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Abstract

The purpose of this work is to study a generalisation of Dung’s ab-
stract argumentation frameworks that allows representing positive
interactions (called supports). The notion of support studied here
is based in the intuition that every argument must be supported by
some chain of supports from some special arguments called prima-
facie. The theory developed here also allows the representation of
both recursive attacks and supports, that is, a class of attacks or
supports whose targets are other attacks or supports. We do this by
developing a theory of argumentation where the classic role of at-
tacks in defeating arguments is replaced by a subset of them, which is
extension dependent and which, intuitively, represents a set of “valid
attacks” with respect to the extension. Similarly, only the subset of
“valid supports” is allowed to support other elements (arguments,
attacks or supports). The studied theory displays a conservative
generalisation of Dung’s semantics (complete, preferred and stable)
and also of its principles (conflict-freeness, acceptability and admis-
sibility). When restricted to finite non-recursive frameworks, we are
also able to prove a one-to-one correspondence with Evidence-Based
Argumentation (EBA). When supports are ignored a one-to-one cor-
respondence with AFRA semantics is also established.
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1 Introduction
Argumentation has become an essential paradigm for Knowledge Representa-
tion and, especially, for reasoning from contradictory information [1, 15] and for
formalizing the exchange of arguments between agents in, e.g., negotiation [2].
Formal abstract frameworks have greatly eased the modelling and study of argu-
mentation. For instance, a Dung’s argumentation framework (AF) [15] consists
of a collection of arguments interacting with each other through an attack rela-
tion, enabling to determine “acceptable” sets of arguments called extensions.

Two natural generalisations of Dung’s argumentation frameworks consist
in allowing positive interactions (usually expressed by a support relation) and
allowing high-order attacks (that target other attacks or supports). Here is an
example in the legal field, borrowed from [3].

Example 1. The prosecutor says that the defendant has intention to kill the
victim (argument b). A witness says that she saw the defendant throwing a
sharp knife towards the victim (argument a). Argument a can be considered as
a support for argument b. The lawyer argues back that the defendant was in a
habit of throwing the knife at his wife’s foot once drunk. This latter argument
(argument c) is better considered attacking the support from a to b, than argu-
ments a or b themselves. Now the prosecutor’s argumentation seems no longer

a b

c

Figure 1: An acyclic recursive framework where supports (resp. attacks) are
represented by double (resp. simple) arrows ended with a white (resp. black)
triangle. Circles with solid border represent prima-facie arguments while dashed
border ones represent standard arguments.

sufficient for proving the intention to kill. This example is represented as a
recursive framework in Fig. 1. �

Positive interaction between arguments has been first introduced by [17, 24].
In [10], the support relation is left general so that the bipolar framework keeps a
high level of abstraction. The associated semantics are based on the combination
of the attack relation with the support relation which results in new complex
attack relations. However there is no single interpretation of the support, and
a number of researchers proposed specialized variants of the support relation
(deductive support [6], necessary support [18, 19], evidential support [20, 21]).
Each specialization can be associated with an appropriate modelling using an
appropriate complex attack. These proposals have been developed quite inde-
pendently, based on different intuitions and with different formalizations. [11]
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presents a comparative study in order to restate these proposals in a common
setting, the bipolar argumentation framework (see also [12] for another survey).

We follow here an evidential understanding of the support relation [20] that
allows to distinguish between two different kinds of arguments: prima-facie and
standard arguments. Prima-facie arguments were already present in [24] as
those that are justified whenever they are not defeated. On the other hand,
standard arguments are not directly assumed to be justified and must inherit
support from prima-facie arguments through a chain of supports. For instance,
in Example 1, arguments a and c are considered as prima-facie arguments while
b is regarded as a standard argument. Hence, while a and c can be accepted as
in Dung’s argumentation, b must inherit support from a: this holds if c is not
accepted, but does not otherwise. Indeed, in the latter, the support from a to
b is defeated by c.

In this paper, we apply the notion of prima-facie, not only to arguments,
but also to interactions (attacks and supports). The intuition is that prima-facie
elements (arguments, attack or supports) are elements that do not have to be
supported. More precisely, we study a semantics for argumentation frameworks
with recursive attacks and evidential supports, based on the following intuitive
principles:
P1 The role played in Dung’s argumentation frameworks by attacks in de-

feating arguments is now played by a subset of these attacks, which is
extension dependent and represents the “valid attacks” with respect to
that extension.

P2 The notion of acceptability for prima-facie (and supported) arguments
(resp. attacks or supports) is as in recursive frameworks without supports.

P3 Non-prima-facie arguments (resp. attacks or supports) can only be “ac-
cepted” (resp. be “valid”) if there is a chain of “valid supports” rooted
in some prima-facie arguments. These “valid supports” are also extension
dependent.

P4 It is a conservative generalisation of Dung’s framework for the notions of
conflict-free, admissible, complete, preferred, and stable extensions.

The paper is organized as follows: the necessary background is given in Section 2;
new semantics for recursive and evidence-based frameworks are proposed in
Section 3; a comparison with existing frameworks is given in sections 4 to 6;
and we conclude in Section 7.1

2 Background
We next review some basic background about Dung’s abstract argumentation
frameworks [15] and Evidence-Based Argumentation (EBA) frameworks [20, 23].

1Proofs of formal results can be found in the appendix for review purposes.
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2.1 Dung’s Argumentation
Definition 1. A Dung’s abstract argumentation framework (d-framework for
short) is a pair dAF = 〈A,R〉 where A is a set of arguments and R ⊆ A×A is
a relation representing attacks over arguments. �

Definition 2. Given some d-framework dAF = 〈A,R〉 and some set of argu-
ments E ⊆ A, an argument a ∈ A is said to be
i) defeated w.r.t. E iff ∃b ∈ E such that (b, a) ∈ R, and

ii) acceptable w.r.t. E iff for every argument b ∈ A with (b, a) ∈ R, there is
c ∈ E such that (c, b) ∈ R. �

To obtain shorter definitions we will also use the following notations:

Def (E) def= { a ∈ A
∣∣ ∃b ∈ E s.t. (b, a) ∈ R }

Acc(E) def= { a ∈ A
∣∣ ∀b ∈ A, (b, a)∈R implies b∈Def (E) }

respectively denote the set of all defeated and acceptable arguments w.r.t. E.

Definition 3. Given a d-framework dAF = 〈A,R〉, a set of arguments E ⊆ A
is said to be
i) conflict-free iff E ∩Def (E) = ∅,

ii) admissible iff it is conflict-free and E ⊆ Acc(E),
iii) complete iff it is conflict-free and E = Acc(E),
iv) preferred iff it is ⊆-maximal2 admissible,
v) stable iff it is conflict-free and E ∪Def (E) = A. �

Theorem 1 (From [15]). Given a d-framework dAF = 〈A,R〉, the following
assertions hold:
i) every complete set is also admissible,

ii) every preferred set is also complete, and
iii) every stable set is also preferred. �

Example 2. Consider the d-framework corresponding to Fig.2. The argument

a b

Figure 2: A d-framework

a is accepted w.r.t. any set E because there is no argument x ∈ A such that
(x, a) ∈ R. Furthermore, b is defeated and non-acceptable w.r.t. the set {a}.
Then, it is easy to check that {a} is stable (and, thus, conflict-free, admissible,
complete and preferred). The empty set ∅ is admissible, but not complete; and
the set {b} is conflict-free, but not admissible.

2With ⊆ denoting the standard set inclusion relation.
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2.2 Evidence-Based Argumentation
We recall the formal definition of EBA frameworks. We follow here the defini-
tions from [23] which correct some technical flaws from [20].

Definition 4 (Evidence-Based Argumentation framework). An Evidence-Based
Argumentation framework (EBAF) is a tuple EBAF = 〈A,Ra,Re〉 where A rep-
resents a set of arguments, Ra ⊆ (2A\∅)×A is an attack relation and Re ⊆ (2A\∅)×A
is a support relation. A special argument η ∈ A is distinguished satisfying that
there is no (B, η) ∈ Ra ∪Re for any set B nor there is (B, a) ∈ Ra with η ∈ B.
We say that EBAF is (in)finite iff A is (in)finite. �

The special argument η serves as a representation of the prima-facie argu-
ments. Note that the attack relation is not a binary relation. Instead, there can
be an attack from a set of arguments to another argument, something which is
not the case in d-frameworks.

Definition 5 (Evidential Support). An argument a ∈ A is e-supported by a
set B ⊆ A iff the two following conditions hold:

1. a = η, or

2. there is a non-empty C ⊆ B s.t. (C, a) ∈ Re and every c ∈ C is e-supported
by B\{a}. �

B is said to be a minimal e-support for a iff there is no C ⊂ B such that a is
e-supported by C. �

Note that η is e-supported by any set B ⊆ A.

