

Towards a seamless approach for photovoltaic forecasting

Thomas Carriere, George Kariniotakis

EGU2020 Sharing Geosciences Online

Large variety of forecasting products required for electricity markets:

- PV power forecasting models are often designed for one specific horizon/resolution
- In this work we propose a single model to cover all PV forecasting products

This effectively simplifies the usage of PV power forecasts in several decision-making processes

Motivation

- Proposition based on the Analog Ensemble (AnEn) method
 - Combine heterogenous sources of input
 - Forecasts adapted to market time frames:
 - Provide both intra-day and day-ahead accurate forecasts
 - Provide forecasts with both high (i.e. 5 minutes) and low (i.e. 30 minutes) temporal resolutions
 - Provide forecasts starting at any time of the day
 - > As fast as possible
 - Probabilistic forecasts for decision under uncertainty
 - Already present in the state-of-the-art
 - To implement
 - To check after implementation

• To achieve short-term forecasts:

- Measurements for very short-term
- Satellite data for short-term

Source: Solar Training 2016, OIE- Transvalor

Standard AnEn model:

The weights w_i are optimized on a training set ("wrapper")

B T

We propose a "filter" approach to compute the weights directly from the history without an optimization loop

When *h* is the forecast horizon:

· · · · · ·

• The weights w_i^h are dependent on the forecast horizon.

B 7

- Satellite data: Estimation of GHI time series for each pixel from geostationary satellite images following [Blanc2011]
 - Very large number of redundant features
 - > Selection of representative pixels based on MI with the measurements

[Blanc2011]: Philippe Blanc et al., *The HelioClim project : Surface solar irradiance data for climate applications*, In: Remote Sensing 3.2 (2011)

-10

30

10

20

Horizon (hours)

Evaluation of the AnEn model

- Evaluation of the AnEn model on a portfolio composed of 12 PV plants ranging from 2 to 10 MW.
- Measurements with 5- and 30-minute resolutions are used

- Benchmark models are implemented:
 - Day-ahead forecasts: Quantile Random Forest (QRF) and Bayesian Automatic Relevance Determination (ARD)
 - Intra-day forecasts: Clear-sky index persistence and integrated auto-regressive (ARIMA) model

Result – 30 minute resolution

 Forecast performance for day-ahead forecasts (30-minute resolution, plant n°4):

Reliability diagram: nominal vs. observed quantiles

CRPS: Continuous Ranked Probability Score, normalized by installed PV capacity

Result – 5 minute resolution

installed power

 Forecast performance for intra-day 5-minute forecasts. QRF and ARD models are discarded due to computational cost:

Computing time required for providing a forecast for a given horizon in seconds

	30-minute resolution		5-minute resolution	
	Training	Forecasting	Training	Forecasting
AnEn	-	1.87	-	8.77
Persistence 1	-	5e-3	-	6e-3
Persistence 2	-	5e-3	-	6e-3
ARIMA	9.2e-2	2.5e-7	10e-2	3.7e-3
QRF	4.26	1.3e-2	68.0	4e-2
ARD	10.75	10e-3	154	1e-3

Conclusions and perspectives

- A single forecasting model that can quickly provide accurate forecast for temporal resolutions from 5-minute to 1-hour, and horizon from 5 minutes to 3 hours
- Additional types of data could be used:
 - All-sky imagers
 - Neighboring plants or weather stations
 - Infra-red satellite data
 - Commercial forecasts from third entities
- More details in: T. Carriere, C. Vernay, S. Pitaval, F.P. Neirac, G. Kariniotakis, A Novel Approach for Probabilistic Photovoltaic Power Forecasting Covering Multiple Time Frames, IEEE Transactions on Smart Grid