category.
Proof. See [27]. O
Let S € Var(C) or S € AnSp(C).

o If S € Var(C), let S = UL_,S; an open cover such that there exist closed embeddings i; : S; < S;
with S; € SmVar(C), and let S = Ué;zlSi/ an other open cover such that there exist closed
embeddings i,/ : S — Sy with S € SmVar(C).

e If S € AnSp(C), let S = U!_,S; an open cover such that there exist closed embeddings i; : S; —
S; with S; € AnSm(C), and let S = UliizlSi/ an other open cover such that there exist closed

embeddings iy + Sy < Sy with 5'1" S AHSID((C)

Denote L = [1,...,1], L’ = [1,...,l'] and L"” := [1,...,]JU[1,...,I']. We have then the refined open
cover S = Uger, Sk and we denote for Tul c l;//, Stur = Nierur Sk and Sy := Hgerup Sk, so that
we have a closed embedding i : Spup < Srup. Consider Wg(MHM(S)) C PShpu(S/(Sr)) and
Wé,(MHM(S)) C PSthil(S/(S]/)). For Tu I’ c Ju J/, denote by Prur,jguJj’ - S’Ju‘]/ — S’]up the
projection. We then have a natural transfer map

TEE L (MHM(S)) — 75 (MHM(S)),
((M17 F7 W); SIJ) = (hO }iGTILlpI'(IuI/)* GrVIuI/ p;?}&d]/) (MIa F))a SI/J')a

with, in the homotopy limit, the natural transition morphisms

*1M.0 smod|[—
pr(ury« ad(pry vaIJ*)(p[([u][/)](vaF)) :

*mod[—]

*mod[—
pI’(JuI’)*(GYV,uI/ pJ(Ju[/) (MJ7 F)) — pI’(IuI’)*(GYVmﬂ p](]u][/)](Mlu F))
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for J C I, and

Srrgr - hOlim]eL m*p[/(]u[/)* (Ger/ p;?}zd][,;] (M], F) —

. smod[— * *mod[—
holimrer, pryr« Grv,, (py/ )0 ln prurys Gry, pI(IuI[’)]((MI’ F)))
. *mod|[—
— holimrer, pryspy (1ury« Grv, p[([u}/)] (M, F)

Proposition 91. (i) Let S € Var(C) and let S = U;S; an open cover such that there ewist closed
embeddings i;S; — S; with S; € SmVar(C). Then mg(MHM(S) C PShp(2)u(S/(Sr)) does not

depend on the open covering of S and the closed embeddings. More precisely, let S = Uﬁ;zlsy an
other open cover such that there exist closed embeddings iy : Sy — Sy with Sy € SmVar(C). Then,

TEY L (MHM(S)) — w5 (MHM(S)),
is an equivalence of category with inverse is TSLl/L : wél (MHM(S)) = n5(MHM(S)).

(i) Let S € AnSp(C) and let S = U;S; an open cover such that there exist closed embeddings i;S; — S;
with S; € AnSm(C). Then ms(MHM(S) C PShp(a)ra(S/(S1)) does not depend on the open

covering of S and the closed embeddings. More precisely, let S = UliizlSi/ an other open cover such
that there exist closed embeddings i, : Sy < Sy with Sy € AnSm(C). Then,

TEY L (MHM(S)) — ok (MHM(S)),

is an equivalence of category with inverse is TSLl/L : wél (MHM(S)) = n5(MHM(S)).
Proof. Follows from proposition 90(see [27]). O

The main results of Saito, which implies in the algebraic case the six functor formalism on DM H M (—)
are the followings

Theorem 25. Let S € Var(C). The category of mized Hodge modules is the full subcategory
ts : MHM(S) — MHW(S) < PShp,0)fit,rn(S) x1 Pra(S")
consisting of objects
(M, B, W), (K, W), ) = (My, F, W), 1), (K, W), ) € PShpo)pim(S) 1 Pra(S™)
such that (M, F,W)*" (K,W),a) := (M, F,W),ury), (K,W),a) € MHM(S*").
Proof. Follows from GAGA and the extendableness in the algebraic case (proposition 90). O

Definition 93. Let S € SmVar(C) or S € AnSm(C). We denote by VMHS(S) C PShp 1,0y fit,rn(S) X1
P (S) the full subcategory consisting of variation of mized Hodge structure, whose objects consist of

(((Ls,W)® Os, F'), (Ls, W), ) C PShp(1,0)pir,rn(S) X1 Prar(S*)
with
o Lg € PSh(S5%") a local system,

e the Dg module structure on (Lg,W) ® Og is given by the flat connection associated to the local
system Lg,

o ['P(WiLs® Og) C (WiLs® Og) are locally free Og subbundle satisfying Griffitz transversality for
the Dg module structure (i.e. for the flat connection).
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e a:(Ls,W)— DR(S)"I((Ls,W) ® Og) is the isomorphism given by theorem 23.
Theorem 26. Let S € SmVar(C) or S € AnSm(C).

(i) A variation of mized Hodge structure ((Ls, W)® Os, F),(Lg,W),a) € VMHS(S) (see definition
93) is a mized module. That is VM HS(S) C MHM(S).

(i) For (M,F,W),(K,W),a) € MHM(S) a mized Hodge module, there exist an open subset j : S§° —
S, such that 7*(M,F,W),(K,W),a) := (§*(M,F,W),j*(K,W), j*a) € VMHS(S°). That is a

mized Hodge module is generically a variation of mized Hodge structure.
Proof. See [27]. O

Theorem 27. (i) Let f : X — S a projective morphism with X,S € AnSp(C), where projective

means that there exist a factorization f: X L PN xS 25 S with 1 a closed embedding and pg the
projection. Let S = Uj_1S; an open cover such that there exits closed embeddings iy : S; — S‘l with
S; € AnSm(C). For I C [1,...,s], recall that we denote St := Nic1S; and X1 := f~1(Sr). We have
then the following commutative diagram

i[OlI = pS'I ~
X ——=PNVN xS ——=5;

j}JT p/IJT pI"T

igoly jod Sy ~
XJ—>]P)N><SJ—>SJ

whose right square is cartesian (see section 5).Then, for
((Ma F, W)v (Ka W)va) = (((vaFv W)auIJ)a (Kv W),Oé) € MHM(X),

where (M7, F,W),ury) € C'Dgfu(XI/(]P)N X gl)), (K, W) € Cry(X), we have for alln € Z,

FDR
(H"/f (M, E,W),ury), R" f(K,W),H" f.(o)) € MHM(S)

(i1) Let f: X — S a projective morphism with X, S € Var(C), where projective means that there exist

a factorization f : X L PN xS 25 S with 1 a closed embedding and pg the projection. Let
S =Uj_1S; an open cover such that there exits closed embeddings iy : S; — S; with S; € SmVar(C).
For I C [1,...,s], recall that we denote S; = Mic1S; and X; = f~1(S7). We have then the
following commutative diagram

irolr ~ P3; ~
X] —>]P)N X S] —>-S]

j}JT ;D’”T :DIJT

igoly S

~ :DSJ ~
X; —=PV xS, —= 5,
whose right square is cartesian (see section 5). Then, for
((M, F, W)v (Ku W)va) = (((M17F7 W)vufJ)v (K7 W)va) € D(MHM(X))7

where (Mr, F,W),urs) € Cpasu(X1 /(PN x Sp)), (K, W) € Ctu(X*), we have
FDR
H (O P u0), REG W), .)€ MEM(S)
foralln € Z.
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Proof. () See [27].
(i) By (i) (H" [,(M,F,W)™), R"f.(K,W), H" f.(a)) € MHM(S"") for all n € Z. On the other

hand, TD(cm, (M, F, W) fj (M, F,W))™ = fj ((M, F,W)%") is an isomorphism since f is proper by
theorem GAGA for mixed hodge modules : see [27]. O

Theorem 28. (i) Let S € AnSp(C). Let Y € AnSm(C) and ps : Y x S — S the projection. Let
S = Us_,S; an open cover such that there exits closed embeddings iy : S; < S; with S; € AnSm(C).
For I C [1,...,s], recall that we denote St := M;erS;. We have then the following commutative
diagram

~ Ps, -
Y x S] ——— S]
p}‘,T :DIJT
. Ps, -
Y x SJ e SJ
which is cartesian (see section 5). Then, for
(M, F,W),(K,W),a) = (M1, F,W),urs), (K,W),a) € MHM(S),
where ((M],F, W),UIJ) S CDinl(S]/(S’[)), (K, W) S Cfil(S),

— ("M P W), py (K, W), ps () = (0" My, B, W), p ), ps (K, W), ps(a) €

St
MHM(S)
— §" T, W), (K, W), p5()) 1= (0 (Mr, B, W), 577 ), 5 (K, W), () €
MHM(S)

(i) Let S € Var(C). Let Y € SmVar(C) and ps : Y x S — S the projection. Let S = Ui_,S; an open
cover such that there exits closed embeddings iy : S; < S; with S; € SmVar(C). For I C [1,...,s],
recall that we denote St := N;ec1S;. We have then the following commutative diagram

~ Ps ~
YXS]L-S[

p}‘,T pI.IT

~ Ps3 ~
YXSJL)SJ

which is cartesian (see section 5).Then, for
(M, E, W), (K, W),a) = (M1, F,W),ury), (K,W),a) € DIMHM(S))

where (My, F,W),urs) € Cpasi(S1/(S1)), (K, W) € Cti(5), we have

= (™" P (M, E, W), (K, W), a) o= (o (M, B W), pg 0 g g), ps (B, W), pis(a) €
D(MHM(S))
(™" pE) (M, B W), (K, W), 0) = (g (Mo, B W), pg ), p (K, W), pis(e) €
D(MHM(S)).
Proof. (i):See [27].
(if):Follows immediately from (i) since (pjg" ' (My, F,W))a = p "My, By w)em), O

St

We have, by the results of Saito, the following key definition.
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Definition 94. (i) Let S € SmVar(C) or S € AnSm(C). Let D = V(s) C S a divisor with s €
T'(S,L) and L a line bundle (S being smooth, D is Cartier). Denote by j : S° := S\D — S
the open complementary embedding. Let (M,F,W) € wgo(MHW (S?)). Assume that (M,F,W)
is specializable along D, that is the Vs-filtration exists (see proposition 89 for the uniqueness of a
Vs-filtration). Then, by proposition 90,

— there exist
jfldg(Mv F7 W) = (j*,¢D1,C,U)71((M, F7 W)aq/}Dl(Mv F7 W)(_l)) € ﬂ-S(MHM(S))

unique such that j* 2% (M, F,W) = (M, F,W) and DR(S)(jZ% (M, F,W)) = j.DR(S°)(M, W),
— there exist
WML EW) = (57 6p1, ¢, 0) T (M FW), py (M. FW)) € ms(MHM(S))
unique such that j*j Hdg(M EW) = (M,F,W) and DR(S)(j Hdg(M F,W)) = 5 DR(S°)(M,W).
Moreover for (M', F,W) € ng(MHM(S)), by proposition 90
— there is a canonical map ad(j5* jqu)(M W) : (M, F,W) — jE%9 (M, F, W) in7ms(MHM(S)),
— there is a canonical map ad (7%, 7*) (M, F,W) : j% (M’ F,W) — (M', F,W) in 7s(MHM(S)).

(i) Let S € SmVar(C). Let Z = V(I) C S an arbitrary closed subset, T C Og being an ideal
subsheaf. Taking generators T = (s1,...,8y), we get Z = V(s1,...,8,) = Ni_1Z; C S with
Z; = V(s;)) C S, s; € T(S,L;) and L; a line bundle. Note that Z is an arbitrary closed sub-
set, dz > dx — r needing not be a complete intersection. Denote by j : S° := S\Z — S,

1 SO = i1 (S\Z:) = S\(Uier Z:) i S° EN S the open complementary embeddings, where
Ic{l,---,r}. For (M,F,W) € ngo(C(MHM/(S?))), we define by (i)

— the (bi)-filtered complex of Dg-modules
G (M W) = limy Totearar=e(j1j2* (M, F,W)) € ms(C(MHM(S))),

{(Z)ien,...»2:CSNZi=2},2,CZ;

where the horizontal differential are given by, if I C J, dry = ad(j}‘J,jf]iq)( (M, F,W)),
g1 87 — S°I being the open embedding, and dry =0 if I & J,

— the (bi)-filtered complex of Dg-modules
G (M, W) = lim Totearar=—e(jH 29 j2*(M, F,W)) € 75(C(MHM(S))),

{(Zi)ieu,“m],ZiCSﬂZi:Z},Z{CZi

where the horizontal differential are given by, if [ C J, dry = ad(jflJ'fg,j}‘J)(jf* (M,F,W)),
g1 87 — S being the open embedding, and dry =0 if I & J.

By definition, we have for (M, F,W) € mgo(C(MHM/(S°))), j*iF%(M,F,W) = (M,F,W) and
]*j,Hdg(M, F,W)=(M,F,W). For (M',F,\W) € mg(C(MHM(S))), there is, by construction,

— a canonical map ad(j*, jE9Y (M, F, W) : (M, F,W) — jE%9 (M, F,W),
— a canonical map ad(j Hdg, VML FW) deg (M, EW) = (M, F,W).

For (M,F,W) € ngo(C(MHM/(5°))),
— we have the canonical map in Cp(i,0)fi(S)

T(jF%9, j. ) (M, F,W) =k oad(j*, j.) (jF (M, F,W)) : jI¥9(M,F,W) = j.E(M,F,W),
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— we have the canonical map in Cp(1,0)fi(S)
T (3, ") (M, F,W) := D§ Lp(k 0 ad(5", j.)(-)) -
H(M,F,W) = D§ Lpj. E(DF (M, F,W)) = D Lpjif D (M, F,W) = ji"" (M, F,W)
the canonical maps.

Remark 9. Let j : S° < S an open embedding, with S € SmVar(C). Then, for (M, EF,W),(K,W),a) €
MHM(S°),

o the map T(jr, i) (M, W) : ji(M, W) = j799(M, W) in Cposu(S) is a filtered quasi-isomorphism
(apply the functor DRIZ1(S°) and use theorem 23 and theorem 90).

o the map T(GI j.) (M, W) : jE (M, W) = j.E(M, W) in Cposi(S) is a filtered quasi-isomorphism
(apply the functor DRIZI(S®) and use theorem 23 and theorem 90).

Hence, for (M, E,W),(K,W),a) € MHM(S°),
e we get, for all p,n € N, monomorphisms
FPH™T (5, 5%) (M, F,W) : FPH"j,(M, F,W) < FPH";7%9 (M, F,W)
in PShp(S), but FPH"ji(M,F,W) # FPH"j!Hdg(M, E,W) in general (it leads to different F-
filtrations).
o we get, for all p,n € N, monomorphisms
T(jF%, j.)(M,F,W) : FPH"jH% (M, F,W) — FPH"j,E(M,F,W)

in PShp(S), but FPH"jumag(M,F,W) # FPH"j E(M,F,W) in general (it leads to different F-
filtrations).
Definition 95. Let f : X — S a morphism with X,S € SmVar(C). Consider a compactification
f:X ENS'e i) S of f, in particular j is an open embedding and f is proper.
(i) For (M,F,W) € nx(C(MHM(X))), we define, using definition 94,

FDR

Hdg
/f (M, F,W) 3—/}( 399 (M, F,W) € Dp(1,0)fit,00(S)

It does not depends on the choice of the compactification by the unicity of proposition 90. By

theorem 27, for (M,F,W) € 7x(C(MHM(X))), H' [ (M, F,W) € ng(C(MHM(S))) for all
i € Z. Note that H' [ (M, F,W) =0 for all i <0 if (M, F,W) € nx(MHM(X)). We then set

~ for (M,F,W) € mx(MHM (X)), f%(M, F,W) = H° [ (M, F,W) € ms(MHM(S)),

— RfFYM, F,W) = fE9 (M, F,W) € mg(D(MHM(S))) where k : (M, F,W) — I(M,F,W)
is the image by ws of an injective resolution in MHDM/(S).

(i) For (M,F,W) c€ nx(C(MHM (X))), we define, using definition 94,

Hdg FDR -
/ (M, F,W) ::/ (M, F, W) e Dp1,0) fit,00 (S)

! f

It does not depends on the choice of the compactification by the unicity of proposition 90. By theorem
27, for (M, F,W) €€ nx(C(MHM(X))), H' [[*(M,F,W) €€ ns(C(MHM(S))) for all i € Z.
Note that H® ;!Id‘q(M, EW) =0 foralli <0 if (M,F,W) c€nx(MHM(X)). We then set
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— for (M,F,W) € nx(MHM (X)), f'* (M, F,W) := H° fﬁ’dg(M, F,W) ee mg(MHM(S)),

— RFI(M, P, W) = fIYI(M, F,W) € ms(D(MHM(S))) where k : (M, F,W) — I[(M, F, W)
is the image by ms of an injective resolution in M HM(S).

Proposition 92. Let f1 : X =Y and fo:Y — S two morphism with X,Y,S € SmVar(C).
(i) Let (M,F,W) € nx(C(MHM(X))). Then,

R(f20 f1)H% (M, F) = Rf;{Rf1™(M, F) € ng(D(MHM(S))).

(i1) Let (M,F,W) € ng(C(MHM(S))). Then,
R(fa0 1){""(M, F) = Rf; " Rf{" (M, F) € 75 (D(MHM(S)))
Proof. (i):Follows from the unicity of of the functor j% by proposition 90.
(ii):Follows from the unicity of the functor j!H dg by proposition 90. O

We make the following key definition

Definition 96. Let S € SmVar(C). Let Z C S a closed subset. Denote by j: S\Z < S the complemen-
tary open embedding.

(i) We define using definition 94, the filtered Hodge support section functor

0% ng(C(MHM(S)) = ns(C(MHM(S)),
(M, F,W) = DY% (M, F,W) := Cone(ad(j*, jH49)(M, F) : (M, F) — jH495*(M, F))[-1],

together we the canonical map v (M, F,W) : THY(M, F,W) — (M, F,W). We then have the
canonical map in Cp(2) i (S)

T(T7% T2)(M,F,W) := (I, T, j.) (M, F,W)) : T % (M, F,W) — Tz E(M, F, W)
unique up to homotopy such that ”ygdg(M, EW) =~z(E(M,F,W))o T(ngg, Lz)(M,F,W).
(i)’ Since j7% : mgo (C(MHM(S°)) = ms(C(MHDM(S)) is an ezact functor, ngg induces the functor
159 . rg(D(MHM(S)) — ms(D(MHM(S)), (M, F, W)~ 5% (M, F,W)
(i) We define using definition 94, the dual filtered Hodge support section functor
199 wg(C(MHM(S)) = ms(C(MHM(S)),
(M, F,W) = T"% (M, F,W) := Cone(ad(5" %, j*) (M, F,W) : j/'* j*(M, F,W) — (M, F,W)),

together we the canonical map V;’Hdg(M, FEW): (M,F,W) — F}’Hdg(M, F). We then have the
canonical map in Cp(2) i (S)

T T (M, F,W) == (1, T(r, j ) (M, F,W)) : Ty (M, F,W) — T2 (M, F, W)

unique up to homotopy such that vy 7% (M, F) = T(Ty" T 749 (M, F,W) o v "(M, F,W).

(i)’ Since j!Hdg : Mgo (C(MHM(S?)) — ws(C(MHM(S)) is an exact functor, ngg,v induces the
functor

LM% mg(D(MHM(S)) = ms(DIMHM(S)), (M, F,W) = Ty "% (M, F, W)
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We now give the definition of the filtered Hodge inverse image functor :

Definition 97. (i) Leti: Z < S be a closed embedding, with Z,S € SmVar(C). Then, for (M,F,W) €
ws(C(MHM(S)), we set

Gl (M, F, W) := i*S, Ty ™(M,F,W) € nz(D(MHM(Z))

and
ot (M, F,W) :=i*S, T (M, F,W) € nz(D(MHM(Z))

using the fact that Sz : mz(D(MHM(Z)) — ns(D(MHMz(S)) is an equivalence of category since
Sz : D(MHMZz(S)) = D(MHDMz(S)) is an equivalence of category by [27].

(i) Let f : X — S be a morphism, with X,S € SmVar(C). Consider the factorization f : X AN
X xS 25 S, where i is the graph embedding and ps : X x S — S is the projection.

— For (M,F,W) € ng(C(MHM(S)) we set
Fitdy (M, FW) o= iiiatyd" " (M, FW) € mx (DOMHM(X)),
— For (M,F,W) € ng(C(MHM(S)) we set
Fitgg (ML W) s= iigetpd™ " (M, F,W)m (D(MH M (X)),
If j : S° < S is a closed embedding, we have (see [27]), for (M, F,W) € ns(C(MHM(S))),
Jitag (M, F,W) = jige (M, F,W) = j*(M, F,W) € mso(D(MHM(S°)))

(i) Let f : X — S be a morphism, with X,S € SmVar(C) or X,S € AnSm(C). Consider the fac-
torization f : X = X x S 5 S, where i is the graph embedding and ps : X x S — S is the
projection.

— For (M,F,W) € mg(C(MHM(S)) we set
Fiimed(M, F,W) = T{Ypg" (M, F,W) € mxws(C(MHM (X x S))),
We have for (M, F,W) € ng(C(MHDM(S)), the canonical map in Cp(1 oysu(X x S)

*1M,0 *mod, xmod,[’ Hdg xmod[—
T(fined, fmodty (M, F, W)« e (M, F,W) = T (v, )

T(TE.Px)(-) FXE(pgmod[—] (M, F,W)) = f*mod,F,k(M7 F,W)
— For (M,F,W) € mg(C(MHDM(S))) we set
ity (M, FW) o= T UM, B W) € ms (CMHM(X % 5)),
We have for (M, F,W) € ng(C(MHDM(S)), the canonical map in Cp( oysu(X x S)
T, fifag ) (ML E W)« frmott (M, F W) = T g (0r, Fow)

V.h [V, Hdg

IO O VO, py ey smodi=)(np p W) = fimod(M, F,W)

Proposition 93. Let f1 : X =Y and fo: Y — S two morphism with X,Y,S € SmVar(C).
(i) Let (M,F,W) € ng(C(MHM(S))). Then,
(f2 0 fu)Hag (M, F) = fiidq foiiag (M, F) € mx (D(MHM(X))).
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(ii) Let (M,F,W) € mg(C(MHM(S))). Then,
(foo f)iag (M, F) = fifie fatay (M, F) € mx (D(MHM(X)))

Proof. (i):Follows from the unicity of the functor jf dg

(ii):Follows from the unicity of the functor j!H g O

Definition-Proposition 16. (i) Let g : S" — S a morphism with S, S € SmVar(C) andi: Z — S a
closed subset. Then, for (M, F,W) € wg(C(MHDM(S))), there is a canonical map in wg(C(MH Mg/ (S’ x

S)))
TH (g, 9) (M, F,W) : gyo®™ T 7% (M, F,W) = T3 o, gino®t (M, F, W)

unique up to homotopy such that

VHL s (Geme ™t (M, F,W)) 0 TH (g, 7) (M, F,W) = gino® 'y (M, F,W).

(i)” Let g : 8" — S a morphism with S’,S € SmVar(C) and i : Z — S a closed subset. Then, for
(M,F, W) € ng(C(MHM(S))), there is a canonical isomorphism in ms(C(MHMg/ (S’ x S)))

d $mod, ~_ %mod, di
THY (9,4 ) M, EW) : T8 sigg" " (M, EW) = gygao® D7 (M, F,W)
unique up to homotopy such that

JHd ¥mod,T’ ¥mod,T’ JHd
Voxas Grrgg (M, F,W)) 0 ge® vy (M, F,W) = TH (g, ) (M, F,W).

(i) Let S € SmVar(C) and iy : Z1 < S, i2 : Zo — Zy be closed embeddings. Then, for (M,F,W) €
ms(C(MHM(S))),

— there is a canonical map T(Zo)Z1,v749) (M, F,W) : ngg(M, FW) — Fgldg(M, E,W) in
ms(C(MHDM(S))) unique up to homotopy such that

F)/gldg(Gv F) 0 T(Z2/Z17 FYHdg)(Gv F) = ngdg(Gv F)
together with a distinguish triangle in K(mg(MHDM(S)))

T(Z2/Z1,y"9) (M, F,W)

I (M, F,W)

ad(j3 .45, ") (D5 14 (G, F))

I5% (M, F,W)

i, (GF) - TE(G P

— there is a canonical map T(Zo)Z1,~"H49) (M, F,W) : Fé’lHdg(M, FW) — I‘é’szg(M, F,W)
in ms(C(MHM(S))) unique up to homotopy such that

vz (MLEW) = T(Z) 20,7 99 (M, F,W) 019 (ML EW).
together with a distinguish triangle in K(rg(MHM(S))))

ad(jg 9,33 (M,F,W)

v,Hd
le\ZZ(M’ FW)

T(Z2)Z1,yY 149 (M, F,W))

LYy 5% (M, FW)

,Hdy JH dy
L9 (M, F,W) — P;Z\Zf(M, F,W)[1]
Proof. Follows from the projection case and the closed embedding case using the adjonction maps. O

We have by proposition 93 and proposition 92 the 2 functors on SmVar(C) :
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o T(DMHM(=)) = SmVar(C) = w(D(MHM(-))), § = ms(D(MHM(S)), (f = T = §) =
R,

o T(DMHM(-))) : SmVar(C) — w(DIMHM(-)), S = ms(D(MHM(S)), (f : T = 8)
RfY,

o n(DMHM(-)) : SmVar(C) — m(D(MHM(-))), § v ms(DIMHM(S)), (f : T = 8) =
Ty

o w(D(MHM(—))) : SmVar(C) — n(D(MHM(-))), S — ws(D(MHM(S))),(f : T — S) —
Firi
The definitions 96 and 97 immediately extends to the non smooth case :

Definition 98. Let S € Var(C). Let Z C S a closed subset. Let S = U;S; an open cover such that there
ezist closed embeddings i; : S; < S; with S; € SmVar(C). Denote Z; := ZNSt. Denote by j : S\Z — S
and jr : S|\Z; < St the complementary open embeddings.

(i) We define using definition 94, the filtered Hodge support section functor

7% . n(C(MHM(S))) = n(C(MHM(S))), (Mg, F,W),urs) — DEY (M, F,W),uz;) ==
Cone(ad(j*,jfdg)((MI, Fv W)a uIJ) : ((Mlv Fv W)v uIJ) — (3[11(1!].5; (Mlv Fv W)),j,](’u,](]))[—l],

together with the canonical map ”ygdg((Ml, F,W),urg) : ngg((MI, EW),ury) = (Mr, E,W),ury).
We then have the canonical map in Cpa) i (S/(S1)

T(ngg,rz)((M[,F, W)auIJ) = (IvT(jfldgvj*)(Mv Fv W)) :
C0%((My, F,W),ur;) = (CzE(Mr, F,W),T(urs))

unique up to homotopy such that

VH9(My, FLW),urs) = (v (E(My, FLW))) 0 T(CE, D) (M, F, W), ).

(i)’ Since jgdg g, (C(MHM(S/\S1))) — ﬂ'gI(C'(MHM(S’I))) are exact functors, ngy induces the
functor

I5% : ng(D(MHM(S)) — ns(D(MHM(S)), (M1, F,W),uzs) = T7% (M5, F,W),ur)
(ii) We define using definition 94, the dual filtered Hodge support section functor

0y n(C(MHM(S))) — n(C(MHM(S))), (M7, F,W),urs) = Dy (M, F,W),urs) =
Cone(ad(j!Hdg j*)((MIvFv W)vuIJ) :jﬁdgvj;((MlvFv W)vuIJ) - ((vaFv W),U]J)),

together we the canonical map ~y "9 ((My, F, W), ury) : (My, F, W), ury) — Ty "9 (My, F, W), ury).
We then have the canonical map in OD(Q)fil(S/(S’]))

(" Ty (M, F, W), upg) o= (1T ) (M, F, W), ug ) -
(Féyh(Mlv F7 W)a Féyh(uIJ)) — Fédeg((va F7 W)a uIJ)

unique up to homotopy such that

Vé)Hdg((va F7 W)v uIJ) = T(F?h’ 1—‘?Hdg)((M17 F7 W)v uIJ) © (Vé}h(va F7 W))
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(i)’ Since jﬁdg : ﬂ'gI(C'(MHM(S’I\SI))) — WgI(O(MHM(S’I))) are exact functors, I‘Hdg Y induces the
functor

9 g (DIMHM(S)) = ng(D(MHM(S)), (M1, F,W),urs) — D% (M, F,W), ury)

Definition 99. Let f : X — S a morphism with X,S € Var(C). Assume there exist a factorization

[ X Ly xS 25 S withY € SmVar(C), I a closed embedding and ps the projection. Let S = Ujer
an open cover such that there exist closed embeddings i : S; — S; with S; € SmVar(C). Denote X; :=
f71(S1). We have then X = U;er X; and the commutative diagrams

f:XILYXS[&S[

\ l’LI —(IX'L[) l’i[

NPslf fI ~

Y xS ——=S;
(i) For (M, F,W),ury) € ms(C(MHM(S)) we set (see definition 98 for 1)
i (M, W) urg) = TR (g My, W), ury) € mx (COMHM(X))),
We have for (My, F,W),ur;) € ms(C(MHDM(S)), the canonical map in Cp1 0y pu(X/(Y x S1))

Tt £ ) (Mr, W) urg) : fifae (Mo, B W), upg) = T (o (g, W), p g )

T(TEY Tx)(-) *Mo %Mo smod[—
X (Dx By My, Bow)), 0 g g)) = oSl (B

(i) For (M, F,W),ury) € ms(C(MHM(S))) we set (see definition 98 forl)
Fifset (M, B W) = D9 o (e, W), " ury) € m (COMHM (X)),
We have for (M,F,W) € ng(C(MHDM(S)), the canonical map in Cp )i (X/(Y x S1))
T(fFmodt frnoth (Mr, B, W), upg) - fool= 0 (0, B W) o= DE ol I DE (My, FW), urg)

D T(FHdg7F )(_) k10 mo *T1MO
S L T (g T My, W), ) = pae T (v E W)

From the D-module case on algebraic varieties and the constructible sheaves case on CW complexes,
we get :
Definition 100. Let f: X — S a morphism with X, S € QPVar(C). Then, since X is quasi-projective,

there exist a factorization f : X L PNe x § 25 S with ng : PV0 < PN an open subset, | a closed
embedding and ps the projection. Since S is quasi-projective, there exist a closed embedding i : S — S
with S € SmVar(C). We have then the commutative diagram

f: X —LpNoxg? g



(i) For (M,F,W),(K,W),a) € D(MHM (X)), where (M,F,W) € CD(LO)]«U(X/]P’N*O X S’) and
(K, W) € Cra(X™), we define, using theorem 27(%i) for ps and definition 94 for n,
Fertag(M,F, W), (K, W), a) - = (RE(M,E,W), REK, W), fu(e)
= (Rpgnl' (M, F,W), Rf.(K,W), f.(a)) € D(MHM(S))
with

ful@) : RE(K, W) 222 R, DR(T)EN (M, W)™

LEPROL), b Res)-(( /f<M, W))*") = DR(S)TH(RE (M, W))™")

see definition 90 and remark 9.

(i) For (M,F,W),(K,W),a) € D(MHM (X)), where (M,F,W) € Cpg,o)pu(X/PN° x S) and
(K, W) € Cru(X™), we define, using theorem 27(ii) for ps and definition 94 for n,

firrag(M, F, W), (K, W), ) : = (Rf"(M,F, W), Rfi(K, W), fi(a))
o= (RpiPn{1 (M, F, W), RA(K, W), fi()) € D(MHM(S))
with

fila) : RA(K, W) 2% RADR(T)((M, W)"")

DR(S)”((/ﬂ(Ma W))™) = DR(S)TN (R (M, W))™)

Ti(f,DR)(M, W)
I

see definition 90 and remark 9.

(ZZ’L) For ((Mv F, W)a (K7 W)a Oé) € D(MHM(S))) where (Mv F, W) € CD(l,O)fil(S/(g)): (Ka W) €
Cri(S), we define, using definition 99 (see theorem 28(ii) for ps and definition 96 foriol),

f*Hdg((M,F,W),(K,W),a) = (f;fﬁ;d(M,F,W),f*(K,W),f*a)
S (FkHdgpngd[f](Ma E,W), Txps(K, W), f*(«) € D(MHM (X))
with

% * f*a * an
fr(@) : fHK, W) = f*DR(S)((M, W)*")
T(f,DR)((M,W)) — *mod[— an - *mo an
— == DR(D) (Lm0 (M, W) ) = DR(T) W (fg (M, W)*)
see definition 90 and remark 9. For j : S° < S an open embedding and (M, F,W),(K,W),«a) €
D(MHM(S)), we have (see [27])

JI (M, FW), (K, W),0) = (* (M, E,W), j* (K, W), j*a) € D(MHM(S°)).

(Z’U) For ((Mv Fv W)a (K7 W),Oé) € D(MHM(S))) where (Mv Fv W) € CD(l,O)fil(S/(g)): (Ka W) €
Cru(S™), we define, using definition 99 (see theorem 28(ii) for ps and definition 96 foriol),

FH(M,F,W), (K, W) 0) 0 = (Fned(MF,W), f1(K,W), f'a)
= (R (M, F,W), RDxpis (K, W), f(a)) € D(MHM (X))
with

Fla): £ W) L2 FDR(S) (M, W)
T'(f,DR)((M,W))™*

DR(T)EH (R (M, W)™ ) = DR(T) N (figig (M, W)™
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see definition 90 and remark 9. For j : S° < S an open embedding and (M, F,W),(K,W),«a) €
D(MHM(S)), we have (see [27])

FHE((M, F,W), (K, W), a) = (j*(M, F,W), j*(K, W), j*a) € D(MHM(S)).

Using the unicity of proposition 90, we see that these definitions does NOT depends on the choice of the

factorization f: X Lyxs g of f. Moreover, using the unicity of proposition 90 and proposition 43,
we see that they are 2 functors on the category of quasi-projective complex algebraic varieties (Var(C))@F.

e By definition, we have
FDR
Lgl(l nH9 (M, F,W), Rf.(K, W), fu(@)) = Rfera, (M, F,W),(K,W),a) € D(MHM(S)).
Ps
and for j : S° < S an open embedding and (M, F, W), (K,W),«) € D(MHM/(S°)),
Jerag(M,F, W), (K, W), ) = (jF99(M, F,W), Rj.(K,W), j.o) € D(MHM(S)).

e By definition, we have
FDR
Lgl(/ n!Hdg(M, EW),RA(K,W), fila)) = Rfag(M,F,W),(K,W),a) € D(MHM(S)).
P3
and for j : S° < S an open embedding and (M, F,W), (K,W),«a) € D(MHM/(S°)),
g (M. F,W), (K, W), 0) = (i (M, F,W), js(K, W), jrx) € D(MHM(S)).

We have then the following
Theorem 29. Let f : X — S a morphism with X,S € Var(C), X quasi-projective. Then,
(i) (f*799, fipag) : DIMHM(S)) — D(MHM (X)) is a pair of adjoint functors,
(i) (fHY, fopay): DIMHM(S)) — D(MHM (X)) is a pair of adjoint functors.
Proof. For the projection case see section 4. For the open embedding see definition 94. O
Definition 100 gives by proposition 93 and proposition 92 the following 2 functors :
e We have the following 2 functor on the category of complex algebraic varieties
D(MHW(-)) : Var(C) — TriCat, S +— D(MHW(S)),

(f:T—8)— (Af*Hdg (M, E, W), (K, W), ) —
FHRW(MFW), (K W), ) = (fias (M, F,W), f*(K,W), f*(a))).

e We have the following 2 functor on the category of complex quasi-projective algebraic varieties

D(MHW(-)) : QPVar(C) — TriCat, S — D(MHW(S)),
(f:T = 8) — (ferag : (M, F, W), (K, W),a) —
Ferrag(M, F,W), (K, W), ) := (RfI% (M, F,W), Rf.(K,W), f.(a))).

e We have the following 2 functor on the category of complex quasi-projective algebraic varieties

D(MHW()) : QPV&I‘((C) — TriCat, S — D(MHW(S)),
(f:T—=8)— (frtrag : (M, E, W), (K, W), a) —
f!Hdg((M, F, W)v (Kv W)va) = (Rf!Hdg(Ma F, W)va!(Ka W)vf'(a)))
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o We have the following 2 functor on the category of complex algebraic varieties
D(MHW(-)) : Var(C) — TriCat, S — D(MHW(S)),

(f: T — 8)— (f'H99 . (M, F,W),(K,W),a) —
FHO(MFW), (K,W), ) == (fiae (M, F,W), f(K,W), f'(a))).

For a commutative diagram in Var(C)

p= x-1-3
g'T -‘JT
r St
X' ——T
with S, T, X’ X quasi-projective, we have, for (M, F,W),(K,W),a) € D(MHM (X)) using theorem
29, the following transformations maps

THS(DY(M, F,W),(K,W),a) :

'd(fl*Hdgvf* 9)(=) "% *
. L f;Hdgf Hdgg Hdgf*Hdg((M7 F, W)v (K7 W)va)

= "% * ad(.f*Hdgxf* 9)(—) " x
—>fﬁ{<Hdgg Hdgf Hdgf*Hdg((MvFv W)v(Kv W)va) - f/H g Hdg((MaFaw)u(Kaw)uO‘)

+«Hdg

g*Hdgf*Hdg((Mv F, W)v (K7 W)v O‘)

and

TH(DY(M, F,W), (K, W), ) :

ad(f'7, fiprag)(—

L Frtagg 99 P f (MW, (K, W), @)

ad(f " H49 f1 0 (-)

f!/Hdggl!Hdg((Mv Fv W)a (Kv W)a a)

— f!/Hdgf/!Hdgg!Hdgf!Hdg((M7 FW), (K, W), a) Q!Hdgf!Hdg((Ma FW), (K, W),a)
One consequence of the unicity of proposition 90 is the following :

Proposition 94. For a commutative diagram in Var(C)

p= x—t.5

ng 9
%

XTj—>T

which is cartesian, with S, T, X', X quasi-projective and f (hence f' proper), and (M, F,W), (K, W), «) €
D(MHM(X))

T (f.9) : (M, F,W), (K, W), ) :
1 faptag (M, W), (K, W), ) 55 fligggg ™ (M, F, W), (K, W), 0)
is an isomorphism.
Proof. See [27]. O
Proposition 95. (i) Let S € AnSp(C). Take an open cover S = UL_,S; such that there exists closed
Je\?;)le]c\ljzgg;s i; 2 S; — S; with S; € AnSm(C). Then for (M, F,W),ury), (K,W),a), (N7, F,W),vr;), (K',W),a') €

(M7, F,W),ury) ®os (Nr, E,W),v17), (K,W)® (K'\W),a®da') € MHM(S)
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(i) Let S € Var(C). Take an open cover S = UL_,S; such that there exists closed embeddings i; : S; —
S; with S; € SmVar(C). Then for (Mg, F,W),uzrs), (K, W), ), (Nr, F,W),vrs), (K'\W),d) €
MHM(S)

(M7, F,W),ury) ®os (Nr, E,W),v15), (K,W)® (K'\W),a®a') € MHM(S)
Proof. See [27]. O

° Let S € AnSp(C). Take an open cover S = UL_,S; such that there exists closed embeddings
: S; < S; with S; € AnSm(C). By proposition 95(i), the functor

(=) 0 (5, (=) @ () : (Co0y7u(5/(5) X1 Cra(S))* = Cowoa(S/(51) x1 C(8),
(M, B, W), ur), (K, W), ), (N, F, W), 015), (K, W), o)) =
(M1, F,W),ury) @os (N1, F, W), vi ), (K W)® (K'\W),a®d)
restricts to a functor ((—) ®os (=), (=) ® (=) : C(MHM(S)? — C(MHM(S)).

o Let Se Var((C) Take an open cover S = UﬁzlSl- such that there exists closed embeddings ; : S; —
S; with S; € SmVar(C). By proposition 95(ii), the functor

(=) ® (=) : (Cp,0)£a(S/(S1)) x1 Cra(S*™)* = Cpa.oypu(S/(S1)) x1 C(S™™),
((((M17F7 W)vufJ)v (Ka W)va)v (((N17F7 W)vva)v (K/,W),O/)) =
(((MIvFv W)vufJ) ®os ((NIvFv W)vva)v (K7 W) ® (KI,W),Oc ® a/)

restricts to a functor ((—) ®os (—), (=) ® (=)) : C(MHM(S)* — C(MHM(S)).
For X € SmVar(C), we have, by definition
Z3Y = a1 YLLY = ((Ox, Fy)[dx], Zx, (X)) € D(MHM (X)),
with a(X) : Cx — (0 - Ox — Qx — -+ Kx). If X € SmVar(C),
ZRY = o} YLLY = ((Ox, Fy)dx], Zxan, (X)) € D(MHM(X)).

Let X € Var(C) non smooth. Take an open cover X = Ut_, X; such that there exists closed embeddings
1; + X; = X; with X; € SmVar(C). Then, by definition

Zx" = ax Ly = (0" (Ox, Fo)ldx, ). 05, 15,): (Zoxen, W), a(X/X1)) € D(MHM (X)),
with

a(X/X1) (T, a(X1) : T(X/(XD)(Zxen) = (iruZixgn, I) = DR(X)T((TH9 (05 )ldg, ), 05, 5,)

We finish this section by the following proposition

Proposition 96. Let Y € PSmVar(C) and i : Z — S a closed embedding with Z smooth. Denote by
j:U:=8\Z <Y the complementary open subset.