Definition 6 (Evidence-Supported Attack). A pair (B, a) is said to be an
evidence-supported attack (e-attack) iff (i) there is (C, a) ∈ Ra with C ⊆ B
and (ii) all elements in C are e-supported by B. (B, a) is said to be a minimal
e-attack if there is no e-attack (C, a) with C ⊂ B. �

We will say that B e-supports a or that (B, a) is an e-support when a is
e-supported by B and that B e-attacks a when (B, a) is an e-attack.

Definition 7 (Acceptability). Given some framework EBAF = 〈A,Ra,Re〉, an
argument a ∈ A is said to be acceptable w.r.t. a set E ⊆ A iff the following
two conditions are satisfied:

1. a is e-supported by E, and

2. for every minimal e-attack (B, a), it holds that E e-attacks some b ∈
B. �

Definition 8 (Semantics). A set of arguments E ⊆ A is said to be

1. self-supporting iff all arguments a ∈ E are e-supported by E,

2. conflict-free iff, for every a ∈ E, there is no B ⊆ E such that (B, a) ∈ Ra,
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3. admissible iff it is conflict-free and all arguments a∈E are acceptable
w.r.t. E,

4. complete iff it is admissible and all acceptable arguments w.r.t. E are in E,

5. preferred iff it is a ⊆-maximal admissible set,

6. stable iff it is self-supporting, conflict-free and any argument a < E which
is e-supported by A satisfies that E e-attacks either a or every minimal
e-support B of a. �

3 Recursive Evidence-Based Argumentation
In this section, we extend the semantics proposed for recursive attacks in [9]
with the purpose of handling evidence-based supports.

3.1 Recursive Evidence-Based Argumentation Frameworks
Definition 9 (Recursive Evidence-Based Argumentation Framework). An (evidence-
based recursive) argumentation framework AF = 〈A,K,S,s,t,P〉 is a sextuple
where A, K and S are three (possible infinite) pairwise disjunct sets respectively
representing arguments, attacks and supports names, and where P ⊆ A ∪K ∪ S
is a set representing the prima-facie elements that do not need to be supported.
Functions s : (K ∪ S) −→ 2A and t : (K ∪ S) −→ (A ∪K ∪ S) respectively map
each attack and support to its source and its target. �

As in EBAFs, the source of attacks and supports is a set of arguments. It is
obvious that any attack (a, b) in a d-framework can be represented by assigning
to it some name α that satisfies s(α) = {a} and t(α) = b. It is also worth
mentioning that, from an evidential point of view, every argument and attack
of a d-framework is prima-facie. That is, given some dAF = 〈A,R〉, we can build
a corresponding recursive framework AF = 〈A,K,S,s,t,P〉 where K is a set of
names of the same cardinality of R, where S = ∅ is the empty set of supports,
s and t map each attack name to its corresponding source and target, and the
set of prima-facie elements P = A ∪K includes all arguments and attacks.

Example 3. In particular, the d-framework associated with Figure 2 corre-
sponds to the AF = 〈A,K,S,s,t,P〉 with A = {a, b}, K = {α}, s(α) = {a},
t(α) = b and P = {a, b, α}. �

Note also that, different from EBAFs, the set P may contain several prima-
facie elements (arguments, attacks and supports). This is not a substantial
difference, but allows that any graph representing a d-framework has the same
semantics when interpreted in our framework. For instance, Figure 3 depicts
the framework of Figure 2 making explicit the attack name. Note that we use
squares in the middle of the arrows to represent attack and support names.
As with arguments, a solid border denotes prima-facie elements while a dashed
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a α b

Figure 3: An AF with named attack.

border denotes standard elements. By following this notation every graph within
Dung’s theory preserves the same semantics, something which is in accordance
with principle P4. Note also that, in contrast with EBAFs, we not assume
any constraint on the prima-facie elements, they can be attacked or supported
(though supporting prima-facie elements do not make any semantical difference
from not doing so).

Example 4. As an illustration of frameworks with recursive attacks and sup-
ports, consider the argumentation frameworks AF1 =〈A1,K1,S1,P1, s1, t1〉 and
AF2 = 〈A2,K2,S2,P2, s2, t2〉 where A1 = {a, b, c}, K1 = {β}, S1 = {α},
A2 = {a, b, c, d}, K2 = {α, β}, S2 = {γ, δ}, functions s1, t1, s2 and t2 satisfy

s1(α) = {a}
s1(β) = {c}
s2(α) = {a}
s2(β) = {a}
s2(γ) = {c}
s2(δ) = {d}

t1(α) = b

t1(β) = α

t2(α) = b

t2(β) = b

t2(γ) = α

t2(δ) = β

and P1 = {a, c, α, β}, and P2 = {a, b, c, d, γ, δ}. These two frameworks can be
respectively depicted as the graphs in Figures 4a and 4b. It is worth to note

a α b

β

c

(a) The graph of Fig.1 with attack
and support names

c γ α

a b

d δ β

(b) A recursive framework representing attacks
in different contexts

Figure 4: Recursive frameworks with prima-facie elements

that Figure 4a is just the result of naming attacks and supports in Figure 1. On
the other hand, Figure 4b represents a framework with two attacks between a
and b that hold in different contexts: α and β are two standard attacks that are
respectively supported by different prima-facie arguments, c and d respectively,
that represent those different contexts. �

It is worth to mention that the reason to use explicit names for attacks and
supports in Definition 9 instead of just relations is twofold. First, this allows
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the existence of several attacks or supports between the same elements that can
be used to represent different contexts as illustrated in Example 4. The second

a

α

γ β b

c

Figure 5: A cyclic recursive framework

reason is due to the possible existence of cycles of attacks or supports, which has
no trivial finite representation as a relation: for instance, attack α in Figure 5
would correspond to the infinite object ({a}, ({b}, ({c}, ({a}, . . . )))).

3.2 Semantics of Recursive Evidence-Based Argumenta-
tion Frameworks

We introduce next the notion of structure, which will allow us to characterise
which arguments are regarded as “acceptable,” and which attacks and supports
are regarded as “valid,” with respect to some argumentation framework. The
notion of structure is analogous to the notion of set of arguments and it will
be the base to define the corresponding argumentation semantics for recursive
frameworks.

Definition 10 (Structure). A triple A = 〈E,Γ,∆〉 is said to be a structure of
some AF = 〈A,K,S,s,t,P〉 iff it satisfies: E ⊆ A, Γ ⊆ K and ∆ ⊆ S. �

Intuitively, the set E represents the set of “acceptable” arguments w.r.t. the
structure A, while Γ and ∆ respectively represent the set of “valid attacks” and
“valid supports” w.r.t. A. Any attack3 α ∈ Γ is understood as non-valid and,
in this sense, it cannot defeat the element that it is targeting. Similarly, any
support β ∈ ∆ is understood as non-valid and it cannot support the element
that it is targeting.

For the rest of this section we assume that all definitions and results are
relative to some given framework AF = 〈A,K,S,s,t,P〉. We extend now the
definition of defeated arguments (Definition 2) using the set Γ instead of the
attack relation R: given a structure of the form A = 〈E,Γ,∆〉, we define:

DefX(A) def= {x∈X
∣∣∃α ∈ Γ, s(α)⊆E and t(α)=x } (1)

3By Γ def= K\Γ we denote the set complement of Γ w.r.t. K. Similarly, by ∆ def= S\∆ we
denote the set complement of ∆ w.r.t. S.
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with X ∈ {A,K,S}. In other words, an element x is defeated w.r.t. A iff there
is a “valid attack” w.r.t. A that targets x and whose source is “acceptable”
w.r.t. A. It is interesting to observe that we may define the attack relation
associated with some structure A = 〈E,Γ,∆〉 as follows:

RA def= { (s(α), t(α))
∣∣ α ∈ Γ } (2)

and that, using this relation, we can rewrite (1) as:

DefX(A) def= { x ∈ X
∣∣ ∃B ⊆ E s.t. (B, x) ∈ RA } (3)

Now, it is easy to see that our definition for Def A(A) can be obtained from
Dung’s definition of defeat (Definition 2) just by replacing the attack rela-
tion R by the attack relation RA associated with the structure A and ∃b ∈ E
by ∃B ⊆ E, or in other words, by replacing the set of all attacks in the argu-
mentation framework by the set of the “valid attacks” w.r.t. the structure A,
as stated in P1; and allowing the source of attacks to be, not just arguments,
but sets of them.

