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École Centrale de Nantes, France

CNRS UMR 6598

Email: guillaume.ducrozet@ec-nantes.fr

Pierre Ferrant

LHEEA Lab
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ABSTRACT

This paper presents the recent developments of the Spec-

tral Wave Explicit Navier-Stokes Equations (SWENSE) method

to extend its range of application to two-phase VOF solvers. The

SWENSE method solves the wave-structure interaction problem

by coupling potential theory and the Navier-Stokes (NS) equa-

tions. It evaluates the incident wave solution by wave models

based on potential theory in the entire computational domain,

leaving only the perturbation caused by the structure and the in-

fluence of the viscosity to be solved with CFD. The method was

proven in previous studies to be accurate and efficient for wave-

structure interaction problems, but it was derived for single-

phase NS solvers only. The present study extends the SWENSE

method by proposing a novel formulation which is convenient

to implement in two-phase NS solvers. A customized SWENSE

solver is developed with the open source CFD package Open-

FOAM. An improvement in accuracy and stability is observed in

wave simulations compared with conventional two-phase VOF

solvers. The horizontal force on a vertical cylinder in regular

waves is also calculated. First results show a good agreement

with the experiment on the first harmonic component.

NOMENCLATURE

u Velocity Field

p Pressure Field

α Volume of Fluid (VOF) Field

χ Variables without subscript represent the total solution

χI Subscript I represents the incident wave solution

χC Subscript C represents the complementary solution

INTRODUCTION

Using Computational Fluid Dynamics (CFD) softwares to

simulate wave-structure interaction is of great interest, since

CFD codes are able to consider more complex phenomena oc-

curring in the real world, i.e. the viscous effects, the violent free

surface deformation, etc., compared with potential theory based

methods.

However, simulating wave-structure interaction with a con-

ventional CFD tool is computational resource demanding. It

often requires a computational zone large enough both on the

upstream of the structure to prevent the disturbed waves travel-

ing back to the inlet boundary and a large damping zone on the
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downstream to avoid the wave reflections at the outlet boundary.

Although it is possible to reduce the damping zone’s size by giv-

ing the wave solutions at boundaries with domain decomposition

methods [1, 2], fine meshes are always needed to prevent exces-

sive numerical attenuation of incoming waves [3]. All of these

requirements make the computational cost of wave-structure in-

teraction problems with CFD tools expensive for practical appli-

cations.

To overcome this problem, the Spectral Wave Explicit

Navier-Stokes Equations (SWENSE) method was proposed to

reduce the computational cost of CFD by coupling the solution

from potential theory and the Navier-Stokes (NS) equations [4].

In this formalism, the incident wave solution is evaluated by a

dedicated model in the entire computational domain and is sub-

tracted from the NS equations, leaving only the perturbation

part caused by the viscosity and the presence of structures to

be solved with CFD. Since the incident wave solution is explic-

itly given, it is not influenced by the CFD’s resolution. Coarse

meshes can be used in the farfield region. A good mesh quality is

only necessary close to the structure, since in most cases a well

resolved disturbance field is only required near the structure. The

total number of cells to reach a given accuracy is reduced [5].

The original SWENSE method was proved in previous stud-

ies to be accurate and efficient in its original single-phase form

[6, 7]. Recently, a two-phase SWENSE method was proposed

[8]. However, the latter behaves differently from the original

SWENSE method: the incident waves are influenced by the mesh

quality. This is because it only decomposes the velocity field,

instead of subtracting the entire incident solutions from the NS

equations.

In the present study, the authors propose a novel two-phase

SWENSE method that complies with the original single-phase

SWENSE method. Mathematics proves that by using the novel

formulations, the incident waves are maintained regardless of

CFD’s resolution. The method is implemented in a two-phase

solver based on the Volume of Fluid (VOF) method using the

open-source CFD package OpenFOAM [9]. The method is tested

with two cases. The first concerns the propagation of regular

waves in a 2D wave tank. The second test deals with the calcula-

tion of the wave forces on a vertical cylinder.

The paper is organized as follows. In the first part, we in-

troduce briefly the SWENSE method in its original single-phase

form. The extension to two-phase solver is presented in detail in

the second part and is followed by its implementation in Open-

FOAM. Lastly, the two test cases are shown with discussions.

