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Abstract

In this paper, an efficient numerical technique based on the shifted Chebyshev
polynomials (SCPs) is established to obtain numerical solutions of generalized
fractional pantograph equations with variable coefficients. These polynomials
are orthogonal and have compact support on [0, L]. We use these polynomi-
als to approximate the unknown function. Using the properties of the SCPs,
we derive the generalized pantograph operational matrix of SCPs and the one
of fractional-order differentiation. Then the original problems can be trans-
formed to a system of algebraic equations based on these matrices. By solving
these algebraic equations, we can obtain numerical solutions. In addition, we
investigate the error analysis and introduce the process of error correction for
improving the precision of numerical solutions. Lastly, by giving some examples
and comparing with other existing methods, the validity and efficiency of our
method is demonstrated.
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1. Introduction

Fractional calculus is a branch of calculus theory, which makes calculus theo-
ry more perfect. In recent decades, fractional calculus have been widely used in
various areas, such as viscoelasticity [1, 2], economics [3], control theory [4, 5],
and fractals dynamics [6]. One of the interesting research topics is the design
of fractional differentiators [7] to compute fractional differentials of unknown
signals in a noisy environment. With the application of fractional differential
equations in more and more scientific fields, the study of numerical calculations
of the differential equations of fractional order is particularly important. At
present, the majority of scholars have studied different kind of vigorous nu-
merical methods to obtained an approximate solution of fractional differential
equations. These methods include Chebyshev collocation method [8], Laplace
transform method [9], differential transform method [10, 11], Adomian decompo-
sition method [12], Legendre operational matrix [13], and CAS wavelet method
[14], etc.

Delay differential equations have many applications in different fields, such
as biological, industrial, electronic, chemical and transportation systems [15, 16,
17]. To obtain the numerical solutions of delay differential equations, Many re-
searchers have studied different kind of vigorous techniques [18]. The functional
differential equations with proportional delay are generally called to pantograph
equations or generalized pantograph equations. As the one of the most impor-
tant types of delay differential equations, the pantograph equation or the gen-
eralized pantograph equation can explaining various physical phenomena. And
they are used in many fields. In recent years, there have been many numerical
methods for solving pantograph differential equations or generalized pantograph
equations of integer order, such as Chebyshev polynomials [19], Bernoulli poly-
nomials [20], variational iteration method [21], etc. Further, [22] introduces
the stability properties of many numerical techniques for nonlinear generalized

pantograph equations.
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The fractional delay differential equation is a generalization of the delay d-
ifferential equation to arbitrary non-integer order. Fractional delay differential
equations are adapted to many fields, such as hydraulic networks, automatic
control, long transmission lines, economy and biology [23]. The numerical cal-
culation of fractional delay differential equations has also attracted the attention
of many scholars. Because the fractional delay differential equations cannot be
analytically solved, different numerical methods [24, 25, 26] have been devoted to
obtain the approximate solutions. Sherif et al. [27] considered the Spline func-
tions to solve fractional delay differential equation. Authors of [28] investigated
modified Laguerre wavelets method. Modified Chebyshev wavelet methods and
a operational matrix based on Bernoulli wavelets are utilized in [29, 30]. How-
ever, there are few scholars that pay attention to study the numerical methods
of fractional pantograph delay differential equations. From these works we can
mention, Y Yang and Y Huang [32] have studied the existence of solutions of
nonlinear fractional pantograph equations with the order of the derivative is in
[0,1]; Using spectral-collocation methods, Yang and Huang [31] obtained the
approximate solution for fractional pantograph delay-integro-differential equa-
tions; the approximate solution of fractional pantograph differential equations
can be obtained by using the explicit formula of the generalized fractional-order
Bernoulli wavelet in [33].

The polynomial approximation theory is an important branch of the func-
tion approximation theory. As the name suggests, polynomials are used to
approximate a function whose analytical form is more complex or whose an-
alytical form is unknown. In general, the polynomial has many advantages,
such as its structure is clear, its calculation is simple and it is relatively easy
to integral and derivative. For some complex problems, applying polynomi-
als to approximate function , and then studying the laws of actual problems,
the problems can be simplified. At present, polynomial approximation theo-
ry has been widely used in different fields, such as numerical approximation
theory, engineering calculation, and practical life. In this paper, based on the

properties of the shifted Chebyshev polynomials, we derive SCPs generalized



65

70

75

80

pantograph operational matrix. And with the aid of the operational matrix of

fractional differentiation of SCPs, generalized pantograph operational matrix of

fractional-order differentiation is obtained. We combine polynomial approxima-

tion theory and operational matrix to solve the following generalized fractional

pantograph equation with variable coefficients

J r—1

DPu(t)y=bE)u(t)+ Y > vim (1) D*ul(gjnt —jm) +g(t), 0<t<L,
j=0n=0

(1)

subject to the initial conditions
™ (0) =d,, n=0,1,---,7r—1, (2)

where d,, gj,» and r; ,, are real or complex coefficients, r —1 < a <7, 0 < o <
ap < -+ < apo1 < B, while b(¢), v, (t) and g (t) are continuous functions in
the interval [0, L] , *D? and ©D» denote fractional derivatives in the Caputo’s
sense.