By Def (A) def= Def A(A)∪Def K(A)∪Def S(A), we will denote the set of all de-
feated arguments. By DefX(A) def= X\DefX(A) with X ∈ {A,K,S}, we denote
the non-defeated arguments (resp. attacks, supports) w.r.t. A. Furthermore, by
Def (A) def= (A ∪K ∪ S)\Def (A), we denote the set of all non-defeated elements.
Example 4 (cont’d) Consider the framework corresponding to Figure 4a, and
the structure A = 〈E,Γ,∆〉 with E = {a, c}, Γ = {β} and ∆ = ∅. Then, we
have that Def (A) = {α}. �

Let us now introduce the notion of supported elements w.r.t. a structure.
Intuitively, it should be noted that the prima-facie elements (arguments, at-
tacks, supports) of a given framework are supported for any structure. Then,
a standard element is supported if there exists a chain of supported supports,
leading to it, which is rooted in prima-facie arguments. Formally, given some
framework AF = 〈A,K,S,s,t,P〉 and some structure A = 〈E,Γ,∆〉, the set of
supported elements Sup(A) is recursively defined as follows4:

Sup(A) def= P ∪ { t(α)
∣∣∃α∈∆∩Sup(A′) , s(α) ⊆ E ∩ Sup(A′) } (4)

with5 A′ = A\{t(α)}. By SupX(A) def= Sup(A) ∩X with X ∈ {A,K,S}, we re-
spectively denote the set of all supported arguments, attacks and supports.
Example 4 (cont’d) Consider the framework corresponding to Figure 4a, and
the structure A = 〈E,Γ,∆〉 with E = {a, b, c}, Γ = ∅ and ∆ = {α}. Let us
prove that b ∈ Sup(A). Note that b = t(α) with α ∈ ∆. So we have to prove
that α and a ∈ s(α) = {a} both belong to Sup(A\{b}). That is true since α and
a both belong to P.

Example 5. As a further example, consider the framework corresponding to
the graph depicted in Figure 6 and let A = 〈E,Γ,∆〉 be a structure with E =

4Note that E = ∅ and ∆ = ∅ act as base cases, because E = ∅ (resp. ∆ = ∅) implies
Sup(A) = P.

5By abuse of notation, we write A\T instead of 〈E\T,Γ\T,∆\T 〉 with T ⊆ (A ∪K ∪ S).
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a α b γ d

β δ

c e

Figure 6: A recursive framework with prima-facie elements

{a, b, c, d, e}, Γ = ∅ and ∆ = {α, γ, δ}. Then, we have that Sup(A) = {a, b, c, d, e, α, β, γ, δ}.
Note that a, c, e, α, β and δ are supported because they are prima-facie ele-
ments. It is also easy to see that b is supported as in the previous example
and that γ is supported through δ by e. So, b and γ both belong to Sup(A\{d}).
Hence, d is also supported. �

Now, drawing on the notion of supported elements w.r.t. a given structure A,
we are able to define the supportable elements w.r.t. A. Intuitively, an element is
considered as being still supportable as long as there exists some non-defeated
support with all its source elements non-defeated and regarded, in its turn, as
supportable. Formally, an element x is supportable w.r.t. A iff x is supported
w.r.t. A′ = 〈Def A(A), K, Def S(A)〉. Elements that are defeated or that are un-
supportable cannot be accepted. In this sense, by UnAcc(A) def= Def (A) ∪ Sup(A′)
we denote the unacceptable elements w.r.t. A. Moreover, we say that an attack
α ∈ K is unactivable iff either it is unacceptable or some element in its source
is unacceptable, that is,

UnAct(A) def= { α ∈ K
∣∣ α ∈ UnAcc(A) or s(α) ∩UnAcc(A) , ∅ }

Definition 11 (Acceptability). An element x ∈ A ∪K ∪ S is said to be ac-
ceptable w.r.t. a structure A iff (i) x ∈ Sup(A) and (ii) every attack α ∈ K
with t(α) = x is unactivable, that is, α ∈ UnAct(A). �

By Acc(A), we denote the set containing all arguments, attacks and supports
that are acceptable with respect to A.

It is worth to note that, intuitively, an element is acceptable iff it is sup-
ported and, in addition, every attack against it is somehow “inhibited,” where
by “inhibited” here we mean that either some argument in its source or itself
has been regarded as unacceptable.

Example 6. Consider the argumentation framework of Figure 7, and the struc-
ture A = 〈{a, b, c, e}, {α, κ, γ},∅〉. We have that c is acceptable w.r.t. A. Note
that there are two attacks against c: β is defeated through α by a, while γ is
unactivable because d is unsupportable since δ is defeated by κ. �

We also define the following order relations that will help us defining pre-
ferred structures: for any pair of structures A = 〈E,Γ,∆〉 and A′ = 〈E′,Γ′,∆′〉,

9



a α β

κ c

e δ d

b

γ

Figure 7: Argumentation framework corresponding to Example 6.

we write A v A′ iff (E ∪ Γ ∪ ∆) ⊆ (E′ ∪ Γ′ ∪ ∆′). As usual, we say that a
structure A is v-maximal iff every A′ that satisfies A v A′ also satisfies A′ v A.

Definition 12. A structure A = 〈E,Γ,∆〉 is said to be:
i) self-supporting iff (E ∪ Γ ∪∆) ⊆ Sup(A),

ii) conflict-free iff X∩Def Y (A)=∅ for any (X,Y ) ∈ {(E,A), (Γ,K), (∆,S)},
iii) admissible iff it is conflict-free and E ∪ Γ ∪∆ ⊆ Acc(A),
iv) complete iff it is conflict-free and Acc(A) = E ∪ Γ ∪∆,
v) preferred iff it is a v-maximal admissible structure,

vi) stable6 iff (E ∪ Γ ∪∆) = UnAcc(A).
�

Example 4 (cont’d) The framework of Figure 4a has a unique complete, preferred
and stable structure A = 〈{a, c}, {β},∅〉. Note that α cannot be accepted
because it is defeated by c through β, while b cannot be accepted because, now,
it lacks support.

Example 5 (cont’d) The framework of Figure 6 has also a unique complete,
preferred and stable structure A = 〈{a, c, e}, {β}, {γ, δ}〉. As above, α cannot
be accepted because it is defeated by c through β which implies that b and d
cannot be accepted because of lack of support. γ is acceptable because it is
supported through δ by e and not attacked. �

Example 6 (cont’d) A = 〈{a, b, c, e}, {α, κ, γ},∅〉 is the unique complete, pre-
ferred and stable structure w.r.t. the framework of Figure 7. �

We show now that, as in Dung’s argumentation theory, there is also a kind
of Fundamental Lemma for argumentation frameworks with recursive attacks
and evidence-based supports.

6Note also this already implies conflict-freeness.
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Lemma 1 (Fundamental Lemma). Let A = 〈E,Γ,∆〉 be an admissible structure
and x, y ∈ Acc(A) be any pair of acceptable elements. Then,7 (i) A′ = A ∪ {x}
is an admissible structure, and (ii) y ∈ Acc(A′). �

Moreover, admissible structures form a complete partial order with preferred
structures as maximal elements:

Proposition 1. The set of all admissible structures forms a complete partial
order with respect to v. Furthermore, for every admissible structure A, there
exists a preferred one A′ such that A v A′. �

The following result shows that the usual relation between extensions also holds
for structures.

Theorem 2. The following assertions hold:
i) every admissible structure is also self-supporting,

ii) every complete structure is also admissible,
iii) every preferred structure is also complete, and
iv) every stable structure is also preferred. �

Example 7. As a further example, consider the framework corresponding to
Figure 8. This framework has a unique complete and preferred structure A =

a α b

β

Figure 8: A cyclic recursive framework

〈{a}, {β},∅〉, but no stable one. Note that α and b are neither acceptable nor
unacceptable w.r.t. A: α is not unacceptable because it is supportable (it is prima-
facie) and it is not defeated (b is not in the structure) and it is not acceptable
because it is attacked by b, which is still not unacceptable. Similarly, b is not
unacceptable because it is still supportable through α, but it is not supported
(and, thus not acceptable) because α is not in the structure. �

4 Relation with Recursive Argumentation Frame-
works

As mentioned in Section 3, our framework is a conservative generalisation of
the Recursive Argumentation Framework (RAF) defined in [9] with the addi-
tion of supports and joint attacks. RAF’s attacks are similar to Dung’s attacks

7By abuse of notation, we write A ∪ T instead of 〈E ∪ (T ∩A),Γ ∪ (T ∩K),∆ ∪ (T ∩ S)〉
with T ⊆ (A ∪K ∪ S).
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with the only difference that they may target, not only arguments, but also
other attacks. Hence, translating RAF’s (or Dung’s) attacks into joint attacks
is trivial: every attack with source a is replaced by an attack with the singleton
set {a} as its source. On the other hand, like Dung’s frameworks, RAFs do
not encompass the notion of support. From an evidential point of view it is
as every argument or attack was externally supported, or in other words, as
attacks and arguments were prima-facie. In this sense, every RAF = 〈A,K,s,t〉
can be translated into a corresponding recursive evidence-based argumentation
framework of the form AF = 〈A,K,S,s′,t,P〉 with S = ∅ (no supports), where
every element is considered as prima-facie, that is P = A∪K, and where s′ sat-
isfies s′(α) = {s(α)} for every attack α ∈ K. It is easy to check that a structure
〈E,Γ〉 is conflict-free (resp. admissible, complete, preferred, stable) w.r.t. some
RAF iff 〈E,Γ,∅〉 is conflict-free (resp. admissible, complete, preferred, stable)
w.r.t. its corresponding AF. Furthermore, there is a one-to-one correspondence
between complete, preferred and stable structures in RAF’s and their corre-
sponding Dung’s extensions, so this correspondence is also carried over to our
argumentation frameworks with evidence-based support. In [9], it also has been
shown that there is a one-to-one correspondence between RAF and AFRA [4],
which is also carried over to our frameworks (when we restrict ourselves to
frameworks without supports). Note that AFRA has been extended with sup-
ports in [13, 14] and called Attack-Support Argumentation Framework (ASAF).
However, ASAF supports are understood as necessary conditions for their tar-
gets instead. This is quite different from the evidential understanding followed
here as shown by the following example.

