G. Pezzulo, M. Van-der-meer, C. S. Lansink, and C. Pennartz, Internally generated sequences in learning and executing goal-directed behavior, Trends in Cognitive Sciences, vol.18, issue.12, pp.647-657, 2014.

N. Burgess and G. J. Hitch, Memory for serial order: a network model of the phonological loop and its timing, Psychological review, vol.106, issue.3, 1999.

F. Lavigne, L. Dumercy, and N. Darmon, Determinants of Multiple Semantic Priming: A Meta-Analysis and Spike Frequency Adaptive Model of a Cortical Network, The Journal of Cognitive Neuroscience, vol.23, issue.6, pp.1447-1474, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01358846

M. A. Rohrmeier and S. Koelsch, Predictive information processing in music cognition, A critical review. International Journal of Psychophysiology, vol.83, pp.164-175, 2012.

R. J. Zatorre, J. L. Chen, and V. B. Penhune, When the brain plays music: auditory-motor interactions in music perception and production, Nature Reviews Neuroscience, vol.8, issue.7, pp.547-558, 2007.

M. Graziano, P. Polosecki, D. E. Shalom, and M. Sigman, Parsing a perceptual decision into a sequence of moments of thought. Frontiers in Integrative Neuroscience, 2011.

A. Bubic, D. Y. Von-cramon, and R. Schubotz, Prediction, cognition and the brain. Frontiers in Human Neuroscience, vol.4, 2010.

P. Kok, J. F. Jehee, and F. P. De-lange, Less is more: expectation sharpens representations in the primary visual cortex, Neuron, vol.75, issue.2, pp.265-270, 2012.

T. Meyer and C. R. Olson, Statistical learning of visual transitions in monkey inferotemporal cortex, vol.108, pp.1401-406, 2011.

N. Brunel and F. Lavigne, Semantic priming in a cortical network model, J Cog Neurosci, vol.21, issue.12, pp.2300-2319, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01358847

I. Lerner, S. Bentin, and O. Shriki, Spreading activation in an attractor network with latching dynamics: automatic semantic priming revisited, Cognitive Science, vol.36, pp.1339-1382, 2012.

C. V. Buhusi and W. H. Meck, What makes us tick? Functional and neural mechanisms of interval timing, Nature Reviews Neuroscience, vol.6, issue.10, pp.755-765, 2005.

C. M. Conway and M. H. Christiansen, Sequential learning in non-human primates, Trends in Cognitive Sciences, vol.5, issue.12, pp.1800-1803, 2001.

S. L. Eagleman and V. Dragoi, Image sequence reactivation in awake v4 networks, Proceedings of the National Academy of Sciences of the United States of America, vol.109, issue.47, pp.450-455, 2012.

A. Veliz-cuba, H. Z. Shouval, K. Josic, and Z. P. Kilpatrick, Networks that learn the precise timing of event sequences, Journal of Computtational Neuroscience, vol.39, pp.235-254, 2015.

S. Xu, W. Jiang, M. Poo, and Y. Dan, Activity recall in a visual cortical ensemble, Nature Neuroscience, vol.15, pp.449-455, 2012.

A. Abraham, S. Beudt, D. Ott, and D. R. Von-cramon, Creative cognition and the brain: Dissociations between frontal, parietal-temporal and basal ganglia groups, Brain Research, vol.1482, pp.55-70, 2012.

R. L. Buckner, J. R. Andrews-hanna, and D. L. Schacter, The brain's default network, Ann NY Acad Sci, vol.1124, pp.1-38, 2008.

K. Christoff, A. M. Gordon, J. Smallwood, R. Smith, and J. W. Schooler, Experience sampling during fMRI reveals default network and executive system contributions to mind wandering, Proceedings of the National Academy of Sciences, vol.106, issue.21, pp.8719-8724, 2009.

G. Gonen-yaacovi, L. C. De-souza, R. Levy, M. Urbanski, G. Josse et al., Rostral and caudal prefrontal contributions to creativity: a meta-analysis of functional imaging data, Frontiers in Human Neuroscience, vol.7, 2013.

J. P. Guilford, Creativity. American Psychologist, vol.5, pp.444-454, 1950.

J. P. Gavornik and M. F. Bear, Learned spatiotemporal sequence recognition and prediction in primary visual cortex, Nature Neuroscience, vol.17, issue.5, pp.732-737, 2014.

I. Jenkins, D. Brooks, P. Nixon, R. Frackowiak, and R. Passingham, Motor sequence learning: a study with positron emission tomography, The Journal of Neuroscience, vol.14, issue.6, pp.3775-3790, 1994.

K. Sakai, O. Hikosaka, S. Miyauchi, R. Takino, and Y. Sasaki, Pö tz B. Transition of brain activation from frontal to parietal areas in visuomotor sequence learning, The Journal of Neuroscience, vol.18, issue.5, p.9465007, 1998.