The rest of the paper is organized as follows: Section 2 introduces some
mathematical preliminaries of fractional calculus. In Section 3, we review the
basic definitions of shifted Chebyshev polynomials and discuss the polynomial
approximation theory. In Section 4, we derive the SCPs generalized pantograph
operational matrix and the one of fractional-order differentiation. In Section 5,
we apply the proposed method to solve the generalized fractional pantograph
equations. The error correction and error analysis are given in Section 6. In
Section 7, the proposed approach is tested through several numerical examples.

Finally, a conclusion is given in Section 8.

2. Basic definitions of fractional calculus

In this section, we review the necessary definitions and preliminaries of frac-

tional calculus theory that will be used in this article.

Definition 1. The Riemann-Liouville fractional integral operator of f (t) is de-

fined as
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L ! _ B8—1
RLIBf () = F(B)/o (t=T)""'f(T)dT, B>0, t>0, .
J B=0.

The Riemann-Liouville fractional differential operator of order 3 is derived

by the definition of the Riemann-Liouville fractional integral operator

1 a o fm
m@/o de B>0,n—1<pB<n,

d"f(t)
dtn

MEDOF(t) =

B=mn,t>0.

(4)

Definition 2. The fractional differential operator of order B in the Caputo

w sense is defined as

: ﬁ)/ot(tf(n)m T, n—1<B<n,

¢ I'(n— _ mmB—n+l
DS (t) = d”(f(t) T) 5
= t>0.
dn B=mn, t>
For the Caputo differential operator, we have
0, for m € Ng and m <[],
‘Dl =4 | (m+ 1)
Tomiog’ > JormeNoandm > (5] orm¢Noandm >3],

(6)
where Ng = {0,1,2,--- }.

s 3. Shifted Chebyshev polynomials

3.1.  Properties of the shifted Chebyshev polynomials

The well-known Chebyshev polynomials are defined on the interval [—1, 1],
and are derived by orthogonalizing the sequence {1,¢,---t"---}.

The specific form of the Chebyshev polynomials can be obtained by the

w0 following recurrence relation

Ti+1(z):2(22_1)ﬂ(2)_ﬂ—1(z)7 =12
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where Ty (2) = 1 and T (2) = z. To use the Chebyshev polynomials on the
extended interval [0, L], it is necessary to shift the defining domain [—1, 1]. The
shifted Chebyshev polynomials on [0, L] can easily be derived by introducing
the change of variables z = % — 1. We can denote the shifted Chebyshev
polynomials T (% — ) by Hp ; (t), then Hy ; (t) can be determined with the

aid of the following recurrence formula

2t .
Hp iy (t) =2 <L - 1) Hp;()—Hpi—1(t), i=12,--
where Hyo(t) = 1 and Hp; (t) = 28 — 1. The analytical form of the shifted

Chebyshev polynomials Hy, ; () of degree ¢ is given by

_ 2k
Hp,(t) =T, <— >—ZZ )yr ZHZZ_lk))!(QL)k ®F, =12,
(7)

where Hy ; (0) = (=1)" and Hp; (L) = 1.
The shifted Chebyshev polynomials satisfy the following orthogonality rela-

tion 5
/ Hpj(t)Hpp (t)wr () dt = hy, (8)
0
here the weight functi () L and h mE=D
whnere e Welg unctrion wry, = = an k= 0 = ,
Ve 0, k#j,
by =1, k> 1.

3.2.  Function approximation
A function u (t) € L? ([0, L]) can be expanded in terms of the shifted Cheby-

shev polynomials as follows
t) = ZCiHL,i (t), (9)
i=0
where the coefficients ¢; are obtained by

—/ OHL; (Hwp (t)dt, i=0,1,2,---

If we consider truncated series in Eq. (9), we can get

~ iciHL’i (t) = cto,, (t), (10)
i=0
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where

C =lco,c1, sem] @ (t) = [Hpo(t), Hpa (), Hom (0] (11)

4. SCPs operational matrix for solving the pantograph equations

In this part, we derive the necessary SCPs generalized pantograph opera-
tional matrix and the fractional generalized pantograph operational matrix .

From Eq. (7), ®,,, (t) can be denoted by the product of two matrices
(I)m (t) = AZm (t) ) (12)
where
m1T
Zm () = [1,8,--+ ,t™] .
The matrix A is SCPs coefficient matrix and we assume each item of the

matrix A can be write as follows

Poo O .. 0
Pio P 0

A= , (13)
Pm 0 Pm 1 Pm,m

where
Pyo=1,

2
P ;=2 <LPz’—1,j—1 - Pi—l,j> —Pi_o,

P;=0, fori<jori<O0orj<O.

According to [34], inverse matrix of the coefficient matrix A can be expressed

as follows
- . -
P, 0 0 0 0
—1 —1
PO,O a,]_’Q P1,1 O O O
P*1a173 P71a2,3 pr! 0 0
A,1 0,0 1,1 2,2
—1 —1 -1 -1
Po,o a1,m P1,1 a2,m P2,2 az,m T Pm—l,m—l 0
—1 —1 —1 —1 —1
_Po,o a1,m+1 P1,1 a2,m+1 P2,2 a3,m+1 771.71,7n71am’m+1 m,m |
(14)
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-1 .
Qii+1 = _F)Li 311717 L= 1a 2a U
— -1 ) = ceem — | =
aij=—P_ | P_ .+ Z arb _ |, i=12---m—-1 j=34---m+1
i<k<j