Example 8. According to ASAF, the set {a, b, α, β} is a complete, preferred and
stable w.r.t. the framework of Figure 9. On the other hand, in our framework,

a b

α

β

Figure 9: A framework with a cycle of supports

〈{a, b},∅, {α, β}〉 is not admissible (and, thus, not complete, preferred nor sta-
ble) because neither a nor b are supported by a chain rooted in some prima-facie
argument. �

5 Relation with Dung’s Argumentation Frame-
works

It is also worth to mention, that the one-to-one correspondence between RAF
(or either AFRA or ASAF) and Dung’s frameworks is not directly applicable to
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conflict-free or admissible sets as illustrated by the following example:
Example 2 (cont’d) Consider the argumentation framework corresponding to
Figure 3. According to Dung’s theory, this framework has three conflict-free
sets, namely ∅, {a} and {b}, which respectively correspond to the structures:
〈∅, {α},∅〉, 〈{a}, {α},∅〉 and 〈{b}, {α},∅〉. On the other hand, 〈{a, b},∅,∅〉 is
a conflict-free structure because the attack α is not considered valid. Similarly,
{a, b} is a conflict-free set according to AFRA or ASAF. �

The difference between Dung’s argumentation frameworks and these three
semantics for recursive attacks, illustrated by the above example, can be ex-
plained by the fact that, in Dung’s theory, every attack is considered as “valid”
in the sense that it may affect its target. In [9], it has been shown that a one-
to-one correspondence with Dung’s theory, for conflict-free and admissible sets,
can be recovered by adding a kind of reinstatement principle on attacks, which
forces all attacks that cannot be defeated to be “valid”. The following extends
the definition of d-structure from [9] to the case of supports by strengthening
the notion of structure according to the above intuition:

Definition 13 (D-structure). Given some framework AF = 〈A,K,S,s,t,P〉, a
structure A = 〈E,Γ,∆〉 is said to be a d-structure iff it satisfies (Acc(A) ∩K) ⊆ Γ
and (Acc(A) ∩ S) ⊆ ∆. Then, a conflict-free (resp. admissible, complete, pre-
ferred or stable) d-structure is a conflict-free (resp. admissible, complete, pre-
ferred, stable) structure which is also a d-structure. �

As a direct consequence of Definition 12 and Theorem 2, we have:

Observation 1. Every complete (resp. preferred or stable) structure is also a
d-structure. �

It is easy to check that a structure 〈E,Γ〉 is a d-structure w.r.t. some RAF (as
defined in [9]) iff 〈E,Γ,∅〉 is a d-structure w.r.t. its corresponding AF. Hence,
the following result is an immediate consequence of Theorem 4 in [9]:

Theorem 3. Let AF = 〈A,K,S,s,t,P〉 be some non-recursive framework with
S = ∅, P = A∪K, and that, for all α ∈ K, satisfies8 |s(α)| = 1 and t(α) ∈ A.
Then, a d-structure A = 〈E,K,∅〉 is conflict-free (resp. admissible, complete,
preferred or stable) w.r.t. AF (Definition 13) iff it is conflict-free (resp. admis-
sible, complete, preferred or stable) w.r.t. dAF = 〈A,RAF〉 (Definition 3) with
the relation RAF

def= { (a, t(α))
∣∣ α ∈ K and s(α) = {a} }. �

Theorem 3 formalises how any d-framework can be represented as an AF:
in particular, in these frameworks, all elements are prima-facie P = A ∪ K
(so supports are not needed S = ∅). Furthermore, an attack only targets
arguments, t(α) ∈ A for all α ∈ K, and the source is a single argument,
represented by the restriction to singleton sets |s(α)| = 1.

8Given a set S, by |S| we denote its cardinality.
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6 Relation with Evidence-Based Argumentation
Frameworks

As mentioned in the introduction, (non-recursive) EBAFs were first introduced
in [20]. When we are restricted to non-recursive frameworks, the major dif-
ference between EBAFs and our frameworks comes from the way in which the
notion of acceptability is defined. In both cases, every acceptable argument
must also be supported but while, in EBAFs, acceptability relies on what is
called evidence-supported attack (e-attack for short), in our theory, it relies on
the idea that arguments are unacceptable if they cannot be supported or are
defeated. Intuitively, an e-attack is a pair (B, a) where B groups together the
arguments necessary to attack a and all the arguments necessary to support
all those arguments. Then, acceptability is defined requiring defence against
e-attacks instead of standard attacks. In this sense, an EBAF can be under-
stood as a (possibly exponential in size) Dung’s framework in which arguments
are self-supporting sets and attacks are the e-attacks [21].

Let us start by defining the non-recursive framework that corresponds that
corresponds to some EBAF with finite set of arguments.

Definition 14. Given an EBAF = 〈A,Ra,Re〉, by AFEBAF = 〈A,K,S,s,t,P〉 we
denote the argumentation framework where K and S are two (disjunct) sets with
the same cardinality as Ra and Re, respectively; P = K∪S∪{η} and functions
s and t map each attack and support name to their corresponding source and
target,9 that is, they satisfy:

Ra = { (s(α), t(α))
∣∣ α ∈ K }

Re = { (s(β), t(β))
∣∣ β ∈ S }

Given a set E ⊆ A, by AE def= 〈E,K,S〉 we denote its corresponding structure.
�

Observation 2. Since there are not attacks against other attacks or supports,
every d-structure w.r.t. some AFEBAF is of the form AE for some set of argu-
ments E ⊆ A. �

In order to establish the existence of a one-to-one correspondence between
finite EBAFs and non-recursive argumentation frameworks in our theory, let us
define structEBAF(·) as the function mapping any set of arguments E into the
structure AE = 〈E,K,S〉.

Theorem 4. Let EBAF be some finite EBA framework. Then, the function
structEBAF(·) is a one-to-one correspondence between its self-supporting (resp.
conflict-free, admissible, complete, preferred or stable) sets according to Defini-
tion 8 and the self-supporting (resp. conflict-free, admissible, complete, preferred
or stable) d-structures of its corresponding framework AFEBAF. �

9In other words, for a given (C, a) ∈ Ra, if α denotes the associated name in K, we have
s(α) = C and t(α) = a.
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The above result holds for the finite case. That immediately rises the ques-
tion whether this correspondence can be generalised to non-finite frameworks.
The following example answers this question in a negative way.

Example 9. Let EBAF = 〈A,Ra,Re〉 be some EBAF with a set of arguments
A = {η, a, b, c1, c2 . . . }, a set of attacks Ra = {({a}, b)} and a set of supports

Re = {({η}, b)} ∪ {({η}, c1), ({η}, c2), . . . }
∪ {({c1, c2, . . . , }, a), ({c2, . . . }, a), . . . }

Let E = A\{a} be a set of arguments. It is easy to see that every argument is
supported according to Definition 5 and, thus, that a and all ci are acceptable
because there is no attack against them. This implies that b is not acceptable
because it is attacked by a which is supported and not defeated and, thus, that E
is not admissible. On the other hand, according to Definition 7, argument b is
also acceptable w.r.t. E. Just note that, for every e-attack (C, b) against b, the
set C must include a and infinitely many ci’s and, thus, there is always some
e-attack (C ′, b) against b with C ′ = C\{ci} and ci ∈ C. Hence, there is no
minimal e-attack against b, which immediately implies that b is acceptable and
that E is admissible. �

It is worth to note that Example 9 can be also used to show that some
usual results of abstract argumentation framework are not satisfied for non-
finite EBAFs. In particular, the following example illustrates that neither the
Fundamental Lemma nor the usual relations between semantics are satisfied:
Example 9 (cont’d) Note that a is acceptable w.r.t. the admissible set E, but
E∪{a} is not conflict-free (and, thus, not admissible) because a attacks b. This
is a counterexample to the Fundamental Lemma. Furthermore, this also implies
that E is a preferred set, though it is not a complete one, so the usual relations
among semantics are not satisfied. �

7 Conclusions
In this work we have extended Dung’s abstract argumentation framework with
recursive attacks and supports. One of the essential characteristics of this ex-
tension is that semantics are given with respect to the notion of “valid attacks
and supports” which respectively play a role analogous to attacks in Dung’s
frameworks and supports in Evidence-Based Argumentation (EBA). The bases
for this extension were first settled in [9], where semantics for frameworks with
recursive attacks without supports were studied. The notions of “grounded
attack/support” and “valid attack/support” have been introduced in [8]. How-
ever, these notions have been encoded through a two-step translation into a
meta-argumentation framework. In the first step, a meta-argument is associ-
ated to an attack, and a support relation is added from the source of the attack
to the meta-argument. In the second step, a support relation is encoded by the
addition of a new meta-argument and new attacks. So [8] uses a method for
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flattening a recursive framework. As a consequence, extensions contain different
kinds of argument. In contrast, we propose a theory where valid attacks remain
explicit, and distinct from arguments, within the notion of structure.