SINGLE-PHASE SWENSE METHOD

The SWENSE method decomposes the wave-structure inter-

action problem into an incident part and a complementary part:

1. the incident part concerns the propagation of the incident

waves in the computational domain without structures. This

solution is given directly by a dedicated wave model based

on potential theory;

2. the complementary part serves as a correction to the incident

part due to the disturbance caused by the viscosity and the

presence of the structures.

This decomposition is shown by Eqn.1 where a primitive field of

the flow χ (pressure, velocity, and free surface elevation) is di-

vided into the incident part χI and the complementary part χC. χI

is explicitly evaluated by the wave model; χC is to be calculated

by the CFD solver. The decomposition is also illustrated by Fig

1.

χ = χI +χC (1)

  Total    =    Incident    +      Complementary 

FIGURE 1: SWENSE DECOMPOSITION

The advantages of the SWENSE method are:

1. The accuracy of the incident waves: it is explicitly obtained

by a dedicated wave model so it is not influenced by the CFD

resolution;

2. The efficiency: for a given accuracy, the SWENSE method

can use coarser meshes in the farfield compared with the

conventional CFD methods;

3. The farfield boundary conditions are simple even in complex

irregular sea states: the complementary fields are forced to

vanish at the farfield boundary.

The governing equations of the single-phase SWENSE

method are derived via solution decomposition. The Euler equa-

tions behind the wave models are subtracted from the Navier-

Stokes equations, as follows [4, 6].

Navier-Stokes Equations

The Navier-Stokes equations for incompressible single-

phase flow are:
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∇.u = 0 (2)

∂u

∂ t
+u.∇u =−

∇p

ρ
+g+ν∇

2
u (3)

where u is the velocity, p is the pressure. ρ stands for the density

of water and ν stands for the kinematic viscosity. g stands for the

gravitational acceleration.

Euler Equations

The incident wave solution comes from the perfect fluid Eu-

ler equations, as follows:

∇.uI = 0 (4)

∂uI

∂ t
+uI .∇uI =−

∇pI

ρ
+g (5)

SWENSE Equations

Subtracting the Euler equations from the Navier-Stokes

equations, we obtain:

∇.(u−uI) = 0 (6)

∂ (u−uI)

∂ t
+(u−uI).∇(u−uI)+(u−uI).∇uI +uI .∇(u−uI)

=−
∇(p− pI)

ρ
+ν∇

2(u−uI)+ν∇
2
uI (7)

The last term vanishes as ∇
2
uI equals to zero when uI is

derived from potential wave theory.

Noting uC = u−uI and pC = p− pI , the governing equations

of the single-phase SWENSE method read:

∇.uC = 0 (8)

∂uC

∂ t
+uC.∇uC +uC.∇uI +uI .∇uC =−

∇pC

ρ
+ν∇

2
uC (9)

TWO-PHASE SWENSE METHOD

This section presents the development of the two-phase

SWENSE governing equations. Although the same idea as in

the single-phase SWENSE is followed, the extension of the

SWENSE method to two-phase solvers is not that straightfor-

ward, because a direct subtraction of the Euler equations from

the Navier-Stokes equations generates numerical instabilities. A

modification on the Euler equations is necessary and it is the vital

key to obtain a numerically stable form of the governing equa-

tions so that the method can be used by two-phase VOF based

CFD solvers.

Two-phase Navier-Stokes Equations

The Navier-Stokes equations for two-phase incompressible

flow, written with Volume of Fluid (VOF) method are:

ρ = αρw +(1−α)ρa (10)

µ = αµw +(1−α)µa (11)

∂α

∂ t
+u.∇α = 0 (12)

∇.u = 0 (13)

∂u

∂ t
+u.∇u =−

∇p

ρ
+g+ν∇

2
u (14)

where w and a stand for the properties in the water and in the air

respectively. The α is the VOF field representing the volume rate

of water in computational cells. It equals to 1 for a cell full of

water and equals to 0 when a cell is full of air.

