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Abstract: This paper presents a rigorous definition of the isolability of a fault in a flat system
whose flat outputs are measured by sensors that are subject to faults. In particular, if only one
sensor or actuator is faulty at a time, we show that the isolation of faults can be achieved if a
pair of flat outputs satisfies some independence condition. A detailed characterization of this
condition is presented. Finally, the pertinence of the isolability concept is demonstrated on the
example of a three tank system.
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1. INTRODUCTION

The fault detection and isolation (FDI) problem has been
introduced in automatic control as a paradigm for de-
signing algorithms able to detect the outbreak of faults
and isolate their causes. Various FDI techniques have
been developed and can be found in survey papers, see
e.g. (Zhou et al., 2014; Thirumarimurugan et al., 2016).
The first proposed method is the hardware redundancy in
which multiple sensors and actuators are used to measure
and control a particular variable (Chen et al., 2015). The
drawbacks of this method are the extra equipment, mainte-
nance cost and additional space required to accommodate
the equipment. This approach was improved later on by
the introduction of the model-based analytical redundancy
method, based on the notion of generating residual signals.
These residues are defined as the difference between the
measured variables and the estimated ones. In the case of
no fault, and in the ideal case of noise free observations,
the values of the residues are equal to zero. In the non
zero case, the estimation method must be specified, see
e.g. the observer-based approach (Tousi and Khorasani,
2011), the parity-space approach (Diversi et al., 2002) or
the Kalman-based approach (Izadian and Khayyer, 2010).
However, in these approaches, a sensor may be wrongly
declared faulty because of the lack of efficiency of the
estimation algorithm, hence the importance of the notion
of detectability.

Recently, the flatness property has been introduced into
the repertoire of FDI techniques (Suryawan et al., 2010;
Mart́ınez-Torres et al., 2014). Here, residues are calculated
using the differential flatness property. Roughly speaking,
let us recall that a system is said to be flat if all the

state and input variables can be expressed as functions
of a particular variable, called flat output, and a finite
number of its successive derivatives. The method presented
in Suryawan et al. (2010) is dedicated to linear flat systems
and uses the properties of B-spline parameterisation to
estimate the time derivatives of the flat output, which
may not be defined because of the presence of noise. This
derivative estimation can take time and cause a delay in
the reconfiguration process. In order to overcome these is-
sues, a high-gain observer has been proposed in Mart́ınez-
Torres et al. (2014) to evaluate the time derivative of the
noisy signals. The observer may be complemented by a
low-pass filter to improve its performance. Note that the
latter method can be applied to both, linear and nonlinear
flat systems.

In the present flatness-based FDI approach, an effort is
made to dissociate the theoretical isolability property,
based on residue computation, and the estimation process.
For this purpose, we compute the residues between the
measurements and their expression exactly obtained from
the measured flat outputs and their derivatives estimated
online. The treatment of these residues slightly differs
from the ones of the previous approaches (Kóscielny et al.,
2016): every sensor and actuator admits a fault alarm sig-
nature, i.e. a number of residues affected by a fault on this
sensor/actuator and a fault on a sensor/actuator is isolable
if its corresponding fault alarm signature is distinct. In
practice, the treatment of these residues is adapted, in the
presence of noise, by introducing a threshold and an esti-
mation process as in the previous approaches (Mart́ınez-
Torres et al., 2013). Moreover, we show that it is possible
to increase the isolability of faults by considering several
flat outputs, at the condition that they are independent,



thus completing in a rigorous way some heuristic results
of Mart́ınez-Torres et al. (2013). These results are applied
to a three tank FDI problem where we compute two inde-
pendent flat outputs that allow the isolation of all possible
simple faults (only one faulty sensor or actuator at a time).

The main contributions of this paper are the above men-
tioned rigorous definition of isolability of faults and the
characterization of the flat outputs to be used in the fault
isolation.