(i) We have

FDR
CLUHdg!ngg = aUHdg! ((OU, Fb), ZUan ) a(U)) —_—> (/ j!Hdg(OU, Fb), (RCLU*ZUan ) W), aU*oz(U))

ay

FDR
=~ ( / Cone(DX ad(iemon, #)(=) : (O Fy) = iomoa(Op, Fy)), (RaunZuen, W), ana(U))

ay

=y (Cone(E(Qp,y)(D) : T(Y, E(Q%, Fy)) = T(D, E(Q, F)), W), (RapZyan, W), apna(U))
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(ii) We have

FDR
CLUHdg*ngg ‘= QU Hdg* ((OU, F), ZUan y OL(U)) — (/ jfldg(OU, F, W), (RCLU!ZUan y W), CLU!OL(U))
ay
FDR

= (/ Cone(ad(ixmod; i*) (=) : ixmod(Op, Fy)[c] = (Oy, Fy)), (Rap+Zyan, W), apwa(U))

Y

2, (Cone(ips : D(D, B(Q%, Fy))[d] — D(Y, B(Q%, Fy), (Ray, Zyen, W), apsc(U))

Proof. See [27]. O
In the case where D = UD; C Y is a normal crossing divisor, proposition 96 gives
amaguZo" =5 (L(Y, E(Q% (logD), F,W)), (RayZyan, W), apwa(U))
and

agggnZp®™ = (D(Y, E(Q} (nulD), F,W)), (Rag Zyan, W), apna(U))

6 The algebraic and analytic filtered De Rham realizations for
Voevodsky relative motives

6.1 The algebraic filtered De Rham realization functor

6.1.1 The algebraic Gauss-Manin filtered De Rham realization functor and its transfor-
mation map with pullbacks

Consider, for S € Var(C), the following composition of morphism in RCat (see section 2)

&(S) : (Var(C)/8, Ovax(cy/s) 22 (Var(C)™ /8, Ovar(eymjs) “ (5, 0s)
with, for X/S = (X, h) € Var(C)/S,
® Ovar(c)/s(X/9) = Ox(X),
e (6(8)*0s(X/S) = Ovar(c)/s(X/9)) := (h*Os = Ox).

and Ovar((c)sm/s = pS*OVar(C)/Sv that iS, for U/S = (U, h) S Var((C)sm/S, OVar((C)Sm/S(U/S) =
Ovar(c)/s(U/S) := Ou(U)

Definition 101. (i) For S € Var(C), we consider the complezes of presheaves
Qg = coker(Qoy,, ), s/6(5)°0s * Qe(5):05 = LOyareys) € Cos (Var(C)/5)
which is by definition given by

— for X/S a morphism Q94(X/S) = Q% 5(X)
— forg: X'/S — X/S a morphism,

Q95(9) = Qxr/x) /(575 (X)) : Q% /5(X) = 6" Uxys(XT) = Q%0 5(X)

W= Qexyx)/s/5) (X)) 1= g () : (@ € ATx (X7) = w(dg(a)))
(i) For S € Var(C), we consider the complexes of presheaves

g = psuQyg = coker(Qoy,, cyem s /e(5)°05 * Le(s)-0s = Loyunerem s) € Cos (Var(C)*™ /)

which is by definition given by
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— for U/S a smooth morphism Q (U/S) U/S(U)
— forg:U')S —=U/S a morphzsm,

Q;s(g) = Qv sys)(U) ij/s(U) — 9" Quys(U') — Q.U’/S(U/)
w = Qo sys) (U (W) = g* (W) 1 (a € AT (U') = w(dg(ev)))

Remark 10. For S € Var(C), Q5 € C(Var(C)/S) is by definition a natural extension of Q74 €
C(Var(C)*™/S). However 4 € C’(Var( )/S) does NOT satisfy cdh descent.

For a smooth morphism h : U — S with S,U € SmVar(C), the cohomology presheaves H"Q'U/S of
the relative De Rham complex

R(U/S) == Q)5 1= coker(h"Qs — Qu) € Che04(U)

for all n € Z, have a canonical structure of a complex of h*Dg modules given by the Gauss Manin
connexion : for S° C S an open subset, U° = h=1(5°), v € T'(8°,Ts) a vector field and & € QU/S( ©)e
a closed form, the action is given by -
7+ [@] = [1(7)0w],

w € QF(U°) being a representative of @ and 4 € I'(U°, Ty) a relevement of y (h is a smooth morphism),
so that

R(U/S) == Q5 = coker(h™Qs — Q) € Che0g,n-p(U)
with this h*Dg structure. Hence we get h.Qf; ¢ € Cos,p(S) considering this structure. Since h is a
smooth morphism, Q’[’J /g are locally free Oy modules.

The point (ii) of the definition 112 above gives the object in DA(S) which will, for S smooth, represent

the algebraic Gauss-Manin De Rham realisation. It is the class of an explicit complex of presheaves on
Var(C)*™/S.

Proposition 97. Let S € Var(C).

(i) For U/S = (U, h) € Var(C)*™ /S, we have e(U).h* Q95 = Q.

(i) The complex of presheaves (Q;S,Fb) € Cogpu(Var(C)*™/S) is 2-filtered Ak local for the etale

topology. Note that however, for p > 0, the complezes of presheaves Q°P are NOT A} local. On
the other hand, (9, Fy) admits transferts (recall that means Tr(S), Tr(S)*QY, = st)

(iii) If S is smooth, we get (54, Fy) € Cogpit,ps (Var(C)*™ /S) with the structure given by the Gauss
Manin connexion. Note that however the Dg structure on the cohomology groups given by Gauss
Main connezion does NOT comes from a structure of Dg module structure on the filtered complex of
Ogs module. The Dg structure on the cohomology groups satisfy a non trivial Griffitz transversality
(in the non projection cases), whereas the filtration on the complex is the trivial one.

Proof. (i): Let A’ : V' — U a smooth morphism with V' € Var(C). We have then

WV S U) = (v S U B s).

Hence, if b’ : V < U is in particular an open embedding, h*QI;S(V , U)=

U/S( ). This proves the

equality.
ii): We prove that E.; ,Fy) € Cog i (Var(C)5™ is 2-filtere invariant. We follow |20|. Denote
Wi hEQ;SF Cogfi(Var(C S fil dAls We foll D
by
P, : Var(C)*™ /S — Var(C)*™/S,
U/S = (U,h)HUxAl/S:: (UxAl,hop), g:U/S—>V/S|—>g><I:UxAl/S—H/xAl/S
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the morphism of site. Consider the map in C'(Var(C)*™/S)
¢ = ad(Py, Pas)(=) : Qg = Pau P Qg
which is given, for U/S € Var(C)*™/S by
ad( Py, Pax)(=)(U/S) = Qusarjuycsys) (U x A1) : Q6 (U) = Qg1 ys(U x A1), w = p*w
where p: U x A! — U is the projection. On the other hand consider the map in C(Var(C)*™/S)
=15 Pa*P;Q;S — Q;S
given, for U/S € Var(C)*™/S by
I5(U/8) - Qs (U x A1) = Qp5(U), w i igw
where ig : U <: U x Al is closed embedding given by ig(z) := (z,0). Then,
e we have pop =1
e considering the map in PSh(N x Var(C)*™/S)
H : Py PyQ9g[l] = Pax Py Qg
given for U/S € Var(C)*™/S by
H(U/S) 15U x AY) = Q77 o(U x A,

HU/S)(p*w A g™ (f(s)ds)) = (/O f(s)ds)p*w, HU/S)(p*w Aq"f) = 0,

note that g(t fo s)ds is algebraic since f € Ou1(Al) is a polynomial, we have 9o ¢ — [ =
OH + HO.

This shows that
ad(P}, P )(—) : Q;S — Pa*P;Q;S
is an homotopy equivalence whose inverse is Ij. Hence, by proposition 7,

ad(P;,Pa*)(—): et(Q/San)_)Eet(Pa*P Q/Sa )—Eetpa*(P* /San)

is a 2-filtered quasi-isomorphism, that is Eet(€2g, Fy) € Cog ri(Var(C)*™/5S) is 2-filtered A} invariant.
(iii):For h : U — S a smooth morphism with U, S € SmVar(C), recall that the h*Dg(U) = Dg(h(U))
structure on HPQ9¢(U/S) := HPQ;]/S( ) is given by, for & € QPU/S( )6 v @] = [1(7)w], w e QF(U°)
being a representative of & and 4 € I'(U°,Ty) a relevement of v (h is a smooth morphism). Now, if
g:V/S — U/S is a morphism, where b/ : V' — S is a smooth morphism with V' € SmVar(C), we have

9" (v @) = g*(U3)0w) = 1(7)0g°w =7 - (9"®)
that is HPQ95(g) : HPQ*(U/S) — HPQ*(V/S) is a map of Dg(h(U)) modules. O

We have the following canonical transformation map given by the pullback of (relative) differential
forms:
Let g : T — S a morphism with T, .S € Var(C). Consider the following commutative diagram in RCat

P(g)
D(ga e) : (Var((C)Sm/T, OVar((C)Sm/T) d

le(T)

(T, Or)

(Va‘r((c)sm/sv OVar((C)Sm/S)

P(g)
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It gives (see section 2) the canonical morphism in Cy-og i (Var(C)*™ /T)
Q/(T/S) = Q(OVar(C)sm/T/Q*OVM(C)SM/S)/(OT/g*OS) :
9" (s, Fy) = Q,‘;*o\,ar(c)sm/s/g*e(syos = (7, Fy) = Q.o\,m(c)m/T/e(:r)*oT
which is by definition given by the pullback on differential forms : for (V/T) = (V, h) € Var(C)*™ /T,

Qvyvyyxss)(VIT) e

Qr/s)(V/T) : g*(Q5)(V/T) := Q7/5(U) vir(V) =:Q5:(V/T)

lim
(h':U—Ssm,g’:V—U,h,g)
w = Qo s (VIT) () = g7 w.
If S and T are smooth, /(r/s) : " (g, Fbo) = (4, Fp) is a map in Cgo; fit,g+ ps (Var(C)™™ /T) Tt
induces the canonical morphisms in Cy-og fi1,9+ pg (Var(C)*™ /T):

T(9:Eet) ()5, 17 Eot(Q
EQrys): 0" Eet (s, Fb) Tg.Ber)(@s. Fr) Bet(yays),

Eet(g*(ﬂ757Fb)) Eet( ;TuFb)'

and

T(9,Ezar)(Q)5,Fp) Ezar(Q/(1/5))
BN

EQ/(T/S) :g*Ezar( 757Fb) Ezar(g*( ;San))

Definition 102. (i) Letg: T — S a morphism with T, S € Var(C). We have, for F € C(Var(C)*™/S),
the canonical transformation in Coyra(T) :

Ezar (Q;Ta Fb)

T9(g,9,.)(F) : g*"**Loe(S). Hom® (F, Eet (255, Fy))
— (g"Loe(S)Hom® (F, Ect(Q) 5, Fb))) ®g-05 O

T(e;9)(—)oT(g,L0)(-)

Lo(e(T).g"Hom* (F, By (%5, F)) @505 Or)
T(g,hom)(F,Eet(Q;S))®I

Lo(e(T)«Hom®*(g"F, g"Eet () 5, F})) ®g+05 Or)
ev(hom,®)(—,—,—)

Loe(T)*HOmO (g*F‘7 g*Eet (Q;Sv Fb) ®g*e(S)*Os E(T)*OT)
Hom®(g" F,EQ(1/5)®1)

Loe(T')*,]‘[OTrL'(g*F‘7 Eet(Q;Tv Fb) ®g*e(S)*Os E(T)*OT)
2 Loe(T).Hom®(g*F, Eet (U7, Fy)
where m(a ® h) := h.« is the multiplication map.

(i1) Let g : T — S a morphism with T,S € Var(C), S smooth. Assume there is a factorization

g:T Ly xS 25 S withY € SmVar(C), I a closed embedding and ps the projection. We have,
for F' € C(Var(C)*™/S), the canonical transformation in Copru(Y x S) :

T(g,92,.)(F) : g™ e(S), Hom* (F, Eet (295, 1))
= T Ear (p"%e(S) Hom® (F, Eet (5, F)))

T° (ps,Q,.)(F) o x .
e L1 E.ar(e(T x S)Hom® (pg F, Eet(Q/Yxsv £)))

=5 el % 8).Tr (Hom* (95, E(y 5, Fy)
LOrhom)(=,7), e(T x S)Hom® (CrpsF, Eet(Qy 55 Fb))-
For Q € Proj PSh(Var(C)*™ /S),
T(9,92,)(Q) : g™ e(S). Hom*(Q, Eet(Q%s, Fy)) = (T x S). Hom* (T1psQ, Eet(Qy 55 F))

is a map in Coprap(Y x S).
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The following easy lemma describe these transformation map on representable presheaves :

Lemma 10. Let g : T — S a morphism with T, S € Var(C) and h : U — S is a smooth morphism with
U € Var(C). Consider a commutative diagram whose square are cartesian :

g:T —logxy = o5
h’T h”:_thT hT
g Ur—Uxy 2 oy
with 1, I the graph embeddings and ps, pu the projections. Then ¢*Z(U/S) = Z(Ur/T) and
(i) we have the following commutative diagram in Co,ra(T) (see definition 1 and definition 102(i)) :

T(9,2,)(2(U/9))

g™ Loe(S)  Hom®*(Z(U/S), Eu (295, Fp)) e(T)Hom®*(Z(Ur /T), Eet (2, Fy))
Tk kT
*mod . . T(g:$2/.)(2(U/S)) ° °
) Loe(S)<Hom (Z(U/S)aEzar(Q/san)) e(T)«Hom (Z(UT/T)aEzar(Q/Tva))

l_

h; E.ar (Q.UT/T’ Fb)

|

. . T:}nod (g,h)
g mOdLOh*Ezar (QU/S7 Fb)

(i1) if Y, S € SmVar(C), we have the following commutative diagram in Co, ru,p(Y % S) (see definition
1 and definition 102(ii)) :

T(9,,.)(2(U/S))

g* " e(S) Hom* (Z(U/S), Eet (25, Fy)) e(Y x ) Hom* (T, Z(U x Y/S X Y), Et(QS
*mod,T’ . ° T(g,9,.)(2(U/S)) /T R
g "+ Loe(S) Hom (Z(U/S),EZM(Q/S,Fb)) e(Y x S).Hom*(T), Z(U x Y/S x Y),EZM(Q/YX

*1M0 l . Two (ps,h)(—) l.
g d7Fh*Ezar(QU/SuFb) hZFUTEzaT(QUXy/SXyan)

where j : T\T x S < T x S is the open complementary embedding,

with
k: EzaT(h*Q;S, F) — Eet(EzaT(h*Q;S, F)) = Eet(h*Q;S, Fy).

which is a (1-)filtered Zariski local equivalence.

Proof. The commutative diagram follows from Yoneda lemma and proposition 97(i). On the other hand,
k: EZM(Q;S, F) — Eet(Q;S, F,) is a (1-)filtered Zariski local equivalence by theorem 10 and proposition

97(ii) O
In the projection case, we have the following :

Proposition 98. Let p : Si12 — S1 is a smooth morphism with S1,S12 € AnSp(C). Then if Q €
C(Var(C)®™ /S1) is projective,

T(p,2,)(Q) : p%e(S1)Hom® (Q, Eet(Qs, , Fb)) — €(S12)« Hom* (p*Q, Eet(Vs,,, Fi))

is an isomorphism.
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Proof. Follows from lemma 10 and base change by smooth morphisms of quasi-coherent sheaves. O

Let S € Var(C) and h : U — S a morphism with U € Var(C). We then have the canonical map given
by the wedge product

wyys 1 /s ®os Wrys = Qysia®@ B ahp.

Let S € Var(C) and hy : Uy — S, ha : Uz — S two morphisms with Uy,U; € Var(C). Denote
h12 : U12 = U1 Xs UQ — S and P112 - Ul Xs U2 — Ul, p212 - U1 Xs UQ — U2 the projections. ‘We then
have the canonical map given by the wedge product

W(u,,Us)/S - PT12QZJ1/S ®os p§129&2/s - Q.U12/5§ a® B priaa A psiaf
which gives the map

Ew(Ul,Ug)/S : hl*Ezar(QU /S) ®Os h2* zar( Us/S

ad(plys,p112+)(—)®ad(ps5,p212+) (—)

(h1p1124P112E2ar (U, /5)) ®0s (h2sp212:4P512Ezar (277, /5)

—:_) h12* (pI12Ezar(QU1/S) ®h1205 p212Ezar( Usz/S
T(®,E)(—)o(T(p112,E)(—)®T (p212,E)(—))

)
)
)
hi2+ Ezar (P11200, /s ®0s P21280, ) 5)
Let S € Var(C). We have the canonical map in Coy rii(Var(C)*™/S)

ws = (25, Fb) ®os (5, Fo) = (X, Fp)

given by for h: U — S € Var(C)*™ /S

° ° wy (U)
ws(U/S) : (5, Fb) @n0s ()5, F)(U) —2

It gives the map

(Q7/s: Fp)(U)

Bus : Ea(Qs, Fy) 905 Eet( Qs Fy) = B, Fy) ®05 (W, Fy) =% By (05, Fy)
If S € SmVar(C),
s (. Fi) @0 (s, Fy) = (5. F)
is a map in Coyg rit, ps (Var(C)*™/S).

Definition 103. Let S € Var(C). We have, for F,G € C(Var(C)*™/S), the canonical transformation in
Cosra(9) :

T(®,Q)(F,G) : e(S)Hom(F, Ect(Q5, Fy)) ®og €(S)sHom(G, Eet(Q 5, Fy

)
= e(8)«(Hom(F, Eet(Q), b)) ®0s Hom(G, Eet ()5, Fp)))
e(S)«T(Hom,®)(-) )

)

e(S)Hom(F ® G, Eet (g, Fy) ®0g Eet (g, Fy

HonEEGED, o) Hom(F © G, Eur(Qs, Fy

If S € SmVar(C), T(®,Q)(F,G) is a map in Cogriu,p(S).

Lemma 11. Let S € Var(C) and hy : Uy — S, ha : Uy = S two smooth morphisms with Uy, Uy € Var(C).
Denote hyig : Uig := Uy xg Uy — S and p112 : Uy Xg Us — Uy, poi12 : Uy Xxg Us — Us the projections. We
then have the following commutative diagram

() Hom(F, Eui(2 5, Fy)) @0, €(S). Hom(G, Bt (2. 1)) —— () Hom(F © G, Eet(g, F))

Bww, vuy)/s

hl*Ezar (QZh/S’ Fb) ®Os h?*Ezar (Q.U2/57 Fb) h12*Ezar (QZ]m/S’ Fb)
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with
k: Ezar(Q7S; Fb) — Eet(Ezar(Q7S; Fb)) = Eet (Q;S; Fb)

which is a filtered Zariski local equivalence.

Proof. Follows from Yoneda lemma. O

Let S € Var(C) and S = UL_,S; an open cover such that there exist closed embeddings i; : S; — S;
with S; € SmVar(C). For I C [1,---1], denote by St := N;esS; and jr : Sy — S the open embedding. We
then have closed embeddings i; : S; < Sy := II;¢;S;. Consider, for I C J, the following commutative
diagram

Dry= 51 L>5'1

juT PIJT

Sy =8,

and jry : Sy — Sy is the open embedding so that j; o j;; = js. Considering the factorization of the
diagram Dy by the fiber product :

Diy= S;=S5r xSy, i St

k

S[XSJ\] ir

/\

the square of this factorization being cartesian, we have for F' € C (Var(([:)sm /S) the canonical map in
C(Var(C)*™/Sy)

(i1 x 1)« ad(p§ 74,07 5) (=)

S(Drj)(F): Lisuj5F % igujiF = (i X I) % Ly j5 F
T(prs,ir)(—) "

(i1 X 1)up?5p7 s3lasd 7 F P rirspl gylisii F = pisingi F
which factors through

e SUDIYF) . .. .
S(Dry)(F): LZJ*jIF%puLn*hF&pUu*hF

Definition 104. (i) Let S € SmVar(C). We have the functor
C(Var((C)sm/S)Op — Csz'l,D(S)a F— 6(5)*7'[07%. (L(i]*j;F), Eet(Q;S, Fb))[—ds].
(ii) Let S € Var(C) and S = U._,S; an open cover such that there exist closed embeddings i; = Si < S

with S; € SmVar(C). ForI C [1,---1], denote by S := NierS; and jr : Sp = S the open embedding.
We then have closed embeddings iy : S; — St := l;¢1S;. We have the functor

C(Var(C)*" /S)" = Coyu,p(S/(S1)), F = (e(St)sHom® (L(irji F), Eet (25, Fy))[~dg, ], uf ;(F))
where

uf ;(F)ldg,]  e(Sr)Hom® (L(i1.ji F), Eet (5, Fy))

s*mod

ad(p7y

pra«)(—) I *p?’r}n,od (S’I)*Hom.(L(iI*j;F)7Eet(Q;SI7Fb))

ST(p15,Q) (LG ji F . o x T x .
P17+ T(prs, Q) (L(i1.j7 F)) pry«e(Sy)«Hom (pUL(zI*jIF),Eet(Q/gJ,Fb))

p”*6(5',7)*’}-[0771(5‘7(DIJ)(F)yEct(Q;’SVF] Fy))

prowe(Sy)Hom® (L(i.j5F), Ea(Q5,5 Fb))-
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For I C J C K, we have obviously prjsujx (F)oury(F) = urk(F).

We will prove in corollary 4 below that uy(F) are oo-filtered Zariski local equivalence.
We then have the following key proposition

Proposition 99. Let S € Var(C). Let m : Q1 — Q2 be an equivalence (A',et) local in C(Var(C)*™/S)
with Q1,Q2 complexes of projective presheaves. Then,

e(S)«Hom(m, Eci(Q7g, Fy)) : e(S)sHom® (Q2, Eet (g, F)) — e(S)xHom® (Q1, Eet (275, 1))

is an co-filtered quasi-isomorphism (in fact it is a 2-filtered quasi-isomorphism). It is thus an isomorphism
in Dog fi1, 0,00 (S) if S is smooth.

Proof. By proposition 97(ii), Ect(€2)g, Fy) € Cos fit,ps (Var(C)*™ /5) is 2-filtered Al invariant. The result
then follows by lemma 1. O

Definition 105. (i) We define, using definition 104, by proposition 99, the filtered algebraic Gauss-
Manin realization functor defined as

F§M i DAL(S)? = Dogjir,p,o(S), M — F§M(M) := e(S)Hom® (L(F), Eet (g, Fy))[—ds]
where F € C(Var(C)*™/S) is such that M = D(Al,et)(F),

(ii) Let S € Var(C) and S = UﬁzlSi an open cover such that there exist closed embeddings i; : S; — S;
with S; € SmVar(C). For I C [1,---1], denote by St = NierSi and jr : S; < S the open embedding.
We then have closed embeddings iy : S — S := W;e1S;. We define, using definition 104 and
corollary 4,by proposition 99 the filtered algebraic Gauss-Manin realization functor defined as
fscM : DAC(S)Op — DOfil,D,oo(S/(gl)); M —
FEM(M) = (e(S1) Hom® (L(ir.ji F), B ), Fi)[—ds, ], ul, (F))

where F € C(Var(C)®*™/S) is such that M = D(A!, et)(F).
Proposition 100. For S € Var(C), the functor F§M is well defined.

Proof. Let S € Var(C) and S = U._,S; an open cover such that there exist closed embeddings i; : S; < S;
with S; € SmVar(C). Denote, for I C [1,---,1], S; = NierS; and jr : S; < S the open embedding. We
then have closed embeddings iy : S; < Sy := ;1 S;. Let M € DA(S). Let F,F’ € C(Var(C)*™/S)
such that M = D(Aq,et)(F) = D(Ay, et)(F'). Then there exist by definition a sequence of morphisms in
C(Var(C)s™/8S) :

F=F 3B & R3S L F =F
where, for 1 < k < s, and sy, are (Al et) local equivalence. But if s : [} — Fy is an equivalence (Al, et)

local,
L(irjrs) « L(irsji F1) — L(ingr F2)

is an equivalence (A!, et) local, hence
Hom(L(ir.jis), Bet (g, Fy)) = (e(S1)Hom(L(irji Fa), Bet(Q5,, Fy)), urs (F2))
— (e(gl)*ﬂom(L(iz*j?Fl),Eet(Q;glan))aUIJ(FI))

is an oo-filtered quasi-isomorphism by proposition 99. O
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Let f: X — S a morphism with S, X € Var(C). Assume that there is a factorization

fixLyxs?iss

of f, with Y € SmVar(C), I a closed embedding and ps the projection. Let S = U_,S; an open cover
such that there exist closed embeddings i; : S; < S; with S; € SmVar(C). We have X = U._, X; with
X; = f71(S;). Denote, for I C [1,---1], St = NMierS; and X7 = NjerX;. For I C [1,---1], denote
by S; = IL;c;S;, We then have, for I C [1,---1], closed embeddings iy : S; — S; and the following
commutative diagrams which are cartesian

~ Ps ~

f]=f|XIZX]lI—>YXS]pL>S] ,YXSJLSJ
SN A
~ Ps; ~ ~ P3; ~

YXS]HS] YXS]—>S]

with 7 : l|x,, i7 = I X1y, ps, and pg, are the projections and pr; = I xpry, and we recall that we denote

by jr: S’I\Sl < S; and JriY x S’I\XI — Y x S; the open complementary embeddings. We then have
the commutative diagrams

if]Ol‘]

D[J: SJLS’J ,DIIJ: XJ YXS‘J.

lju lpll lj}‘] lplu
. -/

St L St X7 Y x St
and the factorization of D7 by the fiber product:
zIolI i}oll

DI]_ XJ—>Y><SJ, DIJ_ XJ

lj;., ., l”/” \ /

YXSJ

irolr ~
Xr——=Y x5 X]XYXSvIYXS] XIXSJ\I P
PrJ o
X[ e Y x g[
(50)
where j;; : Xj < X is the open embedding. Consider
F(X/S):=psiTXZ(Y x S/Y x S)[dy] € C(Var(C)*"/S)
so that D(A!, et)(F(X/S)) = MBM(X/S). Then, by definition,
FEM(MPM(X/S)) := (e(S1)s Hom(L(i1:jTF(X/S)), Bet(5,. Fo))[=dg, ], uf; (F(X/5)))
On the other hand, let
Q(X]/g[) = pgl)ﬁr}/(IZ(Y X g[/Y X g[)[dy] S C(Var(@)sm/gj),
see definition 10. We have then for I C [1,1] the following map in C(Var(C)*™/S,) :
- y - - psp 2l 1) ()
N](X/S) : Q(X]/S]) :pglﬁl—‘XIZ(Y X S]/Y X S])[dy] _— (51)
eV ~ ~ pS‘ﬁ(T('L‘l]v'yv)(f))il ./ V2
pSIﬁZI*ZI FXIZ(Y X S[/Y X S])[dy] pS;ﬁZI*FXIZ(Y X S[/Y X S])[dy] (52)

T i) (—
(ps; i) (=) i1eps D%, Z(Y % S1/Y x Sp)|dy] = ir.j;F(X/S) (53)
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We have then for I C .J the following commutative diagram in C(Var(C)*™/S) :

. - - P} NI(X/S) .
PisPg L%, Z(Y x S1/Y x Sp)ldy] — p1s(in g7 F(X/S)) (54)
HIJT TS(DIJ)(F(X/S))
= - Ny (X/S) L
g, %, Z(Y x S;/Y x S;)[dy] ’ i J5F(X/)S)

with

H[J[—dy] IpSJﬁF}/(‘]Z(Y X gJ/Y X S’])

,*
Conc(ad(p}‘]u,p”)(f),l)

= pg,pxsT%, Py Z(Y x Sr/Y x S) pHZ(Y x 81)Y x §1)

pSJﬁF;/(VIXSJ\I
~ = Telprrps )(=) v ~ ~
LoD, o D%, Z(Y x S1/Y x 8p) — P e b, %, Z(Y x S1/Y % 8).
This say that the maps N;(X/S) induces a map in C(Var(C)*™/(S/Sr))
(N1(X/S)) : (Q(X1/S1), Hry) = (i1.j1F(X/S), S(D1)(F(X/5))).
We denote by v{;(F(X/S)) the composite
vl (F(X/5))ldg,] : e(S1)s Hom(Q(X1/S1), Eet (5, Fy))

ad(p37°pry)(—) *mod (~
%

prr-piole(Sr)  Hom(Q(X1/Sr), Bt (Q°

/gluFb))

7« T (prg,Q. X1/8 P * & .
prJ (pII )(Q( I/ I)) I *G(S,])*Hom(p]JQ(XI/SI);Eet(Q/gJ;Fb))

Hom(Hyy,Eet (Q°

75,0F%))

prve(S1) Hom(Q(X1/51), Eet (5, Fb))-

On the other hand, we have the following map in Coru,p,s, (S'J)

° ad(p*fnod,p p )(7) *xmod .
U}]](X/S)[ ] pSI*FXI ZGT(QYXS /517 F)%pll*pll pSI*FXI ZG‘T(QYXSI/S[ F)
T, (ZDI.hZDsI) . Conc([,ad(p/ff],pz‘]*)(f)) .
—>p1J*pS,*FXI><SJ\, zar(QyXSI/SI Fb) SJ*PXJ zaT(QyXSJ/SJ Fb)-

Lemma 12. (i) The map in C(Var(C)*™/(S/Sr))
(N1(X/S)) : (Q(X1/Sr), Hr) = (L(ir.ji F(X/S)), S4(Dry)(F(X/S)))-
is an equivalence (A, et) local.
(ii) The maps (N7(X/S)) induces an oo-filtered quasi-isomorphism in Copa.p(S/(Sr))
(Hom (N1 (X/S), Eet(275,, Fb))) :
(e(Sr)«Hom(L(irj; F(X/S)), Eet (X5, Fy)[~dg, ], uf ,(F(X/$))) =
(e(S1)«Hom(Q(X1/51), Eet(Q)5,, Fb))[~dg,], v, (F(X/$)))

(iii) The maps (I(y,hom)(—,—)) and (k : EzaT(pS Q;S , Fy) = Eet(pt Q/S , Fp)) induce an (1-)filtered

Zariski local equivalence in Coti1p(S/(Sr))
(k ° I(thom)(_7 _)) (pSI*FXI ZGT(Q;/XS /51 7Fb)[_d.§1]7w1J(X/S))
— (e(S1)s Hom(Q(X1/5r), Eet (Vg , Fy))[~dg, ], vi,; (F(X/S)))
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Proof. (i): Follows from theorem 14.

(ii): These maps induce a morphism in Coti1.p(S/(Sr)) by construction. The fact that it is an co-filtered
quasi-isomorphism follows from (i) and proposition 99.

(iii): These maps induce a morphism in Coti1.p(S/(S5)) by construction. O

Proposition 101. Let f : X — S a morphism with S, X € Var(C). Let S = Ut_, S an open cover
such that there exist closed embeddings i; : S; — S; with S; € SmVar(C). Then X = Ulilei with
X; = f7YS;). Denote, for I C [1,---1], S; = MicsS; and X; = Nicr X;. Assume there exist a
factorization

FfixLyxsrss

of f with Y € SmVar(C), I a closed embedding and ps the projection. We then have, for I C [1,---1], the
following commutative diagrams which are cartesian

~ P3 ~

f]=f|XIZX]lI%YXS]pLS] s YXSJLSJ
\ ll} lil P/ul/ lp”

~ Ps; ~ ~ P3; ~

Y xS ——= 57 Y xS —— 51

Let F(X/S) = pssT'XZ(Y x S/Y x S)[dy]. The transformations maps (N;(X/S) : Q(X1/§1)~—>
irjiF(X/S)) and (koI(y,hom)(—,—)), for I C [1,--- 1], induce an isomorphism in Do fi p,00(S/(ST))
19M(X/8S)
FEM(MBM(X/8)) 1= (e(31), Hom(L(i1.j; F(X/S)), B @5, B)) =g, ud, (F(X/S))

(8(51)*H0m(LNI(X/S)1Eet(ﬂ;gl Fb)))

(e(S1)«Hom(Q(X1/51), Bet(5,, Fy))[~dg, ], v, (F(X/5)))

(koI (v;hom)(—,—)) ™"

(pS'I*FXIEzaT(Q;/XgI/gIaFb)[_dél]awIJ(X/S))-
Proof. Follows from lemma 12. O

Corollary 4. Let S € Var(C) and S = UL_, S an open cover such that there exist closed embeddings
i; + Si = S; with S; € SmVar(C). For F € C(Var(C)*™/S) such that D(A',et)(F) € DA.(S), ul,(F)

are oo-filtered Zariski local equivalence.

Proof. Let f : X — S a morphism with X € Var(C) such that there exist a factorization, f : X KN
Y x S 2% S with Y € SmVar(C), I a closed embedding and pg the projection. Then, by lemma 12(ii)
and (iii), uf;(F(X/S)) are Zariski local equivalences since wy;(X/S) are isomorphisms. O

We now define the functorialities of }'ng with respect to S which makes F,, a morphism of 2-functor.

Definition 106. Let g : T — S a morphism with T, S € SmVar(C). Consider the factorization g :

T L TxS 25 S where I is the graph embedding and ps the projection. Let M € DA.(S) and F €
C(Var(C)*™/S) such that M = D(A§, et)(F). Then, D(AL, et)(g*F) = g*M.

(i) We have then the canonical transformation in Dofip,oo(T X S) (see definition 102) :

T(g, FM) (M) : Rg*moUITFEM (M) = g* 4T e(S). Hom® (LF, Bt (55, F)))[dr]
T(9,Q,.)(LF)
_—

o(T x ) Hom® (TYp5LE, Eet( Q5. Fo))ldr] = FEY (g™ (M, W),
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(11) We have then the canonical transformation in Doyfir0o(T) (see definition 102) :
T9(g, FOM)(M, W) : Ly IFGM (M) = g*"%(S) Hom® (LF, Eet(Qg, Fy)))[dr]

T°(9,Q,.)(LF)
_
e(T)Hom® (§" LF, Eet (¥, Fy))[dr] =: FEM (9" M).

We give now the definition in the non smooth case Let g : T — S a morphism with 7, S € Var(C).

Assume we have a factorization g : T Lyxs 2 SwithY € SmVar(C), I a closed embedding
and ps the projection. Let S = Ul 1S; be an open cover such that there exists closed embeddings

: S; < S; with S; € SmVar(C) Then, T = U\_,T; with T} := g~*(S5;) and we have closed embeddings
z; =4;0l:T; =Y xS;, Moreover gy := Pg, 1Y x SI — SI is a lift of gy := gr; - Tr — Sr. We recall
the commutative diagram :

EIJg:(ngl)\TILyng,EIJZ S’J\SJL)gJ E}JZ (ngj)\TJ YXS’J
lp.él l;}[ lpu lpr.l lp}‘, l/p'”
S\S; —— 5, SI\(S\ST) s 5, (Y x SO\TNT)) 22>y x §;

For I C J, denote by prj : S'J — 5'1 and p'IJ = Iy Xpry: Y X S'J — Y x 5’1 the projections, so
that gr o p}; = pryo gs. Consider, for I C J C [1,...,1], resp. for each I C [1,...,1], the following
commutative diagrams in Var(C)

Dy = SIL>§I , Dy = TJ—”>Y><5'1D91= SIL>§I ,
jI.IT PIJT j}JT p’”T !HT §IT
SJLS’J TJ$YX§J T[—ZI>Y><S’]

and jrj : Sy < Sp is the open embedding so that j; o jr; = js. Let I € C(Var(C)*™/S). Recall (see
section 2) that since jl zl*jl g*F =0, the morphism T'(Dy1)(j; F) : §jir«ji F — 17,5 9" F factors trough

%, (=) T (Dgr) (51 F)

T(Dgl)(j}kF) QJZI*JIF—>FXIQJZI*]1F il]*jl*g*F

We then have, for each I C [1,...,!], the morphism
-k ~ % . -k T L) (=
T4 (Dyr) (G F) : T, 57 Llirsji F) — 22
x x . L(T" (Dg1) (31 F)) g sk
F}/’IL(QIZI*]IF) = L(FTIQIZI*JIF) T L(i7.J7 9" F)
and the following diagram in C(Var(C)*™/Y x S;) commutes

5 o T} grar(F) o
IY. 37 L(in i F) ! LY, gyireji F

T‘M(Dgl)(j;F)i lT”(DgI)(j}‘F)
N alg"F)
L(i7.Jr 9" F) —— 91 F = 21*31 g°F
We have the following commutative diagram in C/(Var(C)*™/Y x S;)

e e e Py T(De)GEF) o, e e
Piydtingi F = 350} jirj; F ———————=p/5i.9;5 F = p/yini," 9" F (55)

é.’}S(Du)(F)T TS(D}J)(Q*F)

~x - Sk ek T(DQJ)(JJF) *
G5tax31531F = 9505:J 5 F 4>ZJ*9J]JF = Z]*jI]jI g = ZJ*.]J g F
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This gives, after taking the functor L, the following commutative diagram in C(Var(C)*™/Y x S;)

/% ~ % © ek S~k . /*Tqﬁ(D-qI)(j*F) "% o w %
F’,\Z/"JpIJF’,\Z/"IgIL(ZI*.]IF) = F’,\Z/"JngIJL(ZI*.]%)#) : F’,\Z/"JpIJL(Z/I*.]I g*F) (56)

§§SQ(DIJ)(F)T qu(D}J)(g*F)
SO T (D) (35 F) G e
U7, 95 L0 d59" F) e L(i7.7 9" F)
The fact that the diagrams (56) commutes says that the maps T97(Dgyr)(j5F) define a morphism in
C(Var(C)™/(T/(Y x 51)))
(T Dy )Gi F)) : (T 551G 1 F), 335 (D1s)(F)) = (L(#4dy 9" F), S1(D} ) (g" F))
Denote for short dy; := d51 + dy. We denote by gﬁu?J(F)l the composite
Gty (F)aldy o] (Y x Sr).Dr, Hom (G L(ir. i F). B (X, 5 )

d(p]prs) (= ' xmo Q ~ % s ek .
M p/IJ*pIJ de(y X SI)*FTIHom(QIL(U*JIF)aEet(Q/nglan))

TmOd(p, (=) a "xmo ~ % . - % °
+*plu*e(y X SJ)*FTIXS'J\IPIJ dHOm(gJL(ZJ*.]JF)vEet(Q/ngJan))

Cone(ad(p) 5;.p77)(—).1) ~ o e .
T p/IJ*e(Y x Sy)«L'r,pry dHOm(gJL(ZJ*.]JF)vEet(Q/ngJan))

T(p7,2/)(=)
—

Proe(Y x 85).Lr, Hom (3507, Linsji F), Bet(Qy 5, Fb))

Hom (55 (S (D1 (F), (2 5 Fo))

p/IJ*e(Y X S’])*FTI,Hom(giL(ZJ*ij)v Eet(Q;yXSJan))
We denote by guf;(F)2 the composite
Gl (F)aldy ) e(Ty) Hom (T, G5 L(irgi F), Ba(2y 5, F)

*mod

ad(p/‘ ,pl‘ (=) ' %1mo ‘2 ~ % . % °
= = pIIJ*pIJ de(TI)*HOm(F%gIL(ZI*JIF)aEet(Q/ngIan))

T(p/IJ7Q/-)(_)
_—

Pryee(Ir)sHom(p /Ty, Gi L(irji F), B (0 5 . Fb)

Hom(T (w57 ) (=) Bet (W 5 |+ Fb)

p/IJ*e(TI)*Hom(F\]/’IXgJ\Iprlg;L(il*j;F)v Eet(Q;yXSJ ) Fb))

Cone(ad(p) ,p/* )(=),I) ~ e ~x Lk .
R Prye(Tr)« Hom(Tr, pry g1 L(ir g F), Eet () 5, Fb))

Hom (T, 55 (SU(D1s)(F),Ber (R 5 Fb)

PrpelY x S5) Hom(Ly, 35 L1535 F), Bet (X 5 . Fb))
We then have then the following lemma :
Lemma 13. (i) The morphism in C(Var(C)*™/(T/(Y x S;)))
(T (Dyr) (1 F)) = (T, LginjiF, 5551 (D1)(F)) = (i1, 9" F. SU(D} ;) (F)(j"g"F))
is an equivalence (A1, et) local.
(i) The maps Hom(ETq’V(Dgl)(j}*F)),Eet(Q;YXSI),Fb)) induce an oo-filtered quasi-isomorphism in
Cora.p(T/(Y x S1))
(Hom (T (Dgr)(J1 F), Eet (5, 5, Fb))) -
(e(Y % Tr) Hom(L(i7.j;" 9" F), Bet(Qy 5, Fo))[=dy 1), uf ; (9" F)) =
(e(Y x T1)Hom((Ty, Lg7ireji F), Bet()y 5, Fo))[=dy1], Gyuf ; (F)2)
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(iii) The maps T(gr, L) (L(ir.jiF)) (see definition 102) induce a morphism in Copap(T/(Y x Si))

(T(gr, ) (Lirgi F))) :
(T, Ear (377 e(S1). Hom* (L(ir.ji F), Bet(Q)g, . F)))[=dy 1), 55" u ; (F)) —
(T (e(Y x Sp)Hom(§; L(ir.j; F), E ety 5, Fo)))=dv 1], gyui, (F)).

Proof. (i): Follows from theorem 14. 5
(ii): These maps induce a morphism in Co i, p(T/(Y x St)) by construction. The fact that this morphism
is an oo-filtered equivalence Zariski local follows from (i) and proposition 99.