It is worth mentioning that this extension is a conservative extension with
respect to Dung’s approach (when d-structures are considered) and that we
have proved a one-to-one correspondence with finite EBA frameworks. We
have also shown that non-finite EBA frameworks do not satisfy the Funda-
mental Lemma nor the usual relations among semantics. In this sense, our
approach is an alternative semantics for non-finite frameworks with evidence-
based supports that satisfies these properties. In addition, with restricted frame-
works without supports, we inherit, from [9], a one-to-one correspondence with
AFRA-extensions [4] in the case of the complete, preferred and stable semantics.

For a better understanding of the recursive frameworks, future work should
include the study of other semantics (stage, semi-stable, grounded and ideal), ex-
tending our approach by taking into account other bipolar interactions [13, 25],
and enriching the translation proposed by [5, 7, 16, 22] from Dung’s framework
into propositional logic and ASP, in order to capture RAF.
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A Proofs
This appendix is given for review purposes only and it is not part of the paper.

Lemma A.1. Let AF = 〈A,K,S,s,t,P〉 be some framework and A,A′ be two
structures such that A v A′. Then, DefX(A) ⊆ DefX(A′) with X ∈ {A,K,S}.
Furthermore, Sup(A) ⊆ Sup(A′) also holds. �

Proof. A v A′ implies that E ⊆ E′ and Γ ⊆ Γ′. So due to definition of DefX(A),
it is obvious that DefX(A) ⊆ DefX(A′) In the case of of supports, A v A′ implies
E ⊆ E′, and ∆ ⊆ ∆′ and the proof just follows by induction. �

Lemma A.2. Let AF = 〈A,K,S,s,t,P〉 be some framework and A = 〈E,Γ,∆〉
be a conflict-free self-supporting structure. Then, Acc(A) ∩Def (A) = ∅. �

Proof. Assume that x ∈ (Acc(A)∩Def (A)). Then, there is α ∈ Γ with s(α) ⊆ E
and t(α) = x. Since x ∈ Acc(A), it follows that either s(α) ∩UnAcc(A) , ∅
or α ∈ UnAcc(A) holds. Furthermore, since A is conflict-free, it also follows
that α ∈ Γ ⊆ Def (A) and s(α) ⊆ E ⊆ Def (A). In its turn, this implies that ei-
ther s(α) ∩ Sup(A′) , ∅ or α < Sup(A′) with A′ = 〈Def A(A),K,Def S(A)〉. Note
that, since A is conflict-free, it follows that A v A′ and, from Lemma A.1, this
implies that s(α) ∩ Sup(A) , ∅ or α < Sup(A). Both of which are in contradic-
tion with the fact that A is self-supporting. �

Definition 15. Let us denote by CSup(A) def= Sup(A′) the set of supportable
elements wrt A, where A′ = 〈Def A(A),K,Def S(A)〉. �

Lemma A.3. Let AF = 〈A,K,S,s,t,P〉 be some framework and A,A′ be two
structures such that A v A′. Then, CSup(A) ⊇ CSup(A′). �

Proof. By definition, we have CSup(A) = Sup(A1) and CSup(A′) = Sup(A2)
with

A1 = 〈Def A(A), K, Def S(A)〉
A2 = 〈Def A(A′), K, Def S(A′)〉

From Lemma A.1 and A v A′, we get DefX(A) ⊆ DefX(A′) with X ∈ {A,K,S}
which implies DefX(A) ⊇ DefX(A′). Hence, we have that A1 w A2 and, from
Lemma A.1 again, it follows that Sup(A1) ⊇ Sup(A2) and CSup(A) ⊇ CSup(A′)

�

Lemma A.4. Let AF = 〈A,K,S,s,t,P〉 be some framework and A,A′ be two
structures such that A v A′. Then, UnAcc(A) ⊆ UnAcc(A′). �

Proof. By definition, we have that

UnAcc(A) def= Def (A) ∪ CSup(A)
UnAcc(A′) def= Def (A′) ∪ CSup(A′)

From Lemma A.1 and A v A′, we get Def (A) ⊆ Def (A′). In addition, from
Lemma A.3, we get CSup(A) ⊇ CSup(A′) which implies CSup(A) ⊆ CSup(A′).
Hence, the lemma holds. �
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Lemma A.5. Let AF = 〈A,K,S,s,t,P〉 be some framework and A,A′ be two
structures such that A v A′. Then, it follows that Acc(A) ⊆ Acc(A′). �

Proof. Let x ∈ Acc(A). Then, x ∈ Sup(A) ⊆ Sup(A′) (Lemma A.1). Pick
any α ∈ K with t(α) = x. Since x ∈ Acc(A), it follows that either s(α) ∩
UnAcc(A) , ∅ or α ∈ UnAcc(A) holds. Furthermore, from Lem. A.4, we have
UnAcc(A) ⊆ UnAcc(A′) which, in its turn, implies that x ∈ Acc(A′) follows. �

Lemma A.6. Every admissible structure is self-supporting. �

Proof. By definition of admissible structure and acceptability, we have that
every admissible structure A satisfies E ∪ Γ ∪∆ ⊆ Acc(A) ⊆ Sup(A) and, thus,
every admissible structure is also self-supporting. �

Lemma A.7. Any conflict-free self-supporting structure A satisfies:
Acc(A) ⊆ UnAcc(A) ⊆ Def (A). �

Proof. By definition, we have that

UnAcc(A) = (Def (A) ∪ CSup(A))
= Def (A) ∩ CSup(A)

Hence, due to Lemma A.2, it is enough to show that Acc(A) ⊆ CSup(A).
By definition, CSup(A) = Sup(A′) where A′ = 〈Def A(A),K,Def S(A)〉. As

A is conflict-free, A ⊆ A′ so, from Lemma A.1, we have that Sup(A) ⊆ Sup(A′).
Moreover, by definition we have Acc(A) ⊆ Sup(A). So Acc(A) ⊆ Sup(A′) =
CSup(A).

�

Lemma A.8. Let AF = 〈A,K,S,s,t,P〉 be some framework and A = 〈E,Γ,∆〉
be some an admissible structure. Then, any element x ∈ Acc(A) satisfies that
A′ = A ∪ {x} is conflict-free.
Proof. Let us define E′ def= E ∪ {x} if x ∈ A, E′ def= E otherwise. Similarly,
Γ′ def= Γ ∪ {x} if x ∈ A, Γ′ def= Γ otherwise; and ∆′ def= ∆ ∪ {x} if x ∈ A,
∆′ def= ∆ otherwise. Since A is admissible and x ∈ Acc(A), it is clear that
(E′ ∪ Γ′ ∪∆′) ⊆ Acc(A). Suppose, for the sake of contradiction, that A′ is not
conflict-free. Then, there is some attack β ∈ Γ′ such that t(β) ∈ (E′ ∪ Γ′ ∪∆′)
and s(β) ⊆ E′. Hence, t(β) ∈ Acc(A) which, in its turn, implies that either
β ∈ UnAcc(A) or s(β) ∩ UnAcc(A) , ∅ must hold. As A is admissible, it is
self-supporting (Lem. A.6), so Lemma A.7 can be applied and from the fact
that Γ′ ⊆ Acc(A), it follows that

β ∈ Γ′ ⊆ Acc(A) ⊆ UnAcc(A) (5)

which is a contradiction with β ∈ UnAcc(A). Furthermore, since E′ ⊆ Acc(A)
and, thus

s(β) ⊆ E′ ⊆ Acc(A) ⊆ UnAcc(A) (6)

which is a contradiction with s(β)∩UnAcc(A) , ∅. Consequently, A′ is conflict-
free. �
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A.1 Proofs of Section 3
Lemma 1 (Fundamental Lemma). Let A = 〈E,Γ,∆〉 be an admissible structure
and x, y ∈ Acc(A) be any pair of acceptable elements. Then,10 (i) A′ = A ∪ {x}
is an admissible structure, and (ii) y ∈ Acc(A′). �

Proof. From Lem. A.8, we know that A′ = 〈E′,Γ′,∆′〉 is conflict-free. Further-
more, since A is admissible and x ∈ Acc(A), (E ∪Γ∪∆∪{x}) ⊆ Acc(A). Then,
since A v A′, Lem. A.5 implies that