This paper is organized as follows: section 2 introduces
the basic concepts of FDI for nonlinear differentially flat
systems and their definitions. Section 3 discusses the con-
ditions for independence between flat outputs. Section 4
deals with the application of this FDI approach to the
three tank system. Finally, section 5 concludes the paper.

2. FLATNESS-BASED FDI

2.1 Differentially Flat System

Consider the following nonlinear system{
ẋ = f(x, u)

y = h(x, u)
(1)

where x, the vector of states, evolves in a n-dimensional
manifold X, u ∈ Rm is the vector of inputs, y ∈ Rp
is the measured output, m ≤ n, rank(∂f∂u ) = m and

m ≤ p. Let (x, u) , (x, u, u̇, ü, . . .) be a prolongation of
the coordinates (x, u) to the manifold of jets of infinite

order X , X × Rm∞ (Fliess et al., 1999), (Levine, 2009,
Chapter 5).

In the sequel, we systematically denote by ξ , (ξ, ξ̇, ξ̈, . . .)

the sequence of infinite order jets of a vector ξ and ξ
(α)

,
(ξ, ξ̇, ξ̈, . . . , ξ(α)) the truncation at the finite order α ∈ N
of the previous sequence.

The system (1) is flat at a point (x0, u0) ∈ X if and only
if there exist a vector z = (z1, . . . , zm) ∈ Rm, two integers
ρ and ν and mappings ψ defined on a neighbourhood
V of (x0, u0) in X and ϕ = (ϕ0, ϕ1, . . .) defined on a

neighbourhood W ⊂ ψ(V) of z , (z, ż, z̈, . . .) , ψ(x0, u0)
in Rm∞ such that:

(1) z = ψ(x, u(ν)) ∈ W
(2) z1, . . . , zm and their successive derivatives are linearly

independent in W
(3) The state x and the input u are functions of z and its

successive derivatives:

(x, u) = (ϕ0(z(ρ)), ϕ1(z(ρ+1))) ∈ prX×Rm(V) (2)

where prX×Rm(V) is the canonical projection from V
to X × Rm

(4) The differential equation ϕ̇0(z) = f(ϕ0(z), ϕ1(z)) is
identically satisfied in W.

The vector z is called flat output of the system. The
mappings ψ and ϕ are called Lie-Bäcklund isomorphisms
and are inverse of one another.

Remark 1. The property of flatness is not defined globally.
The Lie-Bäcklund isomorphisms ψ and ϕ are non unique
and only locally defined. Thus, there might exist points
in X where no such isomorphisms exist or, otherwise

stated, where the system is not flat. It has been proven in
Kaminski et al. (2018) that the set of intrinsic singularities
contains the set of equilibrium points of the system that
are not first order controllable.

2.2 Fault Detection and Isolation

For the flat system (1), we suppose that the vector ys =
(ys1, . . . , y

s
p)
T is measured by sensors S1, . . . ,Sp respec-

tively. We also suppose that the flat output z is part of
these measurements according, without loss of generality,
to

zs = (ys1, . . . , y
s
m)T . (3)

Moreover, the value of the input vector u = (u1, . . . , um)T ,
corresponding to the actuators A1, . . . ,Am, is assumed
to be available at every time. We now propose a new
definition of the notion of residue that generalizes the one
introduced by Mart́ınez-Torres et al. (2014).

According to (2), the state and input read:

xz = ϕ0(zs
(ρ)

), uz = ϕ1(zs
(ρ+1)

) (4)

where the superscript z indicates that they are evaluated
as functions of the measurements zs and, according to (1),

yzk , hk(ϕ0(zs
(ρ)

), ϕ1(zs
(ρ+1)

)) (5)

is the virtual value of yk computed via the measured flat
output zs.

Note that the first m components of yz are equal to the
corresponding components of zs:

yz = (zs, h̃(ϕ0(zs), ϕ1(zs)))T (6)

with h̃ = (hm+1(ϕ0(zs), ϕ1(zs)), . . . , hp(ϕ0(zs), ϕ1(zs)))T .