4.1. SCPs generalized pantograph operational matrix
The shifted Chebyshev vector with delay parameter r (0 < r < 1) and pan-

tograph coefficient ¢ (0 < ¢ < 1) is given as follows

(I)m (qt - T) - [HL,O (qt - T) »HL,l (qt - ’]") y aHL,i (qt - 7“) [ 7HL,m (qt - T)]T'
(15)

13 Theorem 1. Let ®,, (qt) be the special case of r =0 in Eq. (15) and suppose
0<qg<1, then

D, (gt) = FO,, (t), (16)

where the matriz F is called the pantograph operational matriz of SCPs, and it

1s defined as follows

[ fo,o 0 0 0]
fio fin 0 0
F =
fm—10 fm-11 - fm—1m-1 0
| fm.0 fma o fmm—1 o fmum]
where
fii = Pt (Pi,jqj + Léﬂpiﬂlajﬂ’lH) ;1 F]
q', i=j
1=0,1,---,m

140

Proof. The Hy, ; (qt),i = 0,1, - - -m must be expanded in terms of (HLJ- (t))
Let

§=0,1,i"
[
Hpi(qt) =Y fiHo;(t).
=0

8



And then we can get

[ fo,0 0 0 0 ]
fio firn 0 0
D, (qt) = : : : D P (t) = FO, (1), (17)
fm—10 fm-11  fm—1m—1 0
L fm,O fm,l e fm,mfl fm,m_
where ) )
fo,0 0 0 0
Ji0 fin 0 0
F =
frm=10 fm-11 - fm—1,m—1 0
L fm,O fm,l fm,m—l fm,m_

145 According to Eq. (12), we get

®,, (qt) = AZ,, (qt) = A | ¢*t?

_qmtm_
1 0 o0 o] [1]
0 ¢ 0 ol |¢
—Alo 0 ¢ 0l |
0 0 0 g | |tm]
1 0 o0 0]
0 0 0
=A|0 0 ¢ - 0|A D, ().
0 0 0 g |
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By substituting the formula of matrix A~! into the above equation, we obtain

1 0

Py (Pro+ P11ga12) q
D, (qt) =

Py (Pm,o + Z Pm,iqial,iJrl) P (Pm,lq + Z Pm,iqia2,i+1>

i=1 =2
Combining the above equation with Eq. (17), we can get the recurrence

formula of f; ;

fis = Pl <P,i,,-qj +l_§1pi,lqlaj+1,z+1> y 1F ]
q', i=]
Theorem. 1 is proved . m
Theorem 2. Consider ®,, (gt — ) is the shifted Chebyshev vector defined in
Eq. (15) and suppose 0 < g < 1,0 <71 <1, then

D, (gt —1) =W, (t), (18)

where the matric W is called the generalized pantograph operational matrix of

SCPs, and it is defined as follows

T
W:|:w07w1’...7wi7...’wm:| 5 Z:O717...m’
where
i
wi =Y PijN;
Jj=0
j .
}: J J
N] = ( 7’) [Olo,al,--- y Oy O‘kvoa 70]7
k=0 \K
where
k
-1
Qp = E P aigr w1 fins
l=n
where

l
f P,:i (F)l’nqn + Z+1 Pl_ysqsanﬂ—l,s-i-l) ) l 7é n,
In — s=n

ql7 l=n

10




Proof. By Eq. (12), we have

S
qgt —r
(qt —r)
D, (gt —1)=AZy (gt —7)=A . (19)
(gt —r)'
(gt —n)"
We expand the formula (gt — )" in Eq. (19)
i Ny i
(qt—r)=)" (=) " (at)". (20)
k=0 \ Kk
w And by Eq. (12), we get
LT
qt
(q1)*
Zn(at)=| © | =A7%n(qt),
(qt)'
(at)™ ]
therefore
(qt)" = AjL @ (gt) (21)
where A[;j_l] is the (i + 1)th row of A=Y, i=0,1,--- ,m.

By substituting Egs. (16) and (21) into Eq. (20), we obtain

%

7 i 1— —
(qt—r)"=>" (=) P AL P (8)

k=0 \ Kk
Using the formula of A=! and Eq. (16), A;H]F can be written as follows
A[;i]_]F: [O[0,0él,"' 7a’na"'ak¢70a"' a0]7

11



15 where

k
_ -1
Oy = E P“ al+1,k+1fl,n~

l=n
In conclude
_NO_
Ny
D (gt —r)=A| | ®p(t) =W, (1),
N;
_Nm,
where
i
Nz = Z (77’)1 k[a07a17"' , Oip,y O[k,(), 50] (22)
k=0 \ K
[N ] Po,0No ]
Ny Py oNo + P11 Ny
W = A =
N; P, oNo + P; 1 N1+ -+ + P i N;
_Nm i _Pm,0N0+Pm,1N1+"'+Pm7mNm_
Let W = [wo,wy, - ,w;, - owm]T, hence the precise expression of w; can be
o concluded as follows '
wi =y Pi;Nj. (23)
j=0

By substituting Eq. (22) into Eq. (23), Theorem. 2 is proved . m

4.2. SCPs operational matriz of derivative

In order to build the SCPs operational matrix of derivative, the differentia-

tion of vector ®,, (t) can be expressed by

oW (t) = P, (1), (24)

12



w75 where PU) is called the (m 4 1) x (m + 1) SCPs operational matrix of derivative.
According to Eq. (12), we can get

0
1
M =A| | = AV Z, (1), (25)
mtm71
where ) )
0 0 0
1 0 0
‘/(erl)Xm: 02 - 0},
_0 0 m|
_ . -
t
Z, (1) =
tm_2
tm_l

We now expand vector Z* (t) in terms of ®,, (t). From Eq. (12), we have

zZ (t) = B*®,, (1), (26)
10 where

-1

A

A71

g |

-1

A

Aﬁc]l is the k' row of A=Y, k=1,2,--- ,m.