(E′ ∪ Γ′ ∪∆′) = (E ∪ Γ ∪∆ ∪ {x}) ⊆ Acc(A) ⊆ Acc(A′)

and thus, that A′ is admissible and y ∈ Acc(A′). �

Lemma A.9. Let AF = 〈A,K,S,s,t,P〉 be some framework and A0 v A1 v . . .
be some sequence of conflict-free structures s.t. Ai = 〈Ei,Γi,∆i〉. Let us define
A = 〈

⋃
0≤iEi,

⋃
0≤i Γi,

⋃
0≤i ∆i〉. Then, A is conflict-free. �

Proof. Suppose, for the sake of contradiction, that A is not conflict-free. Then,
(Y ∩ DefX(A)) , ∅ for some (Y,X) ∈ {(E,A), (Γ,K), (∆,S)} (with E =⋃

0≤iEi and Γ =
⋃

0≤i Γi and ∆ =
⋃

0≤i ∆i). Pick any x ∈ (Y ∩DefX(A)) Then,
x ∈ DefX(A) implies that there is α ∈ Γ such that t(α) = x and s(α) ⊆ E.
Hence, there is 0 ≤ i such that α ∈ Γi and 0 ≤ j such that s(α) ⊆ Ej . Let
k = max{i, j}. Then, α ∈ Γk and s(α) ⊆ Ek which means that x ∈ DefX(Ak).
Moreover, there is 0 ≤ l such that x ∈ Yl. Let m = max{k, l}. Then, x ∈ Ym and
from Lem. A.1, we have that DefX(Ak) ⊆ DefX(Am). That is in contradiction
with the fact that Am is conflict-free. Hence, A must be conflict-free. �

Proposition 1. The set of all admissible structures forms a complete partial
order with respect to v. Furthermore, for every admissible structure A, there
exists a preferred one A′ such that A v A′. �

Proof. First note that 〈∅,∅,∅〉 is always admissible and that 〈∅,∅,∅〉 v A
for any structure A. Furthermore, for every chain A0 v A1 v . . . with Ai =
〈Ei,Γi,∆i〉, it follows that Ai v A with A = 〈E,Γ,∆〉 such that E =

⋃
0≤iEi

and Γ =
⋃

0≤i Γi and ∆ =
⋃

0≤i ∆i. From Lem. A.9, it follows that A is
conflict-free. Let us show now that A is admissible, that is, that every element
in A is acceptable wrt A. Pick x ∈ (E ∪ Γ ∪ ∆) and any attack β ∈ K with
t(β) = x. Then, x ∈ (Ei ∪ Γi ∪∆i) for some 0 ≤ i. Since Ai is admissible, this
implies that x ∈ Acc(Ai) and, from Lemma A.5 and the fact that Ai v A, we
get x ∈ Acc(Ai) ⊆ Acc(A) and, thus, A is admissible.
To show that, for every admissible structure A, there is some preferred structure
A′ such that A v A′, suppose, for the sake of contradiction, that there is some
admissible structure A such that no preferred structure A′ with A v A′ exists.
Then, there must be some infinite chain A v A1 v A2 v . . . . However, as shown
above, it follows that there is some A such that Ai v A for all Ai and, thus, A
is a preferred structure. �

10By abuse of notation, we write A ∪ T instead of 〈E ∪ (T ∩A),Γ ∪ (T ∩K),∆ ∪ (T ∩ S)〉
with T ⊆ (A ∪K ∪ S).
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Lemma A.10. Every stable structure is conflict-free. �

Proof. Let A = 〈E,Γ,∆〉 be a stable structure. By definition, we have (E ∪Γ∪
∆) = UnAcc(A), with UnAcc(A) = Def (A) ∪ Sup(A′). So, UnAcc(A) ⊆ Def (A).
So (E ∪ Γ ∪∆) ⊆ Def (A), hence A is conflict-free.

�

Lemma A.11. Let AF = 〈A,K,S,s,t,P〉 be some framework, A = 〈E,Γ,∆〉 be
some structure. Then, x ∈ Sup(A) iff x ∈ Sup(A\{x}). �

Proof. The if direction follows directly from Lemma A.1. For the only if di-
rection, by definition, x ∈ Sup(A) implies that either x ∈ P or there exists
some support α ∈ (∆ ∩ Sup(A\{x})) such that : s(α) ⊆ (E ∩ Sup(A\{x})) and
t(α) = x. The former directly implies that x ∈ Sup(A\{x}), so we assume with-
out loss of generality the latter.
In case that x = α, then x ∈ Sup(A\{x}) follows directly from the above fact
α ∈ (∆ ∩ Sup(A\{x})). Similarly, in case that x ∈ s(α), then it follows directly
from s(α) ⊆ (E ∩ Sup(A\{x})). Hence, we also assume without loss of generality
that x < (s(α)∪{α}). Hence, α ∈ (∆\{x}) and s(α) ⊆ (E\{x}). Furthermore, it
is clear that (A\{x})\{x} = A\{x} and, thus, this implies that x ∈ Sup(A\{x})
holds. �

Lemma A.12. Let A = 〈E,Γ,∆〉 be a stable structure and A2 = 〈E2,Γ2,∆2〉
be a structure such that (E2∪Γ2∪∆2) ⊆ Def (A). Let A1 be the structure defined
as A2 ∩ A (that is X1 = X2 ∩X with X ∈ {E,Γ,∆}).
Then, (E2 ∪ Γ2 ∪∆2) ∩ Sup(A2) ⊆ (E1 ∪ Γ1 ∪∆1). �

Proof. Let A′ = 〈Def A(A),K,Def S(A)〉. We have A2 v A′. Let x ∈ (E2 ∪ Γ2 ∪
∆2) ∩ Sup(A2). As x ∈ Sup(A2) we have x ∈ Sup(A′) (Lemma A.1). Note also
that we have x ∈ (E2 ∪ Γ2 ∪∆2) ⊆ Def (A) and, thus,

x ∈ Def (A) ∩ Sup(A′) = UnAcc(A) = (E ∪ Γ ∪∆)

Then, since x ∈ (E∪Γ∪∆) and x ∈ (E2∪Γ2∪∆2), by definition of A1, it follows
that x ∈ (E1 ∪Γ1 ∪∆1). Thus we have proved that (E2 ∪Γ2 ∪∆2)∩ Sup(A2) ⊆
(E1 ∪ Γ1 ∪∆1). �

Lemma A.13. Let A = 〈E,Γ,∆〉 be a stable structure and A2 = 〈E2,Γ2,∆2〉
and A3 = 〈E3,Γ3,∆3〉 be two structures such that (E3 ∪ Γ3 ∪ ∆3) ⊆ Def (A)
and A v A3 and A2 v A3. Let A1 be the structure defined as A2 ∩ A (that
is X1 = X2 ∩ X with X ∈ {E,Γ,∆}). Then, (E2 ∪ Γ2 ∪ ∆2) ∩ Sup(A2) ⊆
(E1 ∪ Γ1 ∪∆1) ∩ Sup(A1). �

Proof. This is trivially true if A2 = 〈∅,∅,∅〉. Otherwise, we proceed by in-
duction assuming the hypothesis is true for all structures A′2 @ A2. Pick any
x ∈ (E2 ∪ Γ2 ∪∆2) ∩ Sup(A2). First note that, from Lemma A.12, this directly
implies that x ∈ (E1 ∪ Γ1 ∪∆1).
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Furthermore, from Lemma A.11, x ∈ Sup(A2) implies x ∈ Sup(A2\{x})
which implies that there is some support α ∈ ∆2\{x} ∩ Sup(A2\{x}) such that
t(α) = x and s(α) ⊆ E2\{x} ∩ Sup(A2\{x}).

In addition, x ∈ (E2 ∪ Γ2 ∪∆2) implies that A2\{x} @ A2.
Hence, by induction hypothesis with A′2 = A2\{x}, we obtain (E′2∪Γ′2∪∆′2)∩

Sup(A′2) ⊆ (E′1 ∪ Γ′1 ∪ ∆′1) ∩ Sup(A′1) where A′1 = 〈E′,Γ′,∆′〉 is the structure
defined as A′2 ∩ A. So, we have A′1 = A1\{x} and

α ∈ Sup(A1\{x}) (7)
s(α) ⊆ Sup(A1\{x}) (8)

Moreover, from Lemma A.12, α ∈ ∆2\{x} ∩ Sup(A2\{x}) implies

α ∈ ∆1\{x} ⊆ ∆1

From an analogous reasoning, we get that s(α) ⊆ E1. This plus (7-8) imply

α ∈ ∆1 ∩ Sup(A1\{x})
s(α) ⊆ E1 ∩ Sup(A1\{x})

and x ∈ Sup(A1). Hence, (E2 ∪ Γ2 ∪∆2)∩ Sup(A2) ⊆ (E1 ∪ Γ1 ∪∆1)∩ Sup(A1)
follows.