Definition 1. The kth-sensor residue RSk
and lth-input

residue RAl
, for k = 1, . . . , p and l = 1, . . . ,m, are given

by:
RSk

= ysk − yzk, RAl
= ul − uzl . (7)

In total, we have p+m residues for a single flat output zs

and we denote the full residue vector by:

r = (RS1
, . . . , RSm

, RSm+1
, . . . , RSp

, RA1
, . . . , RAm

)T

= (r1, . . . , rm, rm+1, . . . , rp, rp+1, . . . , rp+m)T (8)

and according to (6)

r = (0, . . . , 0, RSm+1
, . . . , RSp

, RA1
, . . . , RAm

)T

= (0, . . . , 0, rm+1, . . . , rp, rp+1, . . . , rp+m)T . (9)

Measured and calculated variables are illustrated in Fig. 1.

A residue who is always equal to zero indicates that it
cannot be affected by faults on one of the sensors or
actuators. Then, we eliminate it and truncate the residue
vector to keep the last p components only. This truncated
vector is denoted by rτ :

rτ = (RSm+1 , . . . , RSp , RA1 , . . . , RAm)T

= (rτ1 , rτ2 , . . . , rτp)T . (10)

Hypothesis: From now on, we assume that there is only
one fault at a time affecting the sensors or actuators.

In practice, due to the presence of noises on sensors and
actuators, the successive derivatives of zs may not be
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Fig. 1. Flatness-based residual generation

defined. We assume that they are computed via a high-
gain observer, possibly completed by a low-pass filter as in
Mart́ınez-Torres et al. (2014) to improve its robustness.
Moreover, a threshold is associated to each residue. In
the non faulty case, the residues in (10) will not exceed
their thresholds. If, otherwise, at least one of the residues
exceeds its threshold then a fault alert is launched. If
several residues in (10) trigger an alert at the same time, a
fault alarm signature, defined bellow, is required to isolate
the fault.

For this purpose, we introduce the so-called signature
matrix :

Definition 2. (Signature matrix). Given the vector of
residues rτ defined in (10) and ζ = (ys1, . . . , y

s
p, u1, . . . , um)T

∈ Rp+m the vector of available measurements. We define
by the signature matrix associated to zs, the matrix S
given by:

S =

σ1,1 σ1,2 . . . σ1,p+m...
... . . .

...
σp,1 σp,2 . . . σp,p+m

 (11)

with

σi,j ,


0 if

∂rτi

∂ζ
(%)
j

= 0 ∀% ∈ {0, 1, . . .}

1 if ∃ % ∈ {0, 1, . . .} s.t.
∂rτi

∂ζ
(%)
j

6= 0
(12)

Remark 1. Each column Σj of the signature matrix S
indicates whether a residue rτi is or is not functionally
affected by a fault on the measurement ζj . So in (12),
σi,j = 0 means that the residue rτi is not affected by a
fault on the measurement ζj and σi,j = 1 means that the
residue may be affected.

Definition 3. A column Σj of the signature matrix S is
called fault alarm signature or simply signature, associated
to the sensor/actuator ζj .

From the signature matrix S we propose the following
definitions of detectability and isolability in the flatness
context:

Definition 4. (Detectability). A fault on a sensor/actuator
ζj is detectable if, and only if there exists at least one
i ∈ {1, . . . , p} such that σi,j = 1.

Definition 5. (Isolability). A fault on a sensor Sk,
k = 1, . . . , p, is said isolable if, and only if, its correspond-
ing fault alarm signature Σk in the signature matrix S is
distinct from the others, i.e.

Σk 6= Σj , ∀j = 1, . . . , p+m, j 6= k. (13)

An isolable fault on the actuator Al, for l = 1, . . . ,m, is
defined analogously:

Σp+l 6= Σj , ∀j = 1, . . . , p+m, j 6= p+ l. (14)

We define µ as the number of distinct signatures of the
signature matrix S associated to zs. Then, µ is the number
of isolable faults associated to zs.

