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Abstract

Computing acceptability semantics of abstract argumentation frameworks (AFs), in large-
scale instances, is an area that has recently received a lot of attention.

In this report is presented the first algorithm, named AFDivider, that uses spectral clustering
methods in order to tackle this issue. This algorithm computes the semantic labellings of an
AF by first removing trivial parts of the AF, then cutting the AF into clusters and computing
simultaneously in each cluster labelling parts, before finally reunifying compatible parts to
get the whole AF labellings.

This algorithm is proven to be sound and complete for the stable, complete and preferred se-
mantics. Experiments show that this cutting process and distributed computing significantly
decrease the solving time of some hard AF instances.

This efficiency of AFDivider can be explained by the fact that it limits the solving hardness
to the clusters, contrarily to the other existing clustering-based algorithms that propagate
the combinatorial effect due to the number of labellings to the whole AF. AFDivider is thus
particularly well suited for non dense AFs with a clustered structure.
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Introduction

Abstract argumentation, the area we are interested in in this report, is a field of research in Artificial
Intelligence that proposes methods to represent and deal with contentious information, and to draw con-
clusions or take decision from it. It is called “abstract” because it does not focus on how to construct
arguments but rather on how arguments affect each other. Arguments are seen as generic entities that
interact positively (support relation) or negatively (attack relation) with each other. This abstraction level
allows to propose generic reasoning processes that could be applied to any precise definition or formalism
for arguments.

There exist several approaches and formalisms to express argumentation problems. They differ about
which “argumentation frameworks” and which “semantics” they use to determine the argumentation
solutions. These are key notions in this research area:

• Considering the first key notion, here are some questions that have to be answered in order to
“choose an argumentation framework” that fits with our need. Do we allow positive relations? If
so, of which kind? Do we allow negative relations? If so, of which kind? Is there any notion of
strength in arguments or in relations? The aim of making more complex argumentation frameworks
is to be able to better capture human argumentation subtleties.

• Given an argumentation framework, the second key notion, “semantics”, corresponds to a formal
way to say how the solution of the argumentation should be decided. It is really related with the
notion of “acceptability”. How to define an acceptable argumentation problem solution?

A lot of propositions have been made to enhance the expressivity in abstract argumentation (e.g.
[21, 6, 11, 3]). In this report, we focus on solving more efficiently argumentation problems that are ex-
pressed in the basic, seminal argumentation framework and semantics defined by Dung [12]. This is a
necessary first step before considering studying the extension of this work to other, enriched argumenta-
tion frameworks and semantics.

In Dung’s setting, solutions of an argumentation problem are sets of arguments which, when consid-
ered together, win the argumentation. Finding all the possible solutions of an argumentation problem, i.e.
all its winning sets of arguments, can be very time consuming. Many argumentation problem instances,
particularly large1, are too hard to be solved in an acceptable time, as shown by the results of the ICCMA
argumentation solver competition2. This hardness is not relative to the current state of the art but rather
to the intrinsic theoretical complexity of the argumentation semantics that are tackled [13].

Moreover, there exists a recent research field in Artificial Intelligence called “Argument mining”
whose object of study is how to extract arguments from natural language speeches, oral or written (see
[22] for more information). When major advances in this area will make available a lot of data for

1This notion of largeness of an argumentation framework is not so simple to define. It is related to the fact that the
computation of the solutions is complex either because of the number of arguments, or of the number of interactions, or
because of the structure of the argumentation framework.

2http://argumentationcompetition.org
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argumentation, this issue of solving time will become increasingly critical. There is a need for heuristics,
methods and algorithms efficient enough to tackle such issues and make possible the use of automated
argumentation models in the large-scale.

Enhancing the computational time of enumerating the solutions of an argumentation framework has
been the object of study of many works, resulting in the elaboration of several recent algorithms such as
[1, 9, 17, 2] (see [10] for an overview).

The AFDivider algorithm that we propose in this report has for main purpose to find all the possible
solutions of an argumentation problem, using methods that have not yet been considered for this purpose,
namely spectral clustering methods, originally combined to techniques that have already been applied in
other existing algorithms. The solutions are defined in terms of semantic labellings [7, 5]. In a word,
AFDivider computes the semantic labellings of an AF by first removing trivial parts of the AF, then
cutting the AF into clusters and computing simultaneously in each cluster labelling parts, before finally
reunifying compatible parts to get the whole AF labellings.

The main aim of this report is to present the AFDivider algorithm, to show how it differs from other
algorithms and to give experimental results on how it behaves on hard argumentation problem instances.

We start with giving the required background knowledge on abstract argumentation (Chapter 1) and
on other formal additional underlying notions (Chapter 2). We then present our contribution (Chapter 3),
and we give experimental results (Chapter 4), before comparing our algorithm with other existing ones
(Chapter 5). Finally, we conclude on perspectives linked with the AFDivider algorithm.
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Chapter 1

Abstract argumentation

In this section is presented the basic framework of abstract argumentation and some semantics.

1.1 Framework

According to Dung [12], an abstract argumentation framework consists of a set of arguments and of a
binary attack relation between them.

Definition 1 (Argumentation framework). An argumentation framework (AF) is a pair Γ = 〈A,R〉 where
A is a finite set of abstract arguments and R⊆ A×A is a binary relation on A, called the attack relation:
(a,b) ∈ R means that a attacks b. The set of all possible argumentation frameworks is denoted as AF .

Hence, an argumentation framework can be represented by a directed graph with arguments as ver-
tices and attacks as edges. Figure 1.1 shows an example of an AF.

a

b c
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f

g

h i

j k
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Figure 1.1: Example of an argumentation framework
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1.2 Labelling and semantics
Acceptability semantics can be defined in terms of labellings [7, 5].

Definition 2 (Labelling). Let Γ = 〈A,R〉 be an AF, and S ⊆ A. A labelling of S is a total function
` : S→ {in,out,und}. A labelling of Γ is a labelling of A. The set of all labellings of Γ is denoted as
L (Γ). The set of all labellings of a set of arguments S is denoted as L (S)

We write in(`) for {a|`(a) = in}, out(`) for {a|`(a) = out} and und(`) for {a|`(a) = und}.

Definition 3 (Legally labelled argument). Let Γ = 〈A,R〉 be an AF, and ` ∈L (Γ) be a labelling.

• An in-labelled argument is said to be legally in iff all its attackers are labelled out.

• An out-labelled argument is said to be legally out iff at least one of its attackers is labelled in.

• An und-labelled argument is said to be legally und iff it does not have an attacker that is labelled
in and one of its attackers is not labelled out.

Definition 4 (Admissible labelling). Let Γ = 〈A,R〉 be an AF, and ` ∈L (Γ) be a labelling. ` is an
admissible labelling of Γ iff it satisfies the following conditions for any a ∈ A:

• For each a ∈ in(`), a is legally in.

• For each a ∈ out(`), a is legally out.

Definition 5 (Complete labelling). Let Γ = 〈A,R〉 be an AF, and ` ∈ L (Γ) be a labelling. ` is a
complete labelling of Γ iff it satisfies the following conditions for any a ∈ A:

• For each a ∈ in(`), a is legally in.

• For each a ∈ out(`), a is legally out.

• For each a ∈ und(`), a is legally und.

Definition 6 (Grounded, preferred and stable labelling). Let Γ = 〈A,R〉 be an AF, and ` ∈L (Γ) be a
labelling.

• ` is the grounded labelling of Γ iff it is the complete labelling of Γ that minimizes (w.r.t ⊆) the set
of in-labelled arguments.

• ` is a preferred labelling of Γ iff it is a complete labelling of Γ that maximizes (w.r.t ⊆) the set of
in-labelled arguments.

• ` is a stable labelling of Γ iff it is a complete labelling of Γ which has no und-labelled argument.

It can be noticed that all complete labellings include the grounded labelling, and, as stable and pre-
ferred labellings are a type of complete labellings, they, also, include the grounded labelling.

Definition 7 (Semantic). A semantic σ is a total function σ : AF → 2L (Γ ) that associates to an AF
Γ = 〈A,R〉 a subset of L (Γ).

Given an AF Γ = 〈A,R〉, the set of labellings under semantics σ , with σ being either the complete
(co), the grounded (gr), the stable (st) or the preferred (pr) semantics, is denoted Lσ (Γ).

4



`1 `2 `3 `4 `5 `6

a in in in in in in

b out out out out out out

c out out out out out out

d out out in in und und

e in in out out und und

f out out in in und und

g in in out out und und

h out out in in und und

i in in out out und und

j und und und und und und

k und und und und und und

l und und und und und und

m und out und out und out

n und in und in und in

grounded ×××
complete ××× ××× ××× ××× ××× ×××
preferred ××× ×××

stable

Table 1.1: Semantic labellings

Example 1 Let us consider the AF of Figure 1.1. Table 1.1 shows the labellings corresponding to the
different semantics (the other possible labellings are not given).

As you can see this AF has no stable labellings.
Its unique grounded labelling (`gr ≡ `5) is such that `gr(a) = in, `gr(b) = `gr(c) = out and ∀x ∈

A\{a,b,c}, `gr(x) = und (see Figure 1.2).

1.3 Problem types and complexities
Given an AF instance, a semantic σ and a, an argument of the instance, several problem types are of
interest. Here is a non-exhaustive list of them:

• Give a labelling.

• Give all labellings.

• Is a labelled in in one labelling?

• Is a labelled in in all labellings?

• Give all labellings in which a is labelled in .

• Give one labelling in which a is labelled out .

5
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Figure 1.2: Grounded labelling

• Give all labellings in which a is labelled out .

Each of these problems admits a particular complexity, which depends of the chosen semantic. They
belong to the complexity classes between L and ΣP

2 . In [14] are listed various problems and their com-
plexities according to the studied semantic.

Of course, the complexity of the studied problem combined with the “largeness” of the given AF
instance has an important impact on the efficiency of the problem resolution particularly in terms of
execution time.

Note: It is difficult to define formally what is a “large-scale argumentation framework”. We have seen
“small” ones in terms of number of arguments that were pretty hard to solve given the relation structure
between the arguments. As a consequence, many labellings were possible and it was very time consuming
to compute them. We have also find out “large” ones in terms of number of arguments that were easy to
solve. The hardness of finding all solutions is probably due to a certain range of relation density (not too
high because in this case it would be easy to find that there is not so many solutions). This analysis is left
for future works.
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Chapter 2

Mathematical background

In this chapter are presented the basic notions under which the proposed algorithm is based: notions
related to set theory, graph theory, matrices and constraints satisfaction problem (CSP) modelling.

2.1 Mathematical notions

2.1.1 Set theory
Given that our aim is to cut argumentation problems into smaller pieces, the notion of partition will be
useful.

Definition 8 (Partition). A partition Ω = {ω1, ...,ωn} of a set E is a set of subsets of E such that:

• ∀i, j ∈ {1, ...,n} s.t. i 6= j,ωi∩ω j = /0

•
⋃

i∈{1,...,n}ωi = E

A partition of two elements is called a bipartition.

2.1.2 Graph Theory
In this section are given the notions of graph theory used in the algorithm. Different types of graph are
presented, and also notions related to nodes, relations, paths, subgraphs and topology.

Graph types

Definition 9 (Non-directed and directed graph). A non-directed (respectively directed) graph is an or-
dered pair G = (V,E) where:

• V is a set whose elements are called nodes or vertices;

• E is a set of unordered (respectively ordered) pairs of vertices called non directed edges (respec-
tively directed edges).

Definition 10 (Weighted graph). A weighted directed (respectively non-directed) graph is an ordered
pair G = (V,E,W ) where:

• (V,E) is a directed (respectively non-directed) graph.

7



• W : E→ R is a total function that associates a weight to each directed (respectively non-directed)
edge in E.

In the following we will implicitly consider that a non-weighted directed (respectively non-directed)
graph G = (V,E) is a weighted directed (respectively non-directed) graph whose edges are weighed 1.

Node and edge relations

Definition 11 (Incident). Let G = (V,E) be a graph (directed or not), and e = (vi,v j) ∈ E be an edge.
We say that e is incident to vi and v j, or joins vi and v j. Similarly, vi and v j are incident to e.

Definition 12 (Adjacent). Let G = (V,E) be a graph (directed or not), and vi ∈V , v j ∈V be two nodes
of G. We say that vi and v j are adjacent if (vi,v j) ∈ E or (v j,vi) ∈ E.

Definition 13 (Degree). Let G = (V,E) be a graph and v ∈ V be a vertex. The degree of v in G, noted
deg(G,v), is its number of incident edges.

Definition 14 (Weighted degree). Let G = (V,E,W ) be a weighted graph (directed or not). Let v ∈ V
be a vertex and I = {e|e = (v,v′) ∈ E} the set of its incident edges. We define the weighted degree of v,
noted degw(G,v), as the weight sum of its incident edges:

degw(G,v) = ∑
e∈I

W (e)

Note: In order to simplify the notation, deg(G,v) (resp. degw(G,v)) will be noted deg(v) (resp. degw(v))
when there is no ambiguity about the graph in which the degree is measured.

Connectivity

Definition 15 (Path). Let G = (V,E) be a directed graph (respectively non-directed). Let p = (v1,v2, . . . ,
vk−1,vk) be a sequence of vertices of G. p is a path if all the vertices (except perhaps the first and last
ones) are distinct and ∀i ∈ {1, ...,k−1}, (vi,vi+1) belongs to E (respectively (vi,vi+1)or(vi+1,vi) belong
to E).

The length of p is the number of vertices of p minus 1 (i.e. k−1).

Definition 16 (Connected graph). Let G = (V,E) be a graph (directed or not). G is a connected graph
if, for all distinct vertices vi ∈ V and v j ∈ V , there exists a non-directed path p in G s.t. vi is the first
vertex of p and v j is the last vertex of p. Otherwise the graph is called a disconnected graph.