(iii): These maps induce a morphism in Coti1.p(T/(Y x S5)) by construction.
o

Deﬁnition 107 Let g : T — S a morphism with T,S € Var(C). Assume we have a factorization

g:T Ly xS S withY € SmVar(C), I a closed embedding and ps the projection. Let S = U._,S;
be an open cover such that there exists closed embeddings i; : S; — 5'1- with 5'1- € SmVar(C) Then,
T = UL 1T with T; == ¢g~(S;) and we have closed embeddings i, := i; ol : Ty — Y x S;, Moreover
gr :==pg, Y x S; — Sl is a lift of gr := g, : Tr — Sr. Denote for short dy; := dy + d§1' Let
M € DA.(S) and F € C(Var(C)*™/S) such that M = D(A},et)(F). Then, D(AL, et)(g*F) = g*M. We
have, by lemma 13, the canonical transformation in Do i, p,c0(T/(Y X 5'1))

( ]:GM)( ) R *mod[— ]FfGM(M) —
(T, Bzar (37" %e(S1) Hom® (L(irji F), Bet(Q5, . Fy))) [=dy 1], §5" Mg, (F))

(T E(T(g1,2/.)(L(i137 (F,W)))))

(Tr,e(Y x Sp)sHom® (§; L(iruji F), Bet () 5,0 Fo))[=dy 1), grud;(F)1)
(I(v,hom(—,-)))
(e(Y x Sp).Hom* (U, §; L(ireji F), Ber(Q)y 5, F))[=dy 1], §yud ;(F)2)

(e(Y X S1)uHom(T " (Dgr) (57 ). Bet (25, 5, -Fs)) "

(Y x 81)Hom® (L(i5.57" 9" F), Ee (0, 5. Fy))[=dy 1), ul (" F)) =2 FEM (g" M),

Proposition 102. (z) Let g: T — S a morphism with T, S € Var(C). Assume we have a factorization

g T4 Yo x S 255 S with Vs € SmVar(C), I a closed embedding and ps the projection. Let S =

ut_,S; be an open cover such that there exists closed embeddings i; : S; < S; with S; € SmVar(C)
Then, T = Ul 1L with TZ =g 1(5}-) and we have closed embeddings i; = i; 0l : T; — Ya xS,
Moreover gr :=pg, : ¥ X S; — Sy is a lift of gr == 9Ty - TI — 5. Let f: X — S a morphism with

X € Var(C). Assume that there is a factorization f : X Ly, x s 2 S, with Y1 € SmVar(C), [
a closed embedding and pg the projection. We have then the following commutative diagram whose
squares are cartesians

floXp— sV xT———T

| ]

fr=fxI:Yax X —=YixYaxS—=Ya xS

| L

f:X Y1><S S
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Consider F(X/S) := pgTXZ(Y1 x S/Y1 x S)[dy,] and the isomorphism in C(Var(C)*™/S)

T(f.9,F(X/S)): g"F(X/S) = g"pssTXZ(Y1 x S/Y1 x S)[dy;] =
pT,tiF}/(TZ(Yl X T/}/l X T)[dyl] =: F(XT/T)

which gives in DA(S) the isomorphism T(f,g, F(X/S)) : g*MPM(X/S) = MBM(Xp/T). Then,
the following diagram in Do i p,0o(T/(Y2 % S1)) commutes

T (g, FM)(MPM (X/8))

Rg*modl FGM (\[BM (X)) FEM(MBM(X1/T))
J/IGJW(X/S) J{IGM(XT/T)
smod[—],T" (o, . N - . _
9 . (pSI*FXIEZM(QYl ><51/§I7Fb)[ dSI]7(T(§1><I Y)(=)oTS (§r,p5 ))(pyzxsf*FXTzEmr(QYz><Y1><5'1/Y2><51’Fb)[ dy, 1]
wis(X/9)) ! wry(X7/T))

(i) Let g : T — S a morphism with T,S € SmVar(C). Let f: X — S a morphism with X € Var(C).

Assume that there is a factorization f : X Lyxs 2 S, with Y € SmVar(C), I a closed embedding
and pgs the projection. Consider F(X/S) := psIT'XZ(Y x S/Y x S)[dy] and the isomorphism in
C(Var(C)*™/S)

T(f,9,F(X/S)): g"F(X/S) := g"pssTXZ(Y x S/Y x S)[dy] =
pTﬂﬂF}TZ(Y X T/Y X T)[dy] =: F(XT/T)

which gives in DA(S) the isomorphism T(f,g, F(X/S)) : g* MPM(X/S) = MBM (X1 /T). Then,
the following diagram in Do fireo(T) commutes

7 (9. F M) (MM (X/5))

Lyl FGM (MPM (X /) FEM(MEM (X /T))
lIGM(X/S) lIGM(XT/T)
9*7”0dLO(pS*FXEzm»(Q;/XS/S7Fb)[—ds} (T(gxI,7)(—)oTS (g9,ps)) pYXT*FXTEza"'(Q;/xT/T’ Fy)[—dr]
|Pa@m(Ovcs) |Pa@m (O r)
Lgmod pP;DR T E(Oy 5, F}) TP (g,f)(T x E(Oy x5,Fb)) pr;DR T, E(Oy w1, Fy).
Proof. Follows immediately from definition. O

We have the following theorem:

Theorem 30. (i) Letg: T — S is a morphism with T, S € Var(C). Assume there exist a factorization
g:T Ly xS 25 withy € SmVar(C), I a closed embedding and ps the projection. Let S = ut_,S;

be an open cover such that there exists closed embeddings i; : S; < S; with S; € SmVar(C). Then,
for M € DA.(S)
T(g, FEM)(M) : Rg™™ 1T FGM (M) = FEM (9" M)
is an isomorphism in Doy i1 p.oo(T/(Y x Sp)).
(i) Let g : T — S is a morphism with T, S € SmVar(C). Then, for M € DA.(S)
T9(g, FEM)(M) : Lyt FGM (M) = FFM (g M)

is an isomorphism in Do, (T).

221



(ii) A base change theorem for algebraic De Rham cohomology : Let g : T — S is a morphism with
T,S € SmVar(C). Let h : U — S a smooth morphism with U € Var(C). Then the map (see
definition 1)

T (9:h) : Lg™ " Rh(Qy s, Fy) = RI(Q /7, F)

is an isomorphism in Do, (T).

Proof. (i):Follows from proposition 98.
(ii): Follows from proposition 102(ii) and the base change for algebraic D modules (proposition 74).
(iii):Follows from (ii) and lemma 10. O

We finish this subsection by a consequence of proposition 97 and theorem 14 :

Theorem 31. Let X € PSmVar(C) and D = UD; C X a normal crossing divisor. Consider the open
embedding j : U := X\D — X. Then, the inclusion

75 T(X, ELar(Q% (log D), Fy)) < T(U, E.or (), F))
is an oo-filtered quasi-isomorphism, that is
Jj* FPH"(U,C) := FPH"T(X, E.0r(Q% (log D), ) = FPH"T (U, E.q,(Qf), F)) =: FYH™(U,C)

is an isomorphism for alln,p € Z (note that it is obviously injective since j* : H'T(X, E,q,(Q% (log D))) —
H'"IU, E.qr(2}))) is an isomorphism if we forgot filtrations). Note that however, it is NOT a filtered
quasi-isomorphism (for example if U is affine H1(U, Q) = 0 for ¢ > 0) that it is not an isomorphism
on the E1 terms of the spectral sequences in general.

Proof. For simplicity, we may assume that ¢ : D < X is a smooth divisor. Then, by theorem 14, there
is a purity isomorphism in DA(C)

P(D/X) : Cone(axyad(jy, j)(Z(X/ X)) : Z(U) — Z(X)) = Z(D)[1]

is an equivalence (Al et) local in C(SmVar(C)), with ax : X — pt the terminal map. Hence, by
proposition 97, we get an isomorphism in Dy o0 (Z)

e(Spec C). Hom(P(D/X), Eet (¢, Fy)) :
Cone(j* : T(X, Ezar (2, Fy)) = T(U, E2ar(Q2, F3)))[1] = T(D, Ezar (02, F3)[1])-
which gives the isomorphism in Dy o (Z),
7% : Cone(c(j*) o e(Spec(C)*Hom(P(D/X),Eet(Q;C,Fb))_l :
[(D, E.ar (22, F))[1] = (X, Ezar (92, F))) = T(U, E2qr (22, Fy))
where ¢(j*) : Cone(j*) — I'(X, E;q,(Q%, F3))[—1] is the canonical map, which induces the isomorphisms
H"j* : FPH" Cone(T(D, Ezar (2, F3))[1] = T(X, Bzar (2, F))) = FPH"T(U, Ezar(Q2, F)).
O

Definition 108. Let S € SmVar(C). We have, for M, N € DA(S) and F,G € C(Var(C)*™/S)) projec-
tive such that M = D(A',et)(F) and N = D(A', et)(G), the following transformation map in Do ri,p(S)

T(FEM, @) (M, N) : F§M (M) 055 FEM(N) =

(e(S):Hom(F, Ect (), Fy))) ©os (e(S)Hom(G, Eer ()5, Fy)))[—ds]

T(®,0Q F,.G
TERED, o(8).Hom(F @ G, B, Fy))|~ds]

= e(9).Hom(F @ G, Bt (5, Fy))[—ds] = F§ (M @ N)
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We now give the definition in the non smooth case :

Definition 109. Let S € Var(C) and S = U'_,S; an open affine covering and denote, for I C 1, ~;~l],
St = NierS; and jr : Sy — S the open embedding. Let i; : S; — S; closed embeddings, with S; €
SmVar(C). We have, for M, N € DA(S) and F,G € C(Var(C)*™/S) such that M = D(A',et)(F) and
N = D(A' et)(G), the following transformation map in Do tu.p(S/(S1))
T(FEY, @) (M, N) : F§M (M) @6 F§M (N) =
(l51) Hom(L(i15: ), (g, F)) [=dg, ] urs (F)) €6
(e(St)Hom(L(ir.j; G), et( 75,0 1))[=dg, ], ur(G))
=5 (e(Sn) Hom(L(irJi ). Ea(@5, . Fy)) 90,
e(St) Hom(L(iruj; G), Ber(Q) 5, Fy)))[~dg, ], urs (F) ®UIJ(G))

(T(®,9) 5, )(L(ir«j7 F),L(i1+57 G)))

(e(S1)«Hom(L(ireji F) @ L(i1j; G), Bet (X5, For))[~ds, ] UIJ(F®G))
= (e(S1)xHom(L(irji (F @ G), Eet(Q55 . Fy)))[~dg, ), urs(F © G)) = F§M (M ® N)

Proposition 103. Let f1: X1 — S, fa: Xa — S two morphism with X1, X3, S € Var(C). Assume that

there exist factorizations f1 : X1 LN Vi x S 258, fa: Xo LN Yo x S 255 S with Y1,Ys € SmVar(C),
l1,1la closed embeddings and ps the projections. We have then the factorization

Jix fa: Xia: —X1><5X2%Y1><Y2><S—>S

Let S = ulizlsi an open affine covering and denote, for I C [1,---1], St = MierS; and jr : Sp — S
the open embedding. Let i; : S; — S; closed embeddings, with S; e SmVar(C). We have, for M,N €
DA(S) and F,G € C(Var(C)*™/S) such that M = D(A',et)(F) and N = D(A',et)(G), the following
commutative diagram in Do ti.p(S/(Sr))

FSM(M(X1/S) ® M(X2/9))

—vS

FEM(M(X1/S)) @6, F§M (M(X2/S))

lIGM(Xl/S)@OIGM(Xz/S) lIGM(Xlz/S)
(pS’I*FXHEZGT(Q;/l x31/81 Fb)[fdé’zh wIJ(Xl/S))®OS (pS’I*FXmIEZGT(Q;/l xYaxS1/81° Fb)[idS‘IL
Wiy;x57,Yax37)/8
(P3, xar Bear (0, 5, /5,0 Fo)[—dg, ] wis(Xa/S)) =12t wrs(X12/5))
Proof. Immediate from definition. O
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6.1.2 The algebraic filtered De Rham realization functor and the commutativity with the
six operation

We recall (see section 2), for f : T — S a morphism with T, S € Var(C), the commutative diagrams of
sites (29) and (30)

HT

Var(C)?/T Var(C)>?P" /T
K \
P(f) Var(C)?sm /T j Var(C)>s™mrr /T
Var(C)2/S P<f>‘L Var(C)2?r /S P(f)
Var(C)%sm /S re Var(C)2smr /§
and
Glrén2
Var(C)?P" /T Var(C)/T
K l K
P(f) Var(C)2smer /T o [P(f) Var(C)*™ /T
Var(C)2#" /S p<?§J Var(C) /S P
\ ‘/ \
Var(C)2=m /8 Grs Var(C)™™ /8§
Let S € Var(C). We have for F' € C(Var(C)®™/S) the canonical map in C'(Var(C)*™/S)

Gr(F): Grg2 us«F¥' — F,
Gr(F)(U/S) : TYp* F(U x 8/U x §) 2LV INUXSIUXE), e oy 11y = F(U)S)

where h : U — S is a smooth morphism with U € Var(C) and h : U L UxS 2 Sis the graph
factorization with [ the graph embedding and p the projection.

Definition 110. (i) For S € Var(C), we have the filtered complexes of presheaves
(Q;g, Fb) S COsfil (Var((C)Q/S)

given by
— for (X, 2),h) = (X,Z)/S € Var(C)?/S,

(5 (X, 2)/9), Fy) =T Lio( /55 Fo)(X) := Dp+0g L0l 7 Ezar (D05 L0 (/55 Fo)) (X)
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— forg:(X1,21)/S = ((X1,21),h1) = (X, Z2)/S = (X, Z),h) a morphism in Var(C)?/S,

Q55 (9) : T " Ln-0 (%55 F5))(X) = ¢ D05 Ln=01' 2 Ezar (Dn=05 L= 0 (%5, Fy)) (X1)
= Dp:0sLi;09'T 2 Ezar(Dh-0s Li-0(Q% /s, F5)) (X1)

Dyrog (T(g,E)(=)oT(9,:7)(=)) " (X1)

Drsos Li;ol' zxx x1 Bzar (9" D05 L0 (2% /s, F3)) (X1)

= DhTOsLh’{O]‘—‘ZXXXI Ezar(DhIOs LhIOQ* (Q;(/S7 Fb))(Xl)
DyyogT(Z1/(Zxx X1)NZ1,7)(=)(X1)

DrsosLn;ol'z, Bzar(Drios Lnrog™ (2% s, F1))(X1)

T2 Liso(Qxy /x)/(5/5))(X1)

DryosLn;ol'z, Ezar(Dryos Lnzo (R, /55 F))(X1)
where i_ is the arrow of the inductive limit.

For S € SmVar(C), we get

(Q;g,Fb) = ps*(Q;g,Fb) S OOsfil,Ds (Var((C)Q’Sm/S)

(11) For S € SmVar(C), we have the canonical map Cogsi,ps (Var(C)*™/S)
Gr(Qs) : Grel ps. (05, F) = (s, Fy)
given by, for U/S = (U, h) € Var(C)*™/S

Gr(Q,5)(U/S) : Grg, s (g Fo)(U/S) = T " Lne0(Q 555 Fo) (U x )

" Ly o ad (il ,iv«) (=) (U S)

T Lioivil (55, Fo)(U x S)

LY L oivQu uxs) sys)(UXS)

0" Lie0ivs (5, Fy) (U x )

= (s, Fo)(U) = (25, F)(U/S)
where h : U %5 U x § 255 S is the graph factorization with iy the graph embedding and ps the
projection.

We will use the following map from the property of mixed Hodge module (see section 5) together with
the specialization map of a filtered D module for a closed embedding (see definition 49) :

Definition-Proposition 17. (i) Letl: Z — S a closed embedding with S, Z € SmVar(C). Consider
an open embedding j : S° — S. We then have the cartesian square

oI g

I,T 1
7°:=7Z %55 —=7
where j' is the open embedding given by base change. Using proposition 89 and theorem 26, the iso-
morphisms G’ZZD (Og, Fy) for D C S a closed subset of definition-proposition 11 induces a canonical

isomorphism in Cp 1,0y i (Z)

G(Z,7))(Os, Fy) : " Gry,, 0 1% (Og0, Fy) = 5,799(00, ).
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(i) Let 1 : Z — S and k : Z' — Z be closed embeddings with S, Z,Z’ € SmVar(C). Consider an open
embedding j : S° — S. We then have the commutative diagram whose squares are cartesian.

o1 g

1
20 = Z xg§"— > 7
k/T kT
70 =7 x5 8 —=27'
where j' is the open embedding given by base change. Then,

G(Z',31)(0s, Fy) = G(Z', j)(Oz, Fy) o (k* Grv,,, 0 G(Z, j1)(Os, Fy)) :
k* GrVZ”O G(Z,j!)(OS;Fb)

k* Gry,, 04, H99(0 40, Fy)
G(Z/)j!/)(OZ)Fb)
Euh A AR

k* Gry,, ol* Gry, 057 (Ose, Fy)
g Hdg(oz/ova)-

in Cp(1,0)fi(Z").

(iii) Consider a commutative diagram whose squares are cartesian

00 72 go— 1 g
| 1
200 = Z x5 8% 2w 70 = Z x5 89— 7
where ji, j2, and hence j1,j5 are open embeddings. We have then the following commutative diagram

d(jH49 j2)(Ogo ,F)
a(J""—h)(i Z*b rv, o(j1 on){{dg(OSoova)

lc(zv(jlon)!)(OS;Fb)

I* Gry, 041 %(Oso, F)

\LG(Z;j!)(OS7Fb)
!’ ’
ad(Gyi 4,35 ) (O z0, Fy)

i 9 (0z0, Fy) (1 0 35)1 (O 700, )

Proof. (i): By definition of j!Hdg : mgo(MHM(S?)) — ws(C(MHM(S))), we have to construct the
isomorphism for each complement of a (Cartier) divisor j = jp : §° = S\D < S. In this case, we have
the closed embedding i : S < L given by the zero section of the line bundle L = Lp associated to D. We
have then, using definition-proposition 11, the canonical isomorphism in 7z (M HW (Z°)x ;M HW (DNZ))

Go(Z.31)(0s, Fy) : (5%, d(przyis ¢, 0)(1* Gryy, 0 5% (050, Fy)) =

rw . . ) (I,GR% (5" (050, F))))
(1" Gryy 0 5% (Ose, Fy), ¢(przyi (I Gryy 0 5% (Ose, Fy)), can, var) G S

(l* GerOﬁ j*j!l—ldg(oso , Fb); l* GI‘VDmZ,O (bDlj!I{dg(OSO 3 Fb)a can, ’UCL’I”) i>
(I1,G% % (lemoda(Oso, Fy))

(I" Gry,o,0(0s0, ), 1" Gryy,, ;.0 ¥D1(Ose0, Fy), N, I)
((Ozo, Fy), I"b(przy (Ose, Fy), N, I) = (5, (pnzy, € 0) (G, ¥ (O 0, Fy))
Hence, using proposition 90

G(Z,3))(0s, Fy) == (7", d(prnzy1: ¢, 0) " (Go(Z, 1) (ixmoa(Os, Fy))) :
I*Gry, 0 1% (0g0, Fy) = 5,70 20, Fy)
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is an isomorphism in 7z (M HM (Z)). Now for j : S° = S\R < S an arbitrary open embedding, we set

G(Z,3)(0s, )=  lim  (G(Z,jp,)(ijb,(0s, ) : 1" Gry, 05" (O, Fy) = ;" %(O 0, Fy)
(D;),RCD;CS

(ii): Follows from definition-proposition 11.
(iii): Follows from definition-proposition 11. O

Using definition-proposition 16 in the projection case, and the specialization map given in definition
49 and the isomorphism of definition-proposition 17, in the closed embedding case, we have the following
canonical map :

Definition 111. Consider a commutative diagram in SmVar(C) whose square are cartesian

Zp — T —— T\Zr

R

Y T %9Z o T %aS < T x S\(T x Z)

Ixy
% % /
7 7

§<———5\z

where i and hence I x i and i’, are closed embeddings, j, I X j, j' are the complementary open embeddings

and g:T LT xS P55 8 is the graph factorization, where l is the graph embedding and pg the projection.
We have, by definition-proposition 16, definition 49, proposition 89 and theorem 26, the canonical map

in Cp,0)pa(T)
alg, Z)(Os, Fy) : g™ %905, Fy) = "™modpgmedr 1990, F)

rrmedpHds (p VY (05, 7)™ wmodrV, Hd
E) E) i g
[xme FT><Z (OTXSan)

spvy, (D A9 (Orx s, Fy))

G(T,(Ixj4)1)(O ,Fy)
P Grvp o (D5 (Orxs, ) S T (O, )
where the last map is the isomorphism given in definition-proposition 17.

Lemma 14. (i) Forg:T — S and g : T — T two morphism with S,T,T" € SmVar(C), considering
the commutative diagram whose squares are cartesian

g — ~— T\ Zp

T

ZT —>i T <—_, T\ZT

Pk

ZZSjS\Z

we have then

algo g, Z)(0s, Fy) = a(g', Zr)(Or, Fy) o (¢ *™*a(g, Z)(Os, Fy)) :
9" ™°%a(9,2)(0s,Fy)

(gog) ™y (0s, Fy) = g *melg el T (04, ) gm0, Fy)

g’ 20) (O, Fy), Ty %00, ).
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(i) For g : T — S a morphism with S,T € SmVar(C), considering the commutative diagram whose
squares are cartesian

k/ -/
Zh ——Zr ——=T

lg lg lg
gk g g

we have then the following commutative diagram

*mod ’ V,Hdg O
grmodY Al (O F Fb)TM gﬁﬁ%ré’f}ld!](osa Fy)
la(g,Z)(O&Fb) la(g,z/)(Os,Fb)

JHd (Z7 /277 9) (O, Fy, JHd
ry g(OT,sz - Z/T Y(Or, Fy)

Proof. (i):Follows from definition-proposition 17 (ii)
(ii):Follows from definition-proposition 17 (iii) O

We can now define the main object :

Definition 112. (i) For S € SmVar(C), we consider the filtered complezes of presheaves

(Q7g’pr, FDR) S CDSfll (Var(c)27smpr/s)

given by,
— fO’f’ (Y X S, Z)/S = ((Y X S, Z),p) c Var(C)275mPT/S,

(97:51'14”((}/ x S,2)/S), Fpr) = ((Q;/XS/S7FZ7) ®Oy v s FéﬁHdg(OYX&Fb))(Y x S)

with the structure of p*Dg module given by proposition 54,

— for g: (Y1 x8,Z1)/S = (Y1 x 8,Z1),p1) = (Y x8,2)/S = (Y x S,Z),p) a morphism in
Var(C)25™mP" /S denoting for short Z := Z xy«s (Y1 x S),

Q957 (9) : (W xs/5 F) ®0y s T (Oy xs, Fy))(Y x )

= 9 (w5750 Fb) @0y s Ty (Oy s, F)) (Y1 % 8)

Qv xS/Yx8)/(S/ (Fvadg(nyS)F))(Y xS) o oo
(v1xs/vx5)/(s/5) Tz 5)) (Y1 (QYIXS/S’Fb) ®0y, s 9 dF\Z/,Hdg(OyXS,Fb))(Yl x 9)

DR(Yix5/)(a(9,2) Oy x5, 7)) (Y x8)_ ,
: L (%, xs/50 Fb) ®0y, x5 F\éHdg(Olestb))(Yl x S)

DR(Y1x8/S)(T(Z1/Z Y 79)(Oy, xs,F)) (Y1 XS) .
- : R (3, 5750 Fb) @0y, s T 19Oy, s, ) (Y1 % S),

where
x i_ 1is the arrow of the inductive limit,

x we recall that

Quvixs/vxsys/s) Ty (Oyxs, Fy)) : 9 (W xs/5 Fb) @0y s %% Oy w5, Fy))

= (D w5750 Fb) ®0y, 15 7T Y Oy s, b))

is the map given in definition-proposition 12, which is piDg linear by proposition 57,
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x the map
a(g, Z)(Oyxs, Fy) : g*mOdFé’Hdg(OYxS, F)— Fé’Hdg(Oylxs, Fy)

is the map given in definition 111

x the map
T(Z1)Z,7V"H99)(Oy, x5, Fy) : Fé’Hdg(Oylxs,Fb) — F\z/’lHdg(Oles,Fb)
18 given in definition-proposition 16.

Forg: (Y1 xS,Z1),p1) = (Y xS,Z),p) and ¢" : (Y] x S,Z1),p1) = (Y1 x S,Z1),p) two
morphisms in Var(C)%*™P" /S we have

QP (gog) = 57 (g) 0 Q5P (9) : (B 5/50 ) @0y T39Oy s, F))(Y % 5)

Q95" (9)

(3, 5750 Fb) @0y, s T 9Oy, x5, F)) (V1 x S)
Qs
RANGS 1550 ) ©0,,, T (Oyyxs, F)) (Y] % S),
since, denoting for short Z := Z Xy s (Y1 x S) and 7' =7 Xyxs (Y x S)
— we have by lemma 14(i)
a(gog,Z")(Oyxs, Fy) = alg', 2)(Ovixs, Fy) 0 g ""**a(g, Z)(Oy xs, Fy),
— we have by lemma 1/ (%)

T(Zi/ZA/v’-YV’Hdg)(OYIIXSv Fb) o a’(g/a Z)(OYI xSy Fb)
= a(g/v Zl)(OY1><57 Fb) © g,*mOdT(Zl/ZAv7V1Hdg)(OY1X57 Fb)'

(i) For S € SmVar(C), we have the canonical map Cog i, ps (Var(C)*™/S)
Gr(Qys) : Gr ()5 ™", For) = (s, F)
given by, for U/S = (U, h) € Var(C)*™/S

Gr(§s)(U/S) : Gri(Q5 ™", For)(U/S) = (x5, Fb) @0u s T ™ (Ovxs, 1)) (U x )

ad(ify i) (<) (UXS)

F(Ws/50Fy) ®ouys T (Ovxs, Fy))(U)
(/5. Fy) ®oy, i7" T " Oy s, Fy)(U)

DRW/S)(@(iv,U)©), /e .
: Q5 Fo)(U) =: (), F)(U/S5)

Quxsy/sys)(=)(U)

where b U 2% U x S 25 S s the graph factorization with iy the graph embedding and pg
the projection, note that a(zU,U) is an isomorphism since for jy : U x S\U < U x S the open

complementary z*m"d][]]{,dg(M, F,W)=0.
Definition 113. For S € SmVar(C), we have the canonical map Cog i, ps (Var(C)%5m" /S)

T(Qs) : ps(Q5, Fy) = (957", Fpr)
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given by, for (Y x S,X)/S = ((Y x S,Z),p) € Var(C)>smrr /S
T(Q)((Y x5,2)/5) :
(5, B)(Y x 8,2)/S) i= Dpr05 Ly 0L 2 Ezar(Dpr 05 Ly 0 (W 5755 o)) (Y % )

DR(Y x8/8)(vy 7% (Oy xs))(Y x8)

Dp+0sLp *OFZEZGT(DP*OSL;D*O((Q;/XS/SvFb) ROy x5 Fvdeg(OYx&Fb))(Y x S) =
(% x5/5: F5) ®0y s T "9 Oy w5, F))(Y x S) = (Q;SF P Fpr)((Y x S,2)/8).

By definition Gr(Q,5) o Grs. T(QI;S) = GrO(Q/S).
Remark 11. (i) Let S € Var(C). We have by definition 012*(9/5 ) = (295, Fb) € Cog pa(Var(C)*™ /).
Moreover, if S € SmVar(C), 012*(9;5, b) = (5, 1) € Cog rit,ps (Var(C)*™ /S).

(11) Let S € Var(C). Then, (Q;S , Fy) € Cogpi(Var(C)?/S) is a natural extension of

(75 Fb) = ps(Q75 , Fy) € Cog pu(Var(C)>*™/S),

but does NOT satisfy cdh descent.

The point definition 112 above gives the object in DA(S) which will, for S smooth, represent the
algebraic De Rham realisation in Dg modules. It is the class of an explicit complex of presheaves on
Var(C)*™/S.

Proposition 104. Let S € Var(C).

(i) The complex of presheaves (Q;g,Fb) € Cogru(Var(C)%5™ /S) is 2-filtered Ag local for the Zariski
or etale topology (see definition 16) and admits transferts (i.e. Tr(S), Tr(S)* Q )

(i) The complex of presheaves (Q;g’pT,FDR) € Cpgri(Var(C)%*m?7 /S) is 2-filtered Ak local for the
Zariski or etale topology (see definition 16) and admits transferts (i.e. Tr(S) Tr(S)*Q;’;’pT =
Qo,f‘,pr)

/s

Proof. (i):Follows from proposition 97.
(ii): Let (Y x S,2)/S = (Y x S, Z),p) € Var>*™"(C) and p, : (Y x A x S, Z x A') = (Y x S, Z) the
projection, ig : (Y x S,7Z) — (Y x Al x S, Z x Al) closed embedding. Then,

a(pa, Z) : pimUT Oy wxs, b)) — F}il (Oy xatxs, Fy)).

a quasi-isomorphism in my w41 x5(C(MHM (Y x Al x S))). Since a morphism of mixed Hodge module is
strict for the F-filtration,

a(Pa, Z) : P 9Oy s, Fy) — F}X,ﬁ (Oy xaixs, Fy).

is a (1)-filtered quasi-isomorphism in Cp (Y x A x S). On the other hand, as, for all p € Z,

I Pas) (= =)y xarxs v xs)cs/6) Ly Oy xs, Fy))) -
QY w575 ®0y s FP™ Tv’Hdg(OYx&Fb)

= Pax (0 xa1x5/5 POy 4145 Pl FPoT MY (Oy 5, F))
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is an homotopy equivalence whose inverse is

PaxI (15, 50+) (= =) (v xs/v x4t x5)(5/5) (P smod (0 HI9 (O g, ) -
Pas( xar55/8 0y 41, Pyt FPoT Y Oy s, )
= Paxiox (0« 5/5 ®Oy s (igmodprmed pr=e P HA9 (O o )
= QY575 ®0y s FP T 19Oy x5, Fy)
(see the proof of proposition 97), for all p € Z, the map
Eet(I(pl pax) (= =)y xarxsyv xs)(s/9) (L7 Oy xs, Fr))))
ES (5 x5/5 ®0vus FP=T; 190y 5, Fy))
= B¢ (pas (2 xa1x5/5 ®0y 4146 RS S 4 "9/ Oy x5, Fy)))

is a 2-filtered quasi-isomorphism by proposition 7. Hence,

Ea(Q05 7 (a))  Et(Br 5755 Fb) @0y s Ty (Oy x5, )
= Eet((Q% xarx s/ F5) @0y 16 Féf& (Oy xarxs, Fy))
is a 2-filtered isomorphism. O

We have the following canonical transformation map given by the pullback of (relative) differential
forms:

e Let g: T — S amorphism with T, S € Var(C). We have the canonical morphism in Cy« oy i1, g ps (Var(C)>*™ /T')
Uirss) 9" (s, F) = (U, Fy)
induced by the pullback of differential forms : for ((V, Z1)/T) = ((V, Z1),h) € Var(C)%*™ /T,

Qs (V. 21)/T) :
g5 (V. 21)/T) == 55 (U, 2)/9)

Q'S (g"0g1)

lim
(h:(U,Z)—SSM,g1:(V,Z1)—(Ur,Z7),h,9)

Ty "a(YixT)

Q5 (V. 21)/9) Q% ((V, 20)/T),

where ¢’ : Up :== U xg T — U is the base change map and g : Q;,le/S — Q;,le/T is the quotient
map. If T, S € SmVar(C),
* e, oI
Ql/ﬂ(T/S) °g (Q/S ) — (Q/Ta b)

is a morphism in Cy- oy fir, g« pg (Var(C)?*™ /T) It induces the canonical morphisms in Cy« o fir, g ps (Var(C)%*™ /T')

T(9,Bet) (255

* ) * Eet(Ql/—‘ / )
EQI;(T/S) -9 Eet(Q/SFa b) = Eei(g (Q/S , ) — 2L B (Q/Tan)
and
. . T(g,Bzar) ()5 Fb) e Erar(Qir)s))
EQ;(T/S) °g EzaT(Q/gan) Ezm‘(g (Q/gan)) —T> zar(Q/'Jyu )
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e Let g : T — S amorphism with 7', S € SmVar(C). We have the canonical morphism in Cy« p i (Var(C)%*™?" /T')

QF,E;T/S) . g*(Q;§7pT7FDR) N (Q;€ZF7PT7FDR)

induced by the pullback of differential forms : for ((Y1xT, Z1)/T) = (Y1 xT, Z1),p) € Var(C)?smP" /T

Qv (Vi x T, 21)/T) :

/(T/S)
*QO,I‘,pr Y; T.Z T) = i Q. Ihpr Y T .2)/8
g™ (N x T, 2)/T) (h(Y X5,2) 8, gus (Vs X T\ 22 ) (Y X T\ Z ) hag) S (Y= T.2)/5)
Q;ZSF,pr(g/Ogl)

oI pr Y(Y1xT) o' ,pr
QI (v x T, 2,)/8) L2, s (v x T, 20) /7)),
where ¢ = (Iy x g) : Y xT — Y x S is the base change map and ¢(M) : Qy,x71/5 ®0y, .1
(M, F) = Qy,x1/7 @0y, . (M, F) is the quotient map. It induces the canonical morphisms in
Cg*Dsfi[(Var(C)Q’smpr/T) :

T * . T T(g9,E)(— * s Ee'(Q ) s
BT 5 g Bl 07, For) 2920, By (g (@007, o)) 009, g @e D Fop)
and
EQI‘,pr B Q ,Ipr F T(g9,E)(—) B Q ,T,pr F EZQT(QI;%?T/S)) B Q ,T,pr F

/(T/S) ‘g zar( /S DR) —> zar( ( /S DR)) E— zar( /T DR)

Definition 114. Letg : T — S a morphism with T, S € SmVar(C). We have, for F € C(Var(C)*m?" /S),
the canonical transformation in Cpgiy(T) :

T(g, Q) 7")(F) : g Lpe(S). Gri. Hom® (F, B (255", Fpr))
= (9" Lpe(S)Hom® (F, B (255", Fpr))) @4-05 Or

T(g,Gr'?)(=)oT (e,9)(—)og

e(T). Grf, g"Hom" (F, Eer(Q)s ™", Fpr)) @40 Or

(T(g,hom)(—,—)®I)

e(T)« Gr “ Hom®*(g*F, g Eet(Q/ P FpR)) ®g-0s Or
e(T). Gri. Hom®(g* F, g Eet(Q;’;’pT,FDR)) ®g=e(s)-0s €(T) Or

Hom®(g* F,(EQE(‘I;,T/S) ®@m))

ev(hom,®)(—,—,—)

e(T). Grit Hom®(¢* F, Eet(Q/’T P FpR))

Let S € Var(C). Recall that for and h: U — S a morphism with U € Var(C), we have the canonical
map given by the wedge product

wyys 1 Ay ®os Wrys = Qysia®@ B aAp.

Let S € Var(C) and hy : Uy — S, he : Uy — S two morphisms with Uy,Us € Var(C). Denote
h12 : U12 = U1 Xs U2 — S and P112 U1 Xs U2 — Ul, p212 U1 Xs UQ — U2 the pI‘OjeCtiOHS. Recall we
have the canonical map given by the wedge product

W(v,,05)/5 * P112800, /s ®0s Pa1280, /s = Uy, /53¢ @ B plia A payal
which gives the map

Ew(Ul,Uz)/S : hl*Ezar(th/S) ®os h2*EzaT(QEJ2/S) - hl?*Ezar(pslﬁwQ.Ul/S ®os p§129212/s)
Let S € SmVar(C).
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e The complex of presheaves (Q;SF, Fy) € Cogfi,ps (Var(C)%5™ /S) have a monoidal structure given
by the wedge product of differential forms: for h: (U, Z) — S € Var(C)?/S, the map

DR(=)(vy" (=) owuys : ()5, Fy) @pr0s (s, Fy) = Ty Ln=0s (25, Fb)
factors trough

DR(=) (v (=) o wuys : (5, F) ©pr0s (U, Fb)

DR(=) (75" (=)®DR(=)(v5 " (-))

Ty " Li-0s ()5, o) ®p0s Ty " Li-0s ()5, Fy)

(DR(=) (7" (=))owrs)”

L Licos (@5, F)
unique up to homotopy, giving the map in Coy, i, ps (Var(C)?smrr/S):

wg : (Q;g,Fb) ®Rog (Q;’SFan) — (Q;gan)
given by for h: (U, Z) — S € Var(C)?*™/S,

ws((U, 2)/8) : (TF" Li=0s ()5, Fy) ®pr0s " Li-0s (A5, 1)) (U)

(DR(=)(vy3 " (=))owu,5)" (U) rYh
z

L0575, Fb)(U)
which induces the map in Cog fir, ps (Var(C)%*™/S)

(ws)

° L[] = L] [ ] Eet °
Ews : Ea(Q75, F) ®05 Eat(Q05, Fy) = Ea((5, Fy) ®0s (205, Fy)) ——— Eet(Q5 , Fy)

given by the functoriality of the Godement resolution (see section 2).

e The complex of presheaves (Q;g’pT,FDR) € Cpgfu(Var(C)%s™r" /S) have a monoidal structure
given by the wedge product of differential forms: for p: (Y x S, Z) — S € Var(C)?*™P" /S, the map
DR(=)(yy (=) o wys)s : (QF 575 ®0y x5 (Ovxs, Fb)) @p-0s (8 1 5/5 ®0y x5 (Oyxs, Fp))

- Q;/XS/S @Oy x5 Fé7Hdg(OY><Sa Fy)
factors trough
DR(—)(W;’H@(—)) O Wy xs/s
(% xs5/5 ®0y s (Oyxs, Fb)) @p=0s (85 575 ®0y v s (Oyxs, Fy))

DR(=) (7" (=))®DR(=)(v; " (-))

(2 x5/5 @0y s T ) (Oy s, Fb) @pr0s W5 @0y s Ty (Oy x5, F)

(DR(=) (v ¥ (=))owy x s/5)"

QY « 575 ®Oy s U790y s, )
unique up to homotopy, giving the map in Cpy f;;(Var(C)>*™m7 /S):

ws : (957", For) @os (5", For) = (5", For)
given by for p: (Y x S, Z) — S € Var(C)?*m?r /S,

ws((Y x S,2)/S) :
(((Q;/XS/S @Oy x5 F§7Hdg)(OYX57Fb)) ®p*0s (Q;/XS/S @Oy v s P§7Hdg(OY><S=Fb)))(Y x S)

(DR(=)(vy 149 (=))owy x5/5)7 (Y X S)

Q575 @0y s Ty 19Oy s, Fy))(Y x S)
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which induces the map in Cp, 4 (Var(C)?5m?" /S)
Ews : Eet(Q/’S P Fpr) ®og Eet(Q/’s " Fpr) —
. s . T Eet(w o Is
Bt (57", For) ®0, (U7, Fpr)) 1 B35, Fpp)

by the functoriality of the Godement resolution (see section 2).

Definition 115. Let S € SmVar(C). We have, for F,G € C(Var(C)%*™P" /S), the canonical transfor-
mation in Cpru(S) :
T(®,0)(F,QG):
e(S). Gri Hom(F, Ex(255 ™", Fpr)) @05 €(S). Grel Hom(G, Et (255", Fpr))
— €(S)« Grg’(Hom/(F, Eet(Q;’SF’pr, Fpr)) ®os Hom(G, Eet(Q.’F’pr Fpr)))
T(Hom,®)(—) G(S) GI’12 HO’ITL(F ® G Eet(Q;§7pT7FDR) ®OS Eet(Q. I‘,pr R) )
=5 6(5). Grl2 Hom(F & G, (Ea (27 For) G0, Ea(@L 7", Fon))

Hom(FRG,Ewg)
%

)
)
)
)
e(S). Grgt Hom(F @ G, Eet(mw Fpr)).

We now define the filtered De Rahm realization functor.

Definition 116. (i) Let S € SmVar(C). We have, using definition 112 and definition 36, the functor

C(Var(C)*™/8) — Cpra(S), F —

lim  e(9). Grgl Hom® (ps. Grg™* Rix py/s(p5L(F)), Eet (57", Fpr))[—ds]
T(X*,D*)/S(LF)

(ii) Let S € Var(C) and S = U_,S; an open cover such that there exist closed embeddings i; : Si < S
with S; € SmVar(C). For I C [1,---1], denote by S; := Nic1S; and j; : S; < S the open
embedding. We then have closed embeddings iy : Sp — S’I = Hie]gi. Consider, for I C J, the
following commutative diagram

Dry= 51 L>5'1r
juT PUT
SJ L>5'J

and jrj: Sy — St is the open embedding so that j;o jr; = jj. We have, using definition 112 and
definition 36, the functor

C(Var(C)*™/S) = Cpu(S/(S1)), F —

( h%)e'(éf)momwpgl*ergﬁ* Rix- py/3, (p*glL(iI*j}‘F)),Eet(Q;’;’pT,FDR))[ dg, ], ul,(F))

where we have denoted for short e'(S'I) = 6(5’1) o Grlgzl, the limits run over the Corti-Hanamura
resolutions

T(x*,D*)/8,; (L(irgi F)) - R(X*,D*)/S, (PEIL(Z'I*J';F)) — Dg, (P*gIL(iI*ﬁF))
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and

uf ;(F)ldg,] : €' (S1)«Hom® (pg, . Grg™ R x- pey3, (g, L(irj1 F)), Eet(Q;’gF’pra Fpr))

ad(py7*°?,p15)(—)

A

pIJ*p?TLOd /(SI) Hom® (PSI* Gr X*7D*)/§,(PZ-1L(Z'I*]';F)),E (Q/S , FpR))
P17+« T(prs,Q277")(—)

prs«€' (Sy)Hom (pg,, GrE pi R x. p )/SI(ngL(iI*j}kF)),Eet(Q;g;pr,FDR))

Hom(Grg® T(pIJ,RCH)(LiI*j}‘F)’l,Eet(Q;‘SF””T,FDR))

o' pr
pry«€ (Sy).Hom*(pg,, Grg L Rixexs, 0o x3,000/8, (P, pIJL('LI*][F>>aEet(Q/§Jp , FpR))

Hom(Grgy RS (T (D1) (57 F)) Eet(@)57" For))

Prj«€ ( 7)«Hom® (pS]* Grm* R (X*xS7\1,D*x8n1)/5s (pE'JL(iJ*j;F))’E (Q/:S‘ - » Fpr)).

For I C J C K, we have obviously pry«uji(F)ourj(F) = urx (F). We will prove in corollary 5
below that uyj(F) are co-filtered Zariski local equivalence.