Then Eq. (25) can be rewritten as

W () = AViypi1yxm B @y (t) - (27)

13



Therefore we have the operational matrix of derivative as

PY = AV i1)xm B*.

Further, we can get
o) (1) = (P<1>)”q>m ), n=12,-- (28)
15 When n =1, from Eq. (24), we get

oW (t) = PWa,, (1).

Suppose Eq. (28) is correct, when n = s. Then we obtain
20 (t) = (PD) @y, (1).

Thus, when n = s+ 1, we have

. 05 (0%, (t o°
0t ()= o (P ) =P a0

= PO(PW) 8, ()= (P0) e, 0

For any integer s, the Eq. (28) holds.
Therefore, Eq. (28) can be proved.

w  4.3. SCPs generalized pantograph operational matriz of fractional-order differ-

entiation

In order to build the operational matrix of fractional-order differentiation of
SCPs. Let
DPPy, (t) = PP (1) @ (1), B >0, (29)

where ®,, (¢) is the shifted Chebyshev vector defined in Eq. (10) and the matrix

ws PP is called the SCPs operational matrix of fractional derivatives.

Theorem 3. Suppose PP is the SCPs operational matriz of Caputo fractional-

14



order differentiation of order > 0, then the elements of P® are given as follows

[ o 0 0 0 |
0 0 0 0
S ([8],0 Sg (81,18 0 0
PP (1) = ﬁ((' ) a(fj [81) ’
S (i,0) Sg (i, [B]) Sp (i,1) 0
| Sp(m,0) Sp (m, [B]) Sp (m, ) Sg (m,m)
where
. : By 'k+1
Sp(ig)= >t ﬁpj,jlaj+1,k+1pi,kr(k(+1_)ﬁ)y i=[B],[B]+1,---,m.
k=[51
20 Proof. From Eq. (12) , we get
]
t
°DP®,, (t) = A°D"Z,, (t) = A°D" | (30)
_tm_
Using Eq. (6), we can derive °D?Z,, (t) in Eq. (30) as
_ ; -
0
FF(UﬂJlrl) t181-5
DPZ,, (1) = |TIPIHD i=[B1, 18]+ 1, ,m.  (31)
L(i+1) 4i—p
T(i+1—5)
L(m+1) tm—B
L Tm+1-5)

15




Define the (m + 1) x (m + 1) matrix V(1) ny) (8) a8
[0 0 0 0 0
0 0 0 0 0
0 0 Mfﬂ 0 0
* (T81+1-8)
‘/v(m+1)><(m+l) (t) = .
r(i+1) ,—
0 0 0 rariopt " 0
I'(m+1 _
0 0 0 0 Tt
Eq. (31) may be restated as
D Zm (1) = Vi s 1yx(ma1) () Zm (1) (32)
Using Eq. (12), Eq. (28) can be rewritten as
CDﬁZm (t) = Vv(s;n+1)><(m+l) (t) A7, (t).
205 Therefore, we have
DBy, (8) = AViityx(many () A7 @ (1) = PP (1) Dy (8) (33)
Substituting the formulas of A and A~! into Eq. (33), we get
[0 0 0 ]
0 0 0
S ([8],0 Sa([81,18 0
PP (1) = ﬁ(m ) ﬁ(U [61) ,
Sp (i,0) Sp (i, [B]) Sp (i)
| Ss(m,0) S (m, [5]) Ss(m, 1) Sg(m,m)|
where _
. s I'(k+1)
_ Bp-1,. ) _
Sp (i,5) = Z P C a1 k1 Pk G+1-5)

k=[p]
Theorem. 3 is proved. m

16



Theorem 4. Let ®,, (qt —r) be the shifted Chebyshev vector defined in Eq.

a0 (15) and suppose 0 < g < 1,0 <r <1, then

‘DP®,, (qt — 1) = KP®,, (1),

(34)

where the matriz K is called the generalized pantograph operational matriz of

fractional-order differentiation, and the elements are given

where

where

wg (i,4) = (qt—T)_ﬂPj,_jlajH,kHPi,kF
k=[B]

KP =

TZ:Z.’E,@(Z,])(U], Z:[ﬁ]v[ﬁ]—i_laﬂﬂﬂ
j=0

%

T
|:0707"' aOanBWW" yTiy oo 7Tm:| ’

as  The formula of w; can be represented as Eq. (18).

Proof. By Egs. (18) and (29), we have

T(k+1)
(k+1-0)

(35)

°DP®,, (gt —r) = PP (qt — 1) @, (gt —7) = PP (gt —r) W, (t) = K ®,, (1),

where K# = PP (qt —r)W.

