Skip to Main content Skip to Navigation
Journal articles

Learning Personalized ADL Recognition Models from Few Raw Data

Abstract : Recognition of Activities of Daily Living (ADL) is an essential component of assisted living systems based on actigraphy. This task can nowadays be performed by machine learning models which are able to automatically extract and learn relevant features but, most of time, need to be trained with large amounts of data collected on several users. In this paper, we propose an approach to learn personalized ADL recognition models from few raw data based on a specific type of neural network called matching network. The interest of this few-shot learning approach is threefold. Firstly, people perform activities their own way and general models may average out important individual characteristics unlike personalized models that could thus achieve better performance. Secondly, gathering large quantities of annotated data from one user is time-consuming and threatens privacy in a medical context. Thirdly, matching networks are by nature weakly dependent on the classes they are trained on and can generalize easily to new activities without needing extra training, thus making them very versatile for real applications. Our results show the effectiveness of the proposed approach compared to general neural network models, even in situations with few training data.
Document type :
Journal articles
Complete list of metadatas

https://hal.archives-ouvertes.fr/hal-02882684
Contributor : Paul Compagnon <>
Submitted on : Saturday, June 27, 2020 - 11:10:00 AM
Last modification on : Wednesday, July 8, 2020 - 12:43:49 PM

Identifiers

Citation

Paul Compagnon, Grégoire Lefebvre, Stefan Duffner, Christophe Garcia. Learning Personalized ADL Recognition Models from Few Raw Data. Artificial Intelligence in Medicine, Elsevier, 2020, pp.101916. ⟨10.1016/j.artmed.2020.101916⟩. ⟨hal-02882684⟩

Share

Metrics

Record views

33