�

Lemma A.14. Every stable structure is self-supporting. �

Proof. Let A = 〈E,Γ,∆〉 be a stable structure. From Definition 10, we have
that

(E ∪ Γ ∪∆) = UnAcc(A) = Sup(A′) ∩Def (A) = Sup(A′′) ∩Def (A)

with A′ = 〈Def A(A),K,Def S(A)〉 and A′′ = 〈Def A(A),Def K(A),Def S(A)〉. Note
that Sup(A′) = Sup(A′′) because supported elements do not depend on attacks.
Obviously, we have A′′ ⊆ A′. And, since A is stable (and thus conflict-free), we
also have A v A′′.

This implies (E ∪ Γ ∪ ∆) ⊆ (Def A(A) ∪ Def K(A) ∪ Def S(A)) ∩ Sup(A′′).
Then, Lemma A.13 can be applied with A2 = A3 = A′′ and A1 = (A2 ∩ A) = A
(since A v A′′). Thus we obtain

(E ∪ Γ ∪∆) ⊆ (Def A(A) ∪Def K(A) ∪Def S(A)) ∩ Sup(A′′)
⊆ (E ∪ Γ ∪∆) ∩ Sup(A)

and, thus, (E ∪ Γ ∪∆) ⊆ Sup(A). �

Theorem 2. The following assertions hold:
i) every admissible structure is also self-supporting,
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ii) every complete structure is also admissible,
iii) every preferred structure is also complete, and
iv) every stable structure is also preferred. �

Proof. Then. . .

1. Directly from Lemma A.6.

2. By definition of a complete structure.

3. By definition, every preferred structure A = 〈E,Γ,∆〉 is also admissible.
Hence, to show that A is complete, it enough to prove that Acc(A) ⊆
(E ∪ Γ ∪ ∆). Pick any x ∈ Acc(A). Then, from Lem. 1 (Fundamental
Lemma) it follows that A′ = (A ∪ {x}) is also admissible and that A v
A′. Furthermore, since A is preferred, it follows that A is a v-maximal
admissible structure and, thus, A v A′ implies that A = A′. Hence,
x ∈ (E ∪Γ∪∆) holds and, thus, it follows that Acc(A) ⊆ (E ∪Γ∪∆) and
that A is complete.

4. Assume that A is a stable structure. We have to prove that A is a v-
maximal admissible structure.
We first prove that A is admissible.
That A is conflict-free and self-supporting directly follows from Lem-
mas A.10 and A.14. Pick any element x ∈ (Γ ∪ E ∪∆).
Then, to prove that x ∈ Acc(A), condition (ii) remains to be shown. Pick
any attack β ∈ K with t(β) = x.
As A is conflict-free, either β < Γ or s(β) * E. Hence, since A is stable,
it follows that β ∈ UnAcc(A) or s(β) ∩UnAcc(A) , ∅ hold. In both cases,
it follows that β ∈ UnAct(A) and, thus, that x ∈ Acc(A) and that A is
admissible.
Now assume A′ = 〈E′,Γ′,∆′〉 to be some admissible structure such that
A v A′. From Lemma A.13, this implies A = A′. That is, A is a v-maximal
admissible structure and, consequently, A is a preferred one.

�

A.2 Proof of section 6
We address the proof of Theorem 4 in two steps: First, we define an alternative
characterisation of the semantics for EBAFs and show that it coincides with the
original one in the case of finite EBAFs. Second, we proof that this alternative
characterisation coincides with our semantics for non-recursive frameworks even
in the case of non-finite EBAFs.

Definition 16 (Acceptability). An argument a ∈ A is said to be acceptable
w.r.t. a set E ⊆ A iff the following two conditions are satisfied:
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1. a is e-supported by E, and

2. for every e-attack (B, a), it holds that E e-attacks some b ∈ B. �

Proposition 2. For finite EBA frameworks, Definitions 16 and 7 are equiva-
lent. �

Proof. It is clear that Definition 16 implies Definition 7 because every minimal
e-attack is also an e-attack. Furthermore, for every e-attack (B, a) w.r.t. some
finite EBAF, it is clear that B ⊆ A must be finite. Hence, there must be a
minimal set B′ ⊆ B such that (B′, a) is a minimal e-attack. Furthermore, E
e-attacks some b ∈ B′ ⊆ B implies that E also e-attacks some b ∈ B. �

Definition 17 (Semantics). A set of arguments E ⊆ A is said to be

1-2. as in Definition 8,

3-5. as in Definition 8, but using Definition 16 instead of Definition 7,

6. E is stable iff E is self-supporting, conflict-free and any argument a < E
which is e-supported by E satisfies that either a or every e-support B of
a.

Proposition 3. For finite EBA frameworks, Definitions 17 and 8 are equiva-
lent. �

Proof. Conflict-free and self-supporting correspondences follow directly by defi-
nition. Admissible, complete and preferred ones follow from Proposition 2. For
the stable semantics, from Definition 8 we have

6. stable iff it is self-supporting, conflict-free and any argument a < E which
is e-supported by A satisfies that E e-attacks either a or every minimal
e-support B of a.

and, since we are in the finite case, we can drop the minimality criteirion.

stable iff it is self-supporting, conflict-free and any argument a < E which
is e-supported by A satisfies that E e-attacks either a or every e-support B
of a.

�

Lemma A.15. Let EBAF be some framework, E ⊆ A be some set and a ∈ A
be some argument. Then a e-supported by E iff a is e-supported by E\{a}. �

Proof. First, if a = η, then a is e-supported by any set and, in particular, by E
and E\{a}. Hence, we assume without loss of generality that a , η and, thus,
that there is a non-empty C ⊂ E such that (c, a) ∈ Re and every c ∈ C is
e-supported by E\{a}. Clearly, if every a ∈ C, then a is e-supported by E\{a}.
Otherwise, a < C implies that C ⊂ E\{a} and, it clear that if every c ∈ C
is e-supported by E\{a} then, it is also e-supported by (E\{a}){a} = E\{a}.
Hence, a is e-supported by E\{a}. The other way around is trivial. �
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Proposition 4. Let EBAF be some EBA framework and E ⊆ A be some set of
arguments. Then, the following assertions hold:

1. E is conflict-free w.r.t. EBAF iff AE is conflict-free w.r.t. AFEBAF,

2. a ∈ A is e-supported by E w.r.t. EBAF iff a ∈ Sup(AE) w.r.t. AFEBAF,

3. if E is self-supporting and a∈Def A(AE) w.r.t. AFEBAF, then E e-attacks a
w.r.t. EBAF. �

Proof. First, note that 1 follows directly from the observation RA = Ra and
that 3 follows directly from 2. Condition 2 can be proved by induction as follows:

First note that, if E = ∅, then a is e-supported by E iff a = η iff a ∈ P iff
a ∈ Sup(AE) (note that there is no support β ∈ S with s(β) = ∅). Hence, we
assume as induction hypothesis that the lemma statement holds for every set
B ⊂ E. We also assume without loss of generality that a , η and, thus, a < P.

Assume first that a is e-supported by E. Then, there is some C ⊂ E such
that (C, a) ∈ Re and every c ∈ C is e-supported by E\{a}. Pick any c ∈ C.
Since every c ∈ C is e-supported by E\{a}, from Lemma A.15, it follows that
every c ∈ C is e-supported by E\{a, c} ⊆ E. From induction hypothesis and
Lemma A.1, this implies that every C ⊆ Sup(AE\{a, c}) ⊆ Sup(AE\{a}) which,
since C ⊆ E, implies that a ∈ Sup(AE) holds.

Assume now that a ∈ Sup(AE). Then, there is some support β ∈ S such that
s(β) ⊆ (E ∩ Sup(AE\{a})) and t(β) = a. If s(β) = {η}, then η is e. Pick any c ∈
s(β). Since c ∈ Sup(AE), from Lemma A.11, it follows that c ∈ Sup(AE\{c}).
Furthermore, c ∈ E implies E\{c} ⊂ E and, by induction hypothesis, we get
that c is e-supported by E\{c}. Hence, every c ∈ s(β) is e-supported by E\{c},
which, together with s(β) ⊆ E, implies that a is e-supported by E. �

Lemma A.16. Let E,B ⊆ A be two sets of arguments such that B is self-supporting
w.r.t. some EBAF. Then, B ∩ Sup(A′) , ∅ with A′ = 〈Def A(AE), K, S〉 implies
B ∩Def A(AE) , ∅.

Proof. Pick any b ∈ B ∩ Sup(A′). Since B is a self-supporting set, it follows that
b is e-supported by B and, from Proposition 4, that b ∈ Sup(AB). Suppose, for
the sake of contradiction, that B ∩Def A(AE) = ∅. Then, B ⊆ Def A(AE) which
implies that AB v A′. From Lemma A.1, this implies that b ∈ Sup(AB) ⊆ Sup(A′)
which is a contradiction with the assumption. Consequently, B ∩Def A(AE) , ∅.