(36)

According to the formula of P? (t), we can derive the expression of P? (qt — r)

PP (gt —7) =

0 0

0 0

zs (181, 151) 0
wp (i, [B1) - wp(i0)
zg (m, [B]) -+ wp(m,i)

17

xg (m,m)

(37)
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where
o i s I'(k+1)
o (i) = D (at—7) ﬁPj,f@jH,kHPLkm’
k=[p] (38)
38

Substuting the concrete formulas of W and P? (¢t — r) into Eq. (36), we get

KPP =PP (gt —r)W =

Tm

where

Tizzxﬂ(ivj)wjv Z‘:[ﬁk[ﬁ-‘Jrlv"'vm'

3=0
Theorem. 4 is proved by substituting Eqs. (18) and (38) into the above

equation . m

4.4. SCPs operational matriz of product

Let C be the vector with the parameters ¢; given in Eq. (11). By multiplying
C with the outer product of two shifted orthonormal Chebyshev polynomial
vectors, we can get the row vector. And this row vector can be approximated
based on the shifted Chebyshev polynomial vector.
Let
T, (t) @ (1) = @4 (1) C. (39)

C which satisfies in the above relation is called the operational matrix of product

of two shifted Chebyshev polynomial vectors.

18

i = [6W’|—B-‘+1"" , M.



To derive the operational matrix of product, inserting Eq. (12) into Eq.
(39), we can get

CT®,, (t) DL (t) = CT®,, () Zm ()" AT
= [CT @y, (1) ,t (CT Py, (1)) 87 (CT Ry, (1) -+ 1" (CT D, (1))] AT

> eHL(t), Y citHr(t) Zczt Hp it Zcz " Hp(t
i=0 i=0
(40)
25 For each of tYHp ;(t),y = 0,1,--- ,m, it can be approximated by the shifted
Chebyshev polynomials , then

tYHp, i Ze "Hpu(t) = By ;@ (1),

where E;Z = |:6gv ’eféllﬂ,... 6%2} Yy = 071’... ,m, 1 = 0717... m, 6/%;7 =

= St Hp (8) Hp g, (8) wr (¢) dt.

Thus, we obtain

Z CitYHrp, ;(t) ~ Z Ci (Z e ZHL k( )
i=0 =0
=2 Hrall) (Z% ) (41)

=®% ()[Ey0, Byt Eym
=00 (O,

y,C»

x0  where Uy .= [Eyo, By, ,Eym]C.
By defining matrix U, = [Up,c, Ut,c, -+ » Um,c], and substituting Eq. (41)
into Eq. (40), we can get

Ch @y, (1) Dy, (1) = Dy, (1) UeAT, (42)

therefore

C~UAT.

19



5. Numerical algorithms

25 For the generalized fractional pantograph equation Eq. (1) that satisfies the

initial condition Eq. (2), we first approximate

u(t) =~ CT®,, (1), (43)
b(t)~ BT®,, (1), (44)
g(t) = G @y (1), (45)
Vi (8) = Clin @i (8, (46)

20 where GT = {gi}?;m CvjnT = {Ci,vjn}?iov BT = {bz};io

Now, using Eqs. (29) and (43), we have
¢DPu(t) = DPCT®,, (t) = CTPP (t) ®,, (t). (47)

For solving °D**u (¢;nt — ;) in Eq. (1), by using Egs. (34) and (43) , we
obtain

‘D u(gjnt —rjn) = CT K@y (1) (48)
Moreover, by the product operational matrix of SCPs and Eq. (46), we have

Vjin (£) D" (ot — Tjn) & Clhn @y (1) CTE O, (1)
T
= OB, (0 @F (1) (TR
- T
~ (I)gl (t) Cujn (CTKJOt:> (49)
— CTK (Cogm) @ (1)
— pin'e, (t),

. . . , T
s where C, j, is product operational matrix for the vector C,;,, DV n" = C’TKffg (Cujn) -

20



And we also have
b(t)u(t) ~ BT®,, (t)CT®,, (1)

=B"®,, (t) @' (t)C

~oT (1) BC (50)
®,, (1)

=R"®,, (1),

(B

where B is product operational matrix for the vector B, RT = C" (E)T.
Substituting Eqgs. (45), (47), (49) and (50) into Eq. (1), we obtain

J r—1
CTPP (1) @y (1) = Ry (1) + DY DUV @y, (1) +GT @, (). (51)
j=0n=0

For the initial conditions, we can write

f=c" (P(U) ., (0). (52)
260 We collocate this system at the following points
2i—1
ti=————, i=1,2,---, 1.
sm+1) " mt

These equations can be transferred to algebraic equations. Combining Matlab

soft-ware and least square method, the unknown vector C' can be solved.

6. Error analysis and error correction

6.1. FError analysis

s Lemma 1. We assume that uw € C™1[0, L] with m € N*, and B < m with
B € Ry\N. Let £ = —r + qt, then we have

c T~ ©®f () 1 S mr (m+1)
Dﬂu(g)_zir(i_ﬁﬁ)u (OHiF(m—BH)/O E-17) WD (T)dT

wheren —1 < B8 <n<m withn & N*.

Proof. Let £ = —r + gt. Using Eq. (5), we obtain
n—1—3

cpBu(e) = — 1 f e u™
Dhu(e) = g | €= ) (1) dr. (53)
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By applying m — n + 1 times integration by parts in Eq. (53), we have

m—p

z B ) 1 ¢
¢ (Z) - _ (m+1)
Dfu ZI‘ 2_5+ 0" (0)+F(m—6+1)/0 &-1) Wt (T)dT.