Euler Equations

The SWENSE decomposition requires the incident wave so-

lution above the incident wave free surface, when the actual free

surface is above the incident one. Thanks to the spectral methods

used by SWENSE, the information above the incident wave free

surface can still be calculated and is continuous across the inter-

face. Moreover the results obtained from this treatment verifies

the Euler equations mathematically in the whole computational

domain. With the assumption that such result can be used as the

incident solution of the air phase, this method unifies the gov-

erning equations of incident waves in both air and water with the

single-phase Euler equations, as follows.

ρI = ρw (15)

∇.uI = 0 (16)

∂uI

∂ t
+uI .∇uI =−

∇pI

ρI

+g (17)

However, using directly Eqn.17 to derive the two-phase

SWENSE momentum equation causes stability problems. To

overcome this difficulty, a modified Euler momentum equation
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is proposed by introducing a different incident pressure p∗I :

p∗I = ρ
pI

ρI

(18)

so

∇p∗I = ∇(
ρ

ρI

pI) =
pI

ρI

∇ρ +
ρ

ρI

∇pI (19)

and

∇pI

ρI

=
∇p∗I

ρ
−

pI

ρI

∇ρ

ρ
(20)

Eqn.17 written in its modified version by using p∗I reads :

∂uI

∂ t
+uI .∇uI =−

∇p∗I
ρ

+
pI

ρI

∇ρ

ρ
+g (21)

SWENSE Equations

The two-phase SWENSE equations are obtained by sub-

tracting the modified Euler equations from the two-phase Navier-

Stokes equations. The continuity equation for SWENSE variable

is obtained directly by the subtracting Eqn.13 with Eqn.16.

∇.(u−uI) = 0 (22)

Noting uC = u− uI , the continuity equation using the comple-

mentary variable reads:

∇.uC = 0 (23)

Subtracting Eqn.21 from the two-phase Navier-Stokes equa-

tion Eqn.14, and using the notion of pC = p− p∗I , the two-phase

SWENSE momentum equation written with the complementary

variables is obtained as:

∂uC

∂ t
+uC.∇uC +uC.∇uI +uI .∇uC −ν∇

2
uC =−

∇pC

ρ
−

pI

ρI

∇ρ

ρ
(24)

The VOF field is not decomposed as α = αI +αC, because

it is difficult to define the value range of the complementary field

αC so that the boundedness of the total field α is ensured. In the

present method, the α field is transported by the total velocity

field u using the advection equation Eqn.12.

A good property of the SWENSE momentum equation is

that it keeps the accuracy of the incident waves regardless of the

mesh quality. Take a pure incident wave propagation as an ex-

ample. In CFD solvers, no disturbance of waves is expected if

the viscosity effect is negligible, i.e. the result of CFD should

equal to the incident wave solution given by potential theory at

all time. In the SWENSE formalism, that means the complemen-

tary fields remain zero. The following paragraph proves math-

ematically that the SWENSE momentum equation ensures this

characteristics.

Letting the initial value of uC and the pC equal to zero, all

the convective and source terms except the last one on the RHS

in the Eqn.24 can be canceled out. The last term is a product of
∇ρ
ρ and

pI

ρI
. The term

∇ρ
ρ equals to 0 except at the free surface.

Coincidentally, the term
pI

ρI
is 0 at the free surface according to

the boundary condition of the potential wave theory: the pressure

on the free surface equals to 0. So the last term also equals to 0.

It is obvious that the values of uC and pC equal to 0 at next time

step. So no disturbance waves will be generated by the CFD

solver.

IMPLEMENTATION IN TWO-PHASE VOF SOLVER

The proposed two-phase SWENSE method is implemented

in a two-phase VOF solver using the open-source CFD package

OpenFOAM.

OpenFOAM uses finite volume method with unstructured

polyhedral meshes. Its native solver for incompressible two-

phase flow, interFoam, adopts VOF method and MULES algo-

rithm to keep the boundedness of VOF field and the sharpness of

the interface. The PIMPLE algorithm is used to obtain converged

results of the velocity-pressure-VOF coupling at each time step.