C. Hung, G. Kreiman, T. Poggio, and J. Dicarlo, Fast read-out of object information in inferior temporal cortex, Science, vol.310, pp.863-866, 2005.

G. Kreiman, C. P. Hung, A. Kraskov, Q. Quiroga, R. Poggio et al., Object selectivity of local field potentials and spikes in the macaque inferior temporal cortex, Neuron, vol.49, issue.3, pp.433-445, 2006.

Q. Quiroga, R. Kreiman, and G. , Measuring sparseness in the brain: comment on Bowers, vol.117, pp.291-299, 2009.

Q. Quiroga and R. , Neuronal codes for visual perception and memory, Neuropsychologia, vol.83, pp.227-241, 2016.

M. Young and S. Yamane, Sparse population coding of faces in the inferotemporal cortex, Science, vol.256, pp.1327-1331, 1992.

C. A. Erickson and R. Desimone, Responses of macaque perirhinal neurons during and after visual stimulus association learning, Journal of Neuroscience, vol.19, pp.10404-10416, 1999.

Y. Miyashita, Neuronal correlate of visual associative long-term memory in the primate temporal cortex, Nature, vol.335, pp.817-820, 1988.

G. Rainer, S. C. Rao, and E. K. Miller, Prospective coding for objects in primate prefrontal cortex, Journal of Neuroscience, vol.19, pp.5493-5505, 1999.

L. Reddy, M. Poncet, M. W. Self, J. C. Peters, L. Douw et al., Learning of anticipatory responses in single neurons of the human medial temporal lobe, Nature Communication, vol.6, p.8556, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02344914

N. M. Weinberger, Physiological memory in primary auditory cortex: characteristics and mechanisms, Neurobiology of Learning and Memory, vol.70, issue.1-2, pp.226-251, 1998.

V. Yakovlev, S. Fusi, E. Berman, and E. Zohary, Inter-trial neuronal activity in inferior temporal cortex: a putative vehicle to generate long-term visual associations, Nature Neuroscience, vol.1, issue.4, pp.310-317, 1998.

N. Brunel, Hebbian Learning of Context in Recurrent Neural Networks, Neural Computation, vol.8, issue.8, pp.1677-1710, 1996.

F. Lavigne and S. Denis, Attentional and semantic anticipations in recurrent neural networks, International Journal of Computing Anticipatory Systems, vol.14, pp.196-214, 2001.

F. Lavigne and S. Denis, Neural network modeling of learning of contextual constraints on adaptive anticipations, International Journal of Computing Anticipatory Systems, vol.12, pp.253-268, 2002.
URL : https://hal.archives-ouvertes.fr/hal-01358853

G. Mongillo, D. J. Amit, and N. Brunel, Retrospective and prospective persistent activity induced by Hebbian learning in a recurrent cortical network, European Journal of Neuroscience, vol.18, issue.7, pp.2011-2024, 2003.

C. Aguilar, P. Chossat, M. Krupa, and F. , Latching dynamics in neural networks with synaptic depression, PLoS One, vol.12, issue.8, p.183710, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01402179

C. Bick and M. I. Rabinovich, Dynamical origin of the effective storage capacity in the brain's working memory, Physical Review Letters, vol.103, p.218101, 2009.

M. Katkov, S. Romani, and M. Tsodyks, Memory retrieval from first principles, Neuron, vol.94, pp.1027-1032, 2017.

E. T. Rolls and M. J. Tovee, Sparseness of the neuronal representation of stimuli in the primate temporal visual cortex, J Neurophysiol, vol.73, issue.2, pp.713-739, 1995.

H. Tamura and K. Tanaka, Visual response properties of cells in the ventral and dorsal parts of the macaque inferotemporal cortex, Cerebral Cortex, vol.11, pp.384-399, 2001.

D. Y. Tsao, W. A. Freiwald, R. B. Tootell, and M. Livingstone, A cortical region consisting entirely of face-selective cells, Science, vol.311, issue.5761, pp.670-674, 2006.

R. Fujimichi, Y. Naya, K. W. Koyano, M. Takeda, D. Takeuchi et al., Unitized representation of paired objects in area 35 of the macaque perirhinal cortex, European Journal of Neuroscience, vol.32, issue.4, p.20718858, 2010.

Q. Quiroga and R. , Concept cells: the building blocks of declarative memory functions, Nature Reviews Neuroscience, vol.13, pp.587-597, 2012.

M. V. Tsodyks, Associative memory with binary synapses, Modern Physics Letters B, vol.11, pp.713-716, 1990.

C. Clopath, B. Vasilaki, E. Gerstner, and W. , Connectivity reflects coding: a model of voltage-based STDP with homeostasis, Nature Neuroscience, vol.13, pp.344-352, 2010.

I. Lerner and O. Shriki, Internally and externally driven network transitions as a basis for automatic and strategic processes in semantic priming: theory and experimental validation, Frontiers of Psychology, vol.5, p.314, 2014.