Lemma. 1 is proved . m

Lemma 2. Assume that u € C™T1(0, L] with m € N*, and B < m with 3 €
R\N. LetY = span{Hp o, Hp 1, yHpm}, um = CT®,, is the approzimate

function to u from'Y. Let £ = —r + qt, then we have

L
© DBy (£) = / “DAQ (1,€) u (1) dt, (54)

where

Z%HL,Z Ywr (t) H, ; (€).

i=0 °

Proof. Let £ = —r + gt. From Egs. (9) and (10), we get

ZC’LHL’L

—Z / t)Hy; () wr, (t) dtHy ; (€)
L 1

:/ (Zhﬂm(m()mz(s)) (t) dt

/Qt§

m

Z HLz wr (t) Hy i (£).

where

And we can obtain
L
Dl (§) = [ DPQtEult)de
Lemma. 2 is proved . m

Theorem 5. Suppose that u € C"™ 1[0, L] with m € N*, and 8 < m with 3 €
R\N. LetY = span{Hp o, Hp 1, yHp m}, tm = CT®,, is the approzimate
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function to u fromY . u(® (i=0,1,2,--- ,m+ 1) are continuous functions. Let

&€ = —r+qt, the error of °DPu (&) and °DPu,, (&) is represented as follows

L
e = [ D'QuOn B+ L), (55)
where Q (t,&) is given by Lemma. 2, and

1 m
1-T
I (1) = ¢+ /0 %u“ﬂ“) (T) dT,

fmfﬁﬂ 1 m—p (i)
L (§) = F(m—ﬂ‘i‘l)/o (1-1) u (ET)dT.
If M, = ||u(m+1)”oo = sup{|u(m+1) (t)| .t € R} exists, then e (t) can be
bounded as follows

tm+1
dt
(m+1)!

L
w<wszwm+l<t/ °DAQ (1,€)

gmfﬂJrl
*run—ﬁ+m>'

Proof. u (t) can be expanded into Taylor formula as

u(t) = i (Lzu(i) (0) + /Ot (t_miz!j)mu(m“‘l) (T)dT. (56)

_ ()

) =Y 5 0) 67

i=0

Let £ = —r + gt, from Egs. (56) and (57), we get
=) (i) CE-D"
u(f) = ; St (0) + A (T)dT, (58)
(0 =3 & 0 (59
e il
i=0
Hence, the 3" order derivative of Eq. (59) can be calculated as follows
“DP i, (&) = i _(S);ﬁu“) (0). (60)
~ FiE—pg+1)
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Let us consider the following equality
e (&) = (“DPum (€) = “Diiy (§)) + (“D’tim (€) = “D u (€)) .
205 Similar to the proof process of Lemma. 2, we get

m (€)=Y giHL i (€)
i=0

o —

L
um (t)Hp i (t)wr (t) dtHp ; (§)

G
>
L/ m -
= / (Z hiHLv (t)wr (t) Hii (5)) Uy (t)dt
L = -
:/ Q (t, &) up, (t)dt.

The " order derivative of i, (£) can be calculated as follows

L —
D ()= [ DPQt€) (.

Therefore

—

L L
DBy (€) — “Diity (€) = / “DBQ (t,€) u(t) dt — / “DBQ (1,€) s (1)t

o

-/ "D 1) (u(0) — i ) .

(61)
According to Egs. (56) and (57) , we obtain
o t -T m
L) =ut)—unm(t) = / %Mm“) (T dT. (62)
O .

Applying the following change of variables T' — ¢T" in Eq. (62)

I (t) = /0 t (t_mij;)mu(m“) (T dT

1 m

1-T

= ¢t / a-7" |) u™ ) (4T dT.
0 m:

300 The " order derivative of Eq. (58) can be represented as follows

¢DPuy, () — DPu(€) = Is.

24



According to Eq. (60) and Lemma. 1, we get
1 ¢ me
I (§) = F(m—ﬂ‘i‘l)/o E-17) WH(T)dT (63)
Applying the following change of variables T'— £T in Eq. (63)
gm—B+1 1 m—p —
Iz(f)Zm/o 1-=7) W™ (ET)dT.

Using Egs. (61), (62) and (63), we get

L
e(t) = / cDPQ(t,6) I, (t)dt + I, ().

Finally, this proof can be completed by taking the absolute value of e (¢) and

w05 the following inequalities

m—+1

L) < Mpys1————

|1()|— +1(m+1)|

m—L£+1
L)) < Mpy1=———.
|2()|— +1F(m_ﬂ+2)

Theorem. 5 is proved . m
6.2. Error correction
310 For Eq. (1), we consider the following residual function
Ry (t) = Lum ()] — g (1), (64)

where

J r
L [t (8)] = D%, () = b (t) i (t) — Z Z Vjn (8) D"t (@l = Tjn) -
=0 n=0

Eq. (64) satisfies the following form
Ll ()] = Bon (8) + 9 (2) -

It needs to be pointed out, u,, (t) is the approximate solution for w (¢), and

u (t) is the exact solution of Eq. (1).