Definition 17 (Subgraph). Let G = (V,E) be a directed graph (respectively non-directed graph). A
subgraph S = (V ′,E ′) of G is a directed graph (respectively non-directed graph) such that:

• V ′ ⊆V .

• E ′ ⊆ E.

• ∀(vi,v j) ∈ E ′,vi ∈V ′ and v j ∈V ′.

Definition 18 (Graph restriction ↓). Let G = (V,E) be a graph and S ⊆ V be a set of vertices. The
restriction of G to S is the subgraph of G defined as G ↓S≡ (S,E ∩ (S×S)).

8



Note: Notice that when restricting a graph G to a set S of arguments, any edge of G whose endpoints
are both in S must be kept. It is not the case for the more general subgraph definition. Indeed, a subgraph
of G whose set of arguments coincides with S may not keep all these edges.

Definition 19 (Connected component). Let G be a graph (directed or not). Let H be a subgraph of G
such that:

• H is connected.

• H is not contained in any connected subgraph of G which has more vertices or edges than H has.

Then H is a connected component of G.

In the following by “component” we mean “connected component”.

Topology

Formally, “clusters” can be defined as following:

Definition 20 (Cluster). Let G be a graph. A cluster c of G is a connected subgraph of G.

In order to define these clusters, we can use the notion of relation density:

Definition 21 (Relation density). Let G = (V,E) be a graph, S be a subset of V . The relation density
Rd(G) of the graph G is defined by:

Rd(G) =
|E|
|V |

In practice, given an initial graph, we will be interested by some of its connected subgraphs which
have similar sizes (number of nodes) and such that their inside relation density is greater than their
neighbouring relation density. Note that some graphs can be defined in which it would be difficult to
identify clusters:

Definition 22 (Random graph). A random graph Grand = (V,E) of relation density Rd(Grand) is a
graph constructed by creating edges randomly between the nodes of V until reaching the relation density
Rd(Grand) wanted.

This random construction process prevents the creation of a clustered structure.

Definition 23 (Random graph of degree sequence). Let G= (V,W,E) be a graph. Let Gτ
rand = (V,W ′,E ′)

be a random graph of relation density Rd(G). Gτ
rand is a random graph of same degree sequence as G if:

∀v ∈V , degw(G,v) = degw(Gτ
rand,v)

9



2.1.3 Matrices
In this section are presented the matrix notions needed for the AF cutting process, the key notions being
the eigenvectors and values, and the laplacian matrix.

Definition 24 (Matrix). A matrix M with m lines and n columns, or a m×n matrix, with values in some
field of scalars K is an application of {1,2, ...,m−1,m}×{1,2, ...,n−1,n} in K. Mi, j ∈ K is the image
of the couple (i, j). i is called the line index and j, the column index.

Definition 25 (Eigenvector and eigenvalue). Let E be a vector space over some field K of scalars, let u
be a linear transformation mapping E into E (i.e. u : E→ E), and let v ∈ E be a non-zero vector.

v is an eigenvector of u if and only if there exists a scalar λ ∈ K such that:

u(v) = λ · v

In this case λ is called eigenvalue (associated with the eigenvector v).

For more details on eigenvectors and eigenvalues see [20], Chapter 6.

Definition 26 (Adjacency matrix). Let G = (V,E,W ) be a weighted non-directed graph. The adjacency
matrix Ma of G is an n×n matrix (with n = |V |) defined as:

(Ma)i, j =

{
W ((vi,v j)) if (vi,v j) ∈ E
0 otherwise

If the weights of a graph G represent similarity measures then adjacency matrix is called the similarity
matrix of G.

Definition 27 (Degree matrix). Given a non-directed graph G = (V,E,W ), the degree matrix Md for G
is an n×n matrix (with n = |V |) defined as:

(Md)i, j =

{
degw(vi) if i = j
0 otherwise

Note: Md is a diagonal matrix.

Definition 28 (Laplacian matrix). Given a non-directed graph G = (V,E,W ), the laplacian matrix Ml
for G is an n×n matrix (with n = |V |) defined as:

Ml = Md−Ma

10



2.2 Clustering algorithms

Finding clusters in graph is a subject that has been widely studied. In this section we will present two
approaches that seem to be appropriate for argumentation framework clustering. For an overview of non
directed graph clustering algorithms see [24] and for directed ones see [19].

The first approach relies mainly on a coarsening process of the initial AF to maximize a certain
criterion. The second, the one we have chosen to implement in our algorithm, is based on a spectral
analysis of the laplacian matrix of an AF.

2.2.1 ConClus

Before presenting the ConClus algorithm, proposed in [23], we will define the modularity maximization
criterion on which several clustering algorithms are based.

The modularity is a measure that represents how much a given graph has a clustered structure. When
this value is around 0 (or lower than 0) it means that the graph has a random structure and the more this
value tends toward 1 the more the graph has well defined clusters in itself.

Formally, modularity is defined as following:

Definition 29 (Modularity criterion). Let G = (V,E) a graph and Ω = {ω1, ...,ωn} be a partition of V
such that:

∀i ∈ {1, ...,n}, G ↓ωi is a connected subgraph

The modularity Q of G is defined by:

Q =
n

∑
i=1

[
τ

ωi
clust− τ

ωi
rand

]
Where:

• τ
ωi
clust is the fraction of all edges that lie within G ↓ωi . Formally:

τ
ωi
clust =

|E ∩ (ωi×ωi)|
|E|

• Let Gτ
rand = (V,E ′) be a random graph of same degree sequence as G.

τ
ωi
rand is the fraction of all edges that lie within Gτ

rand ↓ωi . Formally:

τ
ωi
rand =

|E ′∩ (ωi×ωi)|
|E|

Notice that by Definition 23, we have |E|= |E ′|.

11



Given a graph G = (V,E), algorithms based on modularity maximization criterion are interested in
finding the partition Ω = {ω1, ...,ωn} of V that maximizes the modularity Q.

The inconvenient of seeking clusters in a graph using such a maximization is that, in presence of
relative large communities, relative small ones may be undetected and considered as belonging to a
larger group (see [16] for more details).

The ConClus algorithm uses a similar modularity measure that takes into account the directionality
of edges and also a parameter that to prevent the relative small cluster blindness problem. In the interest
of brevity, we will not present this modularity measure in details but we give the intuition of the ConClus
algorithm that uses it (for more details see [23]):

1. Given a graph and a partition corresponding to the singletons of each node, a list of the edges is
determined such that, if these edges are contracted in order to form a “super node”, the resulting
graphs would have the best modularities.

2. A set of possible graphs is thus created.

3. The edge contractions that are recurrent in the process of creating those graphs (above 50% of
them) are considered as permanent and a consensus graph is determined.

4. If is not possible to increase significatively the modularity the algorithm stops. Else, it goes back
to the first step with the consensus graph as input graph.

Finally, in the graph returned by ConClus algorithm, the super nodes (contracted ones) correspond to
a partition of the initial nodes and to a clustering of the initial graph.

2.2.2 Spectral clustering
The spectral clustering is a clustering method which is based on the spectral analysis of a similarity
laplacian matrix.

A similarity matrix is a square matrix in which the lines and the columns describe the same set of
elements. The matrix coefficients (i.e. the cell values) represent how much a element is similar to another,
according to given similarity measure.

In short, here is how the spectral clustering works:

• Given a similarity matrix, the laplacian of this matrix is computed.

– The lines of the laplacian matrix correspond to the coordinates of the elements in a certain
similarity space.

• The eigenvectors of the laplacian matrix with their associated eigenvalues are computed.

• The eigenvalues computed are sorted increasing order. A number n of them is kept with their
associated eigenvectors.

– This solving and sorting process is done in order to project the datapoints in a new space
which maximizes the closeness of similar elements. This space basis is formed by the com-
puted eigenvectors. The eigenvalue of an eigenvector represents how much the datapoints
are scattered on the eigenvector corresponding axis. Given that we are interested in the di-
mensions that maximize the best similarity (axes on which the datapoints are closed to each
other), we keep the n smallest eigenvalues and their eigenvectors.
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– If there are clusters in a data set, it is reasonable to think that the number of small eigenvalues
are the number of groups identified (the datapoints being rather homogeneous following that
axis). An heuristic to find the appropriate number of dimensions to keep is to detect the jump
in the eigenvalues sequence (sorted in increasing order).

• A matrix whose columns are the remaining eigenvectors is constructed. The lines of it represent
the new elements coordinates.

• Once this data treatment is done, a simple algorithm of clustering such as KMeans is applied to
that new data set, seeking for a partition into n parts, based on the coordinates of the elements (see
[18] for more information about KMeans algorithm).

In Section 3.3, this algorithm is illustrated on a concrete AF example.

Note: For more information on spectral clustering see [26].

Although the ConClus algorithm is one of the best algorithms to find clusters in directed graphs,
generating all these graphs could be time consuming. For this reason, in our algorithm presented in
Chapter 3, we have chosen to use firstly the clustering algorithm based on spectral analysis. Experiments
with ConClus algorithm are left for future works.

2.3 Constraint Satisfaction Problem
In this section is presented the formal definition of a constraint satisfaction problem (CSP). A CSP mod-
elling will be used for reunifying the solutions parts computed by our algorithm.

Given a set of changeable state objects, a Constraint Satisfaction Problem (CSP) is a mathematical
problem in which we look for a configuration of object states (i.e. a mapping where each object has a
particular state) that satisfies a certain number of constraints.

Definition 30 (Constraint Satisfaction Problem). A CSP is defined by a triplet Ψ = 〈X ,D,C〉 where:

• X = {X1, ...,Xn} is a set of variables.

• D = {D(X1), ...,D(Xn)} is a set of domains, where D(Xi)⊂Z is the finite set of values that variable
Xi can take (i.e. D(Xi) is the domain of Xi).

• C = {c1, ...,ce} is a set of constraints.

Definition 31 (Constraint). A constraint ci is a boolean function involving a sequence of variables
X(ci) = (Xi1 , ...,Xiq) called its scheme. The function is defined on Zq. A combination of values (or
tuple) τ ∈ Zq satisfies ci if ci(τ) = 1 (also noted τ ∈ ci). If ci(τ) = 0 (or τ /∈ ci), τ violates ci.

Definition 32 (Instantiation). An instantiation of the X variables is a mapping where each Xi takes a
value in its domain D(Xi).

13



Definition 33 (CSP Solution). A solution of a CSP is an instantiation of the X variables that violates no
constraint.

Note: For more details on CSP see [25].
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Chapter 3

Distributed Algorithms

The distributed way of computing semantics we are going to present relies on the idea that argumenta-
tion frameworks constructed from real data have a particular structure. Indeed, given that people have
thematics and goals while arguing, it is a reasonable conjecture to say that the AFs obtained from real
argumentation are not random, that they have globally a low density of relations between arguments and
finally that their topology reveals clusters, i.e. areas with higher relation densities and others with lower
ones.

The idea behind clusters is that we can see them as subtopics of the main argumentation object.
Although there may have connections between these subtopics it seems judicious to cut the main problem
into small pieces and to apply a reasoning process on them, taking into account the possible interactions
between them. Searching a solution in one of these subtopics may be seen as an assumption-based
reasoning: solutions will be sought for all configurations of attack status from neighbour subtopics.

Finally, the “compatible” subtopic solutions will be merged to form a solution of the main argumen-
tation framework.

The algorithm that we propose is based on the ideas mentioned above. Given an argumentation
framework Γ and a semantics σ , four major steps apply:

1. A pretreatment on Γ removes “trivial” parts of it.

2. Clusters (areas with high relation density) in Γ are identified.

3. The labellings under semantics σ in each of these clusters are computed in parallel.

4. The results of each cluster are reunified to get the labellings of Γ .

The problem we are interested in is to find all the labellings of Γ under the complete, the stable
and preferred semantics, as quickly as possible. Given that the grounded semantics can be computed in
linear time and that it gives only one labelling, the approach of this paper is unappropriated.

In the following sections we will present the different steps mentioned above, then the algorithms
themselves. Afterwards, we will highlight the relation between AFs with input, introduced by Baroni
et al., and the cluster structures introduced in this paper. Finally, we will prove that the algorithms are
sound and complete for the stable, complete and preferred semantics.
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3.1 Definitions
For practical reasons we define a transformation that gives a non-directed graph from a directed graph.

Definition 34 (Undirection transformation) Let G = (V,E,W ) be a directed weighted graph. The non-
directed graph G′= (V ′,E ′,W ′) obtained by the undirection transformation of G (noted U (G)) is defined
as following:

• V ′ =V .

• E ′ = {(vi,v j)|(vi,v j) ∈ E or (v j,vi) ∈ E}.

• W ′ : E ′→ R is defined as following:

W ′ : (vi,v j) 7→


W ((vi,v j)) if (vi,v j) ∈ E and (v j,vi) /∈ E,
W ((v j,vi)) if (vi,v j) /∈ E and (v j,vi) ∈ E,
W ((vi,v j))+W ((v j,vi)) if (vi,v j) ∈ E and (v j,vi) ∈ E

By convention, if G is a non-directed graph we say that G = U (G).

3.2 Pretreatement: removing AF trivial parts
What we call the “trivial part” (or “fixed part”) of an AF is simply a part of it that has a unique and fixed
labelling that can be computed in linear time. As it will be seen in Section 3.4, for each attack between
clusters, several cases have to be considered and this can be very time consuming. In order to avoid this
cost for attacks that are in the “trivial part”, we simply cut that part from the AF and, only after that, look
for clusters.

Given that we are interested in the complete, stable and preferred semantics, a good way to remove
that “trivial part” is to compute the grounded labelling of the AF. Indeed, all complete, stable and pre-
ferred labellings include the grounded one. Furthermore, the grounded labelling is computable in linear
time. This idea of preprocessing has been exploited in [8].