A more general, but much more complicated, definition of
isolability in the structured residual context of polynomial
systems has been introduced in Staroswiecki and Comtet-
Varga (2001), based on elimination techniques.

Definition 5 means that if the signature matrix S has
two identical signatures, i.e. Σi = Σj , for two different
sensors/actuators ζi 6= ζj , then we cannot make a decision
on the faulty device, hence the fault is detected but cannot
be isolated. Thus, the number of isolated faults is equal to
the number of distinct signatures in the matrix S.

2.3 The Example of the three tank System

We consider a three tank system made up with three
cylindrical tanks of cross-sectional area S, connected to
each other by means of cylindrical pipes of section Sn,
and two pumps P1 and P2 that supply tanks T1 and T2.
These three tanks are also connected to a central reservoir
through pipes (see Fig. 2).

The model is given by:

ẋ1 = −Q10(x1)−Q13(x1, x3) + u1 (15)

ẋ2 = −Q20(x2) +Q32(x2, x3) + u2 (16)

ẋ3 = Q13(x1, x3)−Q32(x2, x3)−Q30(x3) (17)

where the state variables xi, i = 1, 2, 3 represent the water
level of each tank, Qi0, i = 1, 2, 3 the outflow between each
tank and the central reservoir, Q13 is the outflow between
tanks T1 and T3 and Q32 the outflow between tanks T3 and
T2, u1 and u2 are the incoming flows by unit of surface of
each pump.

We assume the following inequalities to avoid singulari-
ties 1 :

x1 > x3 > x2.

We consider that the valves connecting tanks T1 and T3
with the central reservoir are closed, i.e. Q10 ≡ 0 and
Q30 ≡ 0. The expressions of Q13, Q32 and Q20 are given
by:

Q13(x1, x3) = az1
√

2g(x1 − x3) (18)

Q20(x2) = az2
√

2g(x2) (19)

Q32(x2, x3) = az3
√

2g(x3 − x2) (20)

1 According to the Remark 1, the point x ∈ X s.t. x1 = x2 = x3 is
an equilibrium point which is not first order controllable, then it is
a point of intrinsic flatness singularity.



Fig. 2. Three Tank System, Source: (Noura et al., 2009)

where azr, r = 1, 2, 3, is the flow coefficient and g the
gravitational force. Each tank Ti is equipped with a sensor
Si to measure its level xi. Hence, the measured output is:

ys = (ys1, y
s
2, y

s
3)T = (xs1, x

s
2, x

s
3)T (21)

The system (15)-(16)-(17) is flat with z = (x1, x3)T =
(z1, z2)T as flat output. The measured flat output is then
given by zs = (ys1, y

s
3)T = (zs1, z

s
2)T . In order to construct

the vector of residues, using (4) and (5), we set:

yz1 = zs1

yz2 = zs2 −
1

2g

(az1√2g(zs1 − zs2)− żs2
az3

)2
yz3 = zs2

uz1 = żs1 + az1

√
2g(zs1 − zs2)

uz2 = ẏz2 − az3
√

2g(zs2 − yz2) + az2
√

2gyz2 .

According to (7), the vector of residues, associated to zs,
is then given by:

r =


RS1

RS2

RS3

RA1

RA2

 =


ys1
ys2
ys3
u1
u2

−

yz1
yz2
yz3
uz1
uz2

 . (22)

However, residues RS1
and RS3

are identically zero:

RS1 = ys1 − yz1 = zs1 − zs1 = 0

RS3
= ys3 − yz3 = zs2 − zs2 = 0 (23)

hence, according to (10), the vector r is truncated to:

rτ = (RS2
, RA1

, RA2
)T = (rτ1 , rτ2 , rτ3)T . (24)

Therefore, the signature matrix S, associated to zs, is
constructed as follows:

– All the residues in (24) depend on the measurement
of zs = (ys1, y

s
3)T then the first and the third columns

of the signature matrix contain only ones:

σi,1 = σi,3 = 1,∀i = 1, 2, 3

– Only residue rτ1 depends on ys2 and its successive
derivatives, then the second column will be such that:

σ1,2 = 1 and σi,2 = 0, i = 2, 3

– Since rτ2 depends only on u1 and rτ3 depends only on
u2, then column 4 and column 5 of S are such that:

σ2,4 = 1 and σi,4 = 0 ∀i = 1, . . . , 3, i 6= 2

and

σ3,5 = 1 and σi,5 = 0 ∀i = 1, . . . , 3, i 6= 3

respectively.

Hence, the signature matrix, associated to rτ , is given by:

S =

(
1 1 1 0 0
1 0 1 1 0
1 0 1 0 1

)
. (25)

According to definition 4, all faults on the three tank
system’s sensors and actuators are detectable. Since fault
alarm signatures Σ2, Σ4 and Σ5 are distinct, then, accord-
ing to definition 5, faults on sensor S2 and actuators A1

and A2 are isolable. This reflects the fact that if, at some
point during system operation, a fault alarm is launched
with the signature Σ2 then we conclude that the sensor
S2 is faulty. However, if we obtain a signature like Σ1, the
fault could be on the sensor S1 or S3, since signatures Σ1

and Σ3 are identical. Then, a fault on S1 or S3 cannot be
isolated. To conclude, this example shows that the isola-
bility property is strongly conditioned by the dependence
of the flat output with respect to the measured variables.
This motivates the study of the choice of flat outputs of
the next section.

Remark 1. In Nagy et al. (2009), it has been shown that
system (15)-(16)-(17) is observable through x1 only and
that x2 and x3 can be estimated using x1 given the
measurements of u1 and u2, leading to different isolability
results. The reader may refer to this article for more
details. Note that, here, the measurements of u1 and u2
are not necessary to guarantee the x2-isolability.

3. FLAT OUTPUT SELECTION

In order to get more isolabilty on systems sensor and
actuator, the authors in Mart́ınez-Torres et al. (2014)
propose to increase the number of residues by using several
flat outputs. These flat outputs must be independent
in the sense that when we use them together we gain
more isolability of faults. In this section, we propose
a characterization of the relation between different flat
outputs using a so-called augmented signature matrix. This
characterization leads to a decision concerning the choice
of flat outputs that are useful for the isolability.

According to definition 5, the number µ of isolated faults
by a flat output z is equal to the number of distinct
signatures Σk of its signature matrix. Then, in order to get
more isolability of faults, we need to increase the number
of distinct signatures. This is possible when different
projections of the system’s output y are available that are
flat outputs. For this purpose, we introduce definitions 6
and 7.

In the following, we denote the ith element of the set of q
flat output vectors Zi by Zi = (zi1, . . . , zim)T .

Definition 6. (Augmented signature matrix). Let Z1, . . . ,
Zq be q different flat output vectors of the flat system (1),
such that Zi = prRm(y). The augmented signature matrix

S̃ associated to Z1, . . . , Zq is defined by:

S̃ =


S1

S2

...
Sq

 (26)



where Si is the signature matrix associated to the flat
output vector Zi.

The choice of flat output vectors is not arbitrary. They
must be independent in the sense given by the following
definition:

Definition 7. (Independence). Let S̃ be the augmented
signature matrix associated to Z1 and Z2:

S̃ =

(
S1

S2

)
,

µi, i = 1, 2, the number of distinct signatures of the
matrix Si and µ̃ the number of distinct signatures of

the augmented matrix S̃. We say that Z1 and Z2 are
independent if, and only if

µ̃ > µ1 and µ̃ > µ2. (27)

Definition 7 means that two flat outputs are indepen-
dent if, by using them together, the number of distinct
signatures increases which corresponds to the number of
isolated faults. If the condition (27) is not satisfied then the
combination of Z1 and Z2 is not helpful for the isolability,
and we have to find another combination by calculating
more flat outputs. To conclude, the condition of full isola-
bility is given by the following proposition:

Proposition 2. Let Z1, . . . , Zq be q different flat output
vectors of the system (1). A full isolability of faults on
sensors and actuators is achieved if the augmented matrix

S̃ =


S1

S2

...
Sq


has p+m distinct signatures, i.e. µ̃ = p+m.