25



315 Defining the error function, as follows
em (1) = u(t) — un(l),
then we can get the differential equation about the error function
Liem ()] = Lu(t)] — L [um(?t)]
=g(t) — R (t)-g (1)
=-R (t).
The formula of the error function is giving

J r
Llem (£)] = DPep (8) = b () em () = Y D vjm (£) D em (gjnt — 7n)
j=0n=0

(65)
In order to construct the approximate e}, (z,t) to e, (t), only Eq. (65) needs
to be recalculated in the same way as we did before for the solution of Eq. (1).
20 And we define the €}, (t) as the approximate error function.
According to the numerical solution u,, (¢) of Eq. (1) and the numerical

solution e}, (t) of Eq. (65), corrective solution u* (t) is obtained
u” () = up, (t) + €5, (1) - (66)
From Eq.(66), we can get the corrective error function

er (1) = em (8) = e (1) = w(t) = um (1) —ep, (1)

7. Numerical experiments

25 In this section, to demonstrate the applicability and accuracy of our method,
we shows some numerical examples in the form Eq. (1) with intial conditions.

All the numerical computations have been done using Matlab.
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Example 1. Consider the fractional pantograph differential equation with vari-

able coefficients

¢ t 1
e2u<)+2u(t), 0<p<1, 0<t<1,

In the case, when =1, the ezact solution is u (t) = e'.

Table 1 shows the comparison of the absolute errors of the proposed method
for m = 9,10,11 with that of the Taylor method [35] for N = 9. Also we
do correction for the numerical solutions with m = 9, and obtain the absolute
corrective errors for m = 9, me = 11. We see that the approximation solutions
obtained by the present method have good agreement with the exact solution,
and the absolute errors of corrective solutions are smaller than the absolute

errors of numerical solutions.

Table 1: Absolute errors at some points for Example 1.

Present method with
t Taylor method

m=29 m=9 me=11 m =10 m =11

0.2 070 x 10°**  3.03 x 107! 3.18 x 10714 1.03 x 1072 2.82 x 107
04 010x101% 376 x 10 3.86x 10" 1.26 x 102 342 x 1074
0.6 0.29x10° 469 x 107 4.69 x 10714 1.53 x 1072 4.29 x 107
0.8 038x10% 575x10*" 573x10™  1.88x10'?  520x 10
1 0.29 x 107 7.10 x 107! 7.11 x 107 2.26 x 102 6.35 x 10714

Example 2. Consider the generalized fractional pantograph differential equa-
tion

DPu(t) = —u(t)—u(;—().?)) +g(t), 0<p<3,
w(0) =1,uM (0) = —1,u® (0) = 1.

In the case, when 8 =3, g(t) = e~21+93 the exact solution is u (t) = e~ .

Table 2 shows the absolute errors between the exact solution and approxi-

mate solutions of our method for different values of m. From Table 2, we can
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Table 2: Absolute errors for different values of m for Example 2.

345

350

t m==6 m=2~8 m = 10 m =12
0.2 5.18 x 1077 1.45 x 107 2.86 x 10712 5.22 x 107%°
0.4 1.93 x 1076 5.24 x 107 1.21 x 10711 2.39 x 107
0.6 3.27 x 1076 1.21 x 108 2.77 x 107! 5.67 x 1074
0.8 5.34 x 1076 2.13 x 1078 4.99 x 1011 1.03 x 10°7%3
1 8.62 x 1076 3.29 x 1078 7.80 x 1071t 1.62 x 10713
x10° ‘ ‘ ‘ 35><10'E
------------------- - ----absolute error ’ ----absolute corrective error
851 ‘\.\\ al
ol
75 25
7 N 2
® 65l ’ 15
6f AN
\ 1
5.5r
sl y 0.5¢ L
45 02 04 06 08 1 % ._—._——-;J.Q 04 06 08 1
t t
Figure 1: The absolute errors for m = 4, and the absolute corrective errors for m = 4, me = 8

for Example 2.

say that the numerical solutions come close to the exact solution with the in-
creasing value of m. In Figure 1, the absolute errors of our method are given
for m = 4. And the errors are not perfect enough. By doing correction for the
numerical solutions for m = 4, me = 8, the absolute corrective errors achieve
about 10°®. Figure 2 displays the computational results for m = 7 on [0,2]
when 3 takes different values. By comparing these computational results with
exact solution, it is evident from Figure 2 that as 8 approaches 3, the numerical

solutions converge to those of integer order differential equations.
Example 3. Consider the fractional multi-pantograph differential equation [33]
5 5 1 1 )
DPu () z—éu(t)+4u it + 9u gt +t—-1, 0<B<1,
u(0) = 1.
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p=2.65
——p=2.75
0.8t (=285
——p=2.95
0.6 ----exact
0.4t
=]
0.2F SSeesaaa,
of
0.2F
04y 0.5 1 15 2

Figure 2: The comparison of u () for m = 7, with 8 = 2.65,2.75,2.85,2.95,1, and the exact

solution for Example 2.

o 674 1675 12157
In the case, when 3 =1, the exact solution is u (t) = 14 Gt + 15042 + 22743,

Table 3: The absolute errors for various intervals for Example 3.