Once the grounded labelling `gr is computed for a given Γ , we consider a restriction Γhard of Γ to
those arguments that are labelled und in the grounded labelling:

Γhard = Γ↓{a|a∈A,` gr(a)=und }

Γhard may possibly be a disconnected graph. We take advantage of that potential property in order to
enhance the parallel computing as it will be explained in Sections 3.4 and 3.5.

Example 2 As an illustration, let Γ be the AF represented in Figure 1.1. In the grounded labelling `gr,
argument a is labelled in, arguments b and c are labelled out and all the other ones are labelled und

(see Figure 1.2). The arguments in the “trivial part” of Γ are then a,b and c. For all possible complete,
stable and preferred labellings, they will be labelled like in `gr.

Γhard is obtained by removing a,b and c from Γ . Γhard is represented on Figure 3.1.
Given that Γhard is a disconnected graph, we split it into two independent AFs γ1 and γ2 as shown in

Figure 3.1. The same treatment described in Section 3.3 will be applied simultaneously to both of them.
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Figure 3.1: Γhard and its components

3.3 Identifying Clusters
Finding clusters in the AF structure is tantamount to resolving a Sparsest Cut Problem. Such a problem, in
the context of argumentation frameworks, consists in finding a partition of the arguments that minimizes
the number of attacks across the cuts while balancing the parts size (i.e. number of arguments). As it is
an NP-Hard problem, we look for an algorithm with a lower complexity using a heuristic that gives us an
approximation of the sparsest cut partition.

This problem has been widely studied in graph theory and a lot of algorithms have been proposed.
Some of them work on the graph structure itself. They merge nodes together while maximizing a certain
criterion. At the end the super-nodes created represent the clusters. See Section 2.2.1 for an algorithm
example.

The algorithm that we have chosen to use here is based on a completely different approach, used
in data mining clustering. The idea is to do a spectral analysis of the similarity matrix of a data set in
order to find the most homogeneous partition of it. See Section 2.2.2 for information about this kind of
clustering.

We have begun our work by this approach because we thought that merging nodes could be more time
consuming. Indeed our cutting algorithm consists mainly in solving a system of equations corresponding
to a particular matrix, as explained in the following. This system of equations can be considerably
simplified if the corresponding matrix is sparse (i.e. with many zero values). It seems reasonable to think
that, because of human argumentation structure,1 this matrix will most of the time be a sparse one. The
comparison with other clustering algorithms will be made in future works.

Given that the approach is intended for catching similarities between data, we had to adapt it for ar-
guments and AFs. In our adaptation, the similarity between arguments represents how much an argument
is connected or related to another one. The initial similarity matrix is here a kind of adjacency matrix of
the AF nodes. As similarity is a symmetric relation, there is no notion of directionality in that approach.
Nevertheless, we needed to express the fact that two nodes between which there are two attacks (one in
each direction) are more related to one another than two nodes between which there is only one attack.
That is why it was not possible to simply use the adjacency matrix of the AF as initial similarity matrix.

1We made the conjecture that argumentation frameworks obtained from real data has globally a low relation density. We
thought that simply because arguments have precise goals. It is very unlikely to have an argument attacking most of what have
been said. On the contrary when arguing we attack key points that change the outcome of the argumentation.
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Instead of it, we use the adjacency matrix of the weighted non-directed graph obtained by the undirection
transformation of the initial AF.

Example 3 Let consider the components of Γhard shown in Figure 3.1. The weighted non-directed
graphs obtained by U (γ1) and U (γ2) are shown in Figure 3.2. The similarity matrices of U (γ1) and
U (γ2) are:

Mγ1
a =



d e f g h i

d 0 2 0 1 0 0
e 2 0 1 0 0 0
f 0 1 0 2 0 0
g 1 0 2 0 1 0
h 0 0 0 1 0 1
i 0 0 0 0 1 0



Mγ2
a =



j k l m n

j 0 1 1 0 0
k 1 0 1 0 0
l 1 1 0 1 0
m 0 0 1 0 2
n 0 0 0 2 0


As you can see, given that the AF relation density is low the matrices are rather sparse.
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(b) Component 2: γ2

Figure 3.2: U (γ1) and U (γ2)
.

Once the AF similarity matrix is constructed, data are projected in a new space in which similarity is
maximised. If a certain structure exists in the data set, we will see in that space appear some agglomerates
corresponding to the node clusters.

To do that, we compute the n smallest eigenvalues2 of the laplacian matrix obtained from the similarity
matrix and the vectors associated with them (this n is an arbitrary parameter).

2There exist algorithms, such as Krylov-Schur method, able to compute eigenvectors from smallest to greatest eigenvalue
and stop at any wanted step (e.g. number of vectors found). With such an algorithm it is not necessary to find all the solutions
as we are interested only in the small eigenvalues.
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Indeed, the eigenvectors found will correspond to the basis of that similarity space and the eigenvalues
to the variance on the corresponding axes. Given that we are looking for homogeneous groups, we will
consider only the axis on which the variance is low, and so the eigenvectors that have small eigenvalues.
The space whose basis is the n selected eigenvectors (corresponding to the n smallest eigenvalues) is then
a compression of similarity space (i.e. we keep only the dimension useful for a clustering).

Example 4 Let take as example the case of γ2. The degree matrix Mγ2
d of U (γ2) is:

Mγ2
d =



j k l m n

j 2 0 0 0 0
k 0 2 0 0 0
l 0 0 3 0 0
m 0 0 0 3 0
n 0 0 0 0 2


and then, its laplacian matrix Mγ2

l is:

Mγ2
d −Mγ2

a = Mγ2
l =



j k l m n

j 2 −1 −1 0 0
k −1 2 −1 0 0
l −1 −1 3 −1 0
m 0 0 −1 3 −2
n 0 0 0 −2 2


The eigenvectors of Mγ2

l are:



v1 v2 v3 v4 v5

−0.4472136 0.4397326 7.071068×10−1 0.3038906 0.1195229
−0.4472136 0.4397326 −7.071068×10−1 0.3038906 0.1195229
−0.4472136 0.1821432 −5.551115×10−17 −0.7336569 −0.4780914
−0.4472136 −0.4397326 −2.775558×10−16 −0.3038906 0.7171372
−0.4472136 −0.6218758 −1.665335×10−16 0.4297663 −0.4780914


and their eigenvalues are:

[ λ1 λ2 λ3 λ4 λ5

2.476651×10−16 5.857864×10−1 3.000000 3.414214 5.000000
]

In this example we have chosen to keep all the vectors (i.e. n = 5).

Now that the similarity space is found, another important step is to find how many groups we have
in that space. Intuitively, the number of eigenvectors with small eigenvalues, and so, the number of axes
with small variance is the number of clusters. However, within the n smallest eigenvalues determined, it
is difficult to formally say what is a small eigenvalue, and so, what is the number of clusters to chose.

Sorted in ascending order, the eigenvalue sequence represents how the similarity within clusters in-
creases as the number of clusters grows. Obviously, the more clusters, the more homogeneous they will
get, but also, the more you will have to compute cases as explained in Section 3.4 (which is very time
consuming). We have then to find a compromise between number of clusters and homogeneity.
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As eigenvalues say, in the end, how much the corresponding clusters will be homogeneous, the heuris-
tic we have chosen to consider is to look for the “best elbow” in that ascending order sequence. We look
for the number of dimensions to keep just before the quick growth of the variance. If the topology of the
AF let appear some clusters then we will indeed have elbows. We can see in Figure 3.3 that this “best
elbow” in the eigenvalues sequence (blue line with squares) is in second position. In that case the number
of clusters determined by that heuristic is so 2.

To compute that “best elbow” we consider the second derivative (green line with triangles) of the
ascending order sequence. As the second derivative represents the concavity of the eigenvalue sequence,
we can take the first value of the second derivative above a certain threshold (red line without symbol)
determined experimentally (i.e. the first position where the eigenvalue sequence is enough convex).

As you can see the first point of the second derivative, corresponding to the concavity formed by the
first three eigenvalues, is the first value above the threshold and then we determine that the “best elbow”
is in position 2.

λ1 λ2 λ3 λ4 λ5
−3

−2

−1

0

1

2

3

4

5
Eigenvalues

Second derivative
Threshold = 0.04

Figure 3.3: Eigenvalues sorted by ascending order

Once the number of clusters is chosen, we remove from the similarity matrix the columns that are
after this number (i.e. we remove the dimensions we are not interested in for the clustering). The lines of
the resulting matrix, which columns are the kept eigenvectors, correspond to the coordinates of the nodes
in that new compressed similarity space.

Finally, we just have to apply a KMeans type algorithm [18] to find the groups of datapoint in that
space and so have the partition of arguments we wanted.

Example 5 Given that the chosen number of clusters is 2, we keep only the vectors v1 and v2 and when
binded by column the lines they form correspond to the coordinates of the arguments in a new space that
maximizes similarity.
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

v1 v2

j −0.4472136 0.4397326
k −0.4472136 0.4397326
l −0.4472136 0.1821432
m −0.4472136 −0.4397326
n −0.4472136 −0.6218758


As you can see the v1 dimension is useless. In practice it is removed.
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Figure 3.4: Arguments datapoints projected in similarity space

Figure 3.4 clearly shows two clusters.

Example 6 The partition determined for γ1 and γ2 is shown in Figure 3.5.

We define a cluster structure at this step that will be useful in the following.

Definition 35 (Cluster structure). Let Γ = 〈A,R〉 be an AF, Ω be the partition of A, ω be an element of
Ω (i.e. a set of arguments) and κ = 〈γ, I,O,B〉 be a cluster structure. κ is defined as follows:

γ = Γ↓ω

I = {(a,b)|(a,b) ∈ R,b ∈ ω and a /∈ ω}
O = {(a,b)|(a,b) ∈ R,b /∈ ω and a ∈ ω}
B = {a|(a,b) ∈ O or (b,a) ∈ I}

Note: “I” means “inward attacks”, “O” means “outward attacks” and “B” means “border argu-
ments”.

Example 7 Figure 3.6 represents the cluster structures in γ1 and γ2. As an example the cluster structure
κ1 is defined as 〈γ1, /0,{(g,h)},{g}〉.

21



d

e

f

g

h i

(a) Clusters of γ1

j k

l

mn

(b) Clusters of γ2

Figure 3.5: Cluster partition

3.4 Computing the labellings
Once the cluster structures are created, we compute the labellings for the given semantics for all possible
cases. The same treatment described below will be applied simultaneously for the different clusters.

The notion of AF clusters as defined in this paper is very similar to the notion of I/O Argumentation
Framework introduced by [4]. Following the status of the arguments that, from outside, attack the cluster,
a set of labellings will be computed and, as a consequence, these labellings will imply a status for the
sources of attacks going outside of the cluster.

We call “context” a labelling of the cluster inward attack sources.

Definition 36 (Context). Let κ = 〈γ, I,O,B〉 be a cluster structure, and SI = {a|(a,b) ∈ I} be the inward
attack sources of κ . A context µ of κ is a labelling of SI .

Given that an argument can be labelled in , out or und , in the worst case there will be 3|I| contexts.
The exact number of contexts is 3|{a|(a,b)∈I}|.

Each context induces an AF denoted by γi
′ from the original AF cluster γi. Let κ = 〈γi, I,O,B〉 be a

cluster structure, S be the set of I-sources, T be the set of I-targets and µ be a context of κ . Here is how
γi
′ is induced for a particular context µ:

1. γi
′ receives a copy of γi

2. ∀s ∈ S s.t. µ(s) = in ,∀t ∈ {t|(s, t) ∈ T}, t is removed from γi
′ with all the attacks that have t as

endpoint.

3. ∀s ∈ S s.t. µ(s) = und ,∀t ∈ {t|(s, t) ∈ T,@(s′, t) s.t. µ(s′) = in }, the attack (t, t) is added to γi
′.

If µ(s) = out there is nothing to do as the attack would have no effect.
Formally here is how induced AF are defined.

Definition 37 (Induced AF). Let γ = 〈A,R〉 be an AF, κ = 〈γ, I,O,B〉 be a cluster structure, and µ be a
context of κ . The induced AF γ ′ of κ (or induced from γ) under the context µ is defined as following:

γ
′ = 〈A′,R′〉
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Figure 3.6: Clusters structures of the components

With:

• A′ = A\D

• D = {a|a ∈ A and (s,a) ∈ I and s ∈ in(µ)}

• R′ = (R\{(s, t)|s ∈ D or t ∈ D})∪{(a,a)|(s,a) ∈ I and s ∈ und(µ)}

Example 8 Figure 3.7 represents the three AFs induced from κ2.

For all those induced AFs, we compute the labellings corresponding to the given semantics.

Definition 38 (Induced labellings). Let γ = 〈A,R〉 be an AF, κ = 〈γ, I,O,B〉 be a cluster structure, µ be
a context of κ . Let γ ′ be the induced AF of κ under the context µ , D be the set of arguments such that
D = {a|a ∈ A and (s,a) ∈ I and s ∈ in(µ)} and `D is the labelling defined as {(a,out)|a ∈ D}.

The set of induced labellings L
µ(κ)

σ of γ under the context µ is defined as following:

L
µ(κ)

σ = {` ∪`D|` ∈L (γ ′)}
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Figure 3.7: AFs induced from κ2

At this step, the computation of the labellings can be done in parallel for each induced AF γ ′.

Note: In our experiments, the computation of the labellings of an induced AF will be realized using an
existing AF solver.

Then the labellings of the initial AF are obtained by reunifying the induced labellings of each cluster.
In order to do that, we must to associate a “configuration” ξ with each induced labelling ` . This con-
figuration expresses under which conditions an induced labelling, from a given cluster, can be reunified
with another one from a neighbour cluster. This configuration is a 5-value labelling on the cluster border
arguments (i.e. ∀a ∈ B).

Definition 39 (Configuration ξ ). Let γ = 〈A,R〉 be an AF, κ = 〈γ, I,O,B〉, µ be a context of κ , and
` ∈L

µ(κ)
σ be a computed labelling of κ under µ .