4. APPLICATION TO THE THREE TANK SYSTEM

Back to the three tank system presented in section 2.3, we
denote by Z1 the flat output vector Z1 = (z11, z12)T =
(x1, x3)T . The corresponding vector of residues is given by
(24). We recall the signature matrix associated to Z1, and
we denote it by S1:

S1 =

(
1 1 1 0 0
1 0 1 1 0
1 0 1 0 1

)
(28)

We also recall that, according to definition 5, faults on
sensors S1 and S3 cannot be isolated. The number of
distinct signatures of S1 is µ1 = 3.

In order to increase the number of isolable faults, we
consider Z2 = (z21, z22)T = (x2, x3)T another flat output
vector of the three tank system. It is measured by sensors
S2 and S3, i.e. Zs2 = (zs21, z

s
22)T = (ys2, y

s
3)T . To construct

the vector of residues associated to Zs2 and its signature
matrix, we set, using (4) and (5):

yZ2
1 = zs22 +

1

2g

(az3√2g(zs22 − zs21) + żs22
az1

)2
yZ2
2 = zs21

yZ2
3 = zs22

uZ2
1 = żs22 + az1

√
2g(zs21 − zs22)

uZ2
2 = ẏZ2

2 − az3
√

2g(zs22 − y
Z2
2 ) + az2

√
2gyZ2

2 .

Therefore, as shown for the flat output Z1, residues RZ2

S2

and RZ2

S3
are identically zero and the truncated vector of

residues (10) reads:

rZ2
τ =

RZ2

S1

RZ2

A1

RZ2

A2

 =

(
ys2
u1
u2

)
−

yZ2
2

uZ2
1

uZ2
2

 . (29)

Hence, the signature matrix associated to Z2 is given by:

S2 =

(
1 1 1 0 0
0 1 1 1 0
0 1 1 0 1

)
. (30)

Signatures Σ1, Σ4 and Σ5 in the matrix S2 are distinct,
then, according to definition 5, faults on sensor S1 and
actuators A1 and A2 are isolable by the flat output Z2.
Moreover, the number of distinct signatures of S2 is µ2 =
3. However, since signatures Σ2 and Σ3 are identical, then
faults on sensors S2 and S3 cannot be isolated.

It remains to be verified whether the two flat outputs Z1

and Z2 are independent.

The augmented signature matrix associated to Z1 and Z2

is given by:

S̃ =


1 1 1 0 0
1 0 1 1 0
1 0 1 0 1
1 1 1 0 0
0 1 1 1 0
0 1 1 0 1

 . (31)

The number of distinct fault alarm signatures of S̃ is µ̃ = 5,
and we have

µ̃ > µ1 and µ̃ > µ2.

Then, according to definition 6, the flat output vectors
Z1 and Z2 are independent. Moreover, since µ̃ = p + m,
then flat output vectors Z1 and Z2 ensure full isolability
of faults on the three tank system.

Simulation results that confirm the effectiveness of this
approach can be found in Mart́ınez-Torres et al. (2013).

5. CONCLUSION

The current paper introduces a novel and rigorous defini-
tion of the isolability of faults affecting a system’s sensors
and actuators, using the flatness-based FDI approach. The
described condition of isolability provides an efficient way
to select flat outputs that are useful for fault isolation.
Our results are tested and validated using the three tank
system. Future work should focus on the development of a
method that calculates independent flat outputs directly.
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