. [0, 5] [0,10]
GFBWF's method Present method | GFBWFs method Present method

0 1.60 x 10710 5.34 x 1072 1.31 x 107° 7.28 x 107'?
1 5.49 x 107 4.31 x 10710 5.31 x 108 4.13 x 10710
2 2.33 x 108 1.93 x 107° 2.26 x 1077 1.48 x 107°
3 3.31 x 10°° 5.36 x 107 5.85 x 1077 3.05 x 107°
4 1.20 x 107° 1.16 x 1078 1.19 x 10°° 4.98 x 107
5 5.18 x 1077 2.14 x 108 2.13 x 108 7.12 x 10°

In Table 3, we compare the absolute errors of our method for m = 3 with
those of the GFBWFs method of [33] for £k = 2, M = 4 on various intervals.
Figure 3 gives the numerical results for different choices of g with m = 3 on
the interval [0,10]. The Figure 4 shows the absolute errors between the exact
solution and approximate solutions for m = 3, 8 = 1 on [0,10] , and the
absolute corrective errors between the exact solution and corrective solutions for
m = 3, me = 3 . These results explained that as § approaches 1, the numerical
solutions converge to the exact solution. And it is evident from Figure 4 that

the corrective solutions obtained by doing correction have better convergence
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x10*
—+—=0.75
—+—B=0.85
2.5/ ——p=0.95
----exact

S 150

Figure 3: The comparison of u (t) for m = 3, with 8 = 0.75,0.85,0.95, and the exact solution
for Example 3.

to exact solution than numerical solutions.
Example 4. Consider the fractional neutral pantograph differential equation

DPu (t) = —u (t) + 0.1u (qt) + 0.5DPu (qt) + (0.32t — 0.5) e "8 L et 0< B < 1,

u (0) = 0.

In the case, when 8 =1, q = 0.8, the exact solution is u (t) = te™*.

& 12
25110 ‘ ‘ : 2110 : :
----absolute corrective error
1.8 i
A
2 P 1.6 it
7 H
7 i
1.4 it
7 [
15 12 i
o / o 1 ‘: lﬁ q
/ I
e [ Ao
/ ! |
1 S 0.8 / 4 H ! "f |
s ! 1
g » ! \ Py
) oy
05} 1 04l { ; P
ro ! i P
- \ \
L 02 (. /---' 4 ! l‘.‘:'
______ ~ ST S i ! J
N I . 0 N ! H H
0 2 4 6 8 10 0 2 4 6 8 10

Figure 4: The absolute errors for m = 3, and the absolute corrective errors for m = 3, me = 3

for Example 3.

365 In Table 4, the compassion, the absolute errors of the proposed method

for m = 6,8,10 with those of the one-Leg 6 [36] with § = 0.8, h = 0.01, the
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variational iteration method (V-I method) [37] for m = 6, and the GFBWFs

method (G method) [33] for k = 2, M = 6 on the interval [0, 1], is given.In Figure

5, we do correction for the numerical solutions with m = 6, and obtain the

370

absolute corrective errors for m = 6, me = 10. Also, the Figure 6 displays the

numerical results for m = 10, § = 1 on [0, 2], when ¢ takes different values. And

by comparing these results and exact solution, we can see that, as ¢ approaches

0.8, the numerical solutions converge to the exact solution.

Table 4: The comparison of the absolute errors with other methods for Example 4.

Present method with

t 6 method  V-I method G method
m==6 m=3~8 m = 10
0.1 4.65x10°% 1.30x10°% 1.98x10% 2.13x10° 5.08 x 10° 7.33x107'2
0.3 2.57x102 2.63x10° 7.78x10° 8.65x107 270 x 10° 4.31x107*?
0.5 4.43x10%2 2.83x10° 6.34x10° 7.01x107 1.68 x 10° 2.82x107'2
0.7 5.37x102 2.39x10° 4.36x10° 3.14x107 1.10 x 10° 1.79x107*?
0.9 5.35x102 1.64x10°% 2.80x10° 2.94x107 7.32x107° 1.09x 107'2
X 10° x10" :
- o n ----absolute correcctive errori
2t 7 ‘
150 “\‘\ 5‘,'
) ‘\\\‘ 47‘:}
101 | N
________ . 3
0.57' N 21 T -
i s - 1 Q.
o 0.‘2 0‘,4 0:6 018 1 00 012 0.‘4 0‘.6 0.‘8 1
t t
Figure 5: The absolute errors for m = 6, and the absolute corrective errors for m = 6,

me = 10 for Example 4.
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375

380

385

390

0.15

----exact
] 0.5 1 15 2 ) 0.5 1 15 2

Figure 6: The comparison of u (¢) for m = 10, 8 = 1 with ¢ = 0.5,0.6,0.7,0.8,0.9,0.95, and

the exact solution for Example 4.

8. Conclusion

In this article, applying the properties of the shifted Chebyshev polyno-
mials, we have derived the generalized pantograph operational matrix. Also,
according to the SCPs fractional differential operational matrix, the generalized
pantograph operational matrix of fractional-order differentiation is introduced.
These matrices combined with collocation method are used to simplify and effec-
tively calculate the numerical solutions of the generalized fractional pantograph
delay equations. By constructing the generalized fractional pantograph delay
equations of error function, we obtain the approximate error function to correct
numerical solutions . Numerical examples show our method is effective. From
examples, it is seen that with the increasing value of m, the absolute error is
smaller and the convergence effect between the numerical solutions and the ex-
act solution is better. The corrective solutions have better convergence to exact
solutions than the numerical solutions. In addition, we find that the present
method is an excellent mathematical method, when the function defined on the

interval [0, L] and various order 8 > 0.
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