Given ` , a configuration is a total function ξ : B → {in,out,iout,und,iund} such that:

ξ : a ∈ B 7→



in if `(a) = in

out if `(a) = out and ∃(b,a) ∈ R s.t. `(b) = in

iout if `(a) = out and @(b,a) ∈ R s.t. `(b) = in

und if `(a) = und and @(b,a) ∈ I s.t. µ(b) = und

iund if `(a) = und and ∃(b,a) ∈ I s.t. µ(b) = und

In words, for an argument a:

• ξ (a) = in means that a is successfully attacked neither from outside nor from inside the cluster.

• ξ (a) = out means a is legally out from cluster point of view.

• ξ (a) = iout means that a is illegally out from the cluster point of view.

• ξ (a) = und means that a is is legally und from cluster point of view.
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Figure 3.8: Example of the interest of the 5-value labelling.

• ξ (a) = iund means that a is illegally und from cluster point of view.

Note: We do not need a value to represent the fact that an argument is illegaly in because if a border
argument is in then all its attackers must be out. As defined in Section 3.5 a simple constraint on
endpoint attack labels is sufficient to ensure only such reunifications.

That is not the case for the values out and und.
Let illustrate that fact. Consider the cluster structure shown in Figure 3.8. Let say that because of

a certain context µ a1 is labelled out. From the cluster point of view a3 could be labelled in, out or
und, and the same for a4. Indeed, all these endpoint attack labels couples are valid. An extra constraint
is needed to ensure that at least one between a3 and a4 is labelled in. That why we need to differentiate
out and iout.

The same reasoning shows that we also need two undecided states (und and iund).

Example 9 Here is the result according to the complete semantics for our running example.
For κ1 we have only one context µ

κ1
1 = /0 that gives the labellings and their induced configurations

shown in Figure 3.9.

`κ1
1 ξ

κ1
1 `κ1

2 ξ
κ1
2 `κ1

3 ξ
κ1
3

d out in und

e in out und

f out in und

g in in out out und und

Figure 3.9: κ1 labellings and configurations under µ
κ1
1 .

For κ2 we have three contexts: µ
κ2
1 = {g = out}, µ

κ2
2 = {g = in} and µ

κ3
1 = {g = und}. Figure 3.10

gives their corresponding labellings and induced configurations.
For κ3 we have only one context µ

κ3
1 = /0 that gives the labellings and their induced configurations

shown in Figure 3.11.
For κ4 we have three contexts: µ

κ4
1 = {l = in}, µ

κ4
2 = {l = out} and µ

κ4
1 = {l = und}. Figure 3.12

gives their corresponding labellings and induced configurations.
Notice that ξ

κ4
1 (m) 6= iout because `κ4

1 (n) = in and the attack (n,m) exists in κ4.
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(b) Under µ
κ2
2

`κ2
3 ξ

κ2
3

h und iund
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(c) Under µ
κ2
3

Figure 3.10: κ2 labellings and configurations under µ
κ2
1 .

`κ3
1 ξ

κ3
1

j und

k und

l und und

Figure 3.11: κ3 labellings and configurations under µ
κ3
1 .

`κ4
1 ξ

κ4
1

m out out

n in

(a) Under µ
κ4
1

`κ4
2 ξ

κ4
2 `κ4

3 ξ
κ4
3

m in in out out

n out in

(b) Under µ
κ4
2

`κ4
4 ξ

κ4
4 `κ4

5 ξ
κ4
5

m out out und iund

n in und

(c) Under µ
κ4
3

Figure 3.12: κ4 labellings and configurations under µ
κ4
1 .

After that we have computed the different labellings and their corresponding configuration, we keep
only the “distinct labellings” with their “merge configurations”.

Definition 40 (Distinct labelling set). Let κ = 〈γ, I,O,B〉 be a cluster, let L κ = {`κ
1 , ...,`

κ
n} be the set

of labellings computed from κ , and L κ
D be the distinct labelling set of κ .

L κ
D is defined as following:

L κ
D = {`κ

i |`κ
i ∈L κ and @`κ

j ∈L κ s.t. `κ
j = `κ

i and j < i}

Example 10 For κ4, L κ4
D = {`κ4

1 ,`κ4
2 ,`κ4

5 }.

Notice it is possible for a labelling to have several and different configurations. These configurations
can only differ on und and iund labels. As an example, consider the Figure 3.13.

Example 11 In no case a can be labelled in. Let thus consider only the contexts of the right cluster
that can possibly lead to valid reunified labellings, which are: {(a,out)} and {(a,und)}. In both cases,
we have a unique labelling {(b,und)}. Nevertheless, considering the configurations, we obtain two
distinct ones. For the first context, we have: {(b,und)} using the forth rule of the configuration definition
(Definition 39) and {(b,iund)} using the last rule.

Given that it is possible for a labelling to have several and different configurations, we introduce the
notion of “merge configuration”.
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d

c

a b

Figure 3.13: Illustration of merge configuration

Definition 41 (Merge configuration). Let κ = 〈γ, I,O,B〉 be a cluster, let L κ = {`κ
1 , ...,`

κ
n} be the

set of labellings and C κ = {ξ κ
1 , ...,ξ

κ
n } the set of their corresponding configurations computed from

κ , let `κ
i ∈ L κ be a labelling and C` κ

i
= {ξ κ

j |ξ κ
j ∈ C κ s.t. `κ

j = `κ
i } be the set of all its possible

configurations. Let ξ ∈ C` κ
i

be a possible configuration of `κ
i .

The merge configuration ξ` κ
i

of `κ
i is defined as follows:

∀a ∈ B,ξ` κ
i
(a) =



in if `κ
i (a) = in

out if `κ
i (a) = out and ∃(b,a) ∈ γ s.t. `(b) = in

iout if `κ
i (a) = out and ∃(b,a) ∈ γ s.t. `(b) = in

und if `κ
i (a) = und and ∃ξ ∈ C` κ

i
s.t. ξ (a) = und

iund otherwise

The merge configuration as defined is the most flexible configuration of a given labelling. It ensures
all the requirements for a good reunification without adding unwanted restrictions.

Definition 42 (Distinct labelling/configuration set). Let κ = 〈γ, I,O,B〉 be a cluster, let L κ
D be the dis-

tinct labelling set of κ , and let Dκ

`/c
be its distinct labelling/configuration set.

Dκ

`/c
is defined as following:

Dκ

`/c = {(`
κ ,ξ` κ )|`κ ∈L κ

D}

Example 12 This step will affect only the cluster κ4 as `κ4
1 = `κ4

3 = `κ4
4 . The new set of labelling/configuration

of κ4 is shown on Figure 3.14.

` ′κ4
1 ξ

′κ4
1 ` ′κ4

2 ξ
′κ4
2 ` ′κ4

3 ξ
′κ4
3

m out out in in und iund

n in out und

Figure 3.14: κ4 labellings and configurations.

We can notice after this filtering and merging process that:
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• One context can give several labellings.

• From a labelling is induced one and only one merge configuration.

• Several labellings can induce the same merge configuration.

3.5 Reunifying the results
The last step consists in reunifying the labelling parts previously computed. Labelling parts can be
reunified if and only if their corresponding configurations are “compatible” together. To express that
“compatibily” we transform that reunifying problem into a constraint satisfaction problem (CSP).

Here are the four steps of the transformation process :

1. For each cluster κi, a variable Vκi is created. For each of them, the domain is the set of their distinct
computed labellings (i.e. ∀` ∈L κ

D ).

2. For each border argument a j, a variable Va j is created with a domain corresponding to their possible
labels, i.e. {in ,out ,und }.

3. For each inter-cluster attack (a,b), a constraint is added with the following set of valid tuples:
{(a = in ,b = out ),(a = out ,b = in ),(a = out ,b = out ),
(a = out ,b = und ),(a = und ,b = out ),(a = und ,b = und )}

Let ` be a value of the domain of Vκi , let ξ` be the corresponding merged configuration and
κi = 〈γ, I,O,B〉 be the corresponding cluster.

4. For each ` in Vκi domain:

(a) Constraints are added to map the labelling with its corresponding configuration. The con-
straints are defined as following:

(Vκi = ` ∧ξ` (a j) = in ) =⇒ Va j = in

∀a j ∈ B, (Vκi = ` ∧ (ξ` (a j) = out ∨ξ` (a j) = iout )) =⇒ Va j = out

(Vκi = ` ∧ (ξ` (a j) = und ∨ξ` (a j) = iund )) =⇒ Va j = und

(b) Constraints are added for all arguments labelled iout in ξ :
∀a j ∈ {a|ξ` (a) = iout }, Vκi = ` =⇒ ∃(ak,a j) ∈ I s.t. Vak = in

(c) Constraint are added for all arguments labelled iund in ξ :
∀a j ∈ {a|ξ` (a) = iund }, Vκi = ` =⇒ ∃(ak,a j) ∈ I s.t. Vak = und

Note: The constraints have to be seen as declarative rules. For example the rule: Vκi = ` =⇒
∃(ak,a j) ∈ I s.t. Vak = und as to be understand as “If the variable Vκi has the value ` , there must be
a variable corresponding to one of the attackers of a j that takes the value und”.

The solutions of that CSP modelling are the set of compatible labellings (corresponding to values of
the Vκi variables).

Example 13 As example let create the CSP modelisation for the reunification of γ1.
Let Ψγ1 = 〈X ,D,C〉 be that model. Ψγ1 is defined as following:
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• X = {Vκ1,Vκ2,Vg,Vh}

• D = {
D(Vκ1) = {`

κ1
1 ,`κ1

2 ,`κ1
3 },

D(Vκ2) = {`
κ2
1 ,`κ2

2 ,`κ2
3 },

D(Vg) = {in,out,und},
D(Vh) = {in,out,und}

}

• C = {c1,c2,c3,c4,c5} is a set of constraints, with

– c1 being the constraint that expresses the attack relation from g to h, corresponding to Step 3,

– c2 being the constraint expressing the fact that the labellings of κ1 impose a label on each of
its border arguments (i.e. on g), corresponding to Step 4a,

– c3 being the constraint expressing the fact that the labellings of κ2 impose a label on each of
its border arguments (i.e. on h), corresponding to Step 4a,

– c4 being the constraint expressing the fact that `κ2
2 can only be reunified with a labelling of

κ1 in which g is labelled in, corresponding to Step 4b,

– c5 being the constraint expressing the fact that `κ2
3 can only be reunified with a labelling of

κ1 in which g is labelled und, corresponding to Step 4c.

Note: c4 and c5 are constraints only for precise labellings of κ2. c4 and c5 must allow g being
labelled with any label if the reunification is about another labelling of κ2.

c1 accepts only the following tuples:

– (Vg = in,Vh = out)

– (Vg = out,Vh = in)

– (Vg = out,Vh = out)

– (Vg = out,Vh = und)

– (Vg = und,Vh = out)

– (Vg = und,Vh = und)

c2 accepts only the following tuples (see Figure 3.9):

– (Vκ1 = `κ1
1 ,Vg = in)

– (Vκ1 = `κ1
2 ,Vg = out)

– (Vκ1 = `κ1
3 ,Vg = und)

c3 accepts only the following tuples (see Figure 3.10):

– (Vκ2 = `κ2
1 ,Vh = in)

– (Vκ2 = `κ2
2 ,Vh = iout)
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– (Vκ2 = `κ2
3 ,Vh = iund)

c4 accepts only the following tuples:

– (Vκ2 = `κ2
2 ,Vg = in)

– (Vκ2 = `κ2
3 ,Vg = in)

– (Vκ2 = `κ2
3 ,Vg = out)

– (Vκ2 = `κ2
3 ,Vg = und)

– (Vκ2 = `κ2
1 ,Vg = in)

– (Vκ2 = `κ2
1 ,Vg = out)

– (Vκ2 = `κ2
1 ,Vg = und)

c5 accepts only the following tuples:

– (Vκ2 = `κ2
3 ,Vg = und)

– (Vκ2 = `κ2
2 ,Vg = in)

– (Vκ2 = `κ2
2 ,Vg = out)

– (Vκ2 = `κ2
2 ,Vg = und)

– (Vκ2 = `κ2
1 ,Vg = in)

– (Vκ2 = `κ2
1 ,Vg = out)

– (Vκ2 = `κ2
1 ,Vg = und)

Note: c4 and c5 have both to be respected. As a consequence, the valid tuples concerning Vκ2 and
Vg are the ones which are both in c4’s valid tuples and c5’s valid tuples. So the second and third
tuples accepted by c4 and the third and fourth tuples accepted by c5 will be useless.

The solutions are:

• {e = in,g = in, f = out,d = out,h = out, i = in}
(corresponding to the configurations ξ

κ1
1 = {g = in} and ξ

κ2
2 = {h = iout})

• {e = out,g = out, f = in,d = in,h = in, i = out}
(corresponding to the configurations ξ

κ1
2 = {g = out} and ξ

κ2
1 = {h = in})

• {e = und,g = und, f = und,d = und,h = und, i = und}
(corresponding to the configurations ξ

κ1
3 = {g = und} and ξ

κ2
3 = {h = iund})

In the same way for γ2 we obtain the following results:

• { j = und,k = und, l = und,m = und,n = und}
(corresponding to the configurations ξ

κ3
1 = {l = und} and ξ

′κ4
3 = {m = iund})

• { j = und,k = und, l = und,m = out,n = in}
(corresponding to the configurations ξ

κ3
1 = {l = und} and ξ

′κ4
1 = {m = out})

To finish, the labellings of the whole AF are reunified. All combinations of these labellings, combined
with the one concerning the “trivial part” of the AF, form a global labelling.