We have the following key proposition :
Proposition 105. Let S € SmVar(C).

(i) Let m : Q1 — Q2 be an etale local equivalence local with Q1,Q2 € C(ProjPSh(Var(C)*™/S))
complezes of representable presheaves. Then,

e(S). Gri2 Hom® (ps. Gri2* RO (m), B(Q557", For))[~ds]

lim e(S)s Grs Hom® (pss Gr§™ Rx- p-)s(psQ1), Ee (Q/:g P Fpr))|[—ds]
r(x* p*)/s(Q1)
— hﬂ B(S)* GI‘152* 'Hom' (ps* GI‘}S«Q* R(X*,D*)/S(ngQ)a Eet (Q;g’pr, FDR))[_dS]
r(x*,p*)/s(Q2)

is a 2-filtered quasi-isomorphism. It is thus an isomorphism in Dpfi 00 (S).

(ii) Let m : Q1 — Q2 be an equivalence (Al,et) local with Q1,Q2 € C(ProjPSh(Var(C)*™/S)) com-

plezxes of representable presheaves. Then,
(S) GrS* Hom?* (pS* GI‘12* RCH (m)v Eey (Q;:S'F’pra FDR))[_dS] :
lim  e(S). Grgl Hom® (ps. Grg™ Rix+ p-);s(p5Q1), Eu(Q55", Fpr))[—ds]
r(x*,p*)/s(Q1)
- lim  e(S). Grgk Hom® (ps. Grg™* Rix+ p+)/s(p5Q2), Eet(25 ™", For))[—ds]
r(x* p*)/s(Q2)

is an 2-filtered quasi-isomorphism. It is thus an isomorphism in Dp i 0o (S).

Proof. (i):Let h: U — S a smooth morphism with U € Var(C). Note that U is smooth since S is smooth.
Let (r; : Uy = U)ier=p,...,s) an etale cover of U. Consider the Chech cover

.....

(U./S) = ((UL,hL) = (Ul XU U2 X - Xy Us,ho(’l“l X o, XTS))

LI r=Uiermi

Y Ui (Ui, hi) = Uiern (U, o))~ (U, h)
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Take (see definition-proposition 8) a compactification of r : (Us/S) — U/S

(Xe0/S == ((Xro0, fro) T, . Tnio, Uier(Xi, fi0)) =% (Xo, fo)

where fo : Xg — S is a compactification of h : U — S and fr9 : Xj0 — S are compactification of
hy:Up:=U;; xU x --- xU;; = S. Denote Z := Xo\U and Z; := Xo\U;. Take (see again definition-
proposition 8) a resolution € : (X, D) — (Xo,Z) of the pair (X, Z) and resolutions e; : (X;, D) —
(Xr0, Z1) of the pairs (X9, Z1), fitting in an other compactification of r : (Us/S) — U/S

(Xo/S: (X1, f1) =L oo T8 e (X5, 1) S (X, f)

Denote by j : U — X and j, : Uy — X the open embeddings. We have the factorization

=10

j Je
Jo: Us == 7 HU) == X*

where j10 and j° are open embeddings. Consider the graph embeddings 7 : Xu <> X4 x X 222 X Denote
for short 7 ;= jx I : U XS =5 X xX5,jd =JeXT:Ue XS5 = XegxSand 7 :=7x1: X¢gxS5—XxS8

We have the factorization
510, _ (510 »50:: -0
G5 UL x § 2 e 2 Ue D) P LU x §) 2T Uexl), xo s g
We have then by definition the following commutative diagram, with for short e = e(S) o Grg,

° * ol pr Om(T(f 7f*)(7)77) ° .S,
exHom®(ps. Grg’ R(X7D)/S(Z(U/S))7Eet(9/;p ,FpR)) — PsLet (%5750 Fb) @0x s J) "9 Oy s, Fy))[2dx

/px*Eetm(x.XS/XW)/(S/S)<jf’“g<ouXs,Fb»oad(f“,fi)(f))l
Pxur Bt (%, xs/50 Fb) @0xys P51 (Ov s, Fy)

Hom® (ps« Grg®™ R7¥ (r),—) "DR(XexS/S)(G(Uex 8,57 )(Ovxs,Fy)oT" <mox1,js><—>>l
PsEet(Q%, xs/5 5) @0xsrs Jar T (Or 1 (11 ) F))L:

DR(X4x5/8)(j3 "0 ad(jf?“””g,jfw*><of;1(st),Fb>>T

° * ° r Hom (T (fog,fox)(—),— ° .S
exHom® (ps. Grg’ R(X,,D,)/S(Z(U./S)),Eet(Q/gﬂ’ 7FDR53L(M>( ;D)S*bet((QX.xS/SﬂFb) ®0xurs Jai ¥ (Ov,xs, Fy))[2d

where,

e since f : X — S is surjective proper morphism, we have the equivalences (A, et) local in C(Var(C)/S)
T(fe, (LX) X)) = [Ax] : [HZ(X/X)) = foEea(Z(X/X))(dx — ds)[2dx — 2d]
and
T(fz, f)(Z(D1/ X)) :=[Ap,] : HZ(D1/X)) = fuEet(Z(D1/X))(dx — ds)[2dx — 2ds]
given in definition 42,

e since fo, : Xo — S is given by surjective proper morphisms, we have the equivalences (A!, et) local

in C(Var(C)/S)
T(fops fou)(Z(Xe/Xo)) = ([Ax,]) : fop(Z(Xe/Xe)) = fouEer(Z(Xe/Xe))(dx — ds)[2dx — 2ds]

and

T(fots foe)(Z(Der/Xe)) := ([Ap;]) : fot(Z(Der/Xe)) = fosEet(Z(Der/ X)) (dx — ds)[2dx — 2ds]

given in definition 42.
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Now, the two horizontal arrows are 2-filtered quasi-isomorphism by proposition 104 and lemma 2. The
arrow given by the composition of the two maps of the right column is a filtered quasi-isomorphism by
proposition 94. The upper arrow of the right column is a filtered quasi-isomorphism by proposition 92.
Hence the arrow of the left column is a 2-filtered quasi-isomorphism which proves (i).

(ii):Let h : U — S a smooth morphism with U € Var(C). Denote p : U x A! — U the projection. Let
fo: Xo — S is a compactification of h : U — S (see definition-proposition 8) Denote Z := Xo\U and
Zr = X10\Ur. Then py : Xg x P! — Xj is a compactification of p : U x Al — U. Take (see again
definition-proposition 8) a resolution € : (X, D) — (Xg, Z) of the pair (X, Z). Then

€ (X xPH (D xPHU(X x {o0})) = (Xo x P, (Z x P) U (Xo x {o0})

is a resolution of the pair (Xo x P!, (Z x P}) U (Xo x {o0}). Denote by j : U — X the open embedding.
Denote for short 55 := j x I : U XS — X xS, j5 == jxjaxI :UxA xS — XxPl xS
p*i=pxI: X xPl xS — X xS. We have then by definition the following commutative diagram, with
for short e = e(S) o Gr’

e Hom® (ps. Gr¥* Rix,p)/s(Z(U/S)), Bt Q57 Fop)) Pse Bt (/6 F) 90 35 (Ourws, Fy)|

/pS*Eet(Q(XX]plXS/Xxs)/(S/S)(ngYHdg(OUXS,Fb))Oad(ﬁ* ;ﬁ*)(f))l
) Hd
Hom* (ps. Gr* RO (p), ) PseBat (B prcsysr o) @0 975" (Ovxs,
"DR(X xP*xS/S)(TV 749 (5% j°)( f))l

o m. ((f (fo ) =) sa,
F%P 319)( pX ((ﬁxxplxs/SaF)@)OJ Hdg(OUxAlxstb}

e*'Hom‘ (PS* GI'182* R(XXIPl,—)/S(Z(U X Al/S))7

where,

e since f : X — S is surjective proper morphism, we have the equivalences (A!, et) local in C(Var(C)/S)
T(fy, )X/ X)) = [Ax]: HIEA(X/X)) = fEa(Z(X/X))(dx — ds)[2dx — 2ds]
and

T(fy, fZ(D1/ X)) = [Ap,] : fl(Z(D1/ X)) = [eEat(Z(Dr/X))(dx — ds)[2dx — 2ds]
given in definition 42,

e since fopx : X x P! — S is a surjective proper morphism, we have the equivalences (A', et) local

in O(Var(C)/S)

T((fop)p, (f o p))(Z(X x P /X x PY)) := [Axum] : (f o p)y(Z(X x PY/X x PY))
= (fop)«EBet(Z(X x P/ X x PY))(dx + 1 — ds)[2dx + 1 — 2ds]

and

T((f op)s, (f o p))(Z(Dy x P/X x PY)) := [Ap, xp1] : (f 0 p)s(Z(Dr x P'/X x P'))
— (fop)uEet(Z(Dr x PY/X x PY))(dx + 1 —dg)[2dx + 1 — 2ds]

given in definition 42.

Now, by proposition 104 and lemma 2, the two horizontal arrows of the right column are 2-filtered
quasi-isomorphism. The arrow given by the composition of the two maps of the right column is a filtered
quasi-isomorphism by proposition 94. Hence the arrow of the left column is a 2-filtered quasi-isomorphism
which proves (ii). O
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Definition 117. (i) Let S € SmVar(C). We define using definition 116(i) and proposition 105(ii) the
filtered algebraic De Rahm realization functor defined as
FEPR . DAL(S) = Dpjiro(S), M — FEPE(M) =

li e(S). Grg Hom® (ps. Gri®™ Rix+ p+)/s(P5L(F)), Eet(Q55 ", Fpr))[—ds]
rx*,p*)/s(L(F))

:—> G(S)* GI‘}J?* Hom' (pg* GI‘}SQ* R(X*,D*)/S(pZ'L(F»a Eet (Q;g’pr, FDR))[_dS]

where F € C(Var(C)*™/S) is such that M = D(A', et)(F).

(1)

For the Corti-Hanamura weight structure W on DA (S)™, we define using definition 116(i) and
proposition 105(ii)

FEPRDAZ(S) = Dy 0 fir,00(5)s M = FEPE((M, W) o=

ling e(8). Gk Hom® (ps. Gr®™ R(x+ pey;s(p5L(E,W)), Bat(Q)5 ", For))[—ds]
r(x*,p*)/s(LF,W))

=5 e(S). Grg’ Hom® (ps. Grg™ Rix- p+)/s(p5L(F, W), Eet (255", Fpr))[—ds]

where (F,W) € Cpy(Var(C)*™/S) is such that M = D(A',et)((F,W)) using corollary 1. Note
that the filtration induced by W is a filtration by sub Ds module, which is a stronger property then
Griffitz transversality. Of course, the filtration induced by F satisfy only Griffitz transversality in
general.

(ii) Let S € Var(C) and S = U._,S; an open cover such that there exist closed embeddings i; : S; < S
with S; € SmVar(C). For I C[1,---1], denote by Sy = NierSi and j; : Sp — S the open embedding.
We then have closed embeddings iy : S — g[ = Hielgi- We define, using definition 116(ii),
proposition 105(ii) and corollary 5, the filtered algebraic De Rahm realization functor defined as

FEPR . DA(S) = Dpyiroo(S/(Sr)), M — FEPE(M) =
(lim ¢'(S1)Hom® (pg, Grlgf* Rix peyss, (g, Lingi F)), Eet(Q;g;”, Fpr))[—dg,],uf;(F))
r—(5)

where F € C(Var(C)*™/S) is such that M = D(A!,et)(F), see definition 116.

(i)’ For the Corti-Hanamura weight structure W on DA_(S), using definition 116(ii), proposition
105(ii) and corollary 5,

FEPR DA (S) = Doy g1 e (S/(51)), M = FEPR(M,W)) =

(lim ¢ (81)sHom® (ps,, GriZ* Ry poy s, (0l L(iredi (F, W), Bt (@527, Fpp))[=dg, ],y (F, W)
r— (=)

where (F,W) € Cyy(Var(C)*™/S) is such that (M, W) = D(A',et)(F,W) using corollary 1. Note
that the filtration induced by W s a filtration by sub D5 -modules, which is a stronger property then
Griffitz transversality. Of course, the filtration induced by F satisfy only Griffitz transversality in
general.

Proposition 106. For S € Var(C) and S = UL_,Si an open cover such that there exist closed embeddings
;2 S; = S; with S; € SmVar(C), the functor ngR is well defined.

Proof. Let S € Var(C) and S = UL_, S; an open cover such that there exist closed embeddings 4; : S; < S;
with S; € SmVar(C). Denote, for I C [1, e A, St = NierSi and jr : St = S the open embedding. We
then have closed embeddings iy : S; < Sp := ILic;S;. Let M € DA(S). Let F,F’ € C(Var(C)*™/S)
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such that M = D(Aq,et)(F) = D(Ay, et)(F’'). Then there exist by definition a sequence of morphisms in
C(Var(C)*™/S) :
F=FR 3R &ER2E5F—-.. .4 F =F
where, for 1 < k < s, and sy, are (Al et) local equivalence. But if s : [} — Fy is an equivalence (Al, et)
local,
L(ir«j7s) : L(irej7 F1) = L(irej7 F2)
is an equivalence (A, et) local, hence
’Hom(Gr?I* RgIH(L(iI*j}‘s)), Eet(Q;’gFI’pr, Fpr)) :
( ﬁ%) ¢(Sr)«Hom(pg,, CGrg” R x. pe) /5, (0, Llirji 1)), Eet(Q;’gFI’W, Fpr)), uj,;(F1))
= ( h_(H;) ¢'(S1)«Hom(pg,, Grg* Rix. p-) /5, (05, L(irji F2)), Eet(Q;’gFI’pTa Fpr)), uf;(F2))

T—
is an oo-filtered quasi-isomorphism by proposition 105. o

Let f: X — S a morphism with S, X € Var(C). Assume there exists a factorization
foxLyxsisg

of f, with [ a closed embedding, ¥ € SmVar(C) and pg the projection. Let ¥ € PSmVar(C) a com-
pactification of Y with Y\Y = D a normal crossing divisor, denote k : D < Y the closed embedding
and n : Y < Y the open embedding. Denote X C Y x S the closure of X C Y x S. We have then the
following commutative diagram in Var(C)

Let S = UL_,S; an open cover such that there exist closed embeddings 4; : S; — S; with S; € SmVar(C).
We have X = U!_, X; with X; := f~1(S,). Denote, for I C [1,---1], St = NierS; and X; = N;erX;. For
I C[1,---1], denote by S; = 1L;c;S;. We then have, for I C [1,---1], closed embeddings i; : S; — S; and
for I C J, the following commutative diagrams which are cartesian

~ DPg ~
fIZf\XIZX1—>lI YXSI—>pSI Sy ,YXSJ—>S" S;
S A
~ P35 ~ ~ Pg,; ~
Y xS ——= 57 Y x Sr—— 51

with 7 : I|x,, i7 = I X1, ps, and pg, are the projections and pr; = I X pry, and we recall that we denote

by j1 : S7\S; < S; and j} : Y x S;\X; < Y x S; the open complementary embeddings. We then have
the commutative diagrams

[ / ilyoly &
DIJ: SJ—>'SJ 7D]J:XJ—>YXSJ-
lju lpu lj}‘] lplu
. -/
ir ~ i7olr ~
S ——= 851 X ———=Y x5,
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and the factorization of D} ; by the fiber product:

irol i’ ol
D,,_XJ—IinsJ,D,J_XJ . Y xS
lj},] lpll‘] \ /

i’ ol ~
X]—I;YXS] X7 Xy« §; YXS] X]XSJ\[ Py
prJs
i ol ~
X[ i YXS[
(57)

where j;; : Xj < X7 is the open embedding. Consider
F(X/S) :=pssTXZ(Y x S/Y x S) € C(Var(C)*™/9)
so that D(A!, et)(F(X/S)) = M(X/S) since Y is smooth. Then, by definition,
FEPH(M(X/8)) = (li %) ¢ (Sr)Hom(pg,. G5 Ry 5, )5, (P, L(irg T F(X/5))),
Ee(Q55 " Fpr))[=dg, ), uf ,(F(X/5)))

On the other hand, let
Q(X]/S’]) = pSI,ﬂF}IZ(Y X S'I/Y X 5’]) < C(Var(@)sm/gj),
We have then for I C [1,1] the map (51) in C(Var(C)*™/S) :

Ni(X/S): Q(X1/81) = pg,,T%,Z(Y x S1/Y x S;) 2G50,

D3, T TS, Z(Y x Sp/Y x §p) —2 1,

Ty(ps;.ir)(—)
—_ 5

pglﬁi}*r}/ﬁZ(Y X S]/Y X S])
il*pSIﬁF}/(IZ(Y X S[/Y X S]) = Z]*];F(X/S)

We then have the commutative diagram in C/(Var(C)*™ /S )

. ~ PisNI(X/S)
P}, Q(X1/S1) ———p},Lir.j; F(X/S) (58)
HIJ\L l/Tq(D”)(j;F(X/S))
Nj(X/S)

Q(X,/Sy) LiyjiF(X/S)

with

. L (praps, ) (=) " 3 N
HIJ:pIJpS‘mFXI (YXS]/YXS[)—I)])S ﬁpIJFXI (YXS[/YXS])

ps, Tprr,7Y) (=) Ps s T(Xs/Xrx SV (=)
%

P35, %, x5, LY x S5/ % 87)

Ps, TX,Z(Y x 8;/Y x 5;).
The diagram 58 say that the maps N;(X/S) induces a map in C(Var(C)*™/(S/S1))

(N1(X/8)) : (Q(X1/S1), I(p} s pras) (= —)(Hrs))
= (Lingr F(X/S), I(p1.0, pro)(— =) (T (Dr1s) (i1 F(X/S))))-
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Denote X7 := XN (Y x S7) C Y x S; the closure of X; C Y x Sr, and Z; := Z N (Y x S;) = X7\ X7
Consider for I C [1,---1] and I C J the following commutative diagrams in Var(C)

7 ~ _ ~ PSJ ~
Xj———=Y x5; , Y xS;——=38;

Ps;
(nxTI P prJ
1 Ds ~ Ps ~

X[—I>-YXS'];>S’] YXS];S]

| e

Z]ZX]\X]—)DXS’]

Let e; : (Y x S, E1) — (Y x 81, Z;) a desingularization of the pair (¥ x Sy, Zr), e2: (Y x gl)g, E;) —
(Y x S1,X1) a desingularization of the pair (Y x S7, X;) and a morphism €15 : (Y x S7)a — (Y X
such that the following diagram commutes (see definition-proposition 8) :

(3_/ X 51)2 ﬁém (3_/ X gl)l
Y xS§ ———=Y x5
We have then the two canonical maps in C/(Var(C)®*™" /(S}))
PS,*R((YXSI)*E*)/SV, (PEIQ(XI/SI))
= pgl* Grgi*(COHG(CODe(pSI*El*Eet(ZZI.u(Z(El./El.), UIJ)) — pSI*EI*Eet(Z((Y X S’I)l/(? X S’])l)))
— Cone(pg, , €2« Eet (1163 (Z(E2e / Eae ), urs)) = D3, €20 Bet (Z((Y x S1)2/(Y x S1)2)))))

(T((Pg,0€1)4,(Pg, 0€1)) (=), T((Pg, 0€1)1,(P5, 0€1)+)(—))

pS«I* Gr};?[*(COHe(COHe(pS«IﬁewlZI.ﬁ(Z(El./El.),U,]J) — pglﬁelﬁZ((Y X S’])l/(Y X 51)1))
— Cone(pg, y€a1lret(Z(E2e/Ene), urs) — ps«]uEQﬁZ((Y x 81)2/(Y x S1)2))))[—2dy]

i> Cone((Z((El. X g],El.)/S’[),U]J) — (Z((Eg. X gj,EQ.)/S’[),UIJ)
Is((X1,21)/81):=(Z(z; 0e1 xI),Z(l1oex xI))

CODG(Z((}7 X S’],Z])/S’]) — Z((Y X g[,X[)/S’]))[—Zdy]
where,

e since pg o€ : (Y x 5’1)1 — Srisa surjective proper morphism, we have the equivalences (A!, et)
local in C'(Var(C)/Sy)

T((pg, © €1)s, (pg, © €1):)(Z((Y x S)1/(Y x Sp1)) « (pg, 0 €1)sZ((Y x Sp)1/(Y x S1)1) = (pg, © €1)x Bt (Z((Y x Sp)1/
and

T((pg, o €1)s, (g, © €1):)(Z(Ere /(Y x 1)) : (pg, 0 €1)sZ(Ere/(Y x S1)1) = (pg, © €1)«Eet(Z(Ere /(Y x S)1))(dy ) [2
given in definition 42,

e since pg oe€a: (Y x 5’1)2 — S;isa surjective proper morphism, we have the equivalences (A!, et)
local in C'(Var(C)/Sy)

T((pgl 0 €2)y, (pg] 0€2):)(Z((Y x Sp)2/(Y x S51)1)) : (pgl o a4 Z((Y x Sr)2/(Y x Sr)2) — (pgl 0 €2)xFet (Z((Y x Sp)2/
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and

T((pg, © e2)s: (g, © €2)+)(Z(E2a /(Y X 51)2)) : (D, 0 €2)yZ(Ene /(Y % S1)2) = (pg, © €2)Eet(Z(E2a /(Y x S1)2))(dy ) [2

given in definition 42.

We denote by v}, (F(X/S)) the composite

o8 (F(X/8))lds,] = € (51)Hom(pg, . Gri2* Ry 5,1 peyss, (0%, QUX1/81)), B (9557, Fpp))

p15+T(prs,Q7"")(=)oad(p; ;% ,p1s)(-)

(S ) Hom(l’s]* Gr pIJR((YXSI) E*)/SI(pSI (Xl/gl)vEet(Q;gI’praFDR))

Hom(T (PIJ1RCH)(Q(XI/5~'I))711Eet(5?;’§l;’pT7FDR))

prov€ (S1)Hom(pg, . Crg™ Ry 5,y x5, 150 x5, 018, (P, P11Q(X1/51)), Eet(Q;’gF’pra Fpr))

Hom(pg . Grg®* RS (H1y), B ()5 A )

p1¢ (85) Hom(Grg" R (3 5,y )5, (P, Q(X/51)), Eet(Q;gprv FpRr)).
On the other hand, we have in 75 (C(MHM (X))) C Cpsa(X/(Y x Sr))
(Cone(T(Z1/X1,7H99) (<)) : ((4™% (05 5., Fi)s 15 (X/S)) = (D59 (055, Fo)s w14(2/8))
= (0 x DT 0y 5, Fy), 21(X/8))
with
e for the closed embedding X C Y x S we consider the map in WYxé,,(C(MHM(? x 57)))

) ad(pry pmod pIJ*)(*)

wry(X/S): Ty Hdg(OYxS,va pIJ*pIJmOdFV Hdg(OY £)

XSI’

T(Xs /05" (XD AN (=)oT @, 7Y )(—) 90y, 5, Fy),

e for the closed embedding Z C Y x S we consider the map in WYXgJ(C(MHM(S_/ x 57)))

ad( /*mod7 ’ *)(7) *mo
x17(Z/9S) : Fé}Hdg(OYxépr) LSRR LS p/IJ* Prj drv qu(OYxSI Fy)

T(Z5 /P54 (Z0)7Y ) (=)oT () ;7Y ) (—)
J/Pry 1) Prj:y Féj,Hdg(OYXS'Jan)a

e for the closed embedding X C Y x S we consider the map in 7y, g (C(MHM(Y x S1)))

/xmod

ad( 7:)(=) "xmo )
zry(X/S): VHdg(OYxé,va) P pIJ*pIJ dFvIHdg(Ongl,Fb)

T(Xs /X1 xSy 99 (=)o T (0], 7Y ) (—
(X /XX S YT @77 Fv’Hdg(OYxS*J’Fb)'

The maps z77(X/S) gives the following maps in Cpyi.s, (S’J)

w]J(X/S)[Qdy] :pSI*EZ‘"((Q;’/xSI/SI’F ) Ro-

Y><S

(’n « I)Hdgrv Hdg(OngﬂFb))

ad(p;7°,prs)(—) *mod B (922

Hd JHd
Pri«Pry Pg;« 17><§1/§1’Fb)®0 5 (nXI) qu q(Onglan)

Y xSy

PIJ*T;)(;DIJ,PSI)(—)

[ *1M0 d d
pSJ*Ezar((QYXS'J/SJuF ) ®OY><S pI] d(n X I)H ql—\\/ M q(OY><5'17Fb))

(s, E(DR(=)(z1(X/5))

° Hd Hd
P8, Bear(2 5, 5, F) D0y, (0 x DEUTLH(0, o F)).
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We have then the following lemma
Lemma 15. (i) The map in C(Var(C)*™/(S/Sr))
(N1(X/8)) : (Q(X1/S1), Hry) = (L(ir.ji F(X/S)), TU(Drs)(F(X/S))).
is an equivalence (A1, et) local.
(ii) The maps (N1(X/S)) induces an co-filtered quasi-isomorphism in Cp ¢ (S/(Sr))

(Hom(Grg’* RE™ (N1(X/S)), Eet(Q;’gFI’pT, Fy))) :
(lim €'(Sp)Hom(pg,, Grg™ Ri— /- (o5, Linji F(X/S))), Eet(Q;g;FI’pr, Fpr))[—dg,],uf;(F(X/S)))
()
= (lim ¢'(Sr).Hom(pg,, Grg?* R(—,—)/—(PEIQ(XI/gl))7Eet(Q;’gFI’pr,FDR))[—dg,],v?J(F(X/S)))
r— (=)

(iii) The maps (Is((X1, Z1)/S1)) induce an oo-filtered Zariski local equivalence in Cpiy(S/(Sr))
(Hom(pg, Is((X1, Z1)/S1). k) :
(ng*EZaT((Q;7X§I/§I7Fb) ®O‘7X§1 (n X I)!Hdg(l—‘}/(’IHdg(OYXSI’ Fb))[_2dY - dS'I]v wIJ(X/S))
= (¢ (S1)-Hom(pg,.. Grgy" R 5+ 58, (05, QUX1/SD), Ba (U3 ", For))[=ds, ], v, (F(X/5)))

Proof. (i): See lemma 12(i)

(ii): These maps induce a morphism in Cp(S/(S;)) by construction. It is an oo-filtered quasi-isomorphism
by (i) and proposition 105.

(iii): The fact that these maps define a morphism in C'p(S/(S1)) follows from the commutative diagrams
in C(Var(C)2*mP" /S ;) for I C J

1oIs(X1,Z1)/S1) -~ ~ o
P i p?JCOHG(Z((YXS[,Z[)/S])%Z((YXS],X])/S[))[dy]

P13P5 G1§" Ri(v 3 50y3, (P, Q(X1/51))

I

lT(PILRCH)() =

. . . ~ (Is(5 (X528 o ~ o
05,2 Gr2 Riyis,ye myys, (0%, 9 QX1 /81)) P CDPAGH Y x 85,0751 (20))/50) = TU(Y x S5 (X0) 8]

RCH(H”)T (Z(Y x87),2(Y x51))

15((X,2.4)/85)

P50 OT8 Ry x5,y 505, (P, QX /51)) Cone(Z((Y x 81, 25)/S5) = Z((Y x S5,X1)/51))ldv]

On the other hand, it is an oo-filtered quasi-isomorphism by proposition 93 since we have by Yoneda
lemma the following commutative diagram

° ° V,Hd
p,S_’I*EZaT((QY/XSrI/S'rlaFb)®o)7><§1 Cone(ps']*Ezar(Q(Ez.Xgl/glv Fb) ®OE2.><S‘I (FEZ. g(OEQ.x,é’I?Fb))) -

(n x DT (Og 5, ) [=2dv] =" pg,, Bear (5, 150 ) @0, s TR0, w5, Fb)—2dy]

"Hom(ps, . Is((X1,21)/51).k) J{

(€' (St)«Hom(pg,, Crg* Ryy w5,y 5+)/5, (ngQ(Xz/gf)),

Eet(Q;g‘;pTvFDR))) }
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and on the other hand by proposition 104 and lemma 2 since
(T((pg, © €1)t, (pg, o €1)+)(=), T'((pg, © €2)t, (pg, © €2)+)(—))
is an equivalence (A!, et) local. (]

Proposition 107. Let f : X — S a morphism with S, X € Var(C). Assume there exist a factorization
FixLyxsrss

of f with Y € SmVar(C), | a closed embedding and ps the projection. Let Y € PSmVar(C) a compact-
ification of Y with Y\Y = D a normal crossing divisor, denote k : D < Y the closed embedding and
n:Y < Y the open embedding. Denote X C Y x S the closure of X C Y x S. We have then the
following commutative diagram in Var(C)

Let S = UL_ 1S an open cover such that there exist closed embeddmgs i; : S; = S; with S; € SmVar(C).
Then X = UL_| X; with X; := f~1(S;). Denote, for I C [1,---1], St = NierSi and X1 = Nier X;. Denote
X —Xﬁ(YxSI)CYXS’I the closure of X; CY x S, cdeI =7Zn (Y x8r) = XI\XICYXSI
We have then for I C [1,---1], the following commutative diagram in Var(C)

X]—ZI>-Y><S']

l l(r%pi

2 I _ - D3, ~

X —Y xS ——=5;
1

| = o™

Zr=X/\X; ——= D x S;

Let F(X/S) = ps X Z(Y x S/Y x §) € C(Var(C)*™/S). We have then the following isomorphism in
Dpjit,e0(S/(51))
I(X/8): F§PH(M(X/S)) =
( lim e ¢ (S1). Hom(pg,, Gr R((YXSI) 578 (P L(il*h (X/5)));

o' pr q (Hom(GrI;I* Rgf(NI(X/S))’E”( ;SF T E)
Eet(Q: ", Fpr))[—dg, | ui,(F(X/S)))

/51
(lim e ¢ (S1)«Hom(pg,, Grg™ Ry x5,y w)/5, (05 Q(X1/51)),
)

Eet(Q;g]’perDR))[_dS,] vi;(F(X/S)))
(Pg,Bzar (05 5, /5,0 F) ®0, 5, (0 X DIWTEHY(Oy 5, F)[—2dy — dg, ], wis(X/S))
=5 s ROy 5, F), 1 (X/S)).

(Hom(pg,, Is((X1,21)/51).k)[~dg,]) ™}
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Proof. Follows from lemma 15. O

Corollary 5. Let S € Var(C) and S = UL_,S; an open cover such that there exist closed embeddings
i; : S; = S; with S; € SmVar(C). For F € C(Var(C)*™/S) such that D(A',et)(F) € DA.(S), ui,(F)
are oco-filtered Zariski local equivalence.

Proof. Follows from the resolution of a constructible motive by Corti-Hanamura motives and proposition
107. By theorem 15, M is isomorphic in DA(S) to a generalized distinguish triangle of Corti-Hanamura
motives, i.e.

M = Cone(M (Xo/S)[do] — -+ — M(Xn/S)[dn])

where fo: Xo = S,..., fn: X, — S are projective morphism with Xy, ..., X, € SmVar(C). By lemma
15(ii) and (iii), u{,(F(X,/S)) are oo-filtered Zariski local equivalence since wy;(X,/S) are oo-filtered
Zariski local equivalences. O

Corollary 6. Let S € Var(C) and S = UL_,S; an open cover such that there exist closed embeddings
i; : S; = S; with S; € SmVar(C). Then, for F € C(Var(C)*™/S) such that M = D(A', et)(F) € DA.(S),
H' FEPR(M, W) := ((e/(gl)*HOm.(pSI* Grlgi* R((vx5,y.p+)/5, (Pe, L] (F, W),
Ee(Q75 " Fpr))[=ds, ], uf ,(F,W)) € ns(MHM(S))
for alli e Z.

Proof. Follows from the resolution of a constructible motive by Corti-Hanamura motives and proposition
107. By theorem 15, M is isomorphic in DA(S) to a generalized distinguish triangle of Corti-Hanamura
motives, i.e.

M =5 Cone(M(Xo/S)[do] = -+ — M(X,/S)[dn])

where fo : Xo — S,...,fn : X» — S are projective morphism with Xj,...,X,, € SmVar(C). For

0 <r < n, consider a factorization f, : X, by x5 P, S, where [, is a closed embedding, Y € PV and
ps the projection. Then,

FEPRM(X,/8)) = (05, 5,5, F) ®o, 5, 190, 5, B)[=2dy — dg,],wis(X,/S))
= 1sRfE%(Ox., Fy) € Dpjiro(S)

T*
by proposition 107. We conclude by theorem 27 since f,. are projective. O

Proposition 108. For S € Var(C) not smooth, the functor (see corollary 6)
15 FEPR DA (S)P — mg(D(MHM(S))

does not depend on the choice of the open cover S = U;S; and the closed embeddings i; : S; — 5‘1 with

S; € SmVar(C).

Proof. Let S = U?:f/HSl- is an other open cover together with closed embeddings i; : S; — 5‘1 with

7=
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S; € SmVar(C) for [ +1<i<1Il’. Then, for J/CcI' C[l41,....,l'|=L' and JCcIC L=[1,...,1],

L/ (5"t e ¢ (31) Hom(ps,, Gr2" Rix. poy s, (05, Llinedi F)), B @527, Fop))[-dg ], urs(F))

,Hdg,__smod[—]

= ((ho }ienll/pl’(lul/)*rsmﬂ Praur) (ts ( 1_n§1 e'( I)*Hom(péf* GrngI* R(X*,D*)/SI (pz:IL(i]*j?F)),

Eet( Q537" For))[=dg, ], Ts"" (urs(F))))1)

(holimrer us(surry(F))

: V,Hdg _ *mod s &
(hO}1;1[1/p]/(Iul/)*FSIuI,gp](]u[[/)]pl(ll_l]’)* h_n>1 eI(S(ILII'))*Hom(pS'I* Grémﬂ

r—(5)
R(X*vD*)/gluI/ (pg]L('L’(Iul/)*j(*]u[/)F)), Eet (9;1‘57?:/ 5 FDR))[_dgluI/L U(IuI’)(IuJ’) (F))

\/Hdg( )

«mod
ad(pr(10 77y Prrury«) (=)o SiLp

(ho M ppury. lim ¢ (Sury)«Hom(pg, , Grsl* L Bixe poy/5,0, (P5, Lligury«irm F));
r—(5)
. - (holim wpr gy (F))
Eet(Q/g;’:)ﬂ,FDR))[—dSMV IeL YUp/(rur’y
( h%)e'(gp)*?lom(pgﬂ* Grg Rix- pey/3, (0, L1 g7 F)), Eer (Q/S P, Fpr))|=dg,, ], ur .y (F))

]7 Urury(IuJgr) (F))

is an oo-filtered Zariski local equivalence, since all the morphisms are co-filtered Zariski local equivalences
by corollary 5 and proposition 91. o

We have the canonical transformation map between the filtered De Rham realization functor and the
Gauss-Manin realization functor :

Definition 118. Let S € Var(C) and S = UL_,S; an open cover such that there exist closed em-
beddings i; : S; < S; with S; € SmVar(C). Let M € DA.(S) and F € C(Var(C)*™/S) such that
M = D(A',et)(F). We have, using definition 112(ii), the canonical map in Dog fi,p,00(S/(Sr))

T(F$M, fFDR)(M) :
FEM(LDsM) = (e(Sp)Hom® (L(i1.jiDsLF), Bet(2)5,, Fy)), uf; (F))

= (e(gl)*Hom.(LDS,L(iI*JI ), E (Q;s s Fy)),ufy (F))

74(
7

Hom(f,Gr(le Nt

(e(Sr)«Hom® (LDg, L(ir.j; F), Gr§, Eet(€ Vs "2 Fpr)), ubd(F))
I(Gr1—2* Gr1-2*)(— -)

)

(¢/(S1)Hom® (Grg}" LDg, L(ireji F), Eet (25,7, For)) ufy (F))

(Hom* (pg,.. Gr2* rCl . o (L1137 F)) Bt (2557 Fo )

(lim ¢'(Sp).Hom(pg,, Grg, X*,D*)/s,(p*g,L(iz*j}‘F)),Eet(ﬂ;’gr;’”,FDR))[—ngLu?J(F))
r— (%)

§7H(M)

We now define the functorialities of F£P# with respect to S which makes Frp a morphism of 2
functor.

Definition 119. Let S € Var(C). Let Z C S a closed subset. Let S = Ut_,S; an open cover such that
there exist closed embeddings i; : S; < S; with S; € SmVar(C). Denote Z; := Z N S;. We then have
closed embeddings Z; — Sp — Sf.
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(i) For F € C(Var(C)*™/S), we will consider the following canonical map in ws(D(MHM(S))) C
Dop(1,0)£u(S/(S1))

Ty, QL) (FW) :

l—‘\/ Hdg, — e L hﬂ e/(gj)*HOm.(pgl* Gr?l* R(X*,D*)/SI(pg,L(iI*ﬁ(F’ W))),
r—(=)
E (Q/ig e FDR))[_dS'I]u U?J(Fu W))

Hom® (pg,, Grgl" r«H (v 21 (L(irj7 (FW)))), Eet (25 57" FpR))

Dy, (i ¢ (5) Hom® (pg,, Y2 Ry ey g, (0% T L(ins i (F,W))),

Eet (Q/S P, Fpr))[—dg,], uy 7 (F, W)

— 15 (L lim e ¢ (S1)sHom® (ps, *Gr " Rxx peyyg, (P, Uy, L(ifji (F,W))),

Eet(Q;’gi’praFDR))[ dg, ], ufy F(F,W)).

ubf (F)dg, ] ¢/ (Sr) Hom® (pg,. Gr2* Ry pey s, (05, T%, LU Ji F)), Ea (@357, For))

prsxT(prs, Q7 P")(=)oad(p; 7% prs)(=)

proee (S9)Hom® (Gr2 bt R oy, (0%, T%, (137 ). Bt (247" Fo))

Hom(Grg" T(prs, RY) (Lir.j; F)’I,Ect(Sl;’gF]’pT,FDR))

pry«€' (S5).Hom® (pg,, Grg’ T Rixexgp .0 x5 1)/8, (P5, P12, L(irT F)), Eet (Q/S , FpR))

Hom(ps,. GriZr RS (TU(D10) (i} F)OT(Za /21 <517 N(=)oT (010 1) () Eer (477 Fo )

pry-€'(S5). Hom® (pg,. Grg¥ R(xex5, .0 x551)/5, (5 TZ, L1753 F)), Eet (Q/S " FpR)).

(i) For F € C(Var(C)*™/S), we have also the following canonical map in ms(D(MHM(S))) C
Dp1,0)7u(5/(S1))

T(OY", Q) (FW)

/S
Lgl( hﬂ EI(S’I)*'HOWL.(PS*I* Gr%’?]* R(X*v*,D*v*)/S—’I (ngLFZIE(iI*jIDS(Fv W)))a
(%)
o 1l ,pr s d
Eet(055"" For))[=dg, ), ufy"" (F.W))
= T7%9 (lim ¢(Sr).Hom® (pg,, GrE" Ry peyss, (05, LT 2, E(i1.jiDs (F,W))),
r—(-)
o, 1l ,pr s d
Eet(Q/ng . Fpr))[=ds,], uf(F,W))
Hom®(ps,, Grg’” CH(WZI(—)),Eet(Q/S P, Fpr))

7% (lim e(Sp).Hom® (pg,. Grg”" Rix pey s, (0%, LirdiDs(F, W),

Eet(Q55"" Fpr))[~dg,], uf ; (F, W)
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with
u%JZ(F)[dgl] ¢'(Sr)«Hom* (rs, *Gr TRy peys, (P gILI‘Z,E(iI*j}‘DSLF)),Eet(Q;gPT,FDR))

p1a=T(prs,Q7"")(=)oad(p} % ,p1s)(-)

Qo . k% * o' pr
1€’ (S)sHom® (Grg pi R x. pe) )5, (P, LU 2, B(i1.ji DsF)), Et(Q75 " For))

Hom(GrI;J* T(pry,RET)(Lir.j; F)’l,Eet(Q;‘;I’”,FDR))

p1+€'(Sy)Hom® (ps,, GrE" R x. <G00 x5 1)/8s (P5, LP1sT 2, B(irjiDs LF)), Eet(Q;Z;;pra Fpr))

Hom(ps . Grg’r RS (Dg, S (D1y)(DsLF)), Eet(Q;’SF”W,FDR))

& . * - -x o' pr
pr«€' (Sy).Hom* (pg,, Grg’ Rixexs,.0"x5,1)/5,P5 FZJE(ZJ*.]JDSLF));Eet(Q/SJp . Fpr)).

This transformation map will, with the projection case, gives the transformation between the pullback

functor :

Deﬁnition 120. Let g : T — S a morphism with T, S € SmVar(C). Consider the factorization g : T KN
T x 8 22 S where | is the graph embedding and ps the projection. Let M € DA.(S)™ and (F,W) €
Cti(Var(C)s™/S) such that (M,W) = D(AL, et)(F,W). Then, D(AL et)(g*F) = g*M and there exist
(F'\W) € Cpy(Var(C)*™ /T x S) and an equivalence (A',et) local e : TV pi(F,W) — (F',W) such that
D(AL g et)(F',W) = (TVpsM,W). We have then the canonical transformation in wr(D(MHM(T))
using definition 114 and definition 119(i) :

T(g,]'—FDR)(M) . gﬁsmod,Hdg]:gDR(M) —

I‘:\F’Hdgb;l (pngd[f]( hg e(S)« Grlsz* Hom® (ps« Gr152* Rix+.p*)/s(psL(F,W)),

T(x*,D*)/s(—)

oT.pr T(ps, Q57" (-)

Ea(Q53"", Fpr))[—ds))) :

Dy lim (T x S) Hom® (prxs. Grifis PsR(x- p+) /s (P5L(F)),
T(X*,D*)/s(*)

Hom(T(ps, R™M)(L(F,W) ™!, Bt (557", Fpr))[—ds]

Eet(Q;’TF’ng, Fpr))[—ds]))

D99, lim  ¢(T x S)Hom® (prxs« Grrvs Rirxx+ 10+ /mxs (0rxsPSLIE, W),

r(x*,p*y/s(—)

Ee (07555, For))[—ds]) =

JHdg — . . * * *
F% gLTl( h_n} (T x S)Hom® (prx 5+ Gr1T2xS R(X'*,D/*)/TXS(pTXSpSL(Fa w)),
T(X’*,D’*)/sz(i)
T(TY A9 Q;sz)(F,W)

Ee(Q37575, For))[—ds))
( lim e'(T x ). Hom* (prxs« Grixs Rix« prey yrws 01k sTIDSLF, W)),

T(X/*,D/*)/TXS( )
o,I'\pr Hom(RE L 5(e),—)
B Q57, Fpp))[—ds)) 2B,

( lim €' (T x S)Hom® (prxs« Grixs Rix« prey yrws (prxsLIF, W),
T(x'* 0" s (7)

Ee (57,755, For))[—ds]) = Frd (Lg™M) = F£ (g™ M)

where the last equality follows from proposition 108.
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We give now the definition in the non smooth case Let g : T — S a morphism with 7,5 € Var(C).