Based on this solver, various software packages for water

wave modeling have been developed by the community of Open-

FOAM, including waves2Foam [10], foamStar [11], etc. These

packages use interFoam as the core solver and extend it with var-

ious wave theories and methods to generate and absorb waves at

the inlet and outlet of the computational domain.

The new solver foamStar-SWENSE is developed in the frame

of the foamStar package of Bureau Veritas. It replaces the

original two-phase Navier-Stokes equations with the two-phase

SWENSE equations. It adopts the relaxation zone method in

foamStar to attenuate the complementary waves in the farfield.

TEST CASE ONE: TWO-DIMENSIONAL WAVE TANK

The validity of the proposed method is tested firstly by a

regular wave propagation problem in a 2D wave tank. In order

to demonstrate the robustness and the accuracy of the method,

this test case is intentionally designed to have a large computa-

tional domain and last for a sufficiently long time to increase the

numerical difficulties.
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Test Case Setup

The test uses steady-state propagating waves with a mod-

erately high wave steepness (ka = 0.224). The incident wave

information is obtained by the solution method of Rienecker &

Fenton [12] based on the stream function wave theory. The wave

characteristics and the parameters are listed in Tab.1.

TABLE 1: WAVE CHARACTERISTICS FOR THE CASE OF

TWO-DIMENSIONAL WAVE TANK

Parameter Value

Wave length (λ ) 0.8082m

Wave period (T ) 0.7017s

Wave height (H) 0.0575m

Wave steepness (ka) 0.2235

Water depth (h) 0.6000m

Relative water depth (kh) 4.6645

H

✁

h

10✁

2.5H

x

y

p
e
ri
o
d
ic

p
e
ri
o
d
ic

Uc=0

Uc=0

FIGURE 2: COMPUTATIONAL DOMAIN

A two-dimensional rectangular computational domain is

used as illustrated by Fig.2. The waves travel from the left to

the right. Periodic boundary conditions are applied on the inlet

and the outlet boundaries. The origin of the coordinate system

locates at the left of the computational domain on the free sur-

face position at rest. The axis x points towards the direction of

the wave propagation and the axis y points upward. The length

of the computational domain equals to ten times the wave length

(λ ), and the height of the computational domain equals to the

water depth (h) plus 2.5 times the wave height (H). The dis-

cretization information is summarized in Tab.2.

The initial values of the VOF field, the incident wave ve-

locity, and the incident pressure fields are calculated using the

stream function wave theory. The initial conditions for the com-

plementary velocity field and the complementary pressure field

are set to zero.

For comparison, another simulation using a conventional

two-phase VOF solver foamStar is carried out. It is worth notic-

ing that the discretization used by foamStar is twice more refined

both in time and in space to stabilize the comparative simulation.

Indeed, the computation of foamStar always stops due to stability

problem if it uses the same discretization as foamStar-SWENSE.

TABLE 2: SIMULATION PARAMETERS

Parameter Value

Domain size (Lx ×Ly) 10λ × (h+2.5H)

Mesh size (∆x,∆y) λ/100,H/20

Simulation time (t) 40T

Time step (∆t) T/400

Numerical Results

The free elevation of the two numerical simulations are com-

pared with the reference value from the wave theory. Fig.3

plots the free surface elevation ζ against the distance from the

inlet x every ten wave periods. The surface elevation is non-

dimensionalized by the incident wave amplitude A and the dis-

tance is non-dimensionalized by the wave length λ .

It is observed that the free surface’s shape is well kept by

foamStar-SWENSE even after a very long simulation time. The

difference between the SWENSE method’s results and the refer-

ence values is not obvious during the entire 40 wave periods. On

the contrary, a discrepancy between the foamStar’s result and the

reference solution is remarkable after 20 wave periods.

A moving window harmonic analysis is applied to the time

history of the free surface elevation at the center of domain. Fig.