Example 14 In Figure 3.15 you can see the complete labellings thus obtained.
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`1 `2 `3 `4 `5 `6

a in in in in in in

b out out out out out out

c out out out out out out

d out out in in und und

e in in out out und und

f out out in in und und

g in in out out und und

h out out in in und und

i in in out out und und

j und und und und und und

k und und und und und und

l und und und und und und

m und out und out und out

n und in und in und in

Figure 3.15: Complete labellings

3.6 Algorithms
The general form of the distributed algorithm proposed in this paper is given in Algorithm 1 that uses
Algorithm 2 or Algorithm 3 following the computed semantics.

3.7 Completeness and soundness
In this section we will prove that the algorithms work well. More precisely, we will prove that the
algorithms give all the expected labellings for the complete, stable and preferred semantics; this is the
notion of completeness, and will also prove that the algorithms give only good labellings for the semantics
complete, stable and preferred; this is the notion of soundness.

In a first step we will give underlying notions of semantics in order to make the proofs, then we will
prove the soundness and completeness of the algorithms.

3.7.1 Prerequisite notions
In [4], Baroni et al. introduce several notions and proved semantics properties that are useful to prove that
our proposed algorithms are sound and complete. The most important about this section is to understand
what is a fully-decomposable semantics and what is a top-down decomposable semantics. Before going
in the formal definitions of them, we will give the intuition of what they represent.

A semantics will be a fully-decomposable or top-down decomposable semantics if for any AF and
any partition of a given AF, it is possible to reconstruct all the labellings of the whole AF by combining
the labellings (under the same semantic) of the partition parts.

To be more precise, the difference between a top-down decomposable semantics and a fully decom-
posable one is that for a top-down decomposable one, when doing this process of labelling part reunifi-
cation all the semantics labellings will be found but it is also possible to obtain non correct labellings,
whereas, for a fully-decomposable all and only the correct semantics labellings will be obtained.
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Algorithm 1 AFDivider algorithm
Input: Let Γ = 〈A,R〉 be an AF and σ be a semantics
Output: Lσ ∈ 2L (Γ): the set of labellings of Γ under the semantics σ

Local variables:
CCSet: the set of connected components (disjoints sub-AFs after removing the
grounded influence set)
ClustSet: the set of cluster structures for each connected component γi
`gr: the grounded labelling of Γ

L γi
σ : the set of labellings of the component γi under the semantics σ

1: `gr←ComputeGroundedLabelling(Γ)
2: CCSet← SplitConnectedComponents(Γ,`gr)
3: for all γi ∈CCSet do in parallel
4: ClustSet←ComputeClusters(γi)
5: L γi

σ ←ComputeComponentLabellingsσ (ClustSet) // See Algorithms 2 and 3

6: end for
7: Lσ ←{`gr}×∏γi∈CCSet L

γi
σ

8: return Lσ

Algorithm 2 ComputeComponentLabellingsσ : Component labelling algorithm for stable and complete
semantics.
Input: Let ClustSet be a set of cluster structures corresponding to a component γ and σ be the stable or

the complete semantics.
Output: Lσ ∈ 2L (γ): the set of labellings of γ under the semantics σ

Local variables:

L
κ j

σ : the set of labellings of the cluster structure κ j under the semantics σ

1: for all κ j ∈ClustSet do in parallel
2: L

κ j
σ ←ComputeClusterLabellingsσ (κ j)

3: end for
4: Lσ ← Reuni f yComponentLabellings(

⋃
κ j∈ClustSet L

κ j
σ ,ClustSet)

5: return Lσ
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Algorithm 3 ComputeComponentLabellingspr: Component labelling algorithm for the preferred seman-
tics
Input: Let ClustSet be a set of cluster structures corresponding to a component γ

Output: Lpr ∈ 2L (γ): the set of labellings of γ under the preferred semantics

Local variables:
L

κ j
pr : the set of labellings of the cluster structure κ j under the preferred semantics

L : the set of the all labellings reunified from the different clusters

1: for all κ j ∈ClustSet do in parallel
2: L

κ j
pr ←ComputeClusterLabellingspr(κ j)

3: end for
4: L ← Reuni f yComponentLabellings(

⋃
κ j∈ClustSet L

κ j
pr ,ClustSet)

5: Lpr←{` |` ∈L s.t. @` ′ ∈L s.t. in (`)⊂ in (` ′)}
6: return Lpr

All the formal definitions and propositions that follow lead to these properties and come from [4].

Definition 43 (Labelling restriction ↓). Let ` be a labelling. Let S be a set of arguments. The restriction
of ` to S denoted as ` ↓S is defined as ` ∩ (S×{in,out,und}).

Example 15 The restriction of `6 (shown in Figure 3.15) to {a,b,c} is `6 ↓{a,b,c}= {a= in,b= out,c=
out}.

Definition 44 (Input arguments and conditioning relation). Let Γ = 〈A,R〉 be an AF and S⊆ A be a set.
The input of S, denoted as Sinp, is the set {b ∈ A\S|∃a ∈ S,(b,a) ∈ R}.

The conditioning relation of S, denoted as SR, is defined as R∩ (Sinp×S).

The notion of AF with input defined below is very similar to the notion of cluster structure we defined
with the difference that the AF with input has a fixed labelling on the input arguments (i.e. a fixed
context).

Definition 45 (AF with input and local function). An argumentation framework with input is a tuple
〈Γ ,I ,`I ,RI 〉, including an argumentation framework Γ = 〈A,R〉, a set of arguments I such that
I ∩A = /0, a labelling `I of the elements of I and a relation RI ⊆I ×A.

A local function F assigns to any argumentation framework with input a (possibly empty) set of
labellings of Γ , i.e. F (Γ ,I ,`I ,RI ) ∈ 2L (Γ ).

Given an AF with input denoted by Γ, its standard argumentation framework denoted by Γ′ is an
AF that simulates the conditioning labelling of the input arguments of Γ. Computing the labelling of this
standard argumentation framework gives thus, indirectly, the labellings of the sub-AF we are interested in,
and under a certain conditioning due to the input arguments labelling. So this standard AF Γ′ corresponds
to the AF Γ in which some fictive arguments and interactions are added in order to justify the labellings.

Following is the formal definition:
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Definition 46 (Standard argumentation framework). Given an argumentation framework with input
〈Γ ,I ,`I ,RI 〉, the standard argumentation framework w.r.t. 〈Γ ,I ,`I ,RI 〉 is defined as Γ ′ = 〈A∪
I ′,R∪R′I 〉, where I ′ = I ∪{a′|a ∈ I ∩ out(`I )} and R′I = RI ∪{(a′,a)|a ∈ I ∩ out(`I )}∪
{(a,a)|a ∈I ∩und(`I )}.3

Note: By definition, the labellings of the standard AF Γ′ restricted to the inputs of the AF Γ are exactly
the labellings `I given in Γ.

Given an AF with input, the canonical local function is simply a function that gives the set of la-
bellings under a certain semantics of the sub-AF we are interested in (i.e. the input arguments and the
other fictive arguments created are not in these labellings).

Definition 47 (Canonical local function). Let Γ = 〈A,R〉 be an AF, σ be a semantics, 〈Γ ,I ,`I ,RI 〉
be an AF with input, and Γ ′ be its standard argumentation framework. The canonical local function Fσ

is the local function such that Fσ (Γ ,I ,`I ,RI ) = {` ↓A |` ∈Lσ (Γ ′)}.

Definition 48 (Semantics fully decomposability). A semantics σ is fully decomposable (or simply de-
composable) if and only if there is a local function F such that for every AF Γ = 〈A,R〉 and every
partition Ω = {ω1, ...,ωn} of A,

Lσ (Γ) = {`ω1 ∪ ...∪`ωn | ∀i, `ωi ∈F (Γ ↓ωi, ω
inp
i , (

⋃
j∈{1,...,n} s.t. j 6=i `

ω j) ↓
ω

inp
i
, ωR

i )}.

Definition 49 (Initial argument). Let Γ = 〈A,R〉 be an AF, and b ∈ A be an argument. b is an initial
argument of Γ if there is no argument in Γ attacking b. In graph theory, it is called source node.

Definition 50 (Complete-compatibility). A semantics σ is complete-compatible if and only if the follow-
ing conditions hold:

1. For any AF Γ = 〈A,R〉, every labelling ` ∈Lσ (Γ) satisfies the following conditions:

• if a ∈ A is initial, then `(a) = in

• if b ∈ A and there is an initial argument in A which attacks b, then `(b) = out

• if c ∈ A is self-attacking, and there is no attacker of c besides c itself, then `(c) = und

2. For any set of arguments I and any labelling `I of I , the AF Γ ′ = 〈I ′,att ′〉, where I ′ =
I ∪{a′|a ∈ I ∩out(`I )} and att ′ = {(a′,a)|a ∈ I ∩out(`I )}∪{(a,a)|a ∈ I ∩und(`I )},
admits a unique labelling, i.e. |Lσ (Γ ′)|= 1.

Proposition 1 The complete, stable, preferred and grounded semantics are complete-compatible.

Proposition 2 Given a complete-compatible semantics σ , if σ is fully decomposable then there is a
unique local function satisfying the conditions of Definition 48, coinciding with the canonical local func-
tion Fσ .

Proposition 3 The complete and stable semantics are fully decomposable.
3The fictive arguments are denoted by a′ in the definition of I ′ and the fictive interactions are the pairs (a′,a) or (a,a)

appearing in the definition of R′I .
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Definition 51 (Top-down decomposability). Let σ be a complete-compatible semantics and Fσ be the
canonical local function corresponding to σ .

σ is top-down decomposable if and only if for any AF Γ = 〈A,R〉 and any partition Ω = {ω1, ...,ωn}
of A, it holds that:

Lσ (Γ)⊆ {`ω1 ∪ ...∪`ωn|`ωi ∈Fσ (Γ ↓ωi,ω
inp
i ,(

⋃
j∈{1,...,n} s.t. j 6=i

`ω j) ↓
ω

inp
i
,ωR

i )}

Proposition 4 The complete, stable, preferred and grounded semantics are top-down decomposable.

Definition 52 (Partition selector). A partition selector S is a function receiving as input an AF Γ =
〈A,R〉 and returning a set of partitions of A.

Definition 53 (Top-down, bottom-up and fully decomposability w.r.t. a partition selector S )
Let S be a partition selector. A complete-compatible semantics σ is top-down decomposable w.r.t.

S iff for any AF Γ and any partition Ω = {ω1, ...,ωn} ∈S (Γ), it holds that:

Lσ (Γ)⊆ {`ω1 ∪ ...∪`ωn|`ωi ∈Fσ (Γ ↓ωi,ω
inp
i ,(

⋃
j∈{1,...,n} s.t. j 6=i

`ω j) ↓
ω

inp
i
,ωR

i )}

A complete-compatible semantics σ is bottom-up decomposable w.r.t. S iff for any argumentation
framework AF and any partition Ω = {ω1, ...,ωn} ∈S (Γ), it holds that:

Lσ (Γ)⊇ {`ω1 ∪ ...∪`ωn|`ωi ∈Fσ (Γ ↓ωi,ω
inp
i ,(

⋃
j∈{1,...,n} s.t. j 6=i

`ω j) ↓
ω

inp
i
,ωR

i )}

A complete-compatible semantics is fully decomposable (or simply decomposable) w.r.t. a partition
selector S iff it is both top-down and bottom-up decomposable w.r.t. S .

Definition 54 (Path-equivalence relation). Let G = (V,E) be a directed graph. The binary relation of
path-equivalence between nodes, denoted as PEG ⊆ (V ×V ), is defined as follows:

• ∀vi ∈V,(vi,vi) ∈ PEG.

• given two distinct nodes vi,v j ∈ V,(vi,v j) ∈ PEG if and only if there is a path from vi to v j and a
path from v j to vi.

Definition 55 (SCC-component). The strongly connected components of a directed graph G are the
equivalence classes of nodes under the relation of path-equivalence. Basically, an SCC-component is a
(directed) subgraph in which there is a path between each pair of its vertices.

Let Γ be an AF. We denote by SCCS(Γ) the set of all SCC-components of Γ .

Definition 56 (USCC partition selector). The USCC partition selector (denoted SUSCC) is the partition
selector such as for any AF Γ = 〈A,R〉:

SUSCC(Γ) = {Ω| Ω is a partition of A and ∀S ∈ SCCS(Γ),∃ωi ∈Ω s.t. ωi∩S 6= /0 =⇒ S⊆ ωi}

Proposition 5 The preferred semantics is fully decomposable w.r.t. SUSCC.
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3.7.2 Relation between AFs with input and cluster structures
In this section are highlighted the relation between AFs with input, introduced by Baroni et al. [4], and
the cluster structures we introduced in this report. This relation identified will allow us to use decompos-
ability properties for cluster structures.

The following example illustrates the differences between the two approaches.

Example 16 Consider the following AF denoted Γ:

g

h i

Given ω = {h, i}, γ = Γ ↓ω is represented as follows:

h i

Considering our approach, the cluster structure for ω is κ = 〈γ, I = {(g,h)},O = /0,B = {h}〉.
Then three contexts exist: µ1 = {(g,out)}, µ2 = {(g,in)}, µ3 = {(g,und)}.
And so three induced AFs can be defined (for respectively µ1, µ2, and µ3):

h i i h i

Considering the approach proposed by Baroni and co., the AF with input corresponding to ω is
defined by 〈γ,{g},µ,{(g,h)}〉 with µ being either µ1, or µ2, or µ3.

So three standard AFs can be defined (for respectively µ1, µ2, and µ3):

gg′

h i

g

h i

g

h i

The following proposition give the correspondence between our induced AFs and the standard AFs.