Assume we have a factorization g : T Ly xS SwithY e SmVar(C), I a closed embedding
and ps the projection. Let S = Ut_,S; be an open cover such that there exists closed embeddings

. S; < S; with S; € SmVar(C) Then, T' = UL_,T; with T; := ¢~1(S;) and we have closed embeddings
/

ii =g, 0l:T; =Y x SZ, Moreover gy := Ps, 1Y x SI — SI is a lift of gy := gr; - Tr — Sr. We recall
the commutative diagram :

E]Jg: (YXS’])\T[LYX;?J,E]J: S’J\S‘]Lg‘] E}J: (YXgJ)\T]LYXS’J
\LPSI lg}; lpu lpu lp’” lp’”
g[\S] m—1> g[ g[\(S}\ST):mL) g[ (Y X S’])\(T[\ﬂ):% Y x S’]

For I C J, denote by pry : gJ — g[ and p; = Iy X pry 1 Y x gJ — Y X 5’1 the projections, so
that gr o p}; = pryo gs. Consider, for I C J C [1,...,1], resp. for each I C [1,...,1], the following
commutative diagrams in Var(C)

-/

Dy = SIL>§I;D/1J: TI—”>Y><ngg1: SILSI ,
I B N
SJL>S'J TJ—”>YXgJ T[—ZI>Y><S']

and j;y: Sy — Sy is the open embedding so that jr o jr; = j5. Let F' € C(Var( )Sm/S’) Recall (see
section 2) that since jl zl*jl*g*F =0, the morphism T(Dy)(§7 F) : i g  F — 21*31 *g* F factors trough

. X%, () "(Dy1)(j; F) -
T(D(JI)(]IF) gIZI*jIFXI—>FXIg]ZI*]]F;JI> T ]g F.

and that the fact that the diagrams (56) commutes says that the maps T%7(Dyy) (457 F) define a morphism
in C(Var(C)*™/(T/(Y x S1)))
(T (Dyr)(j7F)) + (T4, 35 L{i1j1 F), TU(Dr) (j; F) o T(T1 /Ty % Sy, 7)) (=) 0 T(p5,7Y)(=))
= (L(i7dr 9" F), (D) (i1 9" F))
Denote for short dy := —dy — dg,. We denote by ghul;(F) the composite
giui,(F)[=dy.] :
6/(Y X S[)*HOm(pYXSI* Gr ),2;:5,] R(X/*,E*)/YXS'I (p;xglgiL(Z[*j?F)), Eet (Q;)l:fgj , FDR))

i /*mo
P T (07527 7") ()oad (7" p ) (5)

~ % - « ~% . x oI pr
Py (Y x SI)*HOW(PYXQ,* Gr%fxgl pIJR(X’*,E*)/yXSI (Png 91 L(ingi F)), Ea(Q5, 75, FDR))

/YXSJ ’
x - T,
’Hom(Pny‘,* Gr ;2><s, T(pII7RCH)() leet(Q;YngJvFDR)

Pry.€ (Y x S1)cHom(py 5, Griis Ri_ ) /yvs, (P}Xg]pzﬁﬁfL(iz*j?F))aEet(Q;g’pg , FpR))

Hom(py 5,. Gry%s B S s (T1(D1o) (57 F)Eet(Q50 75 FpR))

~ % % ~k . % oI, T
e'(Y x Sy)Hom(py 5, Gr;QXSJ Rixi gy yyxs, (pYXSJgJL(zJ*]JF)), Ee (Q/Y P Fpr))
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We denote by g7 u},;(F) the composite

g7 ug;(F)[=dy,]:

& * * ~% . -k oI pr
6/(Y X SI)*Hom(prS‘I* Gr§/2><§1 R(X/*,E*)/YxS’I (pyXS’IFf\Z/’IgIL(ZI*]IF))a Eet(Q/Yfglv FDR))

T "«mo
P TWr 27 F")(=)oad(pr5" " pr 1) (-)

~ % - « ~% . x o' pr
Py (Y x SI)*Hom(PngJ* Grigxgl pIJR(X'*7E*)/Y><§I (pyxgjr’,\l/}gIL(Zl*jIF))vEet(Q P. . FpRr))

/)/><§J7
’Hom(prS‘J* Grg; 3y T(pIIJ,RCH)()il,Eet(Q;’;ng;FDR)
/ / & B 12x 5 * "% TV o~k .k o' pr
Proe' (Y X Sp)Hom(py 5, Grngl, R _y/vxs, (PYXg‘]pIJPTIQIL(zI*JIF))v Eet(Q/YXng Fpr))
Hom(py . 5,. Gyl g, R,C/IZSJ(Tq(DIJ)(j}‘F)OT(TI/TI XSJ\I1'Yv)(7)OT(pIIJ7’Yv)(7))7Ect(Q;£;<ng1FDR))

T * * ~ % . - o' pr
e'(Y x Sy)Hom(py 5., Gr?xéﬁ; Rixrv gey/vxs, (pYXglF:vagJL(z,]*jJF)), Eet(Q/YxpSI’FDR))
We then have then the following lemma :
Lemma 16. (i) The morphism in C(Var(C)*™/(T/(Y x S;)))
(T%7(Dyr)(j7 F)) = (T, LgFire; F. TU(Dry) (i F) o T(Tr/Tr % Spp,vY) (=) o T(0,7¥) ()
= (Lipji'g"F.T(Dy,) (i g )

is an equivalence (A1, et) local.

(ii) The maps Hom((T%"(Dy)(j;F)), Eet(Q;’;:fgI), FpRr)) induce an oo-filtered quasi-isomorphism in
Cpra(T/(Y x 51))

(Hom(py 5,, CriZt g, REM S (T (Dyr) (5 ). Bt Q55 7%  For))ldy1])

/Y><§]’
(&' () Hom(py 5, G5, Roxe 00y (0 5, THGT LUindi F)): By Vg, For)ldv 1), 35 (F)
— (¢/(=)«Hom(py . 3, Gf?;gl Rix-p+)/-(Py 5, LT 9" F)), Eet(Q;’;fgI , Fpr))ldy 1], u];(9"F))

(iii) The maps T(jr, X-F") (=) (see definition 114), induce a morphism in Cpsa(T/(Y x Sp))

T(5r, Q07" ) (p3,, Cri2* Liirji )))ldy 1] -
(350 (S1) Hom® (pg,, Gr2* Rixe poy 3, (0, (Lo F)), Bt (052", Fpr)ldy 11,35, (F))

/51
* ~ % * RS o, I',pr ~ %
- (6/(_)*H0m(pY><S’I* Grgxg, 91 B x+ D)/ v x5, (PgIL(ZI*JJF))v Eet(Q/YngIaFDR))[dYI]a gyui s (F)).

Proof. (i):Follows from theorem 14.

(ii): These morphism induce a morphism in Cpfi1(T/(Y x Sr)) by construction. The fact that this mor-
phism is an oo-filtered equivalence Zariski local follows from (i) and proposition 105.

(iii): These morphism induce a morphism in Cps(T/(Y x S;)) by construction. O

Definition 121. Let g: T — S a morphism with T, S € Var(C). Assume we have a factorization g : T KN
Y xS 25 S withY e SmVar(C), I a closed embedding and ps the projection. Let S = UL_,S; be an open
cover such that there exists closed embeddings v; : S; — S‘l with S‘l € SmVar(C) Then, T = Ulilei with
T; := g~ 1(S;) and we have closed embeddings i}, :=i;0l:T; < Y x S;, Moreover gr:=pg, Y x Sr— Sy
is a lift of gr = g7, + Tr — Sr. Let M € DA.(S)” and (F,W) € Cy;(Var(C)*™/S) such that
(M, W) = D(AL,et)(F,W). Then, D(AL et)(¢*F) = g*M and there exist (F',W) € Cg;y(Var(C)*™/S)
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and an equivalence (A',et) local e : g*(F,W) — (F',W) such that D(AL et)(F',W) = (¢*M,W). We
have, using definition 114 and definition 119(i), by lemma 16, the canonical map in mr(D(MHM(T))) C
Dp,0)fit,00(T/(Y x St))

T(g, FFPR)(M) : gifietist FEPR(M) =

(F¥,HdgL%l(§?mod( hﬂ e’(g])*HOm'(pSI* GI‘1§21* R(X*,D*)/S’] (pgl (L(Z[*]I (F, W))),
r—(-)
(T(ar Q577 )(Gr 1" Lir.g; (FW))

Eet(Q/S , Fpr)))[=dy 1, g5, (F,W))
1":\;7Hd‘qb:?1( hﬂ (Y x gf)*Hom(pYXgl* GYY;SI §?R<X*,D*)/S, (ngL(il*j}k(F, w))),

Hom(T(31,RH) (=)~ —)

Eet(Q;gfgl ,FpR)), §yug,(F,W))

JHdg — . & * * ~ % . - %
F% gLTl( hﬂ (Y % S1)«Hom(py 5, Gr%fxg, By x+yxD)/ v x5 (pyXSIgIL(ZI*]I (£, W))),

o' pr ~ %
EEt (Q/Y:S'I ) FDR))? gJu%](Fv W))

=y A hﬂ e(Y x gj)*Hom(pYXSI* Gr?igl Rixre 5oy )y xé: (p;XSIﬁL(iI*j}*(F, w))),

TR QT (FW)

Eet(Q;’;fgl , For))ldy 1], gyug, (F,W))

i ( lim e' (Y x gl)*’Hom(pYXgl* GY;E;SI R xre 5oy /v <3 (P;X51F¥,§?L(il*jf(Fa W),
Eet(Q5y 1% For))ldy1], 37" ug, (W)

(Hom(py 5, GriZl g, RYM 5 (T (Dor) (57 (FW)),Bet( @5 1L For))ldy1])

L;l( hﬂ e’(Y X gl)*Hom(pYXSI* Gr ;2;5 R(X'*,E*)/YXS'I(p;XSIL(i/I*jI*g*(Fv W)))?

. ok
’Hom(Rgfsl (LZ/I*]I (6))7_)

Eet(ﬁ;ifg, Fpr))dy1],ui; (g™ (F,W)))

1 ( ling e (Y x gl)*Hom(prSI* Gr%,z;g] Rixre gy v xsy (p;‘/XSIL(i’I*jI*(F/7W))),

Eet(ﬂ;ifg, Fpg))ldy 1, uf,(F',W))) = Fr.P%(g*M)

Proposition 109. Let g : T — S a morphism with T, S € Var(C). Assume we have a factorization

g:T 4 Yo x S 255 S with Ys € SmVar(C), I a closed embeddmg and ps the projection. Let S = ut_, S;
be an open cover such that there exists closed embeddings i; : S; — S; with S; € SmVar(C) Then,
T =U L with T; == g 1(51-) and we have closed embeddings i, :==1d;0l:T; — Yo x SZ, Moreover
gr:==pg, Y x S; — Spis a lift of g; == 9|T1 Tr — Sr. Let f: X — S a morphism with X € Var(C)

such that there exists a factorization f: X 4 Y x S 25 S, with Vi € SmVar(C), I a closed embedding
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and ps the projection. We have then the following commutative diagram whose squares are cartesians

XT%Y]A xT

\\\

XX —=Y  xYsxS——=Yy x§

///

fiX——=YVix§8

Take a smooth compactification Y; € PSmVar(C) of Y1, denote X; C Yi x Sy the closure of X1, and
Zp = X1\X71. Consider F(X/S) := ps 'Y Z(Y1 xS/ Y1xS)[dy,]| and the isomorphism in C(Var(C)*™/T)

T(f,9.F(X/S)): g"F(X/S) := g"psTXZ(Y1 x /Y1 x §) =
praT%, Z(Y1 x T/Y1 x T) =: F(X7/T).

which gives in DA(T) the isomorphism T(f,g,F(X/S)) : g*M(X/S) = (Xp/T). Then the following
diagram in Tr(D(MHM(T))) C Dpq,o)fil,co(T/(Y2 x Sr)), where the horizontal maps are given by
proposition 107, commutes

imod (/g

*1M0 Grdg *1M0 dy JHd
nggdLS }—FDR( (X/9)) e ngngfrH q(rgc,H g(OY1 x517Fb)7x1J(X/S))
lﬂpw““g)(—)
"T(g, FFPR)(M(X/S)) Rf, 10 gmod( @90y, o Ry, ars(X/S))
- I(X7/T) ’
v FEPR(M (X /T)) . R Oy, vy o)y s (X /T)).
Proof. Follows immediately from definition. O

Theorem 32. Let g : T — S a morphism, with S, T € Var(C). Assume we have a factorization

g:T Ly <82 S withy e SmVar(C), I a closed embedding and ps the projection. Let M € DA.(S).
Then map in 7p(D(MHM(T)))

T(g, FFPR)(M) : g  FEPR(M) = FEPR(g* M)
given in definition 121 is an isomorphism.

Proof. Follows from proposition 109 and proposition 107. O

Definition 122. o Let f: X — S a morphism with X, S € Var(C). Assume there exist a factoriza-

tion f: X Ly xS S withy € SmVar(C), | a closed embedding and ps the projection. We
have, for M € DA.(X), the following transformation map in wg(D(MHM(S)))

ad(fiaot , R4 (—

b REH fied FEPR(RELM)

FEPE(ad(f*,Rf+)(M))

T.(f, FrPR)(M ) FEPR(RfM)

T(f,F"P*)(Rf. M

5 REHUOFEPR(FRLM) Rf 149 FLPR ()

Clearly, for p :' Y x S — S a projection with Y € PSmVar(C), we have, for M € DA.(Y x S),
Ti(p, FFP)(M) = Ti(p, FFP1) (M)[dy]
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o Let S € Var(C). Let Y € SmVar(C) and p : Y x S — S the projection. We have then, for
M € DA(Y x S) the following transformation map in wg(D(MHM(S)))

FyR & (ad(Lpg,p™) (M)

Ti(p, FFPR)(M) : p{" FELE(M)

T(p.F 1) (Lpy (M, W)

Rp{" ¥ FEPE (p* Lpy M)

R _ T(p*mod pFmedy(_ o
Rp!14sypmod(=) FEDR( L, 1) e () pHdayrmed(-]

ad(Rp)" " p* !N (FE PR (Lpy M) FEDR

F§PR(LpyM) (Lps M)

o Let f: X — S a morphism with X,S € Var(C). Assume there exist a factorization f : X 4

Y xS 25 S withy e SmVar(C), I a closed embedding and ps the projection. We have then, using
the second point, for M € DA(X) the following transformation map in 7g(D(MHDM(S)))

T(f, FFPRY(M) : Rp{! ™ FEPR(M, W) == Rp{"™ FERE(1.M)
FDR
Ty (p,F ) (L M) ngR(Lpul*M) _> ]:FDR(Rf!M)

o Let f: X — S a morphism with X,S € Var(C). Assume there exist a factorization f : X KN

Y xS 25 S withY e SmVar(C), I a closed embedding and pg the projection. We have, using the
third point, for M € DA(S), the following transformation map in in wx(D(MHM(X)))

ad(Rf fds N FRPE(F M)

T\, FEPR)(M) - FEPR(f M)

'I'}(ps,fFDR)(]:FDR(f!M

Filnod R 149 FEPR(F' M)

PEad(R,f')(M))

Frmed FEPR(Rf £ M) - fitacd FEPR(M)

Proposition 110. Let S € Var(C). Let Y € SmVar(C) and p : Y x S — S the projection. Let
S =U'_,S; an open cover such that there exist closed embeddings i¢ : S; < S; with S; € SmVar(C). For
I C[1,---1], we denote by St = MierSi, j7 : St = S and jr : Y x Sy <= Y x S the open_embeddings.
We then have closed embeddings if : Y x S — Y X gl. and we denote by Ps, Y x SI — SI the
projections. Let f' : X' =Y xS a morphism, with X' € Var(C) such that there e:msts a factorization

X LY xY xS Y xS withY' e SmVar(C), I' a closed embedding and p’ the projection.
Denoting X} := =YY x S5), we have closed embeddings i7: X; =Y’ xY x S; Consider

F(X')Y x S) i=pyxsiT%Z(Y' xY x S/Y' xY x S)[dy/] € C(Var(C)*™ /Y x S)

and F(X'/S) == pyF(X'/Y x S) € C(Var(C)*™/S), so that LpsyM(X'/Y x S)[—2dy]| =: M(X'/S).
Then, the following diagram in ws(D(MHM(S))) C Dp(1,0)fit,00(S/(Y % Sr)), where the vertical maps
are given by proposition 107, commutes

FDR 7
RpHINFEPE(M (XY x §)) ——2f MV FEPR(M(X'/S))

RpHdg!(I(X’/YxS))T Tz(x’/s)

RpH IR (DY Oy ey 5, F) s (XY % S) RIS Oy ey g, Fo)y s (X'/9))

Proof. Immediate from definition. O

Theorem 33. (i) Let f: X — S a morphism with X, S € Var(C). Assume there exist a factorization

f:X Ly xS2 S withy e SmVar(C), I a closed embedding and ps the projection. Then, for
M € DA (X), the map given in definition 122

T(f, FFPR) (M) : RETOFEPR(M) = FEPRRAM)
is an isomorphism in wg(D(MHM(S)).
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(ii) Let f: X — S a morphism with X, S € Var(C), S quasi-projective. Assume there exist a factor-
ization f: X Ly xS 25 S withy € SmVar(C), I a closed embedding and ps the projection. We
have, for M € DA.(X), the map given in definition 122

T(f, FFPR) (M) - FEPR(Rf.M) &5 RfF9 FEPR(M)
is an isomorphism in ws(D(MHDM(S)).

(iii) Let f: X —> Sa morphism with X, S € Var(C), S quasi-projective. Assume there exist a factoriza-
tion f: X Ly x 82 Swithy € SmVar(C), I a closed embedding and pg the projection. Then,
for M € DA.(S), the map given in definition 122

T, FEPR)(M) < FEPR(FM) s fifi FEPR(M)
is an isomorphism in wx (D(MHM (X)).

Proof. (i): By proposition 110 and proposition 107, for S € Var(C), Y € SmVar(C), p: Y x S — S the
projection and M € DA (Y x 5),

Ti(p, FFPRY(M) : Rp{" W FERE(M) — FEPR(Rp M)

is an isomorphism.
(ii): Consider first an open embedding n : S° — S with S € Var(C) so that there exist a closed embedding

i:S < S with S € SmVar(C). Then, since
n* : C(Var(C)*™/S) — C(Var(C)*™/S°)

is surjective, n* : DA(S) — DA(S?) is surjective. Denote by i : Z = S\S° < S the complementary
closed embedding. By [1], DA.(S) is generated by motives of the form

DA.(S) =< M(X'/S) = fiE(Zx/), ' : X' — S proper with X’ € SmVar(C),
st. f Y (Z)=X"or f"HZ)=UD;=Dc X' >

If f~Y(Z) = X', n*M(X’/S) = 0. So let consider the case f ~1(Z) = U._,D; = D C X' is a normal
crossing divisor. Denote f}, : f"D :D — Z, Dr =NjerD; and i} : Dy — X', n' : X0 .= X'\D — X'
the complementary open embedding and f© : f"X/o : X'° — §°. Denote L = [1,...,I]. We have then a
generalized distinguish triangle in DA (X")

a(n/,i’) : n;n,*Eet(Zx/) l> COHG(’}/D(—) : FDEet(ZX’) — Eet(ZX’))
= COHG(FDLEet(ZX/) — = @Eet(ZX’)

ad(il, i) (Bet(Zx1))

~ Y|
= Cone(iy iy Eet(Zx:) — -+ — @ZM iy Eet(Zx/)

= Cone(i},Zp, [— @lz*ZDZ ] = Zx)

where the first isomorphism is the image of an homotopy equivalence by definition, the second one is the
image of an homotopy equivalence by definition-proposition 4(ii), the third one follows by the localization
property (see section 3, theorem 14) and the last one follows from purity since the D; and X’ are smooth
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(see section 3, theorem 14). Similarly, we have a generalized distinguish triangle in D(M HM (X))

CLmOd(TL Z) :n;Hdgn/*(OX/,Fb) —N—) Cone(’ygdg(OX/,Fb) : FHdg(OX/ Fb) (OX/ Fb)>
bl (=)

~ @l’y
= Cone(T'p™(Ox/, Fy) — %@FHCI (Ox/, Fy) —2— (Ox+, Fy))
i=1
l

= Cone(ilL*mod(ODL ) Fb)[_l] — @ i;*mod(ODianN_l]

i=1

a’d(i{i*modﬂ:;u)(ox’ )

— (Ox/, Iy))

where the first isomorphism is the image of an homotopy equivalence by definition, the second one is
the image of an homotopy equivalence by definition-proposition 16, and the third one follows by the
localization property of mixed Hodge modules (see section 5). Consider n*M(X'/S) = M (X °/S5°). We
have then the factorization

Tu(n, FEPEY(n* M (X'/S)) : FEPE(Rnun*M(X'/S)) = FEPE(nun* fLE(Zx1))

FDR(Rn, T(n,f' ot , ] !
Fs (BT (n,f')(Eet(Zx1))) ]_-FDR( fon *Eet(ZX’)) ]:FDR( in;n *Eet(ZX’))

T (f FEPRY(nln'* Ber(Zx1))

Rf’HdgFFDR(n/ n’* E.; (ZX’))

Fxr Han,i) "Hdg +FDR
5 Rf"Y9Fy” " (Cone(i}, Zp, [— @zz*ZDZ | = Zx1))

=5 Cone(Rf U9 FEPR (7 T [-1) EB R FEPR(iL i T [-1]) — REF9FEPR(Zx1)
=1
(T (i, FFPEY (=)oT (47, FFPF) (=)

Cone(Rf;Hdg/ *mOd]: B(Zx)[-1] —

U
L

T @ Rf*Hd ZLMnodZL 7?1(1)1%]: (ZX’) - Rf;Hdg]:)I;’DR (ZX’))
=1

— CODe(Rf*Hd ZL*modZET?I?idq(OX'? Fb)[_l] s @ Rf*Hdglz*modzz*Flllfq (OX' Fb)[ ] // (OX’ ) Fb)))
i=1
l

= Rf;Hdg Cone(i/L*mod(ODL ) Fb)[_l] — = @ z*mod(ODz ) Fb))
=1
amod(n 'L)

D, g Moy Hdan 5 (O, F) = nH9 RS (O, Fy) ~2L20 pHds FEDR (A (X7 /)

Since all the morphism involved are isomorphisms, T (n, FE'PR)(n*M(X’/S)) is an isomorphism. Hence,
T.(n, FEPE)(M) is an isomorphism for all M € DA(S°). Consider now the case of a general morphism
f:X =5, X,5 € Var(C), S quasi-projective, which factors trough f : X Ly xS 25 S with some
Y € SmVar(C). By definition, for M € DA.(X)

TS, FTPR) (M) : FEPR(RfM) = Fg T (Rps.L.M)

T*(psyfFDR)(l*M) qu]_-FDR(l M) = Rf*Hdg.FggDR(M)

Hence, we have to show that for S € Var(C), ¥ € SmVar(C), p : ¥ x S — S the projection, and
M € DA(Y x S),
T.(p, FFPR)(M) « F§PR(Rp. M) — Rpl 9 F7 28 (M)
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is an isomorphism. Take a smooth compactification ¥ € PSmVar(C) of Y. Denote by ng : ¥ < ¥ and
n:=ngXIg:Y x5 =Y xS the open embeddings and by p : Y x S — S the projection. We have
p=pon:Y xS — S, which gives the factorization

= FDR o
T.(p, FPPRY (M) : FEPR(Rp, M) = FEPR(Rp, Rn, M) 222D, pondg prDR gy, )

Ryttt t1s FEDR (M) = Ryt FERR (M),

7. (n, FFPR) (M)

By the open embedding case T (n, F¥PR)(M) is an isomorphism. On the other hand, since p is proper,
T.(p, FFPE)(Rn, M) = Ti(p, FFPE)(Rn,.M) is an isomorphism by (i).

(iii): Denote by n: Y x S\X < Y x S the complementary open embedding. We have, for M € DA_(S),
the factorization

v 18 (a(n,D))

F :
T(f, FFPR) (M) : FXPR(F M) = 2§ (L ps M) == F{ 2§ (Cone(psM — Rnun*p'sM)[~1])
= Cone(Fy U (psM) — Fy 28 (Rnan*plsM))[~1]

(T(")]:FDR)(I)SM)OT!(p57]:FDR(M))7T!(pS)]:FDR(M)))

COne(pj;mOd[ ]]:g‘DR(M) N anqn*pgmod[ ]]_-FDR( M))[-1] o~ szwd‘FFDR( ).

By (ii),T'(n, FF'PR)(p'yM) is an isomorphism. On the other hand, since pg is a smooth morphism,
T'(ps, FFPE(M)) = T(ps, DFFPE(M))[dy] ; hence, T'(ps, FFPE(M)) is an isomorphism by theorem
32. o

Lemma 17. Let g : T — S a morphism with T, S € Var(C). Assume we have a factorization g : T KN
Y xS 25 S withY e SmVar(C), I a closed embedding and ps the projection. Let S = UL_,S; be an open
cover such that there exists closed embeddings i; : S; — S; with S; € SmVar(C) Then, T = ut —1Ti with
T; := g~ 1(S;) and we have closed embeddings i, :=14;0l: T, =Y x5;, Moreover g := =pg, Y x Sr— St
is a lift of gr = g1, + Tr — Sr. Let M € DA.(S)” and (F,W) € Cpy(Var(C)*™/S) such that
(M,W) = D(AL,et)(F,W). Then, ¢ M = LDgg*LDsM, D(AL et)(¢g*DsLF) = g*LDsM and there
exist (F',W) € Cyy(Var(C)*™/S) and an equivalence (A',et) local e : (F',\W) — (¢*DgL(F,W)) such
that D(Ap, et)(F',W) = g*LDs(M, W) and, using definition 114 and definition 119(ii) and lemma 16,
the map in 7 (D(MHM(T))) C Dp1,0)fit,e0(T/(Y % Sr))

T\(g, FFPR)(M) : FEPR(gM) — gifset FEPR(M)
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given in definition 122 is the inverse of the following map

T (g, FIPRY(M) - gifigis' FEPR (M)

= (7"t (g7t (ting €' (S) Hom® (pg,.. Grg)” Rix. poy 5, (05, L{irdiDs L(F, W),
.. o (T(Gr.Q5:"")(=)

Ee(Q55"" For)))[=dy1], §7"*"uf ;(DsL(F, W))) ——————

/s
Hde, -1 lim /(Y x Sr)«Hom(py , 5,. Gry’s 5. 91 Rix+ poy5, (05, LirgiDs L(F, W),

) T ~ % HO’ITL(T(.~ 7RCH)(_)71)_)
Eet(Q/;I;fg Fpr)), gJU?J(DsL(Fu W))) =

0t (lim €' (Y % St).Hom(py , 5,. Gri%s, Ry sxe v xpe) sy <5, Py 5,01 L(ireji Ds L(F,W))),

Eet(Q5y 7% For)),giuf,(DsL(E, W)
= TR0 (lim ¢V x Sr)«Hom(py , 5,. Gry’s s, Rixr- - )y x5, Py 5,91 L(ins i Ds LF, W))),

(4, QF PryFEwW)T!

Eet(Q53 7% Fpr))ldy 1], gyuf Ds L(F, W)

v ( hg (Y x gl)*Hom(pYXSI* Gr §/2><S R(X/*,E*)/YXS'I (P;XSILFT,E(EJ;L(i]*j}F]D)sL(F, W),

Ea(Q5y 0% For))ldvi], 557 g, (F,W)

(Hom(py 5, G125, BYH 5, By 5, T (Dgn) (57 Ds LIF,W))), Eer (572 For))ldy 1))~

Lp ( hﬂ el(Y X S’I)*Hom(pYng* GI‘;};SI R(X'*,E*)/YXS’] (p;xglLDYXS’IL(Z/I*]I*Q*DSL(Fa W)))v

. -
HOW(RYXS Dy 5, LiT.dr"(€)),-))

Ba(@057% . Fom))ldy1], ufi (g DsL(F, W)

i (lim €' (Y x Sp)uHom(py 5, G1y%g, Rixte poy v xd, (05 5, LDy 5, L(i7.d1" g D L(F, W))),

Eet(Q5y 7% For))ldy 1], ufj (L(F',W))) = FfPR(g'M)

Proposition 111. Let g : T — S a morphism with T,S € Var(C). Assume we have a factorization

g:T Ly xS S withy € SmVar(C), I a closed embedding and ps the projection. Let S = U._ 15’ be
an open cover such that there exists closed embeddings i; : S; — S; with S; € SmVar(C) Then, T = U._,T;
with T; = gfl(Si) and we have closed embeddings i, := i; 0l : T; — Y x S;, Moreover g; := Pg,
Y x St — Spis a lift of g1 == gir; : Tr — Sr. Let M € DA.(S) and F € C(Var(C)*™/S) such that M =
D(AL, et)(F). Then, D(AL et)(g*F) = g*M. Then the following diagram in Do i p.oo(T/(Y x St))

commutes

*mod ]FT(]_-GM ]_—FDR *mod Rq*mod[ F)(]:FDR
Rg*mOd[_]’FfSGM(LDsM) *)mod -1, F}‘ZJBRZ ) ;}th% FDR( )

\ lT!(g7FFDR)(M)1
T(.FGM7_FFDR)(q* M)

FEM(g* LDgM = LDrg' M) rr-r FEDR(g' M)

lT(g,]—'GM)(L]DSM)

Proof. Follows from lemma 17.
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Definition 123. Let S € SmVar(C). We have, for M, N € DA(S) and (F, W), (G,W) € Cy;(Var(C)*™/5))
projective such that (M, W) = D(A' et)(F,W) and (N,W) = D(A',et)(G, W), the following transfor-
mation map in Ts(D(MHM(S)))

T(FEPR, ©)(M,N) : FEPR(M) o, FEPR(N)

=5 (limg €'(S).Hom(ps. Gr§™ Rix- p-ys(p5(F, W), Bet (287", Fpr))[—ds]) @6,
r—(-)

(lim €'(S).Hom(ps. Gr§™ Rix- pys(ps(G, W), Eet(Q)5 ™", For))[—ds])

— llﬂ (e'(S)*’Hom(ps* GI’}S?* R(X*,D*)/S(pfg'(Fa W)),Eet(Q;g’pr,FDR)) ®OS

¢(S).Hom(ps. Grg™* Rix- pys(p5(G, W), Eet (75 ™", Fpr))[~ds))

T(®,521;’SW)(7,7)
( lim  €(S)Hom(ps: Grg™ Rix+ p+)/s(p5(F, W) ® ps« Grg™ Rix- pe)/s(p5(G, W),
S

o..pr Hom(T(®,RE™)(—,—)"1,—)
Ee(Q55"", Fpr))[—ds)) :

¢'(S).Hom(ps. Grg™ Rix- p-)/s(p5((F, W) @ (G, W))), Eet (55", Fpr))[—ds] = FEPF(M @ N)

We now give the definition in the non smooth case :

Definition 124. Let S € Var(C) and S = U._|S; an open affine covering and denote, for I C
[1,---1], St = NierSi and j;r : Sy — S the open embedding. Let i; : S; — S; closed embeddings,
with S; € SmVar(C). We have, for M,N € DA(S) and (F,W),(G,W) € Cjy(Var(C)*™/S)) such
that (M,W) = D(A',et)(F,W) and (N,W) = D(A',et)(G,W), the following transformation map in
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ms(D(MHM(S))) C Dp,0)7u(S/(51))

T(FEPR, @)(M, N) : FEPR(M) wg | FEPR(N)
i(%) ¢'(Sp)«Hom® (pg,. Grg¥* R x. p-)/5, (0% Llirji (F, W),

B 507", Fpp)=ds, ] urs (F,W) 0]

(ling €'(Sp)Hom® (pg,, Crel" Rix. peyys, (05, L(ingi (G, W), Ee(Q55 ™" Fpr))[=dg, ], urs (G, W)

= ( hg ¢'(S1)sHom* (p3, Grg" Rix- pey3, (05, Lireji (F.W)), Eet (25", For)) @0,
r (=) (=)
¢'(Sr).Hom* (PS,*Gr “Rix- pey3, (05, LUingi (FW))), Eet (57, For))[=dg, ] urs (F) © ur,(G))

(T(@.2527)(=.-)

( ( 1;3 ( )el(gl)*Hom(Pél* Grg™, Rixe pey,5, (05, Lir<ji (F,W))) @ Rix. pey5, (05, Lirji (F, W),

Hom(T(®7RCH)( )_)71)_)
B Q%

Vs, For))l=dg,], v (F ® G))
( hﬂ e’(gl)*lHom(Péz* GYgI R(X*,D*)/SI(/’Z”'I (L(i1+j5(F,W))) @ L(ig.ji (F,W))),

B (Q%F

/51 M FDR))[_dSI]auIJ(F(X)G))

Hom (R~ —y,—(T(®,L)(—,—)),—)

(lim ¢'(S).Hom(pg,, Grg," Rix. pey3, (05, (Lirji (F.W) @ (G, W),

Eet (Q.LDPT

V5" For))[=ds, ] (F ® G)) = FgPH(M @ N)

Proposition 112. Let f1 : X1 — S, fa: Xa2 — S two morphism with X1, X5, S € Var(C). Assume that

there exist factorizations f1 @ X1 LN Y, xS 28, fa: Xy N Yo x S 55 S with Y1,Ys € SmVar(C),
l1,1la closed embeddings and ps the projections. We have then the factorization

f12::f1><f2 X192 = X1 X5 Xo Q)Yl X}/QXS—>S

Let S = U._,S; an open affine covering and denote, for I C [1,---1], S; = MierS; and jr : St — S the
open embedding. Let i; : S; < S; closed embeddings, with S; € SmVar(C). We have then the following
commutative diagram in 7s(DMHM(S)) C DD(l)Q)fll(S/(S])) where the vertical maps are given by
proposition 107

RfHdg(F}/(fdg(OleSﬂ Fy),x15(X1/9))®04
Rfy“(T%(Oy, v 5,0 F), w15 (X2/8))
J{T(]:gDR’(g)(M(Xl/S)’M(X2/S)) J/(Ew(yl ><5'1>Y2><5'1)/5'1)

I1(X12/8S
FEPR(M(X1/S) @ M(Xa/S) = M(Xy x5 Xa/S)) — 25 pyltdopy:tids (0 o Fy)a1,(X1/S)).

I(X1/8)®I(X2/S)

FEPR(M(X1/8)) @pL ) FEPR(M(X2/S))

Proof. Immediate from definition. O

Theorem 34. Let S € Var(C) and S = UL_, S; an open affine_covering and denote, for I C [1,---1], S; =
Nic1S; and jr : S; < S the open embedding. Let i; : S; < S; closed embeddings, with S; € SmVar(C).
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Then, for M, N € DA.(S), the map in 7s(D(MHM(S)))
T(F§P", @) (M, N) : FgPH(M) @5, F§PH(N) = F§PH(M @ N)
given in definition 124 is an isomorphism.
Proof. Follows from proposition 112. o
We have the following easy proposition

Proposition 113. Let S € Var(C) and S = U'_,S; an open affine covering and denote, for I C [1,---1],
Sr = NierS; and jr : S — S the open embedding. Let i; : S; — S; closed embeddings, with S; €
SmVar(C). We have, for M, N € DA(S) and F,G € C(Var(C)*™/S) such that M = D(A',et)(F) and
N = D(AY, et)(G), the following commutative diagram in Dog ti1 p.0o(S/(S1))

T]:G}Wﬁ]_-FDR M®T ]:G}Wﬁ]_-FDR N
FSM(LDsM) @5 ISGM(LDS(Nﬁ s DMeTs 75 X %SFDR(

M) ®§, FEPE(N)

lT(ng@)(LDsM,LDsN) lT(FgDR@)(M,N)
T(FSM FEPR)(MON)

FSM(LDg(M @ N)) FEPE(M ® N)

Proof. Immediate from definition. O

6.2 The analytic filtered De Rahm realization functor

6.2.1 The analytic Gauss-Manin filtered De Rham realization functor and its transforma-
tion map with pullbacks

Consider, for S € AnSp(C), the following composition of morphism in RCat (see section 2)

é(S) : (AnSp(C)/S, Onnsp(cys) 22> (AnSP(C)*™ /S, Opnspicrom/s) o (S, Os)
with, for X/S = (X,h) € AnSp(C)/S,
® Oansp(c)/s(X/8) = Ox(X),
e (6(5)*0s(X/S) — OAnSp((C)/S(X/S)) = (h*Os = Ox).

and Oansp(c)sm/s = ps«Oansp(c)/s, that is, for U/S = (U, h) € AnSp(C)*™ /S, Opnsp(cysm/s(U/S) 1=
Oansp(c)/s(U/S) == Oy (U)

Definition 125. (i) For S € Var(C), we consider the complezes of presheaves
Qg = coker(Qo, 5, c)/5/6(8)7 05+ 25(8)05 = LOpnsncys) € Cos(AnSp(C)/S)
which is by definition given by
— for X/S a morphism Q94(X/S) = Q% 5(X)
— forg: X'/S — X/S a morphism,
Q75(9) = Qxr/x)/(579)(X) 1 Q% /(X)) = g"Qxys(X) = Q%0 5(X)
W= Qexryx)/s/8) (X)) (W) = g () : (0 € ATx (X7) = w(dg(a)))
(i) For S € AnSp(C), we consider the complexes of presheaves
Qg = 05*973 = coker(Q0, 5 cysm /s /e(5)*0s  e(9):05 = QO ngperems) € Cos (AnSp(C)*™ /)

which is by definition given by
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— for U/S a smooth morphism Q (U/S) U/S(U)
— forg:U'/S—U/S a morphzsm,

Q;s(g) = Qv sys)(U) ij/s(U) - 9" Quys(U') — Q.U’/S(U/)
w Q(U//U)/(S/S)(U’)(w) =g (w): (a e /\kTU/(U’) — w(dg(a)))

Remark 12. For S € AnSp(C), Q74 € C(AnSp(C)/S) is by definition a natural extension of Q4 €
C(AnSp(C)*™/S). However Q5 € C(AnSp(C)/S) does NOT satisfy cdh descent.

For a smooth morphism h : U — S with S,U € AnSm(C), the cohomology presheaves H"€27, U/s of the
relative De Rham complex

R(U/S) == Q5 1= coker(h"Qgs — Qu) € Che04(U)

for all n € Z, have a canonical structure of a complex of h*DZ modules given by the Gauss Manin
connexion : for S° C S an open subset, U° = h™1(5°), v € I‘(SO Ts) a vector field and & € QU/S( °)e
a closed form, the action is given by
7 - @] = [l(7)0w],

w € QF,(U°) being a representative of @ and 5 € T'(U®, Tyy) a relevement of y (h is a smooth morphism),
so that

R(U/S) := Q'U/S := coker(h*Qs — Qu) € Chr0g,h+pe (U)
with this h* D structure. Hence we get .7 g € Cos p(S) considering this structure. Since h is a
smooth morphism, QF, /g are locally free Oy modules.

The point (ii) of the definition 134 above gives the object in DA(S) which will, for S smooth, represent
the analytic Gauss-Manin De Rham realisation. It is the class of an explicit complex of presheaves on

AnSp(C)*™/8S.
Proposition 114. Let S € Var(C).

(i) For U/S = (U,h) € AnSp(C)*™ /S, we have e(U).h*Qf g = Q7

/

(i) The complex of presheaves (g, Fy) € Cogru(AnSp(C)*™ /) is 2-filtered D} invariant. Note that

however, for p > 0, the complexes of presheaves Q*ZP are NOT DY local. On the other hand,
(95, Fy) admits transferts (recall that means Tr(S), Tr(S)*Q) g = st)

U/s-

(i) If S is smooth, we get (U4, ) € Cog il Dy (Var(C)Sm/S) with the structure given by the Gauss
Manin connexion. Note that however the D structure on the cohomology groups given by Gauss
Main connexion does NOT comes from a structure of D module structure on the filtered complex of
Ogs module. The Dg structure on the cohomology groups satisfy a non trivial Griffitz transversality
(in the non projection cases), whereas the filtration on the complex is the trivial one.

Proof. Similar to the proof of proposition 97. o

We have the following canonical transformation map given by the pullback of (relative) differential
forms:

Let g : T — S a morphism with 7,5 € AnSp(C). Counsider the following commutative diagram in
RCat :

P(g)
D(ga e) : (AnSp(C)Sm/T, OAnSp((C)Sm/T) —‘7) (Ansp( )sm/s OAnSp Sm/S)

le(T) le(S)

P
(Ta OT) @ (Sa OS)
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It gives (see section 2) the canonical morphism in Cy-og i (Var(C)*™ /T)

Q/(T/S) = Q(OAnSp(a:)sm/T/Q*OAnSP(c)Sm/s)/(OT/g*Os) :
g*(Q;S’ Fy) = ;*OAnsmmsm/s/g*E(S)*Os - (Q;T’ Fy) = Q.OAnSpw)m/T/e(T)*OT

which is by definition given by the pullback on differential forms : for (V/T') = (V,h) € Var(C)*™/T,

Q
0 5(U) “ LD, 0 (V) = 0 (V/T)

Q T):g*(QY T = li
sy (V/IT) : g% (Q29)(V/T) (U SSE S Uhg)

& = Qo) (VIT) (W) = g *w.

