. Bigframe-user-guide, , 2013.

S. Chaudhuri and U. Dayal, An overview of data warehousing and olap technology. SIGMOD Rec, pp.65-74, 1997.

M. Chevalier, M. E. Malki, A. Kopliku, O. Teste, and R. Tournier, Implantation not only sql des bases de données multidimensionnelles, 4eme Seminaire de Veille Strategique, p.0, 2015.

M. Chevalier, M. E. Malki, A. Kopliku, O. Teste, and R. Tournier, Implementation of multidimensional databases in column-oriented nosql systems, East European Conference on Advances in Databases and Information Systems, pp.79-91, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01363342

M. Chevalier, M. E. Malki, A. Kopliku, O. Teste, and R. Tournier, Benchmark for olap on nosql technologies comparing nosql multidimensional data warehousing solutions, 2015 IEEE 9th International Conference on Research Challenges in Information Science (RCIS), pp.480-485, 2015.

B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears, Benchmarking cloud serving systems with ycsb, Proceedings of the 1st ACM Symposium on Cloud Computing, pp.143-154, 2010.

J. Darmont, Data warehouse benchmarking with DWEB, of Advances in Data Warehousing and Mining, vol.3, pp.302-323, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00701370

E. Dede, M. Govindaraju, D. Gunter, R. S. Canon, and L. Ramakrishnan, Performance evaluation of a mongodb and hadoop platform for scientific data analysis, Proceedings of the 4th ACM Workshop on Scientific Cloud Computing, pp.13-20, 2013.

K. Dehdouh, O. Boussaid, and F. Bentayeb, Columnar NoSQL Star Schema Benchmark, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01492733

A. Ghazal, T. Rabl, M. Hu, F. Raab, M. Poess et al., Bigbench : Towards an industry standard benchmark for big data analytics, Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data, SIGMOD '13, 2013.

M. Iu and W. Zwaenepoel, Hadooptosql : A mapreduce query optimizer, Proceedings of the 5th European Conference on Computer Systems, EuroSys '10, 2010.

K. Lee, Y. Lee, H. Choi, Y. D. Chung, and E. B. Moon, Parallel data processing with mapreduce : A survey, SIGMOD Rec, vol.40, issue.4, 2012.

R. Lee, T. Luo, Y. Huai, F. Wang, Y. He et al., Ysmart : Yet another sqlto-mapreduce translator, 31st International Conference on Distributed Computing Systems, 2011.

A. B. Moniruzzaman and S. A. Hossain, Nosql database : New era of databases for big data analytics -classification, characteristics and comparison, 2013.

K. Morfonios, S. Konakas, Y. Ioannidis, and N. Kotsis, Rolap implementations of the data cube, ACM Comput. Surv, vol.39, issue.4, 2007.

R. Moussa, Tpc-h benchmarking of pig latin on a hadoop cluster, Communications and Information Technology (ICCIT), pp.85-90, 2012.

P. E. O'neil, E. J. O'neil, X. Chen, and E. S. Revilak, The star schema benchmark and augmented fact table indexing, Performance Evaluation and Benchmarking, First TPC Technology Conference, pp.237-252, 2009.

M. Poess, R. O. Nambiar, and D. Walrath, Why you should run tpc-ds : A workload analysis, Proceedings of the 33rd International Conference on Very Large Data Bases, p.7, 2007.

F. Ravat, R. O.-teste, G. Tournier, and . Zurfluh, Algebraic and graphic languages for olap manipulations, Strategic Advancements in Utilizing Data Mining and Warehousing Technologies : New Concepts and Developments : New Concepts and Developments, p.60, 2009.

M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos, N. Hachem et al., The end of an architectural era : (it's time for a complete rewrite), Proceedings of the 33rd International Conference on Very Large Data Bases, p.7, 2007.

J. Zhang, A. Sivasubramaniam, H. Franke, N. Gautam, Y. Zhang et al., Synthesizing representative i/o workloads for tpc-h, Software, IEE Proceedings, pp.142-142, 2004.

, In particular, existing benchmarks for multidimensional data warehouses need to be adapted to increasing volume and diversity of data. In this context, we propose a new benchmark dedicated to data warehouses that can support different information systems (relational and NoSQL) and data models (snowflake, star, flat) structured or non structured. In order to scale in volume, it supports parallel generation of data on multiple computers (cluster). It can generate diverse data structures, by supporting generation of multiple different schemas, Summary With the advent of Big Data technologies, there is a need for new benchmarks to evaluate information decision systems