Proposition 6 Let σ be a complete-compatible semantics.
Let Γ = 〈A,R〉 be an AF and ω ⊆ A be a set of arguments. Let γ = 〈ω,Rγ〉 be the restricted AF

corresponding to Γ ↓ω .
Let κ = 〈γ, I = ωR,O = R∩ (ω ×A \ω),B = {a|(a,b) ∈ O or (b,a) ∈ I}〉 be the cluster structure

corresponding to ω .
Let µ be a context of κ .
The following equation holds:

L
µ(κ)

σ = Fσ (γ,ω
inp,µ,ωR)
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PROOF.
Let γ ′ be the induced AF of κ under context µ .
Let 〈γ,ω inp,µ,ωR〉 be an AF with input and χ be its standard argumentation framework.
Let prove that:

L
µ(κ)

σ = Fσ (γ,ω
inp,µ,ωR)

By definition of the induced AF (Definition 37), we have:

γ
′ = 〈ω ′,Rγ ′〉

Where:

• D= {a|a∈ω and (s,a)∈ωR and s∈ in(µ)} being the set of arguments attacked by an in-labelled
argument in µ .

• ω ′ = ω \D

• Rγ ′ = (Rγ ∩ (ω ′×ω ′))∪{(a,a)|(s,a) ∈ ωR and s ∈ und(µ)}

γ ′ is so the AF obtained from γ after the removal of the arguments attacked by an in-labelled argu-
ment of the context and after the adding of self-attacks on each argument attacked by an und-labelled
argument of the context.

By definition of the standard argumentation framework (Definition 46), we have:

χ = 〈ω ∪I ′,Rγ ∪R′I 〉

Where:

• I ′ = ω inp∪{a′|a ∈ ω inp∩out(µ)}

• R′I = ωR∪{(a′,a)|a ∈ ω inp∩out(µ)}∪{(a,a)|a ∈ ω inp∩und(µ)}

Let χ1 be the AF corresponding to χ ↓ω∪{a|a∈in(µ)}∪{a|a∈und(µ)}.
Given that to obtain χ1 from χ we just have to remove the arguments labelled out in µ and those

attacking them,4 we have then:

{` ↓ω |` ∈Lσ (χ1)}= {` ↓ω |` ∈Lσ (χ)} (3.1)

Let ω ′ be the set of arguments such that ω ′ = ω \D (as defined above).
Let χ2 be the AF corresponding to χ1 ↓ω ′∪{a|a∈und(µ)}.
Given that to obtain χ2 from χ1 we just have to remove the arguments labelled in in µ and those they

attack,5 we have then:

{` ↓ω ′ |` ∈Lσ (χ2)}= {` ↓ω ′ |` ∈Lσ (χ1)} (3.2)

Notice that to obtain γ ′ = 〈ω ′,ωR∪{(a′,a)|a∈ out(µ)}∪{(a,a)|a∈ und(µ)}〉 from χ2 we just have
to remove the arguments labelled und in µ and add a self attack to each of the arguments they attack.

4All these arguments are not in ω .
5All these arguments are not in ω ′.
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Considering the AF χ2, let U = {a|a ∈ ω ′ and (b,a) ∈ ωR and b ∈ ω inp ∩ und(µ)} be the set of
arguments of ω ′ attacked by an argument labelled und in µ . Let u ∈U be one of these arguments.

Given that u is attacked by an und-labelled argument, u must be labelled und or out.
Notice that having an argument labelled und cannot have as consequence an argument labelled in

or out. And so, if u is labelled out in some labelling of χ2, it is not due to the set of arguments labelled
und in µ .

Knowing this, we have:

Lσ (γ
′) = {` ↓ω ′ |` ∈Lσ (χ2)} (3.3)

From Equation 3.3 and Equation 3.2, we have:

Lσ (γ
′) = {` ↓ω ′ |` ∈Lσ (χ1)} (3.4)

Let `D be the labelling of the set of arguments D defined as following: `D = {(a,out)|a ∈ D}.
From Equation 3.4 and Equation 3.1, we have:

{` ∪`D|` ∈L (γ ′)}= {` ↓ω |` ∈Lσ (χ)} (3.5)

By definition of an induced labelling set (Definition 38), we have:

L
µ(κ)

σ = {` ∪`D|` ∈L (γ ′)} (3.6)

By definition of a canonical local function (Definition 47), we have:

Fσ (γ,ω
inp,µ,ωR) = {` ↓ω |` ∈Lσ (χ)} (3.7)

From Equations 3.6 and 3.7 and 3.5, we prove thus that:

L
µ(κ)

σ = Fσ (γ,ω
inp,µ,ωR)

�

3.7.3 Proofs of soundness and completeness
In all the following proofs, by Lσ () we mean “the set of labellings under the semantics σ according to
the mathematical definition of σ” whereas by L ∗

σ () we mean “the set of labellings under the semantics
σ computed with our algorithm”.

Thus, proving completeness is proving that Lσ ()⊆L ∗
σ () and proving soundness is proving L ∗

σ ()⊆
Lσ ().

We assume, in the following proofs, that the external existing solver used to compute the labellings of
the induced AFs from the different cluster structures is sound and complete for the grounded, complete,
stable and preferred semantics.

Proposition 7 (Soundness of Algorithm 2). Algorithm 2 is sound for the stable and complete semantics.
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PROOF. (Soundness of Algorithm 2). Let γ = 〈A,R〉 be an AF and Ω = {ω1, ...,ωn} be a partition of A
corresponding to the clustering of γ . Let σ be a fully decomposable and complete-compatible semantics
and let `∗ be a labelling of γ according to σ obtained by Algorithm 2.

Let suppose that `∗ /∈Lσ (γ). We will prove that it is impossible with a reductio ad absurdum.
As σ is a complete-compatible and fully decomposable semantics we can say that (Definition 48):

`∗ /∈ {`ω1 ∪ ...∪`ωn|`ωi ∈Fσ (γ↓ωi,ω
inp
i ,(

⋃
j∈{1,...,n} s.t. j 6=i

`ω j) ↓
ω

inp
i
,ωR

i )} (3.8)

And so:
∃ωi ∈Ω s.t. `∗ ↓ωi /∈Fσ (γ↓ωi,ω

inp
i ,(

⋃
j∈{1,...,n} s.t. j 6=i

`ω j) ↓
ω

inp
i
,ωR

i ) (3.9)

In the following we denote by ω the particular ωi for which Formula 3.9 holds in order to simplify
the notation.

Let κ = 〈γ↓ω , I = ωR,O = R∩ (ω×A\ω),B = {a|(a,b) ∈ O or (b,a) ∈ I}〉 be the cluster structure
corresponding to ω .

Let µ be a context of κ such that µ = (
⋃

j∈{1,...,n} s.t. ω j 6=ω `
ω j) ↓ω inp .

Let L
∗µ(κ)

σ be the set of labellings of κ under the context µ produced by Algorithm 2.
Let ` ′∗ ∈L

∗µ(κ)
σ be the labelling coinciding with `∗ ↓ω (i.e. ` ′∗ = `∗ ↓ω ).

We have so:
` ′∗ ∈L

∗µ(κ)
σ (3.10)

Whereas:
` ′∗ /∈Fσ (γ↓ω ,ω

inp,µ,ωR) (3.11)

And so:
L
∗µ(κ)

σ 6= Fσ (γ↓ω ,ω
inp,µ,ωR) (3.12)

Nevertheless, according to Proposition 6 we must have:

L
∗µ(κ)

σ = Fσ (γ↓ω ,ω
inp,µ,ωR) (3.13)

Thus, there is a contradiction between Equation 3.12 and Equation 3.13.
From this contradiction we can conclude that:

L ∗
σ (γ)⊆Lσ (γ) (3.14)

We prove so that for any fully decomposable semantics σ our algorithm is sound, and so for the
complete and stable semantics following Proposition 3. �

Proposition 8 (Completeness of Algorithm 2). Algorithm 2 is complete for the stable, complete and
preferred semantics.6

6Indeed, even if Algorithm 2 is only defined for stable and complete semantics, it can be proven that its completeness
property also holds when it is used with a semantic σ that is the preferred one.
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PROOF. (Completeness of Algorithm 2). Let γ = 〈A,R〉 be an AF, Ω = {ω1, ...,ωn} be a partition of A
and {κ1, ...,κn} be the set of cluster structures corresponding to Ω, with each κi being defined as:

κi = 〈γ↓ωi, I = ω
R
i ,O = R∩ (ωi×A\ωi),B = {a|(a,b) ∈ O or (b,a) ∈ I}〉

Let L κi
D be the set of distinct labellings of κi according to the semantics σ .

Let L ∗
σ (γ) be the set of labellings of γ according to σ obtained by Algorithm 2.

Let L
∗µ(κi)

σ be the set of labellings of κi under the context µ .
Let σ be a top-down decomposable semantics.
By definition we have (Definition 51):

Lσ (γ)⊆ {`ω1 ∪ ...∪`ωn|`ωi ∈Fσ (γ ↓ωi,ω
inp
i ,(

⋃
j∈{1,...,n} s.t. j 6=i

`ω j) ↓
ω

inp
i
,ωR

i )} (3.15)

Given that the labellings of all cluster structures are computed for every possible context, we have,
by definition of the context and of the input arguments:

∀i,∀` inp = (
⋃

j∈{1,...,n} s.t. j 6=i

`ω j) ↓
ω

inp
i
,∃µ

κi s.t. µ
κi = ` inp (3.16)

Given that the external solver that computes the labellings of γ↓ωi according to the semantics σ is
sound and complete, and considering χ being the standard AF w.r.t to the AF with input 〈γ↓ωi,ω

inp
i ,µκi,ωR

i 〉,
we have:

∀i,∀µ
κi,∀`χ ∈Lσ (χ),∃` ∈L

∗µ(κi)
σ s.t. ` = `χ ↓ωi (3.17)

So we have:

∀i,∀µ
κi,∀`χ ∈Lσ (χ),`χ ↓ωi∈L κi

D (3.18)

And so (following Def. 47):

∀ωi,Fσ (γ ↓ωi,ω
inp
i ,(

⋃
j∈{1,...,n} s.t. j 6=i

`ω j) ↓
ω

inp
i
,ωR

i )⊆L κi
D (3.19)

As a consequence and because of Equation 3.15 we have (∏ denoting the cartesian product):

Lσ (γ)⊆∏
κi

L κi
D (3.20)

Let ψ = {` |` ∈∏κi L
κi
D and ∃a∈A s.t. a is illegally labelled in `} be the set of all possible incorrect

labellings (i.e. the set of labellings in which there exists an argument that is not legally labelled).
We have, by definition of σ :

Lσ (γ)⊆ (∏
κi

L κi
D )\ψ (3.21)

Given that, for all computed labellings, we keep only the merged configuration, that is the most
flexible possible configuration, our CSP modelisation does not add extra constraints.

The proposed reunification removes, thus, only the labellings belonging to ψ .
As a consequence, we have:
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Lσ (γ)⊆L ∗
σ (γ) (3.22)

We prove so that for any top-down decomposable semantics σ our algorithm is complete, and so for
the complete, stable and preferred semantics following Proposition 4. �

Proposition 9 (Soundness and completeness of Algorithm 3). Algorithm 3 is sound and complete for the
preferred semantics.

PROOF. (Soundness and completeness of Algorithm 3). Let γ = 〈A,R〉 be an AF. Given that steps 1-4 of
Algorithm 3 exactly correspond to Algorithm 2 and given that Algorithm 2 is complete for the preferred
semantics (see Proposition 8), L , the set of all labellings reunified from the different clusters obtained
in the step 4 of Algorithm 3, contains all the preferred labellings of γ .

Moreover, the difference between Algorithm 2 and Algorithm 3 is that, in the step 5 of Algorithm 3,
we keep from L only the maximal (w.r.t⊆ of in-labelled arguments) labellings, that are by definition the
preferred labellings. As a consequence, Lpr contains only and all the preferred labellings of γ .

Algorithm 3 is, thus, sound and complete for the preferred semantics. �

Let us prove now that the entire algorithm is sound and complete for the stable and complete semantics
when using Algorithm 1 and Algorithm 2, and sound and complete for the preferred semantics when
using Algorithm 1 and Algorithm 3.

Proposition 10 (Soundness of Algorithm 1 + Algorithm 2). Algorithm 1 is sound for the stable and
complete semantics when using Algorithm 2 to compute the component labellings.

PROOF. (Soundness of Algorithm 1 + Algorithm 2). Let Γ = 〈A,R〉 be an AF, `gr be its grounded
labelling, Γhard = Γ↓{a|a∈A,` gr(a)=und} be the hard part of Γ and {γ1 = 〈A1,R1〉, ...,γn = 〈An,Rn〉} be the
set of AFs obtained from Γhard components.

Let σ be the complete or stable semantics.
Let L ∗

σ (Γ) be the set of labellings of Γ obtained from Algorithm 1.
Let Lσ (Γ) be the set of labellings of Γ .
Let `∗ ∈L ∗

σ (Γ) be a labelling of Γ computed by Algorithm 1.
Let L ∗

σ (γi) be the set of labellings of γi obtained from Algorithm 2.
Following Algorithm 1, we have:

`∗ = `gr∪
⋃
`∗i , with `∗i ∈L ∗

σ (γi) (3.23)

Let Ω = {ωgr,A1, ...,An} be a partition of A with ωgr = {a|a ∈ in(`gr) or a ∈ out(`gr)}.
We have (following Def. 47):

Fσ (γ ↓ωgr ,ω
inp
gr ,(

⋃
i∈{1,...,n}

`Ai) ↓
ω

inp
gr
,ωR

gr) = {`gr} (3.24)

Because σ is a fully decomposable semantics we have so (Definition 48):
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Lσ (Γ) = {`gr∪
⋃
Ai

`Ai} with `Ai ∈Fσ (γ↓Ai,A
inp
i ,(

⋃
j∈{1,...,n} s.t. j 6=i

`A j) ↓Ainp
i
,AR

i ) (3.25)

Given that Equation 3.25 holds and that Algorithm 2 is sound for fully decomposable semantics (i.e.
∀p ∈Ω, L ∗

σ (Γ ↓p) ⊆Lσ (Γ ↓p)), we have:

`∗ ∈Lσ (Γ) (3.26)

And thus:
L ∗

σ (Γ)⊆Lσ (Γ) (3.27)

We prove so that for the complete and stable semantics our algorithm is sound.
�

Proposition 11 (Completeness of Algorithm 1 + Algorithm 2). Algorithm 1 is complete for the stable,
complete and preferred semantics when using Algorithm 2 to compute the component labellings.7

PROOF. (Completeness of Algorithm 1 + Algorithm 2). Let Γ = 〈A,R〉 be an AF, `gr be its grounded
labelling, Γhard = Γ↓{a|a∈A,` gr(a)=und} be the hard part of Γ and {γ1 = 〈A1,R1〉, ...,γn = 〈An,Rn〉} be the
set of AFs obtained from Γhard components.