If S and T are smooth, Q/(T/S) : g*(Q7S,Fb) — (Q7T;Fb) is a map in Cg*Osfil,g*Dgo (AnSp(C)*™/T) It
induces the canonical morphism in Cg-0g fit,g« pg (AnSp(C)*™ /T):

T(97Eusu)(ﬂ;syFb)

Eusu(Q(T/s))
) ——————

EQ/(T/S) : g*Eusu(Q7Sa Fy) Eusu(g*(Q7Sv Fy Eusu(Q7Ta Fy).

Definition 126. (i) Letg: T — S a morphism with T, S € AnSp(C). We have, for F € C(AnSp(C)*™/S),
the canonical transformation in Coyra(T) :

T9(g,9/)(F) : g*"**Loe(S). Hom® (F, Eysu (s, Fy))
= (9" Loe(S) Hom* (F, Bt ()5, Fy))) ©g-05 Or

T(e;9)(—)oT(g,Lo)(-)

Lo(e(T)«g"Hom®(F, Eysu(Q5, F)) ®g-0s Or)
T(g,hom)(F,Ect(Q;S))(@I

Lo(e(T)Hom* (g F, g" Eusu (27, Fb)) ®g-05 Or)
ev(hom,®)(—,—,—)

LOE(T)*H0m°(g*F, g*Eusu(Q7Sa Fb) ®g*e(S)*Os B(T)*OT)
’Hom'(g*F,EQ/(T/s)ébI)

Loe(1_')*;"[0’rl’1,’(g*F'7 Eusu(Q;Ta Fb) ®g*e(5)*Os E(T)*OT)
= Loe(T)Hom® (§" F, Eysu ()7, F)

where m(a ® h) := h.a is the multiplication map.

(i) Let g : T — S a morphism with T,S € AnSp(C), S smooth. Assume there is a factorization

g:T LY xS 25 S withl a closed embedding, Y € AnSm(C) and ps the projection. We have,
for F € C(AnSp(C)*™/S), the canonical transformation in Co, rape=(Y x S) :

T(g,9/)(F) : g*™e(S) Hom® (F, Busu(Q)g, Fy))
i> FTEusu(pE’mOde(S)*Hom. (Fu Eusu( ;5’7 Fb)))

T° (ps,Q).)(F) o x .
S Ty Busu (e(T % ) Hom® (05 F, Eusu (7,05, F)))

= e(T x S).Tr(Hom® (p§ F, Eusu(Qr, 5, Fb)))
LORWED, o1 x S)Hom® (TP F, Eusa(Qryss F))-
For @ € ProjPSh(AnSp(C)*™/S),
T(9,9,)(Q) : g e(S) Hom* (Q. Busu(Q)s, Fb)) — e(T x 8)Hom® (T1p5Q, Busu(Qy 5, Fy))
is a map in Coy fi,p=(Y x S).

The following easy lemma describe these transformation map on representable presheaves :
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Lemma 18. Let g : T — S a morphism with T, S € AnSp(C) and h: U — S is a smooth morphism with
U € AnSp(C). Consider a commutative diagram whose square are cartesian :

g:T—>5xy >3
h/T h”:_thT hT
g Ur uxy ™oy
with 1, ' the graph embeddings and ps, pu the projections. Then g*Z(U/S) = Z(Ur/T) and
(1) we have the following commutative diagram in Co,ra(T) (see definition 1 and definition 126(i)) :

*mod ° ° T(g,9,.)(2(U/S)) o .
g Loe(S)«Hom®(Z(U/S), Eusu(2) g, Fb)) e(T)sHom®* (Z(Ur /T), Eusu(Q)7, Fp))

l T (9.h) l

g*mOdLOh*Eusu (QZ]/S’ Fb) - — h;Eusu (QZ]T/T’ Fb)

(it) if Y, S € AnSm(C), we have the following commutative diagram in Coy i, (T) (see definition 1
and definition 126(ii)) :

T(9,2,)(2(U/9))

g*mod,f‘e(s)*%om. (Z(U/S), Eusu (9757 Fb))

|

g*mOd’Fh*Eusu (QZ]/S’ Fb)

e(T)Hom*(Z(Ur /T), Busu(Q7, b))

l_

T2 (7,®)(=)oT2 (ps 1) (—) .
h;Eusu (QUT/T’ Fb)

where j : T\T x S < T x S is the open complementary embedding,
Proof. Obvious. O

Proposition 115. Let p : S12 — S1 is a smooth morphism with Si,S12 € AnSp(C). Then if Q €
C(AnSp(C)*™/Sy) is projective,

T(p.2.)(Q) : p"™%e(S1) s Hom® (Q, Busu(s,, F)) — e(S12)s Hom® (p*Q, Busu(2s,,. Fv))
is an isomorphism.

Proof. Similar to the proof of proposition 98. O

Let S € AnSp(C) and h : U — S a morphism with U € AnSp(C). We then have the canonical map
given by the wedge product

wy/s - QZ,/S ®og QZ,/S — Q'U/S;a@)ﬁ = aApB.

Let S € Var(C) and hy : Uy — S, he : Uy — S two morphisms with Uy,Us € AnSp(C). Denote
h12 : U12 = U1 Xs UQ — S and P112 - Ul Xs U2 — Ul, p212 - U1 Xs UQ — U2 the projections. We then
have the canonical map given by the wedge product

W(u,,Us)/S - PT12QZJ1/S ®os p§129&2/s - Q.U12/5§ a® B+ pr1aa A psiof
which gives the map

Ew(Ul,UQ)/S : h/l*Eusu(Q.Ul/s) Rog hQ*Eusu( Us/S

ad(pia,p1124)(—)®ad(p312,p212+ ) (—)

(hl*p112*p>{12Eusu( .UI/S)) ®OS (h2*p212*p§12Eusu( U2/S)

T(®,E)(=)o(T(p112,E)(—)®T (p212,E)(—)) hys

)
)
— P12« (P12 Eusu (0, /5) ®n1,05 Po12Busu (2, /5)
)

zar(puzQUl/S ®os p212QU2/S
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Let S € AnSp(C). We have the canonical map in Cog fi(AnSp(C)*™/S)
ws : (g, Fry) ®os (g, Fb) = (295, Fp)
given by for h: U — S € AnSp(C)*™/S

. . w ) °
ws(U/S) : (s, Fb) @n0s (275, Fb)(U) o (s, F)(U)
It gives the map

Eusu(ws)

E’U}S : Eusu(Q75’7 Fb) ®Os Eusu(Q75’7 Fb) i> Eusu((Q;Su Fb) ®OS (975’7 Fb)) Eusu(Q;Su Fb)

If § € AnSm(C),
ws : (g, Fy) ®os (g, Fy) — (g, Fy)
is a map in Co s ps (Var(C)™ /).
Definition 127. Let S € AnSp(C). We have, for F,G € C(AnSp(C)*™/S), the canonical transformation
in Cog i (S) :
T(®, ) (F,G) : e(S)sHom(F, Eysu(Qs, Fy)) @0g ()« Hom (G, Eysu (2, Fp)

— e(S).(Hom(F, Eusu(Q757 Fp)) ®o0s Hom(G, Eusu(Q7S, F)
e(S)T(Hom,®)(—)

)

)

e(S). Hom(F & G, Eusu(Qs: Fy) @05 Busu (s, Fy)

HomPECEUS), o(S) Hom(F @ G, Busu (s, F))
If S € AnSm(C), T(®,Q)(F,G) is a map in Cog si.p~(S).

Lemma 19. Let S € AnSp(C) and hy : Uy — S, hy : Uz — S two smooth morphisms with Uy,Us €
AHSp(C) Denote h12 : U12 = U1 Xs U2 — S and P112 - U1 Xs U2 — U1, p212 U1 Xs UQ — UQ the
projections. We then have the following commutative diagram

T(R, F.G
() Hom(F, Eys (5, F3)) ®0; () Hom (G, By (s £4)) —t— e(S). Hom(F ® G, By (2, F))

l- l-

. . Buww,,vs)/s .
hl*Eusu (QUl/S’ Fb) ®Os hQ*Eusu (QUQ/S’ Fb) S h12*Ezar (QU12/57

Fy)

Proof. Follows from Yoneda lemma. O

We now define the analytic Gauss Manin De Rahm realization functor.

Let S € AnSp(C) and S = Uﬁzlsi an open cover such that there exist closed embeddings i; : S; — S;
with S; € AnSm(C) an affine space. For I C [1,---1], denote by Sy := N;erS; and jr : S; < S the open
embedding. We then have closed embeddings iy : S; — Spi= Hie[gi. Consider, for I C J, the following
commutative diagram

Dry= 51 L>g1

juT PIJT

Sy —L= 8,
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and jry : Sy < S; is the open embedding so that j; o jr; = js. Considering the factorization of the
diagram Dy by the fiber product :

Dij= Sy =51 %85 il Sy
i St x Spg i
S, Jrs S,

the square of this factorization being cartesian, we have for F' € C'(AnSp(C)*™/S) the canonical map in

C(AnSp(C)*™/S;)

(i1 XTI)x ad(p7 74,075)(—)

S(Drj)(F): Liguj5F L igujiF = (i X I) % Ly j3 F

T(prs,ir)(—) "
e

(ir X 1)up?5p7 s5lasd 7 F P1 D5l F = 0} sireji F

which factors through

. . SYD F * . ek % o %
S(Drj)(F): Lijji F %puLu*hF Ly 0% ireji F

Definition 128. (i) Let S € AnSm(C). We have the functor

Hom'(~,Eu5u(Q;S,Fb)) : C(AnSp(C)*™/S) — Cogri,pz (S), F i e(S) Hom*(LF, Eusu(Q;S,Fb)).

(ii) Let IS Var(C) and S = UﬁzlSi an open cover such that there exist closed embeddings i; : S; — S;
with S; € SmVar(C). For I C [1,---1], denote by St := MicrS; and jr : S; — S the open embedding.
We then have closed embeddings iy : S; — Sy := Il;c1S;. We have the functor

C(Var(C)*™ /)" — Cogu,p=(S/(51)), F = (e(Sr)Hom®(Ang L(irjiF), Busu(Qg . Fy))[~dg, ], uf ;(F))

where

uf ;(F)ldg,]  e(Sr)Hom® (Ang L(irji F), Busu(25,, Fy))

ad(p;TInOd’pIJ*)(f) xmod a ° * . L% °
prr«pry e(Sr)Hom® (Ang L(irji F); Busu(Q]5,, Fb))

pIJ*e(S’J)*HOm. (AH*SJ p?]L(Z]*];F), Eusu (Q;S',’ Fb))

Fy))

pr«T (P17, )(L(ir+57 F))

PIJ*e(gJ)*Hom(Angj Sq(D”)(F),Eusu(Q;’;J,

p[J*e(gJ)*HOm‘ (AngJ L(ig.j3F), EUSU(Q;§J ,Ep)).
For I C J C K, we have obviously prj«ujk(F)ours(F) = urx(F).
We will prove in corollary 7 below that u;;(F) are oo-filtered usu local equivalence.

Proposition 116. Let S € AnSp(C). Letm : Q1 — Q2 be an equivalence (D', et) local in C(AnSp(C)*™/.S)
with Q1,Q2 complexes of projective presheaves. Then,

e(S)«Hom(m, EUSU(Q;S, F)) @ e(S)«Hom® (Qa, Eusu(Q7S, Fy)) = e(S)Hom® (Q1, Eusu(Q7S, Fy))

is a quasi-isomorphism. It is thus an isomorphism in Dog i Do 00 (S) if S is smooth.
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Proof. Similar to the proof of proposition 99. o

Definition 129. (i) We define, according to proposition 116, the filtered analytic Gauss-Manin real-
ization functor defined as
]:S an DAC(S)OP — DOgj'il,Doo,oo(S)7 M —
FSan(M) := e(S). Hom® (An L(F),EUSU(Q;S,Fb))[—dS]
= e(S)«Hom®(L(F), Ans. Eveu ()5, Fy))[—ds]
where F € C(Var(C)*™/S) is such that M = D(Al,et)(F),

(i) Let S € Var(C) and S = UL_,Si an open cover such that there exist closed embeddings i; : S; < S;
with S; € SmVar(C). For I C [1,---1], denote by St = NicrS; and jr : St — S the open embedding.
We then have closed embeddings iy : Sy — Sp := Il;c;.S;. We define the filtered analytic Gauss-
Manin realization functor defined as
F§M :DA(S) = Doyi,p,0(S/
fg%(M) = ((6(51)*H0m.(An2”'1 L(irgi F), Eusu(Q75vI)7 Fy))[—
[

= ((e(S1)Hom® (L(irji F), Ang,, Eusu(203,), Fy))[-

(S1)), M
dg, ), ui; (F))
dg, ), ui,; (F))
where F € C(Var(C)*™/8S) is such that M = D(A' et)(F), see definition 128 and corollary 7.
Proposition 117. For S € Var(C), the functor F§™ is well defined.
Proof. Similar to the proof of proposition 100. o

Proposition 118. Let f : X — S a morphzsm with S, X € Var(C). Let S = UL_,S; an open cover
such that there exist closed embeddings i; : S; < S; with S; € SmVar(C). Then X = U_, X; with
X; = f~%S;). Denote, for I C [l,--- ], Sr = NierS; and X1 = NjerX;. Assume there exist a
factorization

fixLyxsiss

of f with Y € SmVar(C), I a closed embedding and ps the projection. We then have, for I C [1,---1], the
following commutative diagrams which are cartesian

~ P3 ~

f]:f|XI:X[lI—>Y><S[pL>S[ R YXSJS‘—’>SJ
\ li} lil p,”J/ J/p”

~ P3; ~ ~ P3; ~

Y xS ——=5; Y x St ——= S

Let F(X/S) = pssI'XYZ(Y x S/Y x S)[dy]. The transformations maps (N;(X/S) : Q(X1/§1)~—>
irjiF(X/S)) and (koI(y,hom)(—,—)), for I C [1,--- 1], induce an isomorphism in Do fi1 Do .00 (S/(ST))
I°M(x/89) -
FSan(MPM(X/S)) := (e(Sr)« Hom(Ang, L(ir.ji F(X/5)), Busu(Q)g,, Fb))[=dg, ], uf;(F(X/5)))

(e(S1)«Hom(An , N1(X/8),Busu(Q) 5, Fb)))

(e(S)«Hom(Ang Q(X1/51), Busu(Q5,. Fo))[—dg, ], v} ;(F(X/5)))

(e(31)+ Hom(T(Any ) (=) ™4 Busu (255 F5))

(e(Sn)Hom(Q(X " /S™), Busu(Q)5,. Fo))[=dg, ], v}, (F(X/8)))

(I(y;hom)(—,—)) "

(P35, D5, Busu (2 5, /5, Fb)[=dg, |, wrs (X/S)).
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Proof. Similar to the proof of proposition 101. o

Corollary 7. Let S € Var(C) and S = U'_,S; an open cover such that there exist closed embeddings
0 S; «— S; with S; € SmVar(C). For F € C(Var(C)*™/S) such that D(A', et)(F) € DA.(S), u?,(F)
are oo-filtered usu local equivalence.

Proof. Similar to corollary 4. O

We now define the functorialities of }'ng with respect to S which makes F,, a morphism of 2-functor.

Deﬁnition 130 Let g : T — S a morphism with T,S € SmVar(C). Consider the factorization g :

TL T xS 25 S where l is the graph embedding and ps the projection. Let M € DA.(S) and F €
C(Var(C)*™/S) such that M = D(AY, et)(F). Then, D(AL, et)(g*F) = g*M.

(i) We have then the canonical transformation in Dpe pit oo(T % S) (see definition 126) :

T(g, FM)(M) : Rg* I EFGM (M) := g* oM e(S). Hom® (Ang L(F), Eusu (s, F1)))[dr]
T(g,Q/,)(AnS L(F))

e(T x ). Hom* (Lyps Ang L(F), Eusu(Q)y x5, F1))ldr]
om n -l
Hom(T(Any")(psLF)™1,—) ]:TXSan(l*g*M)'

where the last isomorphism in the derived category comes from proposition 117.

(i1) We have then the canonical transformation in Dofi,co(T) (see definition 126) :
T9(g, FEM) (M) : Lg*UF§ 1, (M) = g*"* Loe(S) s Hom® (An§ L(F), Eusu (2], Fb)))

T(g,2,.)(Ang L(F))

e(T % 8)sHom®(g" Ang L(F), Busu(Qy 5, Fy)) =t Ff (9" M).

We give now the definition in the non smooth case Let g : T — S a morphism with 7', S € Var(C).

Assume we have a factorization g : T Lyxs 2 SwithY e SmVar(C), I a closed embedding
and ps the projection. Let S = Ul 1S be an open cover such that there exists closed embeddings

: S; < S; with S; € SmVar(C) Then, T = U\_,T; with T; := g~*(S5;) and we have closed embeddings
ii =ig;0l:T; =Y xS;, Moreover gy := pg, 1Y X S; — Sy is a lift of gr = gy, : Tt — S1. We recall
the commutative diagram :

/

Erjg= (Y x S)\T; Xy xSy, Ery= SA\S;—L =8, Ej;= (Y xS)N\Iy Ly xSy
\LPSI lg}; lpu lpu lp}‘, lp}‘,
SI\S; ————=5; SI\(SI\S)) —= 5, (Y x SO\TAT)) 2=y x §;

For I C J, denote by pry : gJ — g[ and p; = Iy X pry : Y x gJ — Y X 5’1 the projections, so
that gr o p}; = pryjo gs. Consider, for I C J C [1,...,1], resp. for each I C [1,...,1], the following
commutative diagrams in Var(C)

Dry= 51L>5'1 , Dy = TI—ZI>Y><5'1D91= 51L>§1 ,
juT PIJT j}JT p}JT HIT §1T
Sjiég‘] TJ$Y><5‘J T[—”>Y><S’]

and jry : Sy < 57 is the open embedding so that jyoj;; = j;. Let F € C'(Var(C)*™/S). The fact that the
diagrams (56) commutes says that the maps T%7(Dgy;)(j7 F) define a morphism in C(Var(C)*™ /(T/(Y x

S1))
(T9(Dyr) (7 F)) : (T, G5 L(ir 57 F), 535U (D1s)(F)) = (L(i}.37" 9" F), S(Dy 1) (9" F))
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We then have then the following lemma :

Lemma 20. (i) The morphism in C(Var(C)*™/(T/(Y x S;)))

(T (Dyr)(j7 F)) : (TF, Liiireji F.§5S(D1s) (F)) — (i7.41"g" F, S*(D})(9" F))
is an equivalence (A1, et) local.

(TP (Dgr) (1 F))s Eusu (€25

Ty x Gy Ey)) induce an oo-filtered quasi-isomorphism

(it) The maps Hom(Any g
in Cofiup~(T/(Y x Sp))

(Hom(AnZ w1 T4 (Dgr)(Ji F), Eusu (95 F))) :

Y NEEIE

)
(e(Y x TI) Hom(An (11*31 g F), Eusu(Q;ng s Fy))[=dyi1],uf; (g F))
(e(Y x Ty). ”Hom(AnyXS FTIL(QIZI*]IF) Eusu(Q)y 5, Fo))[—dy 1], Gyul ; (F)2)

)
%

(iii) The maps T(gr, L) (L(ir.jiF)) (see definition 126) induce a morphism in Co pype(T/(Y x Sr))

(T(Gr, ) (L(irej7 F))) -
(D1, Bzar (37" e(S1). Hom® (Ang, L(izsji F), Busu (g, Fy)))[=dy 1], §5" i, (F)) —
(T, (e(Y x Sp)Hom(Any, g G7L(i1:j7 F)s Busu (@4, 5, Fo))) [=dy 1], §rud ;(F)q1).

Proof. (i):Follows from theorem 14
(ii): Similar to lemma 13(ii).
(iil):Similar to lemma 13(iii).
(]

Definition 131. Let g : T — S a morphism with T,S € Var(C). Assume we have a factorization

g:T Ly xS 5 withy e SmVar(C), [ a closed embeddmg and pg the projection. Let S = ut_,S;
be an open cover such that there exists closed embeddings i; : S; — S; with S; € SmVar(C) Then,
T = UZ 1Ty with T = =g 1(51-) and we have closed embeddings i; := i; 0l : T; — Y x S;, Moreover
gr :==pg, + Y x SI — Sy s a lift of gr :== g1, : Tt — Si1. Denote for short dy; = dy + dg, . Let
M € DA.(S) and F € C(Var(C)*™/S) such that M = D(AL, et)(F). Then, D(AL et)(¢*F) = g*M. We
have, by lemma 13, the canonical transformation in Do i pe 0o(T/(Y x Si))

T( ]:GM)(M) . Rg*mod[f],l“]_-GM (M) —
(U7, Bzar (37" *%e(S1) Hom® (Ang L(izji F), Busu(Qg,, Fy)[=dy 1], 35 uf ;(F))

(T, B(T(31,8.)(Ang, L(ir«ji F))))

(Prye(Y x Sp)eHom® (Any, 5 §7L(irji F), Busu(Qy 5,0 Fb))[=dv 1], gui,; (F)1)
(I (v,hom(—,-)))
(e(Y x Sp).Hom* (T, Anj, 5 §7L(irji F), Eusu(Q)y 5, Fb))[—dy 1], Gyul ;(F)2)

(e(YXSI)*Hom°(T(An,’y V(@7 L(ir«j7; F))™ 1 E“S“(Q/YXSI Fy)))

(e(Y x Sp).Hom*(Any, g T, GiL(insji F), Busu(Qy 5, Fo)[=dy 1], giuf ;(F)2)

(B(YXSI)*Hom(AHQXgI T4 (D) (GT F)s Busu(Q)y 5 Fo m

(e(Y x Sp).Hom®* (An,, 5 L(ir.J7" 0" F), Busu(Qy 5,5 Fo)) [=dy ], uf (9" F)) = FEM(g"M).
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Proposition 119. (z) Let g : T — S a morphism with T, S € Var(C). Assume we have a factorization

g: T KN Yo x S 255 S with Vs € SmVar(C), I a closed embedding and ps the projection. Let S =
UL_,S; be an open cover such that there exists closed embeddings i; : S; < S; with S; € SmVar(C)
Then, T = Uile with T2 =g~ 1(5}-) and we have closed embeddings i, = i; 0l : T; — Y3 X SZ,
Moreover gr :=pg, : Y xSt — Sr is a lift of g1 := g1, : TI — Sy. Let f : X — S a morphism with
X € Var(C). Assume that there is a factorization f : X Ly xS 258 withY; € SmVar(C), |

a closed embedding and pg the projection. We have then the following commutative diagram whose
squares are cartesians

floXp— Vi xT———T

| ]

flr=fxI:YaxX—=Y xYyx8—=Y, xS

| L

X Vi x S S

Consider F(X/S) = psT%Z(Y1 x S/Y1 x S)[dy,] and the isomorphism in C(Var(C)*™/S)

T(f.9,F(X/S)):g"F(X/S) = g"pssTXZ(Y1 x S/Y1 x S)[dy;] =
pT,ﬁF}/(TZ(Yl X T/Yi X T)[dyl] =: F(XT/T)

which gives in DA(S) the isomorphism T(f, g, F(X/S)): gt MPM(X/S) = MBM(Xy/T). Then,
the following diagram in Do pit pee 0o (T /(Y2 X S’I)) commutes

T(g,F M) (MPM (X/8))

Rg*motTFGM (MPBM (X/S)) FEan(MPM(Xr/T))

T,an
J{IGIM(X/S) J{ICM(XT/T)
s*mod[—],I" L] . M
g [ ] (pS *FXI usu(QY XS /S ,F)[ dSI]’(T(gIXI,Y)(_)OTO(gl ps ))(pYQXSI*FXTI USU(QY XYlXS]/YZXS 7F)[ dY2I]
wry(X/9)) ! wry(Xr/T))

(ii) Let g : T — S a morphism with T,S € SmVar((C). Let f: X — 8 a morphism with X € Var(C).

Assume that there is a factorization f : X Lyxs 2 S, withY € SmVar(C), I a closed embedding
and ps the projection. Consider F(X/S) := psI'XZ(Y x S/Y x S)[dy] and the isomorphism in
C(Var(C)*™/S)

T(f,9,.F(X/S)): g"F(X/S) := g"pssTXZ(Y x S/Y x S)[dy] =
pTﬂﬂF}TZ(Y X T/Y X T)[dy] =: F(XT/T)

which gives in DA(S) the isomorphism T(f,g, F(X/S)) : g* MPM(X/S) = MBM(X1/T). Then,
the following diagram in Do fireo(T) commutes

T (g9, FM)(MPM (X/9))

Lg*med FEM (MPM(X/S)) FEM (MPM (X7 /T))
JIGM(X/S) J{IGM(XT/T)
g*mOdLO(pS*FXEusu(Q;/XS/S, Fy)[=ds] (T(gx1.7)(=)oTy (9.ps))
|Te@©rxs) |Te@©ur)

TDm,od , —
(ps,f)(—) fFDR(FXTEusu(OYXTan))'

pT

prT*FXT EUSU(Q;’XT/T’ Fb)[_dT}

L *mod fFDR FXEusu(OYXS7Fb)
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Proof. Follows immediately from definition. O
We have the following theorem:

Theorem 35. (i) Let g: T — S is a morphism with T, S € Var(C). Assume there exist a factorization

g:T Ly xS 25 withy € SmVar(C), I a closed embedding and ps the projection. Let S = ut_, S;
be an open cover such that there exists closed embeddings i; : S; < S; with S; € SmVar(C). Then,
for M € DA.(S)

T(g, FEM) (M) : Rg"mo L FGM (M) — FEM (g7 M)

S,an
is an isomorphism in Doy i1 pe oo (T/(Y X Sr)).
(ii) Let g : T — S is a morphism with T, S € SmVar(C). Then, for M € DA.(S)

T(g, FSM)(M) : Lg*™ ot FGM (M) — FEM (9" M)

S,an
is an isomorphism in Do, (T).

Proof. (i):Follows from proposition 115.
(ii): : First proof : Follows from proposition 119, proposition 124 and proposition 86.
: Second proof : In the analytic case only, we can give a direct proof of this proposition : Indeed, let
g :T — S is a morphism with 7', S € AnSp(C) and let h : U — S a smooth morphism with U € AnSp(C,
then,

Tu?(ga h) : g*mOdLD“’h*E(QEJ/SaF) - h;E( EJT/TvF)

is an equivalence usu local : consider the following commutative diagram

T(g,h)(E(Zv))

g Lo (he E(Zy) @ Og) h E(Zy,)® Or

g*modL()T(h,@)(7)l \LT(hl@)(’)
g™ Loh, E(h*Og) T™°%(g,h)(h*Os) W E(*Or)
g*mOdLOh’*E(Q.U/S) T, (g,h) h;E(Q.UT/ﬂ

then,
e the maps T'(h/,®)(—, —) and T'(h,®)(—, —) are usu local equivalence by proposition 9,
e since h: U — S is a smooth morphism, the inclusion t;/5 : h*Os — QZ]/S is a quasi-isomorphism,

e since b’ : Ur — T is a smooth morphism, the inclusion vy, 7 : h*O7 — QEJT/T is a quasi-
isomorphism,

e since U, Ur, S, T are paracompact topological spaces (in particular Hausdorf), T(g, h)(E(Zy) :
g*h«E(Zy) — hl.E(Zy, ) is a quasi-isomorphism.

This fact, together with lemma 18, proves the proposition. O

We finish this subsection by a consequence of proposition 114 and theorem 14 :
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Theorem 36. Let X € PSmVar(C) and D = UD; C X a normal crossing divisor. Consider the open
embedding j : U := X\D — X. Then, the inclusion

7 T(X, Eusu(Q% (log D), Fy)) = T(U, Eusu (2, F))
is an oo-filtered quasi-isomorphism, that is
j* FPH™(U,C) := FPH"T(X, Eysu (% (log D), F,)) = FPH"T(U, Eysu (2, Fy)) =: FPH™(U,C)

is an isomorphism for alln,p € Z (note that it is obviously injective since j* : H"T'(X, Eysu(Q% (log D))) =
H"T(U, Eusu(Qy)) is an isomorphism if we forgot filtrations). Note that however, it is NOT a filtered
quasi-isomorphism (for example if U is affine H1(U, Q) = 0 for ¢ > 0) that it is not an isomorphism
on the E1 terms of the spectral sequences in general.

Proof. Similar to the proof of theorem 31. O

Definition 132. Let S € Var(C) and S = U_,S; an open affine covering and denote, for I C [1,---1],
St = NierS; and jr : Sy — S the open embedding. Let i; : S; — S’Z closed embeddings, with S’Z S
SmVar(C). We have, for M,N € DA(S) and F,G € C(Var(C)*™/S) such that M = D(A', et)(F) and
N = D(AY, et)(@), the following transformation map in Do s p(S/(Sr))

T(F§ an ©) (M, N) :
FSan(M) @b, FSin(N) := (e(Sr).Hom(Ang L(irjiF), Eusu(Q5,, Fb)), urs (F)) ®os
(e(Sr)«Hom(An; g, L(irj; @), Busu(Q 5,5 b)), urr(G))
= ((e ( 1)« Hom(Ang L(irji F), Eusu(Q5 . b)) ®og,
e(Sr) Hom(Ang, L(irj;G), Busua(Q55, . Fb))) urs (F) ® urs(G))

(T(®,92 )5 )(L(irxji F),L(ir+ 51 G)))

(e(Sr)«Hom(An} L(ir.ji F) ® Anf L(irj; ), Eet (55, Fy)), vrs (F © G))
— (6(5})*H0m(An§I L(irji (F ® G), Eusu (Q;S ), urs(F®G)) = ]:S an(M @ N)
We have in the analytical case the following :

Proposition 120. Let S € Var(C). Then, for M, N € DA.(S)
( ]:San)( ) ]:San(M@)N)_>]:San(M)®(%s]:San( )

is an isomorphism.

Proof. Asumme first that S is smooth. Let hy : Uy — S and ho : Uy — S smooth morphisms with
Ui,Us € Var(C) and consider his : Uy xgUs — S. We then have by lemma 19 the following commutative
diagram

(S). Hom(Z(UL /S) & Z(Us/S), B g BT} — e el S A0om ({01 78), B (@35, B)) @0y e(S), Hom(Z(Ua/S), B35, Fy)

Ewwy,up)/s

h2 E(Q, x50, /5, F) hi E(wy, /s, Fb) ®0g hoe E(Qu, 5, Fp)
Ll L
h12 E(h3,05) GRS h. E(h;05) ®0s han E(h305)
T'(h12,®)(0s,Zu;,) T'(h1,8)(0s,Zu, )®T (h2,®)(0s,Zu, )
hi2+E(Zy,,) ® Og GV (hi«E(Zu,) ®0s hos E(Zu,))
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Since Uy, Us € AnSp(C) are locally contractible topological spaces, the lower row is an equivalence usu
local by Kunneth formula for topological spaces (see section 2). This proves the proposition in the case
S is smooth. Let S € Var(C) and S = U._,S; an open cover such that there exist closed embeddings
i; : S; < S; with S; € SmVar(C). By definition, for F,G € C(Var(C)*™/S) such that M = D(A', et)(F)

and N = D(A! et)(G),
( ]:S an(M N))
e(St)«Hom(Ang, L(irj; (F © G), Busu(Q)g,, Fb))), urs (F © G))

(T(®.%5,)(An}, L(irj; F),Ang L(irj; G)))

(e(Sr)xHom(Ang L(irji F), Busu(Qg . Fy)), urs(F)) @og
(e(S1)«Hom(Ang L(ir.j;G), Busu(Qg . Fy)), urs(G))

Since L(i.jiF), L(i.jiG) € DA.(S;), by the smooth case applied to S; for each I, T(®, FEDR(M
is an equivalence usu local.

6.2.2 The analytic filtered De Rham realization functor

Recall from section 2 that, for S € Var(C) we have the following commutative diagrams of sites

AnSp(C AnSp(C)?rr/S
\ J \
Ang AHSp 2 Sm/S ls/\m ADSP(C)Q"SmpT/S
Var(C J‘ Var(C)%smrr /S Ang
Var(C)?/S 1 Var(C)%smrr /S
and
AnSp(C)>"/$ = AnSp(C)/S |
Ans AnSp(C)>*rr /S J[ AnSp(C)*™ /S
Var(C)*#" /S J Var(C)/ Ans
e K
Gré?
Var C)%sm/8 Var(C)*™ /S
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and that for f: T — S a morphism with T, S € Var(C) we have the following commutative diagrams of
site,
Anp

AnSp(C)?/T" Var(C)2/T
P(f) AnSp(C)>*™ /" An[P(f) Var(C)?s™ /T
AHL
AnSp(C)?/5" = Var(C)2/S P
\ L X\
AnSp(C)*m /§en ans Var(C)?sm /S

Definition 133. (i) For S € AnSp(C), we consider the filtered complexes of presheaves
(%5, Fy) € Cogspu(AnSp(C)*/S)
given by
— for (X,2),h) = (X,Z)/S € AnSp(C)?/S,

(5 ((X,2)/9),F): = T3 "Ln-0(Qx,s: Fo)(X)
i = DposLn-ol'zEusu(Dr-0sLn-o(y /g, F6))(X)

— forg:(X1,21)/S = ((X1,Z1),h1) = (X,2)/S = ((X, Z),h) a morphism in AnSp(C)?/S,

055 (9) : Dhe0s L+ 0T 2 Eusu(Dp-05 L0 (%5, Fy) ) (X)
DryosLn:ol' z, Busu(Dnsos Layo (2%, /50 F))(X1)

is given as in definition 110(i). For S € AnSm(C), we consider the complezxes of presheaves
(%55 Fb) = ps«(Q5 , Fy) € Cog i, pz (AnSp(C)>*™/S)
(ii) For S € AnSm(C), we have the canonical map Cog fii, pg (AnSp(C)*™/S)
GrO(Qys) : Gril ps. (5, F) — (25, Fy)

given as in definition 110(ii).

Definition 134. (i) For S € SmVar(C), we consider, using definition 112(i), the filtered complezes of
presheaves

(Q;’Sra’fr, Fpr) € Cpg i (Var(C)2m#" /5)
given by,
— for (Y x S,2)/S = (Y x S,Z),p) € Var(C)%smPr /S,

(Q;:s{ja)fr((y x S,Z)/S),Fpr) = ((QEYXS)G"/SW?Fb) @O0y y syan (F\Z/)Hdg(OYX& Fp))*)((Y x 5)*")

with the structure of p*Dg module given by proposition 54.
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— forg: (Y1 xS5,21)/S = (Y1 x S5,Z1),p1) = (Y x5,2)/S = (Y x S,Z),p) a morphism in
Var(C)2smrr /S,

QL (9) = (257 (9))™ : ((y ssyan sans F) B0y o (T34 (Oy s, )™ ) (Y x §)™) —
(2, xg)em /s> Fb) @0y, x syon (L (Oyyess F)™™) (Y1 x §)*™).

For S € SmVar(C), we get the filtered complezes of presheaves

(552", Fpr) i= Ang" Q34" Fpr) i= An§(Q75.2", Fpr) ®0s Osan € Cpg ra(AnSp(C)>*™" /).
(ii) For S € SmVar(C), we have the canonical map Cog yii,pz (Var(C)*™/S)

Gr(Qsen) : Gril (950", Fy) — Ang. (2, Fy)

given by
Gr(Q/g5an )(U/S) := (Gr(Q,5)(U/S))"" @ m :
Ts(Qurxsyon jsans Fo) @00 syon (L0190, o)™ (U % 8)™) = (Qan jgan, Fb),

where Gr(Q/gan ) (U/S)(w@m® P) := P(Gr(Q,5)(U/S)(w®@m)) with P € I'(S, DY), see definition
112(ii), which gives by adjonction

Gr(Q/gan) := I(AnF"?, Ang)(Gr(Qgen)) : Js(Crgl (5", Fy)) = (s, Fy)
mn OOsfil,Dgf’ (AnSp((C)Sm/S)
Definition 135. For S € SmVar(C), we have the canonical map in Cos fil, D (Var(C)2smrr /S)
T(Q)gan) : Ang. Ms*(Q;’SPamFb) - (Q;’Srgfr, Fpr)
given by, for (Y x S, X)/S = ((Y x S,Z),p) € Var(C)>*mr" /S
T(Qy5un)(Y % 8,2)/S) == (T(Qs)((Y x 8, 2)/8))*" :

(Q;’;,Fb)(((Y x 8)*,Z%)/S) := Dp0s Lp-0T 2 Eusu(Dp- 05 Lp-0(Qy x gyan ygans Fo)) (Y x §)*") —

(Uy xg)yan jgans Fb) @0y syan (T3 (Oy x5, Fy)™)((Y x §)™™) = (Q;gJST,FDR)((Y x 8,7)/S),
see definition 113. By definition we have GrO(Q/San) = Gr(/gan) 0 T(Q?San).

Proposition 121. (i) Let S € AnSp(C).The complex of presheaves (Q;SF, Fy) € Cog ril(AnSp(C)%*m/S)
is oo-filtered Dy, invariant (see definition 16) and admits transferts (i.e. Tr(S). Tr(S)*Q?’; = Q;SF)

(i1) Let S € SmVar(C). The complex of presheaves (Q;g;fT’a",FDR) € Cpg rit(AnSp(C)>*P"/S) is
oo-filtered DY local for the usual or etale topology (see definition 16) and admits transferts.
Proof. Similar to proposition 104. o

We have the following canonical transformation map given by the pullback of (relative) differential
forms:
Let g : T — S a morphism with 7, S € AnSm(C).
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e We have the canonical morphism in Cy-og fir, g« pee (AnSp(C)**™ /T)

Ql/ﬂ(T/S (Q/S , Fy) — (Q/T , Fy)
induced by the pullback of differential forms : for ((V, Z1)/T) = ((V, Z1),h) € AnSp(C)?*™ /T,

Qs ((V, 20)/T) :

/S (( 1)/ ) ( :(UvZ)Hssmygl5(1{/I}Z1)*>(UT,ZT),h,g) /S (( )/ )
Q;’Sr(g/om) F}*l”'q(y1 xT)

Q5 (V. 21)/9) Q% ((V, 20)/T),

where ¢’ : Up := U xg T — U is the base change map and g : Q;,le/S — Q;,le/T is the quotient
map. It induces the canonical morphisms in Cy-og fit,g- Dz (AnSp(C)»*™ /T) :

T(g,Eet) (57, Fy)

* y . Bet(Q)(7/5)) .
EQr/s): 9" Eet( s, Fy) ————— Bulg"(Q)s . 1)) —— BV, )
e We have the canonical morphism in Cy« pee fir (Var(C)%smr /T
Q?(:;T/S) : 9*(97’;{?, Fpr) — (Q;g;ffr, Fpr)

induced by the pullback of differential forms : for (Y1 xT, Z1)/T) = (Y1 xT, Z1),p) € Var(C)?*m»" /T
Q) gyen (V1 X T, 20)/T) :

* o' pr Y; T.Z T) = i Q.F,pr Y T .2)/85
9 Qs (Y x T, 1) [T) (h(Y %8,2)= 8, gui (Vs X T\ 21 ) (Y X T\ Zr ) hog) /5" (¥ xT,2)/5)

T,
Q9 gan (g'0g1)

o.I',pr Y1 xT) o.',pr
QT (vi % T, 20)/5) LD, g (v, < 7, 20))T),

where ¢’ = (Iy x ¢g): Y x T — Y x S is the base change map and
q(M) : Q(Yl XT)U‘"/SG‘" ®O(y1><T)an (M) F) — Q(Yl XT)G‘"/TU‘" ®O(y1><T)an (M5 F)

is the quotient map. It induces the canonical morphisms in Cy- pg i1(Var(C)%*™" /T)

r T(9,5)(-) «Tpr Bet(2) ) 5)an) pr
EQ;&gﬂ/s) g Eet(Q/:S’an ;FDR) —> Eet( (Q/)SI::;}Z 7FDR)) - E (Q/Tazn) 7FDR)
and
QF pr ' E Qo,l",pr r T(g,E)(—) E QQ,F,pr r EZ‘IT(QI;EPTT/S)“") E Qo,l",pr F
/(T/S)en g zar( /San > R) — zar( ( /San s DR)) _— zar( /Tan > DR)-

Definition 136. Letg : T — S a morphism with T, S € SmVar(C). We have, for F € C(Var(C)*m?" /S),

the canonical transformation in Cpes (1) :

T(9,2, 7" )(F) : "' Lpe(S) . Grgl Hom® (Ang F, Ee, (52", Fpr))
= (9" Lpe(S)Hom® (F, Et(Q75.2""", Fpr))) ©g+05 Or

T(g,Gr'*)(=)oT (e,9)(~)oq

e(T). Gry, g"Hom® (Ang F, Bt (552", Fpr)) ®g0s Or
(T'(g;hom)(—,—)®I)

e(T). Gry?, Hom* (Anj. g F, Q*Eet(Q?g,FJfr’a", FpRr)) ®g-05 Or
ev(hom,®)(—,—,—)

e(T). Gri Hom® (Al g* F, g* Eey (Q;g(;fr’a", FpR)) ®gre(s)-0s €(T)*Op

Hom® (An}. g* F,(EQI;E?T/S) ®m))

e(T). Griys Hom® (Anl. g* F, Eet(Q;’;;gT’an, Fpr))
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e Let S € AnSm(C). We have the map in Cog fi,ps (Var(C)%*™?" /S):
wg : (Q;’;,Fb) ®og (Q;};Fan) - (Q;igran) :

given by for h: (U, Z) — S € Var(C)?*™/8S,

ws((U,2)/9) : (Ty" Li0s (/55 Fy) @p-0s Ty " Li-0s (5, F))(U)

(DR(=) (7" (=))owy )Y (U) N
E L Ty Lo (25, Fy)(U)

which induces the map in Cog fi,pg (Var(C)*sm/S)
[ ] [} = Y Y Eet w °
Fuwg : Eet(Q/éFan) ®0g Eet(Q/};F,Fb) — Eet((Q/};F,Fb) ®0g (Q/’;,Fb)) ﬂ Eet(Q/’SF,Fb).
e Let S € SmVar(C). We have the map in Cpee pi1(Var(C)>*"?" /S):
wg (Q;’;JST,FDR) ®0s (Q/San ,Fpr) — (Q7g;fT,FDR)
given by for p: (Y x S,Z) — S € Var(C)»s™mr" /S,
ws((Y x S,2)/8) :
(((Q;/XS/S ®O0y x5 F27Hdg)(OY><Sa Fy)) @pos (Q;/XS/S ROy« s Fé’Hdg(OYXS, E))(Y x5)

(DR(=)(vy 149 (=))owy x 5/5)7 (Y X S)

Q575 @0y s Ty 19Oy s, Fy))(Y x S)
which induces the map in Cpg pi(Var(C)»5mP"/S)
Fuwsg : Eet(Q/San , F'pRr) ®054 Eet(Q;’SFJfT,FDR) —
E. ((Q/San , FpR) ®054 (Q/’Sa’fr, Fpr))

by the functoriality of the Godement resolution (see section 2).

