LES Modelling of the Impact of the Topography on Large-scale Exchange Flow in the Strait of Gibraltar
Margaux Hilt, Laurent Roblou, Cyril Nguyen, Patrick Marchesiello, Florian Lemarié, Swen Jullien, Franck Dumas, Laurent Debreu, Xavier Capet, Lucie Bordois, et al.

To cite this version:

HAL Id: hal-02884740
https://hal.archives-ouvertes.fr/hal-02884740
Submitted on 30 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Detecting coherent turbulent structures
Billows of primary shear instabilities are detected for positive values of Q-parameter, second invariant of velocity gradient:

\[Q = -\frac{1}{2} \frac{\partial u}{\partial x_2} \frac{\partial v}{\partial x_1} \]

In outflowing conditions, patches of \(Q > Q_{crit} \) appear west of Camarinal Sill at the shear interface and are characterized by a roll-up of salinity. They are advected westward by the Mediterranean outflow.

Detection of Hydraulic Jump
Flow critical point:

\[F = \frac{v}{c} \geq 1 \]

Interface discontinuity:

\[\Delta u = -u_1 \frac{\partial H}{\partial x_2} \Delta b_2 \]

\[\Delta u_0 = -u_1 \frac{\partial H}{\partial x_2} b_2 \]

Acceleration of surface and bottom layers:

\[\frac{\partial u}{\partial t} + \frac{\partial u}{\partial x_1} u_1 + \frac{\partial u}{\partial x_2} u_2 = -\frac{\partial H}{\partial x_2} b_1 \]

\[\frac{\partial u}{\partial t} + \frac{\partial u}{\partial x_1} u_1 + \frac{\partial u}{\partial x_2} u_2 = -\frac{\partial H}{\partial x_2} b_2 \]

Detection of hydraulic jumps and shear instabilities for several tidal regimes.

Hydraulic Jump Variability
LES of hydraulic control of large-scale circulation at Camarinal Sill.

In September-October 2020, the field campaign GEPETO aims at making direct observations of hydraulic jumps, coherent mixing structures and ISWs.