�

Proposition 5. Let EBAF be some EBA framework and E ⊆ A be a conflict-free,
self-supporting set w.r.t. EBAF. An argument a ∈ A is a acceptable w.r.t. AE
iff a is acceptable w.r.t. E (Definition 16). �

Proof. First note that, by definition, a ∈ A being a acceptable w.r.t. AFEBAF im-
plies a ∈ Sup(A) which, from Proposition 4, implies that a is e-supported by E.
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Hence, it just remains to be shown that, for every minimal e-attack (B, a),
it holds that E e-attacks some b ∈ B. Since B e-attacks a, there is some
(C, a) ∈ Ra with C ⊆ B. Let α ∈ K be the attack name such that s(α) = C
and t(α) = a. Since a is acceptable w.r.t. AE and AFEBAF, it follows that either
α ∈ UnAcc(AE) or s(α) ∩UnAcc(A) , ∅. Furthermore, since there is no attack
targeting α and α ∈ K ⊆ P, it immediately follows that α < UnAcc(AE). Hence,
we assume without loss of generality that s(α) ∩UnAcc(AE) , ∅.

This implies the existence of some argument c ∈ s(α) s.t. either c ∈ Def A(AE)
or c < Sup(A′) with A′ = 〈Def A(AE), K, S〉. Furthermore, the latter implies
that there is some c′ ∈ s(α) ∩Def A(AE) (see Lemma A.16). Hence, in both
cases, there is some b ∈ s(α) ∩Def A(AE). Since b ∈ s(α) ⊆ C ⊆ B, from
Proposition 4, it follows that E e-attacks b and, thus, that a is acceptable
w.r.t. E.

For the if direction, we will show that s(α) ∩UnAcc(A) , ∅ for any attack α ∈ K
with t(α) = a. First note that, from Definition 14, we have that (C, a) ∈ Ra

with C = s(α). Suppose, for the sake of contradiction, that s(α) ∩UnAcc(A) = ∅
and, thus, C ∩UnAcc(A) = ∅ hold. This implies that B = C ∪ Def A(AE) is a
self-supporting set11 and, thus, (B, a) is an e-attack. Then, since a is acceptable
w.r.t. E, this implies that E e-attacks some b ∈ B = C ∪Def A(AE). Note that
E e-attacks b implies that b ∈ Def A(AE) ⊆ UnAcc(AE) and, thus, that b ∈ C
and that C ∩UnAcc(AE) , ∅. This implies that a is acceptable w.r.t. AE . �

Proposition 6. A set of arguments E ⊆ A is admissible (resp. complete or
preferred) w.r.t. some finite EBAF iff AE is an admissible (resp. complete or
preferred) d-structure w.r.t. AFEBAF. �

Proof. Directly from Propositions 4 and 5. �

Lemma A.17. Let E ⊆ A be a stable set. Then, every B ⊆ A satisfies: for
each a ∈ A, a < Sup(AE) and B e-supports a imply that E e-attacks some b ∈ B.

Proof. In case that B = ∅, it follows that B e-supports a implies that a = η ∈ P
and, thus, a ∈ Sup(AE) so the lemma statement holds vacuous. Then, we pro-
ceed by induction assuming that the lemma statement holds for every strict sub-
set B′ ⊂ B. Note that a < Sup(AE) implies that a , η, as η ∈ P. Furthermore,
B e-supports a implies that there is a support α ∈ S with t(α) = a such that ev-
ery c ∈ s(α) ⊆ B is e-supported by B\{a}. From Lemma A.15, this implies that
c is e-supported by B\{a, c} ⊂ B. Moreover, s(α) ⊆ E ∩ Sup(AE\{a, c}) would
imply s(α) ⊆ E ∩ Sup(AE\{a, c}) (Lemma A.1) and, thus, a ∈ Sup(AE) which
is a contradiction, so there is some c ∈ s(α)\Sup(AE\{a, c}) or some c ∈ s(α)\E.
By induction hypothesis, the former implies that E e-attacks sombe c ∈ B\{a, c}
and, thus, that it e-attacks some c ∈ B.

Hence, we assume without loss of generality that c < E. Note that, since c
is e-supported by B\{a} ⊆ A, it is also e-supported by A. Since E is stable,

11Note that C ∩UnAcc(A) = ∅ implies that C ⊆ Sup(A′) with A′ = 〈Def A(A),K,S〉. From
Proposition 4, this implies that C is e-supported by Def A(AE).
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this implies that E e-attacks either c or some c′ ∈ B′ for every e-support B′ of
c. In both cases E e-attacks some b ∈ B. �

Proposition 7. A set of arguments E ⊆ A is stable w.r.t. some EBAF (Defi-
nition 17) iff AE is stable w.r.t. AFEBAF. �

Proof. For the if direction, we have that AE is self-supporting and conflict-free
(Theorem 2) and, from Proposition 4, this implies that E is a self-supporting
and conflict-free set. Hence, we have to show that any argument a < E which
is e-supported by A satisfies that E e-attacks either a or every e-support B
of a. Note that, from Definition 12, a < E implies that a ∈ UnAcc(AE). Be-
sides, since there is no attack against supports or other attacks, it follows that
DefX(AE) = ∅ with X ∈ {K,S}.

Then, a ∈ UnAcc(AE) implies that either a ∈ Def (AE) or a < Sup(A′) holds
with A′ = 〈Def A(AE), K, S〉. Note that, since E is self-supporting, a ∈ Def (AE)
implies that E e-attacks a (Proposition 4). Moreover, since AE is conflict-free,
it follows that AE v A′ and, thus, also that Sup(AE) ⊆ Sup(A′) (Lemma A.1).
From this, it follows that a < Sup(A′) implies a < Sup(AE). From Lemma A.17,
this implies that E e-attacks every e-support B of a. Consequently, E is a stable
set.

For the only if direction, from Definition 14, we have

X = P ∩X = SupX(AE) = SupX(A′)

with X ∈ {K,S}. Since there is no attack against supports or other attacks,
DefX(AE) = ∅ withX ∈ {K,S}. Therefore, it follows thatX = UnAcc(AE) ∩X
with X ∈ {K,S}. Hence, it is enough to show that E = UnAcc(AE) ∩A.

Note that UnAcc(AE) = SupA(A′)\Def A(AE) with A′ = 〈Def A(AE), K, S〉,
so we have to prove

E = SupA(A′)\Def A(AE)

Since E is a self-supporting set, it follows that every a ∈ E is e-supported
by E and, from Proposition 4, that a ∈ Sup(AE). Furthermore, since E is
conflict-free, from Proposition 4, this implies that AE is also conflict-free and,
thus, we have that AE v A′. From Lemma A.1, this implies E ⊆ SupA(AE) ⊆ SupA(A′).
Moreover, the fact that AE is conflict-free also implies that E ∩Def A(AE) = ∅
and, thus, that E ⊆ SupA(A′)\Def A(AE).

The other way around. Pick a ∈ SupA(A′)\Def A(AE). Hence, there is a
support α ∈ S with t(α) = a and s(α) ⊆ Def A(AE) ∩ SupA(A′\{a}).

Then, from Proposition 4 and the fact that s(α) ⊆ SupA(A′\{a}), it follows
that every b ∈ s(α) is e-supported by Def A(AE)\{a}. Furthermore, since s(α) ⊆
Def A(AE), it follows that Def A(AE) e-supports a. Furthermore, a < Def A(AE)
implies that E does not e-attacks a.

Then, since E is stable, either a ∈ E or E e-attacks some b ∈ Def A(AE).
Note that E e-attacks b implies that b ∈ Def A(AE) which is a contradic-
tion. So a ∈ E must hold. This implies E ⊇ SupA(A′)\Def A(AE) and, thus,
E = SupA(A′)\Def A(AE). Consequently, AE is stable. �
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Theorem 5. Let EBAF be some (possibly infinite) EBA framework. Then, the
function structEBAF(·) is a one-to-one correspondence between its self-supporting
(resp. conflict-free, admissible, complete, preferred or stable) sets according to
Definition 17 and the self-supporting (resp. conflict-free, admissible, complete,
preferred or stable) d-structures of its corresponding framework AFEBAF. �

Proof. First, note that from Propositions 6 and 7, it directly follows that a set
E ⊆ A is self-supporting (resp. conflict-free, admissible, complete, preferred or
stable) iff structEBAF(E) = AE is a self-supporting (resp. conflict-free, admis-
silbe, complete, preferred or stable) d-structure w.r.t. AFEBAF. Furthermore,
by construction of AE = 〈E,K,S〉 it is clear structEBAF(·) is injective. To see
that it is also surjective just note that, from Observation 2, every d-structure is
of the form AE for some set of arguments E ⊆ A. �

Theorem 4. Let EBAF be some finite EBA framework. Then, the function
structEBAF(·) is a one-to-one correspondence between its self-supporting (resp.
conflict-free, admissible, complete, preferred or stable) sets according to Defini-
tion 8 and the self-supporting (resp. conflict-free, admissible, complete, preferred
or stable) d-structures of its corresponding framework AFEBAF. �

Proof. Follows directly from Proposition 3 and Theorem 5. �
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