Let σ be the complete, stable or preferred semantics.
Let L ∗

σ (Γ) be the set of labellings obtained from Algorithm 1.
Let L ∗

σ (γi) be the set of labellings obtained from Algorithm 2 for the component γi.
Let Lσ (Γ) be the set of labellings of Γ .
Let Ω = {ωgr,A1, ...,An} be a partition of A with ωgr = {a|a ∈ in(`gr) or a ∈ out(`gr)}.
Let ` ∈Lσ (Γ) be a labelling of Γ according to σ .
Given that (following Def. 47):

Fσ (γ ↓ωgr ,ω
inp
gr ,(

⋃
i∈{1,...,n}

`Ai) ↓
ω

inp
gr
,ωR

gr) = {`gr} (3.28)

We have by definition of top-down decomposable semantics (following Def. 51):

Lσ (Γ)⊆ {`gr∪
⋃
Ai

`Ai} with `Ai ∈Fσ (γ↓Ai,A
inp
i ,(

⋃
j∈{1,...,n} s.t. j 6=i

`A j) ↓Ainp
i
,AR

i ) (3.29)

Given that Algorithm 2 is complete for top-down decomposable semantics (i.e. ∀p ∈Ω,Lσ (Γ ↓p)⊆
L ∗

σ (Γ ↓p)),

∀Ai,`Ai ∈L ∗
σ (γi) (3.30)

Furthermore:

∀`∗ ∈L ∗
σ (Γ),`∗ = `gr∪

⋃
`∗i , with `∗i ∈L ∗

σ (γi) (3.31)

7Same remark as the one given for Prop. 8 about the completeness in the case of preferred semantics.
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We have so:
{`gr∪

⋃
Ai

`Ai}= L ∗
σ (Γ) (3.32)

Finally, we have:
Lσ (Γ)⊆L ∗

σ (Γ) (3.33)

We prove so that our algorithm is complete for the complete, stable and preferred semantics. �

Proposition 12 (Soundness and completeness of Algorithm 1 + Algorithm 3).
Algorithm 1 is sound and complete for the preferred semantics when using Algorithm 3 to compute the
component labellings.

PROOF. (Soundness and completeness of Algorithm 1 + Algorithm 3). Let Γ = 〈A,R〉 be an AF, `gr be
its grounded labelling, Γhard = Γ↓{a|a∈A,` gr(a)=und} be the hard part of Γ and {γ1 = 〈A1,R1〉, ...,γn =

〈An,Rn〉} be the set of AFs obtained from Γhard components.
Let L ∗

pr(Γ) be the set of labellings of Γ obtained from Algorithm 1.
Let Lpr(Γ) be the set of labellings of Γ .
Let L ∗

pr(γi) be the set of labellings of γi obtained from Algorithm 3.
Following Algorithm 1, we have:

L ∗
pr(Γ) = {`gr∪`A1 ∪ ...∪`An|`Ai ∈L ∗

pr(γi)} (3.34)

Let A0 = {a|a ∈ in(`gr) or a ∈ out(`gr)} be the fixed part of Γ. The set of argument set Ω =
{A0,A1, ...,An} is then a partition of A.

By definition of the grounded labelling, we have:

∃a ∈ A s.t. `gr(a) = und =⇒ (∀a′ ∈ A s.t. (a′,a) ∈ R,`gr(a) 6= in) (3.35)

Given that:
und(`gr)∩A0 = /0 (3.36)

And that by construction of A0:

∀i ∈ {1, ...,n},∀a ∈ Ai,`gr(a) = und (3.37)

The consequence of Equation 3.35 is:

∀i ∈ {1, ...,n},∀(a′,a) ∈ R s.t. a′ ∈ A0 and a ∈ Ai,`gr(a′) = out (3.38)

Let Γ′ = 〈A,R \ {(a′,a)|a′ ∈ A0 and a /∈ A0}〉 be the AF constructed by removing from Γ the attacks
between its fixed part and its non fixed part. As all arguments in the fixed part attacking arguments
outside the fixed part is labelled out (Equation 3.38) their attacks have no effect. The consequence is the
following:

Lpr(Γ
′) = Lpr(Γ) (3.39)

Notice that Γ′ has n+1 connected components corresponding to the partition Ω. Given that there is
no connection (attack) between those connected components we can say that:

Ω ∈SUSCC(Γ
′) (3.40)
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As the preferred semantics is fully decomposable w.r.t. SUSCC (Proposition 5), we have (following
Definition 53):

Lσ (Γ
′) = {`A0 ∪ ...∪`An|`Ai ∈Fpr(Γ ↓Ai,A

inp
i ,(

⋃
j∈{0,...,n} s.t. j 6=i

`A j) ↓Ainp
i
,AR

i )} (3.41)

Notice that:
Fpr(Γ

′ ↓A0,A
inp
0 ,(

⋃
i∈{1,...,n}

`Ai) ↓Ainp
0
,AR

0 ) = {`gr} (3.42)

Notice also that, given Algorithm 3 is sound and complete for the preferred semantics (Proposi-
tion 12), we have:

∀i ∈ {1, ...,n},Fpr(Γ
′ ↓Ai,A

inp
i ,(

⋃
j∈{1,...,n} s.t. j 6=i

`A j) ↓Ainp
i
,AR

i ) = L ∗
pr(γi) (3.43)

From the equations 3.41, 3.42, 3.43, we have:

Lpr(Γ
′) = {`gr∪`A1 ∪ ...∪`An |`Ai ∈L ∗

pr(γi)} (3.44)

From Equation 3.39 and Equation 3.44, we have:

Lpr(Γ) = {`gr∪`A1 ∪ ...∪`An |`Ai ∈L ∗
pr(γi)} (3.45)

Finally, from Equation 3.45 and Equation 3.34 we have:

L ∗
pr(Γ) = Lpr(Γ) (3.46)

We prove so that Algorithm 1, when using Algorithm 3 to compute the component labellings, is sound
and complete for the preferred semantics.

�
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Chapter 4

Experimental results

In this chapter we will present experiment results conducted with AFDivider, our algorithm.

4.1 The experimental setting

Experiments presented in this paper were carried out using the OSIRIM platform that is managed by
IRIT and supported by CNRS, the Region Midi-Pyrénées, the French Government, and ERDF (see http:
// osirim. irit. fr/ site/ en ).

There exists an argumentation solver competition in abstract argumentation, the International Compe-
tition on Computational Models of Argumentation 1 (ICCMA), in which solvers are compared on several
types of argumentation problems. One of these problems is to enumerate all the labellings of an AF given
a semantic. As some instances were too hard to be solved in reasonable time they have been removed
from the competition. Since we are interested in solving “large-scale” AF, we have tried our algorithm
on some of these instances.

To compute the labellings of an induced AF after the clustering process, we have used an already
existing solver called “Pyglaf”, one of the best solver at the last ICCMA session, which transforms the
AF labelling problem into a SAT problem (for more details see [2]). Given that our results were dependent
of Pyglaf performances, we have only compared our algorithm (using Pyglaf) with Pyglaf itself on some
hard instances and for the preferred semantic.

For each experiment we used 6 cores of a AMD Opteron 6262HE processor, each core having a
frequency of 1.6 GHz. The RAM size was 45GB. The timeout had been set to 1 hour.

As the solvers are multithreaded we have chosen to compare them using real time.

4.2 The results

Figure 4.1 compares our algorithm (using Pyglaf) with Pyglaf itself. In that table, by MemOvwe mean
“memory overflow” and by Timeoutwe mean that the experiment did not end in one hour. The time
result format is “minutes:secondes.centiseconds”.

1http://argumentationcompetition.org/
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Pyglaf AFDivider

nb labellings end state time end state time

BA 160 50 1.apx 24 576 0:03.37 0:2.60

BA 160 20 4.apx 24 576 0:10.93 0:2.48

bw2.pfile-3-05.pddl.3.cnf.apx 29 928 1:17.25 6:12.23

bw2.pfile-3-05.pddl.1.cnf.apx 39 976 0:41.53 0:46.99

BA 120 70 1.apx 288 000 2:18.83 0:15.70

BA 100 60 2.apx 1 078 272 20:59.39 0:37.35

BA 120 80 2.apx 1 285 632 Timeout 0:58.68

BA 180 60 4.apx 1 376 256 30:04.05 1:34.47

basin-or-us.gml.20.apx 1 963 008 Timeout 1:15.89

BA 100 80 3.apx 4 478 976 Timeout 2:42.48

amador-transit 20151216 1706.gml.80.apx 11 751 480 Timeout 36:45.63

BA 180 70 1.apx 323 592 192 Timeout MemOv

BA 120 90 5.apx 394 243 200 Timeout MemOv

BA 200 70 4.apx 10 749 542 400 Timeout MemOv

Figure 4.1: Experiment comparison table: hard instances

We can see in Figure 4.1 that for “small” instances according to the number of labellings (less than
50 000 labellings) our algorithm is not always better. But for harder instances, our algorithm is far better
than Pyglaf. Except the amador-transit 20151216 1706.gml.80.apx instance (because we cannot really
compare as our algorithm time is too closed to the timemout), we can observe a real order of magnitude
change: from more than one hour to less than three minutes.

These results confirm that the proposed algorithm is of interest, and that the AF clustering approach
is relevant. These results will be deeper analysed, and further experiments will be conducted in future
work. The effect of the graph types on the performances should in particular be investigated.
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Chapter 5

Related works

In this chapter we will compare the behaviour of our algorithm to other existing ones. In order to illustrate
how these other algorithms work, we will consider the AF shown in Figure 5.1 as running example and
show how the preferred labellings are computed following the different algorithms. This particular AF
has been chosen because its structure let appear clusters in it, it has 4 SCCs and there is an interesting
hierarchy between them. Theses two last points are very relevant for the algorithms presented in Sections
5.1 and 5.2.

j

k l

f

d e

h

g i

b

ca

Figure 5.1: AF example Γ

5.1 Dynamic programming algorithm
In [15], Dvořák et al. proposed an algorithm based on a dynamic analysis of an argumentation framework.
In the interest of brevity, we will just highlight the main idea of this algorithm (see [15] for a more detailed
explanation).

Basically, this algorithm relies on the nice tree decomposition of a graph.
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Figure 5.2: Nice tree decomposition of Γ

Definition 57 (Tree decomposition). Let G = (V,E) be a non directed graph. A tree decomposition of G
is a pair 〈T ,X 〉 where T = (VT ,ET ) is a tree and X = (Xt)t∈VT is a set of so-called bags, which has
to satisfy the following conditions:

•
⋃

t∈VT
Xt =V , i.e. X is a set covering of V .

• for each v ∈V , T ↓{t|v∈Xt} is a connected tree.

• for each {vi,v j} ∈ E, {vi,v j} ⊆ Xt for some t ∈VT .

Definition 58 (Width of a tree decomposition). Let 〈T ,X 〉 be a tree decomposition where T =(VT ,ET )
is a tree and X = (Xt)t∈VT is a set of so-called bags. The width of such a tree decomposition is given
by:

max{card(Xt)|t ∈VT }−1

Definition 59 (Tree width of a graph). Let G = (V,E) be a non directed graph. The tree-width of G is
defined by the minimum width over all its tree decompositions.
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Definition 60 (Nice tree decomposition). A tree decomposition 〈T ,X 〉 of a graph G is called nice if T
is a rooted tree and if each node t ∈T is one of the following types:

• LEAF: t is a leaf of T

• FORGET: t has only one child t ′ and Xt = Xt ′ \{v} for some v ∈ Xt ′

• INSERT: t has only one child t ′ and Xt = Xt ′ ∪{v} for some v /∈ Xt ′

• JOIN: t has two children t ′, t ′′ and Xt = Xt ′ = Xt ′′

Example 17 Figure 5.2 shows one nice tree decomposition of the AF Γ, 〈T ,X 〉 where:

• T = (VT ,ET ) with:

– VT = {ti|i ∈ J0,24K}
– ET = {(ti, ti+1)|i ∈ J0,15K∪ J17,23K}∪{(t8, t17)}

• X = {Xti|i ∈ J0,24K} with:

v\Xt Xt0 Xt1 Xt2 Xt3 Xt4 Xt5 Xt6 Xt7 Xt8 Xt9 Xt10 Xt11 Xt12 Xt13 Xt14 Xt15 Xt16 Xt17 Xt18 Xt19 Xt20 Xt21 Xt22 Xt23 Xt24

a

b

c

d

e

f

g

h

i

j

k

l

Table 5.1: Bags of X
( means that the vertex v corresponding to the current line belongs to the bag Xt corresponding to the current column)

As node type examples, according to Definition 60:

• t24 is a LEAF type node

• t2 is a FORGET type node

• t10 is a INSERT type node

• t8 is a JOIN type node

The nice tree decomposition shown in Figure 5.2 is one among all tree decompositions of Γ with the
minimal width, which is 4. In other words, the tree-width of Γ is 4.