Definition 137. Let S € SmVar(C). We have, for F,G € C(Var(C)%*™P"/S), the canonical transfor-
mation in Cpe r;1(S*™) :

Eeyt (ws)

Eet(Q;’SF;fT, Fpr)

T(®,Q)(F.C) :

e(S). Grg Hom(Anj F, Eet(Q;lgF’pr’an FpRr)) @05 €(S)s Grit Hom(Ang G, Ees (Q ;SF PO Fpg

= e(9). Gr > (Hom(Anj F, Eet(Q;g’pr’an,FDR)) ®os Hom(Ang G, Ee (2 7; PO EbR

T(Hom,®)(—)

————5e(9). Gr . Hom(Ang F @ Ang G, Ee (Q 7;’pT,FDR) ®0s Eet(Q " Fpgr

= €(9). Grg’ Hom(Ang(F @ G), B ()5 7", For) ®0s Eet ()5 ™", For

)
)
)
)

Hom(FRG,Ang™°? Ewsg)

e(9). Grit Hom(F @ G, Eet(Q;gmr,an, For)).

We now define the filtered analytic De Rahm realization functor.
Definition 138. (i) Let S € SmVar(C). We have, using definition 134 and definition 36, the functor
C’(Var(((?)sm/S) — CDoofil(San), F—

hﬂ 6/(8)*7‘[0721. (Ang PSx GI‘}S«Q* R(X*)D*)/S(ng(F)), E. (Q;g‘,pr,an7 FDR))[_dS]

T(X*,D*)/S(LF)
= ¢/(S).Hom® (ps. Gr§™ Rix+ p+)/s(p5L(F)), Ang. Eer(Q)5 """, Fpr))[—ds]

denoting for short €'(S) = e(S) o Grg?
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(ii) Let S € Var(C) and S = U._,S; an open cover such that there exist closed embeddings i; : S; < S;
with S; € SmVar(C). For I C [1,---1], denote by S; := Nic1S; and j; : S; < S the open
embedding. We then have closed embeddings iy : S; — Sp = HieIS'i. Consider, for I C J, the
following commutative diagram

Dry= 51 L>5'1

jI.IT pIJT

Sy =8,
and jry: Sy < St is the open embedding so that j; o jr; = jj. We have, using definition 134 and
definition 36, the functor
C(Var(C)™™/S) = Cpe pu(S*"/(S§™)), F v
(Th%) e'(gj)*Hom'(An%I P§,x Grgj* R x« p+ys, (05, Llir1 F)), Eet(Q;gpr’anv Fpr))[=dg,],ui;(F))

= (lim €(Sp).Hom* (pg,, GrE* Rix. peys, (05, L(iredi ) Ang, . Ea(Q537™", Fog))[=ds, ), uf, (F))
(0

where we have denoted for short e’(gl) = 6(5’1) o Grg, the limits run over the Corti-Hanamura
resolutions

T(x*,D*)/8; (L(irji F)) - R(X*,D*)/S, (P*SIL(iI*j?F)) — Dg, (PEIL(iI*j}kF))
and

ul (F)ldg, )+ €(Si). Hom® (An, ps,. G2 Ry poy s, (o, Lin. i )y B (@557 F)
ad(p7 5% p1s)(—)

—

P11 (51) Hom* (An, pg,., Gri2* R pe s, (0%, Llir.i F). Eer (27", Fpp))

pro«T(pr5,Q7P") (=)

Q . * * % * s ex o.I' pr.an
pry«€ (Sy)sHom®(Ang ps ., Gre pisRix. p-)5, (05, LliriF)), Eer(Q55 """, Fpr))

Hom(Grg" T(p”,RCH)(LiI*j}‘F)’l,Eet(ﬂ;gfr’a",FDR))

pro«€'(Ss)Hom® (Ang, pg,. Grg" Rix. 1.0 x 310/, (05, PrrLir i F)), Eet(Q;’S-F;pT7 Fpr))

12x pCH -k e.I'pr,an
’Hom(GrsJ RS‘J (TY(Drg)(J7 F)),Eet(Q/SJ ,FpR))

Q . * 12 * . - o.I' pr.an
praxe(Sg)Hom® (Ang, pg,, Grg" Rixys, ;.0vx5p /5, (05, LT F), Bt (U5 77", FpR)).

For I C J C K, we have obviously pry«uji(F)ourj(F) = urx (F). We will prove in corollary 8
below that uyj(F) are co-filtered Zariski local equivalence.
We have the following key proposition :
Proposition 122. Let S € SmVar(C).
(i) Let m : Q1 — Q2 be an etale local equivalence local with Q1,Q2 € C(ProjPSh(Var(C)*™/S))

complezes of representable presheaves. Then,

¢/(S). Hom® (An ps. Gri¥* RO (p5(m)), B (557", Fpp))[~ds) :

lim  €'(S)Hom®(Ang ps. Grg® Rix-,p+)/s(PsQ1); Eu(Q55 ™", Fpr))[—ds]
r(x*,p*)/s(Q1)

— lim  €'(S).Hom® (An ps. Grg™ Rix- p)/s(p5Q2)s Eet(Q5 ™", For))|—ds]
r(x*,p*)/s(Q2)
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is an oco-filtered quasi-isomorphism. It is thus an isomorphism in Dpfilyoo(S).

(ii) Let m : Q1 — Q2 be an equivalence (Al,et) local with Q1,Q2 € C(ProjPSh(Var(C)*™/S)) com-

plexes of representable presheaves. Then,
€/ (8). Hom® (An ps. Gri2* RO (pi(m), B (57", Fpp))[—ds] :

lim  €'(S)Hom®(Ang ps. Grg® Rix-,p+)/s(PsQ1); Eo (557", Fpr))[—ds]
r(x*,p*)/s(Q1)

— lim  €'(S).Hom® (An ps. Grg’™ Rix- p)/s(p5Q2)s Bet(Q5 ™", For))|—ds]
r(x*,p*)/s(Q2)
is an oco-filtered quasi-isomorphism. It is thus an isomorphism in Dp i1 o0 (S).
Proof. Similar to the proof of proposition 105. O

Definition 139. (i) Let S € SmVar(C). We define using definition 138(i) and proposition 122(ii) the
filtered algebraic De Rahm realization functor defined as

F& o DAL(S) = Dpes pit,00 (S*), M — FEPE(M) =

lim ¢/(S).Hom® (An§ ps. Grg™* Rix+ p+)/s(p5L(F)), Eet (557", Fpg))[—ds]
r(x*,p*)/s(L(F))

:—> 6/(8)*7‘[0721. (Ang PSx GI‘}S«Q* R(X*,D*)/S(ng(F))v E. (Q;g’pr’an, FDR))[_dS]

where F € C(Var(C)*™/S) is such that M = D(Al,et)(F).

For the Corti-Hanamura weight structure W on DA (S)™, we define using definition 138(i) and
proposition 122(ii)

(1)

Faan' i DAZ(S) = Dpec (1 0) it (8U)s M = FEPR(M, W) =

ling ¢/(8)sHom® (An§ ps. Grg®™ Rix- p+)/s(psL(F, W), Ber(Q55 7", Fpr))[—ds]
T, px) /s (LFW))

=5 €/(9) Hom® (Ang psi Grg™ Rx+ p+y/s(psL(F,W)), Eet (Q;’SF’W’G", Fpr))[—ds]

where (F,W) € Cpy(Var(C)*™/S) is such that M = D(A',et)((F,W)) using corollary 1. Note
that the filtration induced by W is a filtration by sub Ds module, which is a stronger property then
Griffitz transversality. Of course, the filtration induced by F satisfy only Griffitz transversality in
general.

(ii) Let S € Var(C) and S = U_,S; an open cover such that there exist closed embeddings i; : S; < S;
with S; € SmVar(C). For I C [1,---1], denote by S = NierSi and j; : Sp < S the open embedding.
We then have closed embeddings iy : S; — Sy = Hielgi. We define, using definition 138(ii),
proposition 122(ii) and corollary 8, the filtered algebraic De Rahm realization functor defined as

FEPE . DA(S) = Dpe fit,00(S™™/(S§™)), M — FEPE(M) =

n

(lig ¢'(Sy). Hom®(Ang, pg,, Grgl Rix. pe s, (05, LrgiF)), Bet (537" Fpr))[=dg, ], uf , (F))
r—(—)

where F € C(Var(C)*™/S) is such that M = D(A',et)(F), see definition 116 .

(i)’ For the Corti-Hanamura weight structure W on DA_(S), using definition 116(ii), proposition
105(ii) and corollary 5,

FEDRDAZ(8) = D 1 gy oo (S /(53)), M 5 FEPR((M, W) :=

(tig €(S1).Hom® (An, pg,. Gri2" i po s, (%, LGi1odi (B. W), But(QE7", Fo)[—dg, )., (F. 7))

r—(-)
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where (F,W) € Cy;y(Var(C)*™/8S) is such that (M, W) = D(A', et)(F,W) using corollary 1. Note
that the filtration induced by W s a filtration by sub D5 -modules, which is a stronger property then
Griffitz transversality. Of course, the filtration induced by F satisfy only Griffitz transversality in
general.

Proposition 123. For S € Var(C) and S = UL_,Si an open cover such that there exist closed embeddings
i; : S; = S; with S; € SmVar(C), the functor FEPR js well defined.

S,an

Proof. Similar to the proof of proposition 106. O

Proposition 124. Let f : X — S a morphism with S, X € Var(C). Assume there exist a factorization
FixLyxsrss

of f with Y € SmVar(C), | a closed embedding and ps the projection. Let Y € PSmVar(C) a compact-
ification of Y with Y\Y = D a normal crossing divisor, denote k : D «— Y the closed embedding and
n:Y < Y the open embedding. Denote X C Y x S the closure of X C Y x S. We have then the
following commutative diagram in Var(C)

Let S = UézlSi an open cover such that there exist closed embeddings i; : S; — S‘l with S’Z € SmVar(C).
Then X = UL_, X; with X; := f~1(S;). Denote, for I C [1,---1], St = NiesS; and X1 = N1 X;. Denote
Xr:=XnN(Y x8;)CY x Sy the closure of X; C Y x Si, and Z; := ZN(Y xS;)=X/\X;CY x S;.
We have then for I C [1,---1], the following commutative diagram in Var(C)

X]—ZI>-Y><S']

l l(v%pi
~ ﬁgl ~

X]—>-I YXS]—>-S]

V%

Zr=X/\X; ——= D x S;

279



Let F(X/S) := pssT%Z(X x S/X x S). We have then the following isomorphism in Dp ti.«(S/(S1))

I(X/S) : Féan (M(X/8)) —
( lig ¢'(S1)«Hom(An% pg. Gre* Ryy, 5,1+ pey/5, (05, Llirji F(X/S))),
r— ()

(Hom(An%

12% CH o.I',pr,an
5, Gr2 RS (N1(X/8)).Ber (557777 F1))

Eet (557" Fpr))|~dg, ], uf ;(F(X/S)))

/81
( hl(fn) e’(S,)*Hom(An*SI P3r« Gflgi* R x3,)%,E%)/3, (p*ng(XI/SI))a

T_—

(Hom(An% ps,  T5((X1,21)/51),k)[~dg, )"

Eet(Q;’gFI’pT’anv Fpr))[—=dg,|, v ;(F(X/S)))
(ﬁSI*EUSU((Q;?XS‘I/S‘I’Fb) ®OYXSI (n x [)fldgl"}/(’IHdg(O(YXSI)amFb))[—2dy — dgl], w]J(X/S))

= 1sRATTR YOy g,yen Fo) 215 (X/9).
Proof. Similar to the proof of proposition 107. o

Corollary 8. Let S € Var(C) and S = UL_,S; an open cover such that there exist closed embeddings
i; : S; = S; with S; € SmVar(C). For F € C(Var(C)*™/S) such that D(A',et)(F) € DA.(S), ui,(F)

are oco-filtered usu local equivalence.
Proof. Similar to the proof of corollary 5. o

Corollary 9. Let S € Var(C) and S = UL_, ;i an open cover such that there exist closed embeddings
i; + S; = S; with S; € SmVar(C). Then, for F € C(Var(C)*™/S) such that M = D(A', et)(F) € DA.(S),

H'FERH M, W) = ((¢/(S1).Hom® (An%, pg,, Gre Ry 5,y me,5, (05, Lirji (F, W),
Eet(Q55"" Fpr))[=dg, ), uf,(F.W)) € ms(MHM(5))
for alli € Z.
Proof. Similar to the proof of corollary 6. o

Proposition 125. For S € Var(C) not smooth, the functor (see corollary 6)

g ' FEPR DAL (S) — mg(D(MHM(S™™))

,an

does not depend on the choice of the open cover S = U;S; and the closed embeddings i; : S; — S‘l with

S; € SmVar(C).
Proof. Similar to the proof of proposition 108. o

We have the canonical transformation map between the filtered analytic De Rham realization functor
and the analytic Gauss-Manin realization functor :

Definition 140. Let S € Var(C) and S = UL_,Si an open cover such that there exist closed em-
beddings i; : S; — S; with S; € SmVar(C). Let M € DA.(S) and F € C(Var(C)*™/S) such that
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M = D(A',et)(F). We have, using definition 134(ii), the canonical map in Dog i1 pe 00 (S/(S$™))

T(FSan sFﬁ’nR)(M)
F))

FSan(LDgM) := (e(Sr).Hom* (Anf L(ir.jiDsLF), E et(Q95,, Fb)), ui (
N (e(gf)*Hom°(AngI LDg, L(i1ji F), Eet(Q5,, Fb)), ufy 4F))

Hom(—,Gr(2gan Nt

Js(e(Sr)«Hom® (Ang LDg L(ir.jiF),Grg Eer (€5 SF PO FoR)), ubl (F))
L(Grgr,Cr ) (=)

Js(€'(S1). Hom® (Ang, Grl2* LDg, L(ir.ji F), Eut(2 47" For). uf (F))

* Lk ,T,pr,
(Hom®(Ang ps,. Gr" vl pey s, (EGireii F)) Ber(205 77" Fpg)))

Js( lim €' (Sp). Hom(Ang, pg,, Grg" Rix. peysg, (05, L(ieji F)), Eer (Q;Sr’p“m Fpr))[=dg,], ui, (F))

We now define the functorialities of Fg IPR with respect to S which makes F rpp @ morphism of 2
functor.

Definition 141. Let S € Var(C). Let Z C S a closed subset. Let S = Ul_,S; an open cover such that
there exist closed embeddings i; : S; < S; with S; € SmVar(C). Denote Z; := Z N S;. We then have
closed embeddings Z; — S; — Sj.

(i) For F' € C(Var(C)*™/S), we will consider the following canonical map in ws(D(MHM(S*"))) C
Dp1,0y7a(S"/(ST™))

T(Fv ,Hdg QF pr, an)(F W)

/S
F\Z/dengl( h%)e’(gl)*’]-[om (Ang L P8y Gr R(X* D )/Sl(ps,L(”*jI(Fv w))),

Ee (Q;;)pr o FDR))[_dSI]v U?J(Fv w))

Hom® (Ang pg, . GrZ" rOH (v 21 (L(ireg} (F,W))), Ber (5 577" Fpr))

7 g ( h_n} 6/(51)*7{0m'(Ang, P3« Gr}@i* R(X*,*,D*,*)/g, (PEIF%,L(Z'I*J? (F,W))),

Eet(Q;’gFI’pr’a”,FDR))[—dg,] ufy (F,W))

=15 ( lim e/(gl)*Hom'(AngI P§,« Grg* R x . pevy3, (p%}F%IL(iJ*j}‘(F, w))),
Ee(Q053"" Fpr))[~dg, ], ufy (F. W),
with u?’JZ(F) given as in definition 119(1).

(ii)) For F € C(Var(C)*™/S), we have also the following canonical map in n7g(D(MHM(S™))) C
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D10y (S /(S§™))

TG, Q) (F,W) :
i3 (ling ¢'(Sr).Hom* (Ang, pg,, Grg)" R pey3, (05, L2, Eir.jiDs(F,W))),

Eet(Q53 7", For))[~dg, ), ufy " (F,W)

= rh95Y lim ¢'(S7)Hom®(Ang pg,. Grg Rix-. pe-)5, (05, LT 2, EirjiDs(F,W))),
r— (%)
Ea(Q5 ™" Fpr))[=ds, ), ufy (F,W))
Hom® (Ang pg,, Grg" roM(v¥1(2)), Ber (@55 " FoR))
FquL

S ( ]%) 6’(5'1)*H0m. (ADZ',I pSI* Grlgi* R(X*,D*)/S'] (p*SIL(l]*];DS(F, W))),
Eet (Q;g;prv FDR))[_dSI]v U?J(Fv W))
with u?f(F) given as in definition 119(ii).

Definition 142. Let g : T — S a morphism with T,S € Var(C). Assume we have a factoriza-
tion g : T LYyxs 2 SwithY € SmVar(C), | a closed embedding and ps the projection. Let
S =UL_,S; be an open cover such that there exists closed embeddings i; : S; — S; with S; € SmVar(C)
Then, T = _1T with T; 1(S’i) and we have closed embeddings i, = i; 0l : T; — Y x S,
Moreover gr = pg, @ Y X S’I —> St is a lift of gr == g, + T1 — S’I. Let M € DA.(S) and
(F,W) € Csy(Var(C)*™/S) such that (M,W) = D(AL, et)(F,W). Then, D(AkL, et)(g*F) = g*M and
there exist (F',W) € Cyy(Var(C)*™/S) and an equivalence (Al et) local e : g*(F,W) — (F',W) such
that D(AL, et)(F',W) = (¢*M,W). We have, using definition 136 and definition 141(i), the canonical
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map in wp(D(MHM(T"))) C Dp,0)fit,e0 T/ (Y*" x SF))

T(g, Fa ) (M) : gifgvs  Fan (M) =

S,an

JHdg — *MO0 : O . * *
(F:VFH Yt (7m0 h_“} e'(S1)«Hom (Ang pg,, Gflgi R(X*,D*)/SI(PSI(L(ZI*JI(R W),
(=)

(T(éz,flfj”’“")(An*gl Grg’" L(ir.j; (F,W))))

E. (Q;SF’W ™ Fpr)))[=dy1], 35" u] ,(F,W))
Fv qu ( lg ( ) HO’ITL(AIIYXE prSI*G ;/2;5 g;R(X*,D*)/S'I(p*SIL(iI*j;(Fa W))),

o.I' pr.an ~ sk Hom(T(g 1RCH)(7)—177)
Eet(Q/;::gI 7FDR))agJu§J(F7 W)) =

. * 12% * ~ % - -k
Y ( hﬂ 6/(—)*H0m(AnYX§I Py xSp* Grngl R(y><x*ﬁy><[)*)/y><§y (pnglgIL(U*jI (FLW))),

E(Q5y 75", For)), gyuf ;(F.W))

T (hﬂ ( ) Hom( y><51 prSI*G Y><S R(X JE'* )/YXSI(pYXS gIL(iI*j;(Fvw)))v

T(Ty 119,00 27 (FW)

Eet(ﬂ;ifg’f", Fpr))ldy1], gyui ;(F,W))

it (ling €' (=) Hom(Any, 5, Py 5, Oyrg, Bixts mo) v s, (Py 5, D 9L (i (F, W),

Eet(ﬂ;ifg"",FDR))[dw] 9y ug, (F,W))

(’Hom(An;XSI Py x5y« Gr ;2;51 RYXSI (T (Dgr) (7 (FW))), Eet(Q;;xp; “"\For))ldv1])

v (lim e (=)Hom(Ang | 5 py s, Gry’ls, Rixre oy v w0y o5, LU0 9" (F, W),

. -
Hom(REH ¢ (Lif. i7" (€)),)

Eey (Q;gffgf”, Fpr))ldy],u]; (9" (F,W)))

LT ( hﬂ 6/(—)*H0m(AH;X§I pYXS'I*G Y><S R(X JE* )/YXSI(pYXS L(Z/I*]I*(F/aw)))v

Eet (Q5, Fpr " Fpr))ldy 1], ul ,(F',W)) = Fr.0%(g*M)

/Y %

Proposition 126 Let g : T — S a morphism with T,S € Var(C). Assume we have a factorization
g:T 4 Yo x S 255 S with Ys € SmVar(C), I a closed embeddmg and ps the projection. Let S = ut_, S;
be an open cover such that there exists closed embeddings i; : S; — S; with S; € SmVar(C) Then,
T = Uélei wit@ T; = 971(51_) and we have closed embeddings i, :==1d;0l:T; — Yo x SZ, Moreover
gr :==pg, Y xSy — Sr is a lift of gr := gy, : Tr — Sr. Let f: X — S a morphism with X € Var(C)

such that there exists a factorization f : X 4 Vi x S 25 S, with Vi € SmVar(C), I a closed embedding

and ps the projection. We have then the following commutative diagram whose squares are cartesians

Xr — VI XT ——T

I

YIXxX—Y xYsxS——=Yox S

///

fiX——=YVix8
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Take aismooth compactification Y, € PSmVar(C) of Y1, denote X; c Y x g[ the closure of Xy, and
Zp = X\X1. Consider F(X/S) = pssT%Z(Y1 x S/Y1 x S) and the isomorphism in C(Var(C)*™/T)

T(f,9.F(X/S)): g"F(X/S) := g"ps T X Z(Y1 x S/Y1 x §) =
praT%, Z(Y1 x T/Yy x T) =: F(Xp/T).

which gives in DA(T) the isomorphism T(f,g,F(X/S)) : g*M(X/S) = M(Xrp/T). Then the following
diagram in Tr(D(MHM(T))) C Dpq,o)fil,o(T/(Y2 x Sr)), where the horizontal maps are given by
proposition 124, commutes

g gHag 1(X/S) L Hd JHd
giig s FERR(M(X/S)) ————= gifie R (T (O, 3,00 o). 215 (X/5))

lﬂpw““g)(—)

'T(g, FFPRY(MBM (X/5)) Rf, qugh*;g;od(r\/ qu(O(leé'I)a"’ Fb), Z‘IJ(X/S))

l:

I(Xr/T) ! ,
1]:%:57?( (X7/T)) - Rf Hdg(rgcgdg(O(Yg xleéz)‘””Fb)’zIJ(XT/T))'
Proof. Follows immediately from definition. O

Theorem 37. Let g : T — S a morphism, with S, T € Var(C). Assume we have a factorization
g:T Ly xS2 S withy e SmVar(C), I a closed embedding and pg the projection. Let M € DA.(S).
Then map in WT(D(MHM(T“")))

T(g, Fa ) (M) : gifag  F&.an (M) = F.on (" M)

S,an
gien in definition 142 is an isomorphism.
Proof. Follows from proposition 126 and proposition 124. o

Definition 143. o Let f X — S a morphism with X, S € Var(C). Assume there exist a factoriza-

tion f: X Ly xS Swithy ¢ SmVar(C), [ a closed embedding and ps the projection. We
have, for M € DA.(X), the following transformation map in wg(D(MHM(S*™)))

ad(fime®, RFF9)(—)
T (f, FEP™) (M ) FEPR(Rf M) —

T(f Fan ") (REM

R frmed FEDR(RfLM)

FEPE@d(f*,Rf)(M))

REIFR N (f REM) R FR 0 (M)

Clearly, for p :' Y x S — S a projection with Y € PSmVar(C), we have, for M € DA.(Y x S),
T.(p, FFPR)(M) = Ti(p, F7PH)(M)[2dy ]

o Let S € Var(C). Let Y € SmVar(C) and p : Y x S — S the projection. We have then, for
M € DA(Y x S) the following transformation map in wg(D(MHM (S™)))

a FEDPE  (ad(Lpsp®)(M) 14 .
Ty(p, FEPRY(M) « py W FERE, (M) === Rp,"F{ R, (0" Lpy(M))

T(PfFDR)(LPu(Mvw))

«mod p*mod)(_)

Rpqup*mod ]]:FDR(LpﬁM) T(p ) p!Hdgp*mod[—]

S,an

ad(Rp{149 p*medl=ly(FEDE([p, M)
FEDR(ppapy 2 0T VTS B, pEDR (1 01

S,an
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o Let f: X — S a morphism with X,S € Var(C). Assume there exist a factorization f : X 4

Y xS 25 S withY e SmVar(C), I a closed embedding and pg the projection. We have then, using
the second point, for M € DA(X) the following transformation map in wg(D(MHM (S)))

Ti(f, Far?F) (M) : Rpy" " FPR(M) := Rp)" ™ FE 28, (1 M)

X S,an

FEDR(Lpy1 M) = FEPR(RAIM)

Ti(p.Fay ™) (1 M)
S,an S,an

o Let f: X — S a morphism with X,S € Var(C). Assume there exist a factorization f : X 4

Y xS 25 S withY e SmVar(C), I a closed embedding and pg the projection. We have, using the
third point, for M € DA(S), the following transformation map in in wx(D(MHM (X))

ad(Rf f e N FR LR (M)

T (f, Fa ")(M) - FXOH(FH (M, W)

Ti(ps, FLPENFEPE(F M)

Filnod R 149 FEDE(F' M)
o FEOR@d(RALLHYM)
Fined FEPR(Rf (M, W) = fined FEDE (M)

Proposition 127. Let S € Var(C). Let Y € SmVar(C) and p : Y x S — S the projection. Let
S = UlizlSi an open cover such that there exist closed embeddings i : S; — S’Z with S’Z € SmVar(C). For
IC1,---1], we denote by St = NicrSi, j¢ : St = S and j; :' Y x St — Y x S the open embeddings.
We then have closed embeddings i : Y x S — Y X gl. and we denote by Pg, Y x S’I — S’I the
projections. Let f': X' =Y x S a morphism, with X' € Var(C) such that there exists a factorization

X’ Ly xy xS Y xS withY e SmVar(C), I' a closed embedding and p’ the projection.
Denoting X} == f ~Y(Y x Sr), we have closed embeddings iy : X} — Y’ x Y x S Consider

F(X')Y x S) i=pyxssTZ(Y' ' xY x S/Y' xY x S) € C(Var(C)*™/Y x S)

and F(X'/8) := pyF(X'/Y xS) € C(Var(C)*™/S), so that LpgM(X'/Y xS)[—2dy]| =: M(X'/S). Then,
the following diagram in ms(D(MHM(S®™"))) C Dp(1,0)fit,00 (S /(Y™ x S9mY), where the vertical maps
are given by proposition 124, commutes

Ti(p, FLP T (M(X' /Y % S))
RpHVFERE (M(X']Y % S)) FEDR(M(X'/S))

S,an

RpHdg!(I(X//YxS))T TI(X’/S)

RpHdg!Rf!/Hdg(F})/(g{dg(o(y’><Y><5'1)‘“"Fb)’ :L'IJ(X’/Y X S)) Rf!Hdg(FX)}I{dg(O(Y’XYXS'I)G"7Fb)’ le(X//S))

Proof. Immediate from definition. O

Theorem 38. (i) Let f: X — S a morphism with X, S € Var(C). Assume there exist a factorization

f:X Ly xS S withy ¢ SmVar(C), I a closed embedding and ps the projection. Then, for
M € DA(X),
T(f, L) (M)« RETOFLOHM) = FEQHRAM)

S,an
is an isomorphism in wg(D(MHM(S*™))

(ii) Let f : X — S a morphism with X,S € Var(C), S quasi-projective. Assume there exist a factor-

ization f: X Ly x8 25 S withy e SmVar(C), I a closed embedding and ps the projection. We
have, for M € DA (X),
Tof, Fa )YM) : FE @ (RfM) = REFOFLIHM)

S,an

is an isomorphism in wg(D(MHM (S™)).
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(iii) Let f: X —> Sa morphism with X, S € Var(C), S quasi-projective. Assume there exist a factoriza-
tion f: X Ly xS Swithy e SmVar(C), I a closed embedding and pg the projection. Then,
for M € DA.(S)

T (f, Fa ) M)« FXOH(F M) = fifig & on (M)

S,an
is an isomorphism in wx (D(MHM (X™)).
Proof. Similar to the proof of theorem 33. O

Proposition 128. Let g : T — S a morphism with T,S € Var(C). Assume we have a factorization
g:T Ly xS P Swithy e SmVar(C), I a closed embedding and ps the projection. Let S =
Ul_,S; be an open cover such that there exists closed embeddings i; : S; — S; with S; € SmVar(C)
Then, T = Ulle with T; 1(S’i) and we have closed embeddings i, = i; 01 : T; < Y x SZ,
Moreover gr = pg, + Y X 5'1 —> S;is a lift of gr == gy, : Tr — Sr. Let M € DA.(S) and F €
C(Var(C)*™/S) such that M = D(AL,et)(F). Then, D(AL et)(g*F) = g*M. Then the following
diagram in Do fi peo oo(T* /(YO x S¢™)) commutes

xmod powmod(-] I‘)(]_-FDR

Rg*medl- ]FT(]_-GM ]_-FI;JL% (M DF
Rg*mod -1, F]:GM (LDSM) S g *mod -1, F]:F%g ( g *mo&]_‘g‘aDnR( )

J,T(” M )(LDs M) \ lT (9. FEPR) (1)

Ffan(g"LDsM = LDrg' M) e Fian' (g M)
Proof. Similar to the proof of proposition 111. O

Definition 144. Let S € Var(C) and S = U._,S; an open affine covering and denote, for I C
[1,---1], St = NierSi and j;r : Sy — S the open embedding. Let i; : S; — S; closed embeddings,
with S; € SmVar(C). We have, for M, N € DA(S) and (F,W),(G,W) € Cy(Var(C)*"/S)) such
that (M,W) = D(A',et)(F,W) and (N,W) = D(A',et)(G,W), the following transformation map in
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ms(D(MHM(5))) C DD(l,o)fiz(San/(g}m))

T(FEDR, @) (M, N) : FERR(M) @g! FEDR(V)

S,an an
- (T%) 6/(31)*7{0m'(AH§, P51 Org Rixe poys3, (pg, L(ir+g1 (F,W))),
Ee(Q557"" For))[~dg, ) urs (F, W) @]

(T%) 6/(31)*7'[0m'(An*g, P3« Gré—?]* Ry py5,(P5, LlinjT (G, W))),

Eg (Q;g’pr’an, Fpr))[—dg,],urs (G, W))

= (L (71%,(7) ¢ (Sr)Hom® (Ang, pg,, Gr" Rix. p-y s, (05, Llirji (F,W))),
Eet(Q55 """, FpR)) @0y,

¢/ (Sr)Hom® (Ang, pg,. Gr¥ Rix. p-s, (05, Lirji (F,W))),

(T(2,9727*")(=-))

Eet(Q;gI’pr’an, Fpr))[—dg, ], urs(F) @ ur;(G))
( lim ¢'(S1)«Hom(Ang pg,. Gr’(Rix. p-y5, (0%, Llirji(F,W))) ®
r—(=)r-(-)

R (x+ p+y5,(Pg, Llirjr (F,W)))), Eet(Q;’gFI’pT’ana Fpr))[—dg,],vi,(F © G))

’Hom(T(@,Rgf)(—,—)’l,—)

( h% ¢ (1)« Hom(Ang pg,, Gre Rix. puyss, (05, (L(irei (F,W))) @ L{irej; (F,W))),

Eet(Q;’gFI’pr’a", Fpr))[—dg,|,urs;(F @ GQ))

Hom (R, —y/—(T(®,L)(—,—)),—)

(g ¢/(S1) Hom(An}, pg,. Gr2* Ry pey s, (03, (L(irei (F.W) @ (G,W)))),

Eet(Q;g;l?r,a"7 FDR))[_dSI]7 ’LL[J(F X G)) = fg:gnR(M ® N)

Proposition 129. Let f1: X1 — S, fo: Xo = S two morphism with X1, X5, S € Var(C). Assume that

there exist factorizations f1 @ X1 LN Y: xS 08, fa: Xo LN Yo x S 255 S with Y1,Ys € SmVar(C),
l1,1ly closed embeddings and ps the projections. We have then the factorization

f12!:f1Xf22X122=X1X5X2M>Y1XY'2XSp—S>S

Let S = UézlSi an open affine covering and denote, for I C [1,---1], St = MierS; and jr : St — S the
open embedding. Let i; : S; < S; closed embeddings, with S; € SmVar(C). We have then the following
commutative diagram in 7s(DMHM(S*™)) C Dp(lyo)fil(S“"/(S'}m)) where the vertical maps are given
by proposition 124

Rfﬁdg(rxﬁfdg(o(nXS'I)‘”L’ F),z17(X1/9))®04
szlfdg(rﬁ’fdg(O(YQ wGryans F0), 215 (X2/S))
J{T(]:g,?f@)(M(Xl/S),M(Xz/s)) J(Ew(lﬁ x31.¥ox3p)/5;)

I(X12/8
FEDR(M(X1/S) ® M(X2/S) = M(Xy x5 Xo/S)) — 250 Ryfda(yHds (0 v 5yons Fo)s 210(X1/5)).

S,an

I(X1/8)®I(X2/S)

FEDR(M(X1/89)) @) FEPR(M(X2/S))

S,an S,an
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O

Proof. Immediate from definition.

Theorem 39. Let S € Var(C) and S = Ul_, S; an open affine covering and denote, for I C [1,---1], S =
Nic1S; and jr : S — S the open embedding. Let i; : S; — S closed embeddings, with S c SInVar( ).
Then, for M, N € DA.(S), the map in m7g(D(MHM(S™)))

T(F§an'> @) M, N) : Fg'(M) @5, Fan (N) = F§ gy (M @ N)

S,an S,an S,an
given in definition 144 is an isomorphism.
Proof. Follows from proposition 129. o
We have the following easy proposition

Proposition 130. Let S € Var(C) and S = U._,S; an open affine covering and denote, for I C [1,---1],
Sr = NierS; and jr : S — S the open embedding. Let i; : S; — S; closed embeddings, with S; €
SmVar(C). We have, for M,N € DA(S) and F,G € C(Var(C)*™/S) such that M = D(A', et)(F) and
N = D(AY, et)(@), the following commutative diagram in Dog ti pe (S /(SE™))

M LD (M)RT(FS N, FEDT(N)
FGM (LDSM) ®és FGM LDSNS) S S S ]:FDR(M) ®és ]:FDR( )

S,an S, an S,an S,an
lT(f&ﬁ%@)(LDsAI,LDsN) lT(fQEf@)(MW)
(]_-GIW ]_-FDR)(M®N)
]:San(DSL(M@)N)) ° ° fg‘aDnR(M®N)
Proof. Immediate from definition. O

6.3 The transformation map between the analytic De Rahm functor and the
analytification of the algebraic De Rahm functor

6.3.1 The transformation map between the analytic Gauss Manin realization functor and
the analytification of the algebraic Gauss Manin realization functor

Recall from section 2 that, for f : T — S a morphism with 7,5 € Var(C), we have the following
commutative diagram of sites (39)

AnSp(C)/T" Var(C)/T

AnSp(C)s™ /T ™ [ & Var(C)*™/T
AnSp(C)/s*™ %D Var((C)/
AnSp (C)sm /§om Ans Var (C)*™ /8

We have the following canonical transformation map given by the pullback of (relative) differential
forms: Let S € Var(C). Consider the following commutative diagram in RCat :

Ang

D(ana e) : (Ansp(c)sm/sana OAnSp((C)Sm/T) (Var((c)sm/sv OVar((C)Sm/S)

le(T) le(S)

(San7 Osan) ans
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It gives (see section 2) the canonical morphism in Cany 04 (AnSp(C)*™ /S")
Q/(50n75) 1= QO nsp(cysm ysan | An’ Ovar(cysm )/ (Ogan / an Os)
ADE(Q;Sa Fb) = (nyng Ovar(cysm s/ Anj e(S)*OS7Fb) - (Q;Sanva) = (QZ)AHSP(C)M/SM /e(San)*Ogan Fb)

which is by definition given by the analytification on differential forms : for (V/S*") = (V,h) €
AnSp(C)*m/5,

Q)(son/8)(V/5*") : @ € Ang(Q)5)(V/S") := v s e gy Q)5(U/S)

— Q(V/U)/(San/s)(V/San)(w) = ang(w) € Qan (V/San);

with w € I'(U, Q) is such that q(w) = @. If S € SmVar(C), the map Q,(7/s) : Ang Qg = Qgan s a
map in Cog fi,p(AnSp(C)*™/S"). Tt induces the canonical morphism in Cog rit,p(AnSp(C)*™/S"):

T(Ans,B)(Q)5.Fp)

x . E(Q)(san;s))
EQ(sanss) : A Eer ()5, F) ) Zlserso),

Eet(Ang(Qg, Fy Eet (2] gan, Fp)
We have the following canonical transformation map given by the analytical functor:
Definition 145. Let S € SmVar(C).
(i) For F € C(Var(C)*™/S), we have the canonical transformation map in Co i, p(S™)
T'(an,$,.)(F) :
((e(S)sHom® (F, Eet ()5, F)))*") := Ogen @any 05 ang(e(S)Hom®(F, Eet(27g, 1))

T(An,hom)(F,Ect(Q2/5,Fp))

)
T(an,e)(— an * ° o
T, Ogan Dans 05 (e(S°™). Ang Hom® (F, Et(Q5, Fy)))

)

Osan @anz, 05 (e(S*")«Hom®(Ang F, Ang Eet (g, 1))
Hom(Ang F,EQ(san/s)@m)

o(S“™) Hom® (An F, Eut (Vg0 Fi))

(i) We get from (i), for F € C(Var(C)*™/S), the canonical transformation map in PShpee (S™)

T"(an, Q). )(F) : JsH" ((e(S)sHom® (F, Eet (25, F5)))™™)
Js(H"T(an,Q).)(F))

Ts(e(8%) Hom® (An F, Eot(@ g, )
L, o(5%), Hom® (Anj F, Eey (L g0n, Fy))
Lemma 21. Let S € SmVar(C).

(i) For h:U — S a smooth morphism with U € SmVar(C), the following diagram commutes

T(Q,.,an)(Z(U/S))

e(S) Hom*(Z(U/S), Eet(Q;S, Fp))em e(S™) Hom® (Z(U™ S*™), Eet(Q;San V) .

| |
TO (an,h)

(h*Ezar (QU/S; Fb))an han*Eusu (QUG"/S‘I" ; Fb)

(i1) For h: U — S a smooth morphism with U € SmVar(C), the following diagram commutes

T"(Q.,an)(Z(U/S))

JsH™((e(S)sHom®*(Z(U/S), Eet (Q;S, F)))em) e(S™) Hom® (Z(U*™ /S, Ee (Q;San V) .