4 plots the first and second harmonic amplitudes against the sim-

ulation time. The amplitude is non-dimensionalized by the in-

cident wave amplitude and the time is non-dimensioanlized by

the wave period. For foamStar-SWENSE: Fig.4a shows the first

harmonic amplitude of the waves which is almost constant for

the first 20 wave periods. After 20 periods, the amplitude starts

to decrease; at the end of the simulation, the first harmonic am-

plitude is about 94% of the reference value. Fig.4b shows the

second harmonic component amplitude which is also well kept

with only 10% maximum difference from the target value. In the

contrary, the results of foamStar have larger oscillations in both

the first and second harmonic amplitudes.
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FIGURE 3: FREE SURFACE ELEVATION
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ELEVATION AT THE CENTER OF DOMAIN

Discussion

The above results illustrate the capability of the two-phase

SWENSE method for wave propagation problems and its advan-

tages over conventional VOF solvers. Despite the large com-

putational domain and the long simulation time, the two-phase

SWENSE method gives quite good results, showing a good ac-

curacy and stability.

However, it is worth noticing that the present study shows

a discrepancy between the simulation result and the incident

wave solution even though no difference is expected according

to SWENSE’s theory. This difference is due to the numerical er-

ror in evaluating the term
pI

ρI

∇ρ
ρ in Eqn.24. Although it equals to

zero in SWENSE’s theory, the numerical evaluation of the term

is non-zero on the Finite Volume mesh. The numerical error on

that term creates non-zero complementary fields as soon as the

simulation starts. Fig.5 shows the complementary velocity uC

and the complementary pressure field pC after the first time step

at t equals to ∆t. From the picture it is confirmed that the com-

plementary fields are created only near the free surface with very

small values. The maximum uC value is about 1% of the max-

imum incident velocity. This small error is not problematic in

most cases. However, it is responsible for the discrepancy ob-

served between the simulation result and the target value after a

long simulation.

Regarding foamStar, the numerical errors manifest from the

15th wave period approximately. This is because the solver has

more difficulties in balancing between the accuracy and stability

in such a large-domain and long-time simulation. The dilemma

is: for transient problems such as waves, both the temporal

and spatial discretization should be at least second-order accu-

rate [13, 14] which is the upper limit for Finite Volume Method

codes using unstructured meshes; moreover, the pure second-

order schemes create stability problems and are usually blended

with first order ones [9, 15]. The latter induces numerical damp-

ing and should be avoid if possible. The result is that despite a

more refined temporal and spatial discretization, obvious defor-

mations of the wave free surface shape still happens in the result

of foamStar after 20 wave periods. This is a common difficulty

for numerical wave tanks using the second-order finite volume

method.

The same difficulty remains for foamStar-SWENSE, since

the same temporal and spatial discretization schemes. However,

its influence is much smaller, as only the complementary part

is affected. The incident wave solution is maintained, leading

to a much more accurate and stable result. Compared with the

conventional two-phase CFD methods, the primary advantage of

the SWENSE method is an accurate and stable computation of

the incident waves, which is of vital importance in the simulation

of wave-structure interaction problems.

TEST CASE TWO: CYLINDER IN REGULAR WAVES

To validate the SWENSE method for the wave-structure in-

teraction problem, we consider a bottom-mounted surface pierc-

ing vertical circular cylinder in regular waves in this section.

The setup of the simulations follows the published experimen-

tal study [16].

The cylinder has a radius R equals to 0.03m, being fixed in

a water tank with depth h equals to 0.6m. The incident wave

frequency f equals to 1.425Hz. The wave steepness ka is 0.24.

The parameters of the test case are summarized in Tab.3.

The total simulation time corresponds to 15 wave periods.

The inline wave force on the cylinder is recorded and then an-

alyzed with moving window harmonic analysis. The first har-

monic amplitude is compared with the reference data. Three dif-

ferent resolutions are used in this study to investigate the conver-

gence property.
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FIGURE 5: COMPLEMENTARY FIELD AFTER THE FIRST TIME STEP

TABLE 3: WAVE PARAMETERS FOR

THE CASE OF CYLINDER IN WAVES

Parameter Value

Cylinder radius (r) 0.030m

Water depth (h) 0.600m

Wave frequency ( f ) 1.425Hz

Wave number (k) 8.172

Wave steepness (ka) 0.240

Relative water depth (kh) 4.903

Simulation time (t) 15T

Note: wave length and wave number are

calculated with the linear dispersion re-

lation [16]