There exist other possible nice tree decompositions of Γ with non minimal width. As an example, the
one shown in Figure 5.3 has a width of 11.
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/0

a

ab

abc

abcd

abcde

abcde f

abcde f g

abcde f gh

abcde f ghi

abcde f ghi j

abcde f ghi jk

abcde f ghi jkl

Figure 5.3: Nice tree decomposition of Γ

To each nice tree node is associated a sub AF defined as following:

Definition 61 (Tree node associated AF). Let Γ be an AF and 〈T ,X 〉 be its tree decomposition where
T = (VT ,ET ) is a tree and X = (Xt)t∈VT is a set of so-called bags. We denote by X>t the union of all
bags Xs ∈X such that s occurs in the subtree of T rooted at t.

Let t ∈VT be a tree node. The AF γ associated with t is defined as following:

γ = Γ ↓X>t

Example 18 Let take as example the node t12 in Figure 5.2. According to Definition 61, we have:

X>t12 = Xt12 ∪Xt13 ∪Xt14 ∪Xt15 ∪Xt16 = {a,d,e, f ,k}

We have so:
γ = Γ ↓X>t12

= Γ ↓{a,d,e, f ,k}
Figure 5.4 shows the AF γ associated with the node t12.

Once the AF nice tree determined and the sub AFs associated to each tree node, the tree is explored
from the bottom up. On each tree node, the labellings of its associated AF are computed. The node type
(LEAF, INSERT, FORGET or JOIN) indicates which operations to do in order to update the computed
set of labellings.
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f

d e

a

Figure 5.4: γ , AF associated with the node t12

Notice that the sub AF associated with the tree root is the whole AF. So, at the tree root, all the
labellings of the AF are found.

This is basically the general idea of this algorithm.
This algorithm is dynamic in the sense that we are interested in the labellings of sub AF that evolve

dynamically following the nice tree decomposition. To each leaf is associated an initial AF that will be
transformed forgetting and inserting argument nodes in it. This approach has the advantage of breaking
the SCC and eventually the hardness of the AF problem. Nevertheless it has also some disadvantages.

Indeed, each step adds or removes at most one argument. The consequence is that a lot of updates are
useless and a lot of space is used for potential correct labellings.

Example 19 Let take as example the AF in Figure 5.5 and its nice tree decomposition in Figure 5.6.

a1 a2 a3 a4

Figure 5.5: AF example

/0

a1

a1 ,a2

a2

a2 ,a3

a3

a3 ,a4

t0:

t1:

t2:

t3:

t4:

t5:

t6:

Figure 5.6: Nice tree decomposition

Although this AF admits only one preferred labelling which is {(a1,in),(a2,out),(a3,in),(a4,out)},

51



as we go from the leaf to the top the set of partial labellings will be updated 6 times and, at each tree
node, we will have to consider all the potential partial labellings.

Actually, this algorithm does not work directly with labellings but with “colorings” which is a 4-state
argument mapping from which are determined the semantic extensions we are interested in. Without
going too deep into the details of how this coloring works, we will just highlight the fact that for each
argument attacked by an argument outside the current associated AF, four colorings have to be consider,
according to the four possible status of that argument. As a consequence, a lot of space is used in order
to ensure that all possibilities have been explored.

This algorithm and the AFDivider algorithm have both the ability to break the SCC and hopefully the
hardness the AF. However, they differ on other points and the main one is how the combinatorial effect of
potential labelling number is tackled. Although the AFDivider algorithm computes all cases for a given
cluster, this combinatorial effect is limited to that particular cluster and is not propagated on the whole
AF. As a consequence, space and computational time are spared.

5.2 SCC Decomposition based algorithm
In [17], Beishui Liao proposed an algorithm that computes the labellings of an AF following its SCC
decomposition.

Notice that if each SCC component of a graph is considered as a super node, the resulting super graph
will be acyclic.

We can thus have a hierarchical representation of this super graph: in the first layer are SCC compo-
nents with no parents, in the second layer are contained all the SCC components whose parents are in the
previous layers, and so on.

j

k l

f

d e

h

g i

b

ca

Layer 2

Layer 1

Layer 0

SCC n°4

SCC n°3SCC n°2

SCC n°1

Figure 5.7: AF example Γ (the first layer being Layer 0)

Example 20 Figure 5.7 is the SCC hierarchical view of Γ.

52



Given that the labellings of each SCC component are influenced only by the ones of its parents,
it is possible to guide the research of labellings following the hierarchical representation of the SCC
components of the AF. This is the main idea of the algorithm.

Example 21 In a first step, the labellings of the SCC n°1 are computed. The result is the following set of
labellings:

{` scc1
1 ,` scc1

2 ,` scc1
3 } with


` scc1

1 = {(a,in)},{(b,out)},{(c,out)},
` scc1

2 = {(a,out)},{(b,in)},{(c,out)},
` scc1

3 = {(a,out)},{(b,out)},{(c,in)}
Then, possible labellings of the SCCs n°2 and n°3 are computed considered the labellings of the

parents SCCs, in this case SCC n°1. For instance, considering ` scc1
1 = {(a,in)},{(b,out)},{(c,out)}:

• For SCC n°2 we have:

{` scc2
1 ,` scc2

2 } with

{
` scc2

1 = {(d,out)},{(e,out)},{( f ,in)},
` scc2

2 = {(d,out)},{(e,in)},{( f ,out)}

• For SCC n°3 we have:

{` scc3
1 ,` scc3

2 ,` scc3
3 } with


` scc3

1 = {(g,out)},{(h,out)},{(i,in)},
` scc3

2 = {(g,out)},{(h,in)},{(i,out)},
` scc3

3 = {(g,in)},{(h,out)},{(i,out)}

The same thing must be done considering ` scc1
2 and ` scc1

3 .

Afterwards, the labellings of SCC n°4 are computed according to the compatible SCC parents la-
bellings. In the interest of brevity we will not give the entire result as this AF has 47 distinct preferred
labellings.

The great advantage of this approach is that no useless computation is made. When going from one
layer to another, only possible labellings are considered. This reduces considerably the computational
time.

Although not proposed in this paper, it is possible to parallelize the computation when there are
independent branches in the acyclic super graph. But even though a distributed version of this algorithm
had been proposed, it would still be very different from the AFDivider algorithm.

Indeed, this algorithm is profitable only if there are several SCC components and if the hardness of
solving the AF problem is not inside the SCC components. The major difference is that the AFDivider
algorithm is able to look inside SCC components and hopefully break the hardness by finding clusters
in it. Another difference is that there are no restriction to parallelize the labelling computation. Finally,
the used clustering method tries to balance the cluster sizes (in terms of number of arguments) so that
hopefully the workload may be also balanced.

5.3 Parallel SCC-recursive based algorithm: P-SCC-REC
The algorithm proposed by Cerruti et al. in [9], named P-SCC-REC, has several common points with
the AFDivider algorithm. Indeed, both algorithms are distributed and they are able to look inside SCC
components. Nevertheless, the way of distributing and of “cutting” of the AF are completely different.
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The P-SCC-REC algorithm is rather complex. We are going to highlight its main concepts (see [9]
for additional information).

It is a recursive algorithm. In one recursion level, the following steps are performed:

• As in the AFDivider algorithm, the grounded labelling is computed and only the hard part of the
AF is considered for the next steps.

• As in the Beishui Liao’s algorithm, a SCC hierarchical view of the AF is determined.

• For each SCC, a greedy labelling computing is performed, considering that all arguments attack-
ing the given SCC is labelled out . This computation is made in a distributed way, parallelized
following the SCCs.

• For each layer:

– The labelling of the SCCs are computed according to the labelling of their SCC ancestors.
This computation is made in a distributed way, parallelized both following the SCCs and the
SCC ancestors labellings.

* In some cases when the SCC ancestors labelling does not allow to determined quickly the
labellings of the current SCC, P-SCC-REC is called recursively on that particular SCC
from which is removed its arguments attacked by its SCC ancestors.

– Following the previous step, the set of SCC ancestors labellings of the next layer is deter-
mined.

Example 22 Applied to Γ, P-SCC-REC will behave a bit like Beishui Liao’s algorithm as there is no
argument labelled in nor out in the grounded labelling of Γ.

Notice that, given the labelling ` scc1
1 = {(a,in)},{(b,out)},{(c,out)}, when computing the la-

bellings of the SCC n°2, P-SCC-REC will be recursively called on the AF shown in Figure 5.8.

f e

Figure 5.8: SCC n°2 under ` scc1
1

The P-SCC-REC algorithm will look inside an SCC if its SCC ancestor labelling allows it, not ac-
cording to the size of this SCC and its possible hardness, whereas the AFDivider algorithm will try to
found clusters similar in size whether it is necessary to break SCCs or not.

There is another aspect of P-SCC-REC algorithm that may narrow its performance. If we put aside the
greedy phase of the algorithm, the algorithm follows the SCC hierarchical view of the AF and parallelizes
following the SCCs in one layer, and following the ancestor labellings. This later parallelization causes
two problems:

1. Most of the time, it makes the number of threads explodes and so overloads the CPUs.

2. It leads to redundant computation as the computation cases are not based on the states of input
arguments of the current SCC.

Example 23 Let consider the step to compute the SCC n°4 labellings.
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• As an illustration of point 1:

– We have 21 distinct SCC ancestor labellings and so 21 threads will be created. Although Γ is
a small AF, the amount of threads is rather important. On a bigger one, the number of threads
could quickly overload the CPUs.

• As an example of point 2:

– Even if several distinct SCC ancestor labellings are equal when restricted to the arguments f
and h, the labelling computation will be made for each of them, which is highly redundant.

It is true that some of the cases computed by the AFDivider algorithm may be unused in the reunifying
phase (bear in mind that it is not possible to know them in advance) but there is no waiting time due to
a hierarchical view of the AF, and there is no redundant computation. Furthermore, if the AF is not too
dense, the number of threads will not explode, even though the number of labellings is huge.

5.4 To sum up
The advantages of the AFDivider algorithm over the compared algorithms are the followings:

• It has the ability to break SCCs whenever it is well suited to have well shaped clusters.

– Given a current SCC and an ancestor labelling, the P-SCC-REC algorithm can break an SCC
only when the ancestor labelling have some particular effects on the current SCC (see [9] for
more details).

– Dvořák et al. dynamic algorithm always breaks SCCs as at each step at most one argument is
added or removed from the considered sub-AF. Nevertheless this way of updating argument
after argument generates a lot of computations and uses a lot of memory.

– Liao’s algorithm does not break SCCs.

• It has the ability to compute the labellings in a distributed way.

– The P-SCC-REC algorithm also uses distributed computation to solve the AF but the compu-
tation of one labelling is mainly sequential (it is very unlikely that the greedy phase suffices
to generate a labelling). Furthermore parallelizing following labellings could overload the
CPUs as the number of solutions in hard AF problems may be huge.

– Dvořák et al. dynamic algorithm is fully sequential.

– Liao’s algorithm is fully sequential.

• It avoids redundant computations.

– Though more visible in P-SCC-REC algorithm as it occurs in different threads, Dvořák et al.
dynamic algorithm and Liao’s algorithm also make in a certain way redundant computations.
Indeed several labellings under construction, restricted to some arguments, may be identical
and have the same effect on the non yet labelled part of the AF. Nevertheless these algorithms
will not take advantage of that.
To be fair, the AFDivider algorithm may also do such redundant computations but if it is the
case it will be restrained to inward part of each cluster and not to the whole AF.
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What distinguishes best the AFDivider algorithm from the other ones is that cutting the AF into clus-
ters limits the combinatorial effect due to the number of labellings, to the cluster. The other approaches
propagate this effect to the whole AF. This property makes the AFDivider algorithm well suited for
non dense AF with a clustered structure. Indeed, in a such structure, the reunifying phase will be less
expensive than exploring the whole AF to construct each of the labellings.
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Conclusion

The AFDivider algorithm presented in this report is the first algorithm that uses spectral clustering meth-
ods to compute semantic labellings, and that originally combines them to other existing techniques. After
removing the trivial part of the AF (grounded labelling), the algorithm cuts the AF into small pieces (the
identified clusters), then it computes simultaneously (in each cluster) labelling parts of the AF, before
reunifying compatible parts to get the whole AF labellings.

We have proven the soundness and the completeness of this algorithm for the stable, complete and
preferred semantics.

Experiments showed that this cutting process and distributed computing allows solving some hard
AF instances that could not be solved otherwise, and that it significantly decreases the solving time of
others.

We compared the behaviour of our algorithm with other ones that use some kind of clustering. Among
the various advantages of our method (its ability to break SCCs, to compute the labellings in a distributed
way and to avoid redundant computations) we highlighted the fact that cutting the AF into clusters has
the great advantage of limiting the solving hardness to the clusters. Indeed, in those other approaches,
the combinatorial effect due to the number of labellings is propagated to the whole AF whereas, in the
AFDivider algorithm, it is limited to the clusters. This property makes it well suited for non dense AF
with a clustered structure.

The idea of clustering an AF and cutting it for parallel computation of labellings is promising, as
shown by the experiments. Here are some ideas to go further in this approach:

• A recursive clustering version of this algorithm could be made. Indeed, after the cutting process,
an induced AF could still be hard to solve. It may be possible that applying recursively the same
clustering process on AF parts (until a certain criterion is satisfied) could enhance the global solving
time.

• As shown by the experiments, a work has to be done to tackle the memory limit. A compressed
representation of labellings could be very interesting to support scalability.

• We would like to extend this work to more complex AFs, using several types of relation (not only
attacks but also supports), with relation and argument strength, recursive relations, and so for more
complex semantics.

• We have made the choice to consider non dense AF for which the spectral clustering method is
particularly efficient. However, for AF with other graph structures, other clustering methods could
be more appropriate. This could be studied in future works.
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• An interesting aspect of the AFDivider algorithm is that, when several connected components are
found after removing the trivial part of an AF, the labellings of these components are all compatible
together. This property could be exploited to answer non classical problems such as: “What is the
labelling rate in which an argument a is labelled in ?”, and that, without explicitly enumerating
all the labellings, avoiding the costly cartesian product of component labellings.
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