J. Miyawaki, M. Yudasaka, T. Azami, Y. Kubo, and S. Iijima, Toxicity of Single Walled Carbon Nanohorns, ACS Nano, vol.2, p.226, 2008.

D. Maiti, X. Tong, and X. Mou, Yang, K Carbon Based Nanomaterials for Biomedical Applications: A Recent Study, Front. Pharmacol, vol.9, p.1401, 2019.

S. V. Prylutska, A. G. Grebinyk, O. V. Lynchai<, I. V. Byelinska, V. V. Cherepanov et al., In Vitro and in Vivo Toxicity of Pristine C 60 Fullerene Aqueous Colloid Solution. Fuller. Nanotub. Carbon Nanostruct, vol.715, p.27, 2019.

V. A. Popov, M. A. Tyunin, O. B. Zaitseva, R. H. Karaev, N. V. Sirotinkin et al., C60/PVP Complex No Toxicity after Introperitoneal Injection to Rats. Fuller. Nanotub. Carbon Nanostruct, vol.693, p.697, 2008.

F. Moussa, F. Trivin, . Céolin, M. Hadchouel, P. Y. Sizaret et al., Early Effects of C 60 Administration in Swiss Mice: A Preliminary Account for in Vivo C 60, Toxicity. Fuller. Sei. Technol, 1996.

A. A. Tomchuk, N. N. Shershakova, S. M. Andreev, E. A. Turetskiy, O. I. Ivankov et al., Arginine Aqueous Solutions: In Vitro Toxicity and Structural Study. Fuller. Nanotub. Carbon Nanostruct, vol.245, p.249, 2020.

A. P. Francis and T. Devasena, Toxicity of Carbon Nanotubes : A Review, Toxicol Ind. Health, p.34, 2018.

S. Iijima, M. Yudasaka, R. Yamada, S. Bandow, K. Suenaga et al., Aggregates of Single Walled Graphitic Carbon Nano Homs, Chem Ph ys . Lett, vol.165, p.170, 1999.

K. Murata, K. Kaneko, F. Kokai, K. Takahashi, M. Yudasaka et al., Pore Structure of Single Wall Carbon Nanohorn Aggregates, Chem Phys. Lett, vol.14, issue.20, p.331, 2000.

L. B. Piotrovskii and R. G. Melik-ogandzhanyan, Properties and Biological Potential of Single Walled Carbon Nanohornes, vol.120, p.128, 2011.

S. Zhu and G. Xu, Single Walled Carbon Nanohorns and Their Applications, Nanoscale, vol.2, p.2538, 2010.

T. Murakami, H. Sawada, G. Tamura, M. Yudasaka, S. Iijima et al., Water Dispersed Single Wall Carbon Nanohorns as Drug Carriers for Local Cancer Chemotherapy

, Nanomedicine, vol.3, p.463, 2008.

V. Datsyuk, M. Kalyva, K. Papagelis, J. Parthenios, D. Tasis et al., Chemical Oxidation of Multiwalled Carbon Nanotubes, vol.46, p.840, 2008.

S. Lacotte, A. Garcia, M. Décossas, W. T. Jamal, S. Li et al., Interfacing Functionalized Carbon Nanohorns with Primary Phagocytic Cells, Adv. Mater, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00335089

K. Ajima, M. Yudasaka, T. Murakami, A. Maigné, K. Shiba et al., The Method of Spin Labels in Molecular Biology, Theory and Applications, vol.2, p.480, 1974.

A. V. Mir-;-okotrub, Y. V. Shevtsov, L. I. Nasonova, D. E. Sinyakov, A. L. Chuvilin et al., Synthesis and Modification of Carbon Nanohorns Structure for Hyperthermie Application, J. Struct. Chem, vol.32, p.58, 1979.

M. T. Kartel, L. V. Ivanov, O. M. Lyapunov, O. A. Nardid, Y. Cherkashina et al., Effect of Carbon Nanoparticles of Different Nature on the Micro Viscosity of Erythrocyte Membranes of Experimental Animais, Him Piz. Tehnol Poverhni, vol.10, p.323, 2019.

N. N. Moiseeva, L. P. Kravchenko, A. A. Semenchenko, A. Y. Petrenko, M. Pena-alvarez et al., Effect of Transplantation of Hepatocytes Subjected to Hypothermie Storage on Liver Regeneration in Rats after Partial Hepatectomy, 2002.

M. S. Dresselhaus, A. Jorio, R. C. Saito, and . Graphene,

, Annu. Rev. Condens. Matter Phys, vol.2010, p.108

A. Misra, P. Tyagi, P. Rai, and D. S. Misra, FTIR Spectroscopy of Multiwalled Carbon Nanotubes: A Simple Approach to Study the Nitrogen Doping, J. Nanosci. Nanotechnol, 2007.

E. V. Shlyakhova, L. G. Bulusheva, M. A. Kanygin, P. E. Plyusnin, K. A. Kovalenko et al., Wepasnick, K A.; Smith, B. A.; Bitter, J. L.; Howard Fairbrother, D. Chemical and Structural Characterization of Carbon Nanotube Surfaces, Phys. Status Solidi B, vol.3332, p.5, 2010.

L. G. Bulusheva, A. V. Okotrub, I. P. Asanov, A. Fonseca, J. B. Nagy et al., Effect of Substrate Temperature on the Structure of Amorphous Oxygenated Hydrocarbon Films Grown with a Pulsed Supersonic Methane Plasma Flow, Appl. Surf. Sei, vol.4853, p.471, 2001.

I. Mazov, V. L. Kuznetsov, I. A. Simonova, A. I. Stadnichenko, A. V. Ishchenko et al., Oxidation Behavior of Mu.ltiwall Carbon Nanotubes with Different Diameters and Morphology

A. Surf and . Sei, , vol.258, p.6280, 2012.

S. Morales, C. Flahaut, E. Sim, E. Sloan, J. Green et al., Complement Activation and Protein Adsorption by Carbon Nanotubes, Mol Immunol, p.43, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00474856

P. V. Sergeev and . Ed, Biochemical Pharmacology; Higher School, 1982.

L. V. Ivanov, O. M. Lyapunov, M. T. Kartel, O. A. Nardid, A. V. Okotrub et al., Cherkashina Ya. O. Delivery of Spin Probes by Carbon Nanotubes in Erythrocytes and Plasma of Blood, Surface, vol.6, p.304, 2014.

N. T. Kartel, L. V. Ivanov, A. N. Lyapunov, O. A. Nardid, A. V. Okotrub et al., Evaluation of the Effect of Carbon Nanotubes on the Microviscosity of Erythrocyte Membranes, Rep. NatL Acad. Sei, vol.3, p.114, 2015.

R. I. Zhdanov, Paramagnetic Models of Biologically Active Compounds, 1981.