Ts(—)oJsTS (an,h)(Ou,F)
JS((h*EzaT(QU/San))an) ° ° o han*Eusu(QUa”/Sanan)
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Proof. Follows from Yoneda lemma. O

By definition of the algebraic an analytic De Rahm realization functor, we have a natural transfor-
mation between them :

Definition 146. Let S € SmVar(C). Let M € DA.(S) and @Q € C(Var(C)*™/S) projectively cofibrant
such that M = D(A}L, et)(Q). We have the canonical transformation in Do i p(S*™)
T(An, FGM) (M) = (Fpr (M) = (e(S). Hom® (Q, Eer(2) 5, F)))™"

T(an,2,.)(Q) N " .
—— L e(S)Hom® (An Q, Eet(Qgan, Fy))

i} e(S’)*’Hom' (Ang Q7 Eusu(Q;SanuFb)) ]:S an( )

We give now the definition in the non smooth case : Let S € Var(C). Let S = U._,S; be an open
cover such that there exist closed embeddings 4; : S; < S; with S; € SmVar(C). For I C .J, denote by
pry: Sy — S; the projection. Consider, for I C J C [1,...,1], resp. for each T C [1,...,!], the following
commutative diagrams in Var(C)

Dy; = S[L>5'].

jIJT PIJT

SJL>SJ

We then have the following lemma
Lemma 22. The maps T(an,Q.)(L(ir.jiF)) induce a morphism in Copi.p(S/(Sr))
(T(an, ).)(L(i1:j7 F))) = (e(St)xHom® (L(irji F), Ber(Q)5,, Fp))) ™, (uf;(F))*")

= (e(S1)sHom(An(S1)" L(i1ji F), Bet(Q5,, Fy)), uf ; (F))

Proof. Obvious. O
Definition 147. Let S € Var(C). Let S = UL, S; be an open cover such that there exist closed embeddings
i1 Sy = S; with S; € ~SmVaur((C). ForI C[1,...,1], denote S; = M;ecrS;. We have then closed embeddings
1181 = S;p=1;erSi. Let M € DA.(S) and F € C(Var(C)*™/S) such that M = D(AL, et)(F). We
have, by lemma 22, the canonical transformation in Do i p,oo(S*™)

T(An, FEM)(M) : (FEM(M))*" := (e(S1)Hom® (L(iruji F), Bet (g, Fy))™", (ug; (F))*")

T(an,,.)(L(ir+j; F)))

(e(Sr)«Hom(An(S1)* L(iruji F), Eet (g, F)), uf ; (F))
i>(6(5'1)*Hom(An(S'l)*L(il*jf )s usu(Q;57 F)),ug, (F)) = ]:San( )

The following proposition says this transformation map between F%" and (F, g DRyan is functorial in
S € Var(C), hence define a commutative diagram of morphism of 2-functor :
Proposition 131. (i) Let g : T — S a morphism with T,S € Var(C). Assume there exist a factor-

ization g : T Lyxs g with, Y € SmVar(C), | a closed embedding and ps the projection.
Let S = UL_,S; be an open cover such that there eist closed embeddings i; : S; — S; with S; €
SmVar(C). We then have closed embedding i;0l : T; — Y xS; and § = =Dpg, : Y xS; — S; is a lift of
g1 = g1, : Tr — S1. Then, for M € DA.(S), the following diagram in Dofilypyoo(T‘m/(Y‘mxS'}m))
commutes

smod[—].T(T(Ap, FEDR)
Rg*mod[ (]:GM(M))I&% (7 75 M}%g

*mod[= (]:S an ( ))

lT(g,fanxM)
. an (T(An,FEM)(g" M)) .
(FEM(g*M)) E (FEan(g™M))

(T(g,FGM)(M))“"l
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(ii) Let S € Var(C). Let S = UL_,S; be an open cover such that there exist closed embeddings i; : S; —
S; with S; € SmVar(C). Then, for M, N € DA.(S), the following diagram in Do i1, D00 (S*™/(ST™))
commutes

T(®,FEM)(M,N))*"
(FGM (M) @0, FGM (N)oh*T 2T (6 (a1 @ N)yon
(FSM (M) @ Ogan FSM(N)on T(An, FSM)(M@N)
T(An, FSM)(M)®0 gan T(A"J'-gM)(M)l
T(®,FSM)(M,N))
FGM (M) @0gun FEM(N) FGM (M ® N)
Proof. Immediate from definition. O

Proposition 132. Let f: X — S a morphism with S, X € Var(C). Assume there exist a factorization
fiXLyxshs

with Y € SmVar(C), [ a closed embedding and p the projection. Let S = U;S; an open cover such that
there exists closed embeddings i; : S; < S; with S; € SmVar(C).

(i) We have then the following commutative diagram in Do ti p.oo(S*™/(S™)),

T(An,F i PM)/(MPM(X/S))

(FEM(MPM(X/8)))n FSan(MPM(X/8))
IGM(X/S)a"l lIGM(X/S)
. an an (Tu?(an,pgl)w) . an |/ Qar
(P, Tx; Bear (0, 5, /5,))"" [dy ], wrs (X/5)™) 7 (P51 L X Busu(Qy  3,yam 3o )y ]|, wrs (X7/S
((p*Two(®ﬁ)(*))”")l i(mﬂ?(@,’y)(*))
FDR an (T(an,y)(=)oTP™%(an,f)(=) FDR
(ff (FXIEzar(nygluFb)ule(X/S))) 3 ff (FX]EUSU(O(YXSI)anuFb)u‘rlJ(X/S))

(ii) We have then the following commutative diagram in PShpee pi1(S*™/(S¢™)),

Js(=)oH"T(An,FEPRY(MBEM (X/8S))

JsH"(FM (MPM(X/S)))" H"F§ o (MPM(X/8))
Hn(IGM(X/S)an)l lHnIGIW(X/S)
n . an an A (Tf(an,pg})”)) n o
JSH ((pgl*PXIEZU’T(QYXS'I/S'I)) [dy],’LU]J(X/S) ) 3 H (pSI*FXEusu(Q(ngl)an/g?n)[dY]7wIJ
H"((p*Tf(&W)(—))a")l lH"(P*TE(&V)(—))
ns (FDR ["(T(an,y)(=))oH" TP (an,f)(;FDR an
JsH" ([P (U x, Boar(Oy 3, Fy) 215 (X/9)) : TP, Busa Oy 3,y Fo )y w11 (X 7

Proof. (i):Immediate from definition.
(ii):Follows from (i). O

We deduce from proposition 132 and theorem 20 (GAGA for D-modules) the following :
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Theorem 40. (i) Let S € Var(C). Then, for M € DA.(S)
Js(=) o H"T(An, Fg) (M) Js(H" (F§M (M))™") = H"Fg g7, (M)

is an isomorphism in PShp (S /(S¢™)).

(ii) A relative version of Grothendieck GAGA theorem for De Rham cohomology Let h : U — S a
smooth morphism with S,U € SmVar(C). Then,

Ts(=) 0 JsT (an, h) : Js((R"h.82f;/5)™") = R heSan /gan
is an isomorphism in PShp(S*™).

Proof. (i):Follows from proposition 132(ii) and theorem 20 using a resolution by Corti-Hanamura motives.
(ii):Follows from (i) and lemma 21(ii). O
6.3.2 The transformation map between the analytic filtered De Rham realization functor

and the analytification of the filtered algebraic De Rham realization functor

Recall from section 2 that, for S € Var(C) we have the following commutative diagrams of sites

AnSp(C AnSp(C)>7" /S
Ang AHSp 2 Sm/S ls/\w ADSP(C)Q"SmpT/S
Var(C J‘ Var(C)%smrr /S Ang
Var(C)?/S 1 Var(C)%smrr /S
and
AnSp(C)*P"/S o AnSp(C)/S , (60)
Ans AnSp(C)**m?7 /S l[ AnSp(C)*™ /S
Var(C)*#" /S J Var(C)/ Ang
e K
Gré?
Var C)%sm/8 Var(C)*™ /S
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and that for f: T — S a morphism with T, S € Var(C) we have the following commutative diagrams of
site,

AnSp(C)?/Te" anr Var(C)2/T
P(f) AnSp(C)>*™ /" An[P(f) Var(C)?s™ /T
AnSp(C)?/5*" AnLP(f) Var(C)?/S P(f)
\ L X\

Ang

AnSp(C)%sm /gan Var(C)?sm /S

Let S € SmVar(C). We have the canonical map in C(Var(C)?5mP" /S)

QE(SZ"/S) (977;4”7 Fpr) — (97’;{?, Fpr)

given by for p: (Y x S, Z) — S the projection with Y € SmVar(C),

QU (Y % 5,2)/9) : Q76 ©0y o Ty ™ (Oy s, Fy)

Qv xsyan /vy xsy/(san /s)(—) 0

v, Hd,
ZYXS)G"/S‘W QO (y y syan (FZ q(OY><Sv Fy))*"
We have the following canonical transformation map given by the analytical functor:

Definition 148. Let S € SmVar(C). For F € C(Var(C)%5™P"/S), we have the canonical transformation
map i Cpes 71 (S™)

T (an, Q) &")(F) :

(e(S). Hom® (F, Bt(U5%", Fpp)))™ i= Osan Guns 05 ang(e(S). Hom® (F, Eo(Q55", For))
T, Ogon @ 05 (e(S™)2 Ang Hom® (F, Eer(Q5", Fpr)))
TR, Ogun @an, 05 (6(S™) e Hom® (An F, Ang Eer( Q05" Fpr))

Hom(Ang F,An% Eef(ﬂ/(szn/s))® m)

e(S“"). Hom® (An§ F, Ber (552", For))

By definition of the algebraic an analytic De Rahm realization functor, we have a natural transfor-
mation between them :

Definition 149. Let S € SmVar(C). Let M € DA.(S) and (F,W) € Cry(Var(C)*™/S) such that
(M, W) = D(Ag, et)(F,W). We have the canonical transformation map ws(D(MHM(S))) C Dp 01,00 (S*™)

T(An7]:(f’;lDR)(M) : (}—ngR(M))an =

( lm e(S)Hom®(ps. GrlZ* Rixepoy/s(pSL(F, W)), B (@509, o))"
r(x*,p*)/s(L(F,W))

= lim  (e(S)sHom® (ps. Gr§™ Rix+ pey/s(p5L(E, W), Ea (25", Fpr)))™
’I"(X*’D*)/S(LF)

lim  e(S).Hom® (Ang ps. Grg™ Rix- pe)/s(psL(F, W), Eet(Q52""", Fpr))
T(X*’D*)/S(LF)

— lim e(S) Hom®(An} pss Gr&™ Rix- p+)/s(psL(F,W)), Eysy (Q;’;’fr’a”, Fpr)) =t Fé ort(M)
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We give now the definition in the non smooth case : Let S € Var(C). Let S = U._,S; be an open
cover such that there exist closed embeddings i; : S; — S; with S; € SmVar(C). For I C J, denote by
pry:S; — Sy the projection. Consider, for I C J C [1,...,1], resp. for each I C [1,...,!], the following
commutative diagrams in Var(C)

Dy; = S[L>5'].

Jrg T PrJ T
Sy i Sy
We then have the following lemma

Lemma 23. The maps T(an,Q.)(—) induce a morphism in C’Doo(fil)(s/(g]))

(Tan, 2 (ps,. G2 Ry oy 5, (05, LGir. 7 F) :
( lim (S0 Hom® (o5, Grl2* Rixe ey, (0%, LGiredi F): Eal @557, Fpr)))™, (uf (F))™)

T(X*,D*)/— (—)

= lim ¢ (Sp)Hom® (An(S1) " pg,, Grg’* Rix. pey,s, (p*g,L(iI*j}‘F)),Eet(ﬂ;i’pr’a",FDR)),U?J(F))
T(X*,D*)/—( )
Proof. Obvious. O

Definition 150. Let S € Var(C). Let S = U._,S; be an open cover such that there exist closed embeddings
i; 1 S; <= S; with S; € SmVar(C). ForI C [1,...,1], denote St = N;c1.S;. We have then closed embeddings
r:Sr = St = IerS;. Let M € DAL(S) and (F,W) € Cyy(Var(C)*™/S) such that (M, W) =
D(AL, et)(F,W). We have, by lemma 23, the canonical transformation map in ws(D(MHM(S))) C
Dp (1,0 fit,00 (S™)

T(An, FEPR)(M) : (FEPR(M))™ =
( h_ngl (el(gl)*Hom.(Pél*Gfgl (X*,D*)/SI( EIL(ZI*JI(FaW)))a

T(x*,D*)/—(—)

(T(an, Q02" (ps, . GrE Rixce pey 5, (05, Liredi (FW)))))

Bl @357, For))™, (uf, (F,W))"")

( lim ( )e'(gl)*’Hom'(An(S'I)*pgl*Gr?l* Rix- p-ys, (P, Llird (F, W),
T(X*,D*)/— —

E. (Q. Lopran FDR))? U?J(Fv W))

/81
= ( lim €'(S1)«Hom*(An(S1)*pg,, Grg* R peyss, (5, Llirg (F,W))),
r(x*,p*y/—(—)

Eusu (Q;g‘l,pr,an, FDR))7 u?J(Fv W)) _> ‘FggnR(M)

The following proposition says this transformation map between F°:%" and (F, g DRyan g functorial in
S € Var(C), hence define a commutative diagram of morphism of 2-functor :

Proposition 133. (z) Let g : T — S a morphism with T,S € Var(C). Assume there exist a fac-

torization g = T Lyxs® g with, Y € SmVar(C), | a closed embedding and ps the projec-
tion. Let S = U'_|S; be an open cover such that there exist closed embeddings i; : S; f—>~S with
S; € SmVar(C). We then have closed embedding i; 0l :T; — Y X S; and § gr:==pg, 1 Y x Sr— St

is a lift of g1 := g1, : T1 — Sr1.
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(i0) Then, for M € DA (S), the following diagram in wr(D(MHM (T")) C Dp(1,0)fit,00 (T /(Y™ x
Sam), see definition 121 and definition 142 commutes

Mo an *mo g;m;d(T(An FsPh o
it (FEPRDM)) ™) = (gigae(FEPR(M))H———=— I%ng(‘FgaDnR< M))

'(T(gyfFDR)(M))“"J( J{T(gfanR)(M)

. an T(An, FEPRY(g* M) N
(]:FDR( M)) T I_-FDR( M)

T,an

(i1) Then, for M € DA.(S), the following diagram in mr(D(MHM (T)) C Dp(1,0)fit,00 (T /(Y 4" x

S9m)) commutes

*Mmo an *Mo 9, MOd(T(A" ]'_FDR)(A/[ ‘mo
i (FEPROD)™) = (g37igt (FEPR ) R gl ea e DR a1

(T(ngDR)(M))“"T T’T‘(gfanR)(M)

N an T(An, FEPRY(g* M) N
(FrPE(g*M)) = Frof(g M)

T,an

(i2) Then, for M € DA (T), the following diagram in wg(D(MHM(S*™)) C DD(lyo)filyoo(S“"/(S'}m))
commutes

Hdg n, FDR
Ryl (FFPRQ)™) = (Rg'"ts » (FEPR(ar) i TRl (FEDR (ar))

S,an
(Tx (gyfFDR)(M))“"T T'T*(gffn’,m)(M)
an T(An, FEPEY(Rg. M)
(FEPR(Rg.M)) —— FEDR(Rg. M)

(i3) Then, for M € DA (T), the following diagram in wg(D(MHM(S*™)) C DD(lyo)filyoo(S“"/(S'}m))
commutes

an Hdg(T(An,]'—FDR)( )
R/ ((FEPR(M))en) = (RgHds)(FEPR (M) fie ZIANTs YO0 ds( pEDR ()

S,an
/(T!(QvaDR)(M))a"l J/T!(gi]:f'nPR)(M)
n. FEDR '
(.FgDR(Rg[M))‘m T(An,Fg =) (Rg M) -FSanR(Rg!M)

(i) Let S € Var(C). Let S = UL_,S; be an open cover such that there exist closed embeddings i; : S; —
S; with S; € SmVar(C). Then, for M,N € DA.(S), the following diagram in ms(D(MHDM(S))) C
Dp1,0)fil,00 (S an /(S9™)) commutes

(FEPR(M) @0, FEPR(N) LD

]

(FEPR(M))*™) @ Ogan (FEPE(N))™™) T(An,FEPR)(M®N)

(FEPR(M ® N))™

T(An,FEPH)(M)®0gan T(AnngR)(M)l

FEDR(\) @0... FEPR(N 3T(®fanR)(M,N))
san

S,an S,an

FEDR(M © N)

S,an

Proof. Immediate from definition. O
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Proposition 134. Let f: X — S a morphism with S, X € Var(C). Assume there exist a factorization
fxbyxshs

with Y € S}nV&r((C), l a closed embedding and p the projection. Let S = U;S; an open affine cover and
i; 2 S; = S; closed embeddings with S; € SmVar(C). We have then the following commutative diagram
in Dpes fil,00(S™™),

(FEPR(M(X/S)))e" finFs OIS FEPR(M(X/S))

S,an

lI(X/S) lI(X/S)

TP (anpg )(~)

(RFTOOET(Oy 5, F), 210 (X/9)) ™ —————= RET(TET (O 5y yons o), 210(X/S)))

Proof. Immediate from definition. O
We deduce from proposition 134 and theorem 20 (GAGA for D-modules) the following :
Theorem 41. Let S € Var(C). For M € DA.(S), the map in mg(D(MHM(S"))) C Dp(1,0)fi1,00(S*")

~

T(An, FFPRY (M) (F§PH(M))™ = Fgan (M)
given in definition 150 is an isomorphism.
Proof. Follows from proposition 134 and theorem 20. o
We finish this subsection by the following easy proposition :

Proposition 135. Let S € Var(C). Let S = UL_,S; be an open cover such that there erists closed
embeddings i; : S; — S; with S; € SmVar(C) Let M € DA.(S) and F € C(Var(C)*™/S) such that
M = D(A%, et)(F). Then the following diagram in Do i, p,0(S/Sr) commutes

To(T(FGM FEPR) (M)

(F§M(LDsM))™" Js((F§PR(M))™™)

T(An.,]—'gM)(DsM)l le(T(An,J:gDR)(M))

T(F§ o F& an ) (M)

F§an(LDsM) Ts(Fs,an (M)
Proof. Immediate from definition. O

7 The Hodge realization functor for relative motives

7.1 The Betti realization functor

We have two definition of the Betti realization functor which coincide at least for constructible motives,
one given by [1] using the analytical functor and one given in [7] by composing the analytical functor
with the forgetfull functor to the topological space of a complex analytic space wich is a CW complex
(see also [20] for the absolute case) .

Definition 151. Let S € Var(C).

(i) The Ayoub’s Betti realization functor is
Btig : DA(S) — D(S*") , M € DA(S) — Btig M = Re(5"")« Ang M = e(S*"),sing . Ang F’

where F € C(Var(C)*™/S) is such that M = D(Al,et)(F).
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(ii) In [7], we define the Betti realization functor as
Btig : DA(S) — D(S*") = D(5°”) , M  Btighl = Re(S°"),CwgM = ¢(5°”).sing,. CwgF
where F € C(Var(C)*™/S) is such that M = D(A!, et)(F).
(iii) For the Corti-Hanamura weight structure on DA™ (S), we have by functoriality of (i) the functor
Btig : DA™ (S) = Dy (S") , M 5 Btig M = ("), sing, . An§(F, W)
where (F,W) € Cyy(Var(C)*™/S) is such that (M, W) = D(A',et)(F,W).
Note that by [7], Ang and 6‘&2 derive trivially.

Note that, by considering the explicit D} local model for presheaves on AnSp(C)*™ /S, Btig(DA™(S)) C

D~(S%") ; by considering the explicit I} local model for presheaves on CW*™ /S é?i*s(DA_ (9)) C
D—(5%™).
Definition 152. Let f : T — S a morphism, with T,S € Var(C). We have, for M € DA(S),
(F,W) € Cpy(Var(C)*™/S) such that (M,W) = D(A',et)(F,W), and an equivalence (A',et) local
e: fHE,W) — (F',W) with (F',W) € C¢y(Var(C)*™/S) such that (f*M,W) = D(A', et)(F',W) the
following canonical transformation map in Dy (T):

T(f,Bti)(M) : f*Btig M = [*e(S™).sing, . Ang(F,W) LI,

e(T")T(f,0)(F, W)

e(T*")« f"sing Ang(F,W)  (61)

e(T*")sing, , f* Anf(F, W) = e(T*").sing_ An} f*(F,W) (62)

e(Ta")*sing]D* Ant e

e(T™),sing, . Anjyp(F', W) =: Btiy f*M  (63)
Theorem 42. Let f : X — S a morphism, with X, S € Var(C). For M € DA.(S),
T(f,Bti)(M) : f* Btii(M) = Bti f*(M)
is an isomorphism in Dy(X).
Proof. See [1]. O

Definition 153. o Let f: X — S a morphism, with X,S € Var(C). We have, for M € DA.(X),
the following transformation map

ad(f*,Rf.)(Btig (f. M

Yy R, Btis(Rf.M)
Btix (ad(f*,Rf«)(M)) R, Bt (M)
* X

T.(f,Bti)(M) : Bti5(Rf., M)

T(f,Bti)(f+ M) Rf* Btlj;( (f*Rf*M)

Clearly, if 1 : Z — S is a closed embedding, then Ty (I, Bti)(M) is an isomorphism by theorem 42.

o Let f: X — S a morphism with X,S € Var(C). Assume there exist a factorization f : X 4

Y x 825 S withY e SmVar(C), [ a closed embedding and ps the projection. We have then, for
M € DA.(X), using theorem 42 for closed embeddings, the following transformation map

. —1
T(f, FEPRY(M) : Rfy Bti% (M) = Rpsil,, Btix (M) L2000,

Bti(Y x S)* ad(Lpsgs,pl) (1« M)

Rps Bti(y X S)*(Z*M)

Rpsi BUi(Y x S)* (s Lpsyly M) L 2P0 wsst-2)

ad(Rps1,ps)(—)
— s s

Rpsipls Bti(Y x 8)*(Lpsgl. M) = Rpgips Bti(Y x S)*(fiM) Bti(Y x §)*(fiM)

Clearly, for f : X — S a proper morphism, with X, S € Var(C) we have, for M € DA.(Y x S),
Ti(/, Bti) (M) = T, (f, Bti)(M).
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o Let f: X — S a morphism with X, S € Var(C). We have, using the second point, for M € DA(S),
the following transformation map

T'(f,Bti) (M) : Bti (f'ar) 22 LEDEEU D)

Ti(f,Bti)((f' M) FBUL(ASM)
” Ss\J!

Definition 154. Let S € Var(C). We have, for M,N € DA(S) and F,G € C(Var(C)*™/S)) such that
M = D(A',et)(F) and N = D(A', et)(G), the following transformation map in Dpsi(S)

' Rf Bty (f' M)
Btig (ad(fi,f')(M)) £ Btis (M)

Btig M @ Btig N := (e(5).sing . Ang F) @ (e(S).sing , Ang G)
T (sing p+,®)(Ang F,Ang G)

e(S).sing, . Ang(F @ G) =: Btig(M ® N)
Theorem 43. (i) Let f : X — S a morphism, with X, S € Var(C). For M € DA (X),
Ti(f, BE) (M, W) 5 fi Bt (M) = Bei fi
is an isomorphism.
(ii) Let f: X — S a morphism, with X,S € Var(C). For M € DA.(X),
T.(f,Bti)(M, W) : f. Btix M = Bti§ Rf. M
is an isomorphism.
(i1i) Let f: X — S a morphism, with X, S € Var(C). For M € DA.(S),
T'(f,Bti)(M) : f'Btig M = Bti% f'M
is an isomorphism.
(iv) Let S € Var(C). For M,N € DA.(S),
T(®,Bti)(M) : Btif M @ Btig N = Bti% (M @ N)
is an isomorphism.
Proof. See [1]. O
The main result on the Betti realization functor is the following
Theorem 44. (i) We have Btig = 1%?1; on DA™ (S)

(i) The canonical transformations T'(f,Bti), for f : T — S a morphism in Var(C), define a morphism
of 2 functor
Bti : DA(-) — D(-*"), S € Var(C) — Btig : DA(S) — D(S")

which is a morphism of homotopic 2 functor.

Proof. (i): See [7]
(ii):Follows from theorem 42 and theorem 43. O

Remark 13. For X € Var(C), the quasi-isomorphisms

ZHom(D?,, X) A% ZHom(D" (0, 1), xan) 2omX),

et

Z Hom([0, 1]", X*),

where,

D, == (e: U — A", D™(0,1) C e(U)) € Fun(Vg, (D™(0, 1)), Var(C))
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is the system of etale neighborhood of the closed ball D™(0,1) C A™, and i : [0,1]" < D"(0,1) is the
closed embedding, shows that a closed singular chain o € ZHom" ([0, 1]™, X %), is homologue to a closed

singular chain B
B =a+0y=Po» € ZHom" (A", X)

which is the restriction by the closed embedding [0, 1]™ — U* 5 A", where e : U — A" an etale morphism

with U € Var(C), of a complex algebraic morphism :U — X. Hence $([0,1]") = ([0,1]") C X is the
restriction of a real algebraic subset of dimension n in Resg(X) (after restriction a scalar that is under
the identification C ~ R?).

Definition 155. Let S € Var(C) The cohomological Betti realization functor is

BtiY : DA(S) — D(5),
M — Bti§(M) := RHom(Bti§ M, Zsew) = RHom (M, Btig. Zgew )

where for Btig, : K € D(SY) — R Ang. e(S“)*K € DA(S) is the right ajoint to Btig.
7.2 The Hodge realization functor for relative motives
Recall (see section 2) that for S € Var(C), we consider the dual functor
Dgs : C(Var(C)*™/S) — C(Var(C)*™/S), F — DgF := Hom(F, Eet(Zs)).
Similarly, for S € AnSp(C), we consider the dual functor
Ds : C(AnSp(C)*™/S) — C(AnSp(C)*™/S), F — DgF := Hom(F, Eysu(Zs))

The filtered De Rham algebraic realization functor constructed in section 6 and on the other hand
the Betti realization functor (see section 7.1) give the Hodge realization functor :

Definition 156. Let S € SmVar(C). We define the Hodge realization functor as

‘/—_-gldg = (‘/—"gDR,BtIZv) : DAC(S) — D'D(l,O)fil,oo(S) Xr Dfil(San),
M — FH9(M) = (FEPR(M), Btiy M, (M),

299



where a(M) is the map in Dy (S*™)

a(M) : (Btig M) ® Cg = (e(S5).sing. Ang L(F,W)) ® Cg
s(e(S).sing, Ang L(F,W))

DR(S)!"!(Hom(LDs L(e(S).sing, . An§ L(F, W), Eysu(Os)))
= DR(S)! 7 (Hom(LDsL(e(S).sing, . Ang L(F, W), e(S) Busu (25)))

DR(S)!Z1 (Hom (T (e,hom)(—,E(Z)),—))

DR(S)!"!(Hom(Le(S).Dg Lsing,, Ang L(F, W), €(S). Eusu(255)))

DR(S)I7 (Hom(Le(S)«Dsc(Ang LIF,W)),e(S)w Eusu(295)))

DR(S)!"!(Hom(Le(S).Dg Ang L(F, W), e(S)+ Busu(2)))

DR(S)!7 (Hom(Hom(T(An,hom)(—, Bet(Z)),e(S) « Busu (29 5))))

DR(S) (Hom(Le(S). AngDsL(F, W), e(S)wEusu(275)))

DR(S)!™ (Hom(—,e(S)+ Busu(Cr(Qgan))) ™)

DR(S)! ) (Hom(Le(S). Ans D L(F, W), e(S). Gri Busu(Q75:27")))

DR(S)I=1(T(e,hom)(—,—)"1)

DR(S)!)(e(S)Hom(L Ang Ds L(F, W), Grgl Eusu(Q75.27")))

DR(S)I(1(Grg ,Grid) (= -))

DR(S)! (¢ (S) Hom(L Ay Grg* Ds L(F, W), Eusu (27 5.27")))

DR(S)!7l(Hom (L Ank Gri?* r(X*,D*)/S(L(F,W)),Eusu(ﬂ;’srgﬁr’a")))

DR(S)(¢/ (S) Hom(An ps. Grg™ Rix- p)/s(p5L(F, W), Eusu(275.27")))
= DR(S)TN(FE (M, W)

DR(S)UN(T(An, FEPR) (M W) ™)

DR(S)I(F ™ (M, W))™)
where (F,W) € Cy;y(Var(C)*™/S) is such that (M, W) = D(A',et)(F,W)
e 5(K): K — DR(S)"/(Hom(DsLK, E(Og)) is the isomorphism of theorem 23,

e the map
T(e, hom)(—, —) : e(S)«Hom(L AnsDgL(F,W)), Gri’ EUSU(Q;gng’a”)))
— Hom(Le(S). AngDsL(F, W), e(S). Gre Busu(Q55:27™")))

is a filtered equivalence usu local by proposition 33 and proposition 121,
o FER(M) = 0puFEPR(M) € Dpoga(S), FEE (M) := opaF& D (M) € Dpopa(S™),
o T(An, FEPEY(M) : (FEE(M))o = fgfn(M) is an isomorphism by theorem 41.

We now give the definition in the non smooth case :

Definition 157. Let S € Var(C). Let S = U;S; an open cover such that there exists closed embedding
i;: S <= S; with S; € SmVar(C). We define the Hodge realization functor as

FH9 = (FEPE Bti}) : DA(S) = Dp(1.0)it.00(S/(S1)) X1 Dpar(S™),
M s FE9(M) = (FEPR(M), Btig M, a(M)),
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where a(M) is the map in Deyi(S™/(S¢™))

a(M) : T(S/(S1))((Btig(M, W)) ® Cs) := (ir.j; ((e(S)«sing, . An§ L(F,W)) ® Cs), ,T%(D1;)(—))
s(e(S).sing . Ang L(F,W))

DR(S)) (Hom(LDg, L(ir.jie(S).sing, . Ang L(F,W)), Eusu(Og,)), urs(=))
= DR(S)T)(Hom(LDg, L(irsj7 (e(S)ssing,, Ang L(F, W), e(S1)«Busu(Q5)))), urs(-))

DR(S) T (Hom (T (e,hom)(—,E(Z)),-))

DR(S)H (Hom(Le(gj)*DglL(ij*j}‘siigw Ang L(F,W)), e(gj)*Eusu(Q;S )

DR(S)] ('Hom(Le(S’I)*]D)gI Lir.jie(Ans L(F,W)),e(S1)« Busu (9 /SI)))

DR(S)[f] (HOm(Le(g[)*DS«IL('L']*j? Ang L(F,W)), e(g])*Eusu(Q;gI)), urg(—))

DR(S)"™) (Hom(Hom(T (An,hom)(—, Eet (2))oDg, T(An,ir) (=),e(S1) s Busau (25 5,)))

DR(S)!™ (Hom(Le(S1), Any Dy, L(ir.ji F, W), e(S1)uBusu(3g)))s w1 (=)

DR(S)[i] ((’HO"TL(—,e(gl)*Eusu(Gr(Q/Sa" ))))71)

DR(S)!l(Hom(Le(Sr). Ang Dg, L(i. W), e(Sh). Grg, Eusu(Q;ggfr,an)), wrs(=)

DR(S)I (T (e;hom) (=, —)71)

DR(S)7(e(Sy) Hom(L Ang DglL(iI*ﬁF, W), Grg, Eusu(Q;g}fT,an)), wry (<))

DR(S)TII(Grgr.Grg? ) (=.-))

DR(S)!7(¢/(Sr)s Hom (L An%y, Gri¥* D L(irjiF, W), Eusu (Q;’;f““")), urs(=))

T(x*,D*) /3] (L1 G FsW))), Busu (Q55,279™)))

DR(S)[*](’}-Lom(An’é Grs 5an

I

DR(S){f]( ( ) HOm(AnS pSI* Gl“ R(X* D* )/SI( L(Z]*]§F, W)),EUSU(Q;gajfT)an))),uIJ(F))

= DR(S)IWFEE (v, W)

DR(S)! N1 (An,FEPF) (W) ™)

DR(S)TW(FF (M, W))*)
where (F,W) € Cgy(Var(C)*™/S) is such that (M, W) = D(Al, et)(F,W)
e 5(K): K — DR(S)I"/(Hom(DsLK, E(Og)) is the isomorphism of theorem 23,
o the map T(e,hom)(—,—) is a filtered equivalence usu local by proposition 33 and proposition 121,
o FER(M) = 0puF§PH(M) € Dpoga(S), FE5,(M) = opaF§ 0 (M) € Dpopa(S™),
o T(An, FEPRY(M) : (FER(M))* = FLE (M) is an isomorphism by theorem 41.

We now give the functoriality with respect to the five operation using the De Rahm realization case
and the Betti realization case :

Proposition 136. (i) Let g : T — S a morphism with T,S € Var(C). Assume there exists a fac-

torization g : T Lyxsk S, with' Y € SmYar(C), I a closed embedding and p the projection.
Let S = UierS;_an open cover and i : S; < S; closed embeddings with S; € SmVar(C). Then,
gr : Y x Sy — Sy is a lift of g1 = g7, : Tt — S1. Then, for M € DA.(S), the following diagram
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commutes :
g*(a(M)) : g* Btig M —— DR(T)giio(FEE,(M))) — DR(T)! 7 (g0 FE (M) ™)

S,an

an

T(g,bti)(M) lDR(T)”(T(ngDR)(M)) lDR(T)[]((T(g,FFDR)(M))“")

alg*M) : Btiy g* M ———= DR(T)"W(FRL, (9" M)) ——— DR(T)I(FFF(g"M))™")

T,an

see definition 100, definition 121, definition 142 and definition 152
(i1) Let f: T — S a morphism with T,S € QPVar(C). Then, for M € DA.(T),the following diagram

commutes :

fe((M)) : Rf, Btits M —— DR(S) N (RFF9FRE (M)) —— DR(S)!I(RFFFRE(M))*)

T,an

T (f,bti) (M) T TDR(S)[]((T*(ffFDR)(M))“")

a(Rf.M) : Bti§ Rf. M DR(S)NFPE (Rf.M))

S,an

see definition 100, definition 122, definition 148 and definition 153

(iii) Let f:T — S a morphism with T,S € QPVar(C). Then, for M € DA.(T),the following diagram
commutes :

DR(S)TW((FEH(RFM))™)

A(a(M)) : Rfi Btiy, M —= DR(S)V(RATFLE" (M) — DR(S)N(RATFE p(M))om)

ﬂ(ﬁbtz‘)(M)l l lDR(Sﬂ]<<T!<f,fDR><M>>“">

a(RfiM) : Bti§g il —— DR(S)" (FRR" (RfiM))) —— DR(S)N(FRr(RAM))™)
see definition 100, definition 122, definition 148 and definition 153
(iv) Let f : T — S a morphism with T, S € QPVar(C). Then, for M € DA.(S),the following diagram

commutes :
f(@(M)) : f'Btig M —— DR(T)N(Rfi73o (FEE,(M))) —— DR(T)N((fiod FER(M))™)
T!(fybti)(M)T T’(f,fanR)(M))T TDR[](T)((T’(gyfFDR)(M))“”)

a(f'M) : Btip f'M ————= DR(T)N(FRE, (f' M) ———— DR(D)TI(FRR (M)

see definition 100, definition 122,definition 143 and definition 153
(v) Let S € Var(C). Then, for M, N € DA.(S),the following diagram commutes :

Bti%, M ® Btil N “ODEAN) b R(S)(FPE(M) ©0. FPR(N))™)
T(&bn‘)(MW)l lDR(S)((T(@fDR)(M,N»“)
a(MQN
Bti%(M ® N) (a(MEN)) DR(S)((FS5(M ® N))*m)

see definition 124 and definition 154.

Proof. (i): The commutativity of the right square is given by applying the functor DR(T)!=! to the
commutative diagram

*mo an *mo g;mgd(T(An’}-FDR)(M o
Gl (FEPR(M))em) = (gimed (FEPR () fata AT A0 Chmod( £EDR (27
'(T(g,fFDR)(M))“"l lT(gyfanR)(M)
n FDR *
(FEPR (g M) Lt FEDR (g7 M)
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given in proposition 133(i0). On the other hand, the commutativity of the left square follows from the
following commutative diagram :

DR(T)- ](F¥1Hdgg*mod "(S1)« Hom(Ang, pSI*RP Yy (pS Lipji F),

(g7irjie(S)« Ang LF, gjur;(=)) —— Eusu(Q;gr?fr ), g5 (e (F)))
[— DR
T(e,0)(F) lDR(T) N1 (9. 721 (M)
DR(T)(e (Y x Sp). Hom(Any, g pSI*R( ~y/— (prS giLirgi F),
(i, 5i7e(T)s Any g* Furs (=) —— B @ 5,)). (0" F)

(ii): Follows from (i) by adjonction.

(iii): The closed embedding case is given by (ii) and the smooth projection case follows from (i) by
adjonction.

(iv): Follows from (iii) by adjonction.

(v):Obvious

We can now state the following key proposition and the main theorem:

Proposition 137. Let f: X — S a morphism with X, S € Var(C), X quasi-projective. Consider a
factorization f: X Ly xS 2% S withY =PNe c PN an open subset, | a closed embedding and ps the
projection. Let S = U;S; an open cover such that there exist closed_embeddings i; : S; — S; with S; €
SmVar(C). Recall that St := NierSi, X1 = f~1(S1), and Sy := ;e S;. Then, using proposition 136(iii),
the maps of definition 122 and definition 153 gives an isomorphism in Dp(i,0)fa(S/(S1)) x1 D(S™)
(T(f, FFPENZ(X/ X)), Ti(f, Bti) (Z(X/ X)) :
F&(MPM (X)) = (F§PR(RAZ(X/ X)), Btig RAZ(X/X), ( RAZ(X/X)))
= (Rt (U Oy 3, Fo), 015 (X/S)), RfZon, fual(X/ (Y x S1))) =t Rfirrag 3"
Proof. Follows from proposition 136(iii),theorem 33(i) and theorem 43(i). O

The main theorem of this article is the following :
Theorem 45. (i) For S € Var(C), we have fé{d‘q(DAc(S)) C D(MHM(S)).
(i) The Hodge realization functor Fraq(—) define a morphism of 2-functor on Var(C)
FHU9 . Nar(C) — (DAo(—) — D(MHM(-)))
whose restriction to QPVar(C) is an homotopic 2-functor in sense of Ayoub. More precisely,

(0) for g : T — S a morphism, with T,S € QPVar(C), and M € DA.(S), the the maps of
definition 121 and of definition 152 induce an isomorphism in D(MHM (T))
T(g, FH) (M) == (T(g, F*PF)(M), T (g, bti) (M)) -
ggﬁHdg}-Hdg(M) (97140"F& P1(M), " Btis(M), g* (a(M)))
= (F£ PR (g7 M), Btin(g"M), alg™ M) =: F7(g" M),

(ii1) for f: T — S a morphism, with T, S € QPVar(C), and M € DA.(T), the maps of definition
122 and of definition 153 induce an isomorphism in D(MHM (S))

T.(f, FH99) (M) == (Tu(f, FTPR) (M), Tu(f, bti) (M) -
RfragFy ™ (M) := (RfI49 FEPR(M), Rf. Btis(M), f.(a(M)))
S (FEPR(REM), Btig (REM), o RfM)) =2 F&Y(REM),
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(i2) for f: T — S a morphism, with T, S € QPVar(C), and M € DA.(T), the maps of definition
122 and of definition 153 induce an isomorphism in D(MHM/(S))

T\(f, FH9) (M) == (Tv(f, FTPRY) (M), Tv(f, bti) (M) -
RfiagFp (M) == (Rf FLPR(M), Rfi Btig (M), fi(a(M)))
= (FEPR(RAM), Btig(RAM), o fiM)) =: Ff % (fiM),

(#43) for f: T — S a morphism, with T, S € QPVar(C), and M € DA.(S), the maps of definition
122 and of definition 153 induce an isomorphism in D(MHM(T))

T'(f, FH99) (M) := (T'(f, FTPRY(M), T!(f, bti)(M)) -
f*Hdngdg(M) (fined FEPR (M), f' Btis(M), f'(a(M)))
S (FEPR(FM),Btip (f' M), a(f'M)) = FF9(f'M),

(ii4) for S € Var(C), and M, N € DA.(S), the maps of definition 124 and of definition 154 induce
an isomorphism in D(M HM(S))

T(®, FH49) (M, N) := (T(®, FEPE)(M,N), T(®, bti) (M, N)) :
(FEPR(M) @b, FEPE(N), Btis(M) ® Btig(N), a(M) ® a(N))
= Fg (M @ N) = (FEPR(M @ N),Btis(M @ N),a(M ® N)).

(i1i) For S € Var(C), the following diagram commutes :

Var(C)/$ MHGS) D(MHM(S))
M(/s>l lbs
DA(S) e Dpyit,ee(S/(S1)) X1 Dgi(S°™)

Proof. (i): Let M € DA.(S). There exist a generalized distinguish triangle in DA(S)
M — M(Xo/S)[do] = -+ = M(X,,/S)[dm],

with f,, : X,, — S morphisms and X,, € QPVar(C). This gives the following generalized distinguish
triangle in DDfil(S) X1 D(san)

FEO(M) — FE9(M(Xo/9))[do] = -+ — FEY(M(Xn/9)[dum],
On the other hand, by proposition 137, we have
FEY(M(X0/S)) = RfinagZi™ € DIMHM(S))

ii0): Follows from theorem 32, proposition 136(i) and theorem 42.

iil): Follows from theorem 33(ii), proposition 136(ii), and theorem 43(ii).

ii2):Follows from theorem 33(i), proposition 136(iii), and theorem 43(i).

ii3): Follows from theorem 33(iii), proposition 136(iv), and theorem 43(iii).

ii4):Follows from theorem 34, proposition 136(v) and theorem 43(iv).

iii): By (ii), for ¢ : X'/S — X/S a morphism, with X', X,S € Var(C) and X/S = f : X — 5,
X'/S=f":X"—= S, we have by adjonction the following commutative diagram

(
(
(
(
(
(ii

FHUO(M(X'S) = f1 ' Ts = froig'f D) O A0DTED pitdg v/ 5) = 2 |

171Gy — gty Hdg _ | p1rydg 240019 (F25) _ 4 plryHdg
H(X'/S) = [ Zs™ = fag ['Zs MH(X/S) = hfZg

This proves (iii). O
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The theorem 45 gives immediately the following :

Corollary 10. Let f : X — S, f' : X' — S morphisms, with X, X', S € Var(C). Let S € PVar(C)
a compactification of S. Let X, X' € PVar(C) compactifiaction of X and X' respectively, such that f
(resp. f’) extend to a morphism f: X — S, resp. f': X' = 8. Denote D = X\X and D' = X'\ X' and
E=(Dxg5X")U(X xgD'). We have the following commutative digram

FDR
]:S

RHom*(M((X,D)/ RHom*(AZR™, fZ31)

)
im() lRI()
M

S S Frpr Hd Hd
- RHom®*(Zy ™ axxsxnZx'’ x1)

] ]

XxgX' _ _
- OgiX72d+o(X XSX/aEvz(d))

Proof. The upper square of this diagram follows from theorem 45(ii) and the following isomorphism :

ooy ad(@,i.)(Zx)

e ad(ji,j*)(Zg) : M(X/S) = Cone(M(X/S) M(D/S))[-1] =: M((X,D)/S)

o ad(jl,j*)(Zg) : M(X'/§) = Cone(M(X'/5) 24071 Ex), M(D'/8))[-1] = M((X’, D)/3)

where i : D < X, i’ : D < X denote the closed embeddings and j : X < X, j' : X’ < X’ the open
embeddings. On the other side, the lower square follows from the absolute case.
O
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