Numerical Setup

A 3D cylindrical mesh is used. The origin of the coordi-

nate system locates at the free surface position of the water at

rest, axis x points to the incident wave propagation direction

and axis z points upward. The domains radius equals to 2 wave

lengths (R = 2λ ). The mesh is fine near the cylinder and grad-

ually enlarged along the radius direction. In the farfield, the re-

laxation zone with a length of 1.5λ is used to absorb the dis-

turbed waves, leaving a pure CFD zone with one wave length

r ∈ (−0.5λ ,0.5λ ). In the tangential direction, only half of the

domain is modeled by using the symmetric assumption. Along

the vertical axis, the computational domain extends from the tank

bottom at z =−0.60m until z = 2.5H in the air, with H = 2a be-

ing the wave height. In this direction, the meshes are uniformly

refined in the zone near the air-water interface. The size of this

zone is z ∈ (−1.5a,1.5a). Out of this refined zone, the mesh size

increases gradually.

The information of the finest discretization is summarized

in Tab.4 and the grid is illustrated by Fig.6. The other two dis-

cretization are derived from this setup by enlarging the grid size

and time step proportionally. The refinement factor is approxi-

mately 1.4. The information about them is shown in Tab. 5.

Results and Discussion

The time history of the horizontal force on the cylinder is

firstly recorded and analyzed by the moving window harmonic

analysis. The amplitude of the first harmonic component is ex-

tracted and compared with the experimental data [16] in Fig.7.

The non-dimensional first harmonic amplitude is defined as fol-

lows.

F
′

1 =
F1

ρgR3
· (

R

A
) (25)

The first order amplitudes at steady state are extracted. The
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TABLE 4: FINEST DISCRETIZATION INFORMATION

Parameter Value

Domain size (Lr ×Lθ ×Lz) 2λ ×180× (h+5a)

Grids in radial direction (nr) 100

Grids in tangential direction (nθ ) 80

Grids in vertical direction (nz) 136

Grids in one wave amplitude (a/∆z) 12

Time steps in one wave period (T/∆t) 400

FIGURE 6: GRID FOR CYLINDER IN WAVES

results are 6.09, 6.23, and 6.30 for the discretization number 1, 2

and 3.

In terms of the accuracy, the results show a good agreement

with the experimental data. The relative differences compared

with the experimental data are -2.71%, -0.48% and 0.64% for

the coarsest to the finest resolution.

Regarding the efficiency, the necessary number of cells is

relatively small compared with conventional two-phase VOF

solvers [11] where the recommended mesh is Cartesian with at

least 60 cells per wave length [17]. Fig.8 plots the first harmonic

amplitude of the in-line force against the number of cells for the

present study and the reference results from [11] using foam-

Star, a conventional two-phase VOF solver in OpenFOAM. The

necessary number of cells to achieve a given accuracy is much

smaller for foamStar-SWENSE than foamStar. The reduction of

cell number leads to shorter computational time which is a sec-

ond key advantage of the SWENSE method.

TABLE 5: DISCRETIZATIONS FOR CONVERGENCE

STUDY

Index
Representative mesh information Time step

Total cells Cells per wave amplitude T/∆t

1 88000 6 200

2 246512 9 285

3 668000 12 400

0 3 6 9 12 15

t/T

5.5

5.75

6
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1
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FIGURE 7: FIRST HARMONIC AMPLITUDES COMPARED

WITH THE EXPERIMENTAL DATA

CONCLUSION

The present paper reported the latest developments of the

SWENSE method in coupling wave models and two-phase VOF

CFD solvers for wave-structure interaction problems. The two-

phase SWENSE equations were mathematically derived. Af-

ter being implemented in OpenFOAM, the method was tested

through two cases. The 2D wave tank case demonstrated the ca-

pability of the new method to solve wave propagation problem;

an improvement of stability and accuracy was observed. In a first

step of validation, the method is tested on calculating wave forces

on a vertical cylinder. The necessary mesh number to achieve a

given accuracy was proven to be smaller by using the SWENSE

method than using conventional two-phase VOF methods. The

efficiency of the proposed method to solve wave-structure inter-

action problems was demonstrated.
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ORDER AMPLITUDES OF HORIZONTAL FORCE
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