E. T. Rolls, M. Loh, G. Deco, and G. Winterer, Computational models of schizophrenia and dopamine modulation in the prefrontal cortex, Nature Reviews Neuroscience, vol.9, pp.696-709, 2008.

F. Lavigne and N. Darmon, Dopaminergic Neuromodulation of Semantic Priming in a Cortical Network Model, Neuropsychologia, vol.46, pp.3074-3087, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01358849

D. A. Kreher, P. J. Holcomb, D. Goff, and G. R. Kuperberg, Neural evidence for faster and further automatic spreading activation in schizophrenic thought disorder, Schizophrenia Bulletin, vol.34, issue.3, pp.473-482, 2007.

S. Moritz, T. S. Woodward, D. Kuppers, A. Lausen, and M. Schickel, Increased automatic spreading of activation in thought-disordered schizophrenic patients, Schizophrenia Research, vol.59, issue.2-3, pp.337-338, 2002.

M. Spitzer, U. Braun, S. Maier, L. Hermle, and B. A. Maher, Indirect semantic priming in schizophrenic patients, Schizophrenia Research, vol.11, issue.1, pp.71-80, 1993.

P. Ashwin and C. Postlethwaite, Designing heteroclinic and excitable networks in phase space using two populations of coupled cells, J Nonlinear Sci, vol.26, issue.2, pp.345-364, 2016.

E. Salinas and P. Thier, Gain modulation: a major computational principle of the central nervous system, Neuron, vol.27, pp.15-21, 2000.

G. Buzá-ki, Feed-forward inhibition in the hippocampal formation, Progress in Neurobiology, vol.22, pp.90023-90029, 1984.

C. J. Wilson and P. M. Groves, Spontaneous firing patterns of identified spiny neurons in the rat neostriatum, Brain Research, vol.220, p.6168334, 1981.

M. V. Tsodyks and H. Markram, The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability, Proceedings of the national academy of sciences, vol.94, pp.719-723, 1997.

M. Tsodyks, K. Pawelzik, and H. Markram, Neural networks with dynamic synapses, Neural Computation, vol.10, pp.821-835, 1998.

D. E. Huber, O. Reilly, and R. C. , Persistence and accommodation in short-term priming and other perceptual paradigms: temporal segregation through synaptic depression, Cognitive Science, vol.27, issue.3, pp.403-430, 2003.

G. Mongillo, O. Barak, and M. V. Tsodyks, Synaptic theory of working memory, Science, vol.319, issue.5869, pp.1543-1546, 2008.

J. J. Torres and H. J. Kappen, Emerging phenomena in neural networks with dynamic synapses and their computational implications, Frontiers in Computational Neuroscience, vol.7, 2013.

E. Salinas and T. J. Sejnowski, Gain modulation in the central nervous system: where behavior, neurophysiology, and computation meet, Neuroscientist, vol.7, issue.5, pp.430-440, 2001.

A. Silver, Neuronal arithmetic, Nature Reviews Neuroscience, vol.11, pp.474-489, 2010.

G. Aston-jones and J. D. Cohen, An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance, Annu Rev Neurosci, vol.28, pp.403-450, 2005.

D. Servan-schreiber, H. Printz, and J. D. Cohen, A network model of catecholamine effects: gain, signal-tonoise ratio, and behavior, Science, vol.249, issue.4971, pp.892-895, 1990.

E. R. Kandel, The molecular biology of memory storage: a dialogue between genes and synapses, Science, vol.294, issue.5544, pp.1030-1038, 2001.

C. E. Alberini, Transcription factors in long-term memory and synaptic plasticity, Physiological Reviews, vol.89, issue.1, pp.121-145, 2008.

S. Nabavi, R. Fox, C. D. Proulx, J. Y. Lin, R. Y. Tsien et al., Engineering a memory with LTD and LTP, Nature, vol.511, pp.348-352, 2014.

T. Takeuchi, A. J. Duszkiewicz, and R. G. Morris, The synaptic plasticity and memory hypothesis: encoding, storage and persistence, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.369, 1633.

S. Romani, I. Pinkoviezky, A. Rubin, and M. Tsodyks, Scaling laws of associative memory retrieval, Neural Computation, vol.25, pp.2523-2544, 2013.

. R-core-team, R A language and environment for statistical computing, R Foundation for Statistical Computing. ISBN. 2012

A. Treves, Frontal latching networks: a possible neural basis for infinite recursion, Cognitive Neuropsychology, vol.22, issue.3-4, pp.276-291, 2005.

A. Fink and M. Benedek, EEG alpha power and creative ideation, Neuroscience and Biobehavioral Reviews, vol.44, pp.11-123, 2012.

M. G. Shuler and M. F. Bear, Reward timing in the primary visual cortex, Science, vol.311, issue.5767, pp.1606-1609, 2006.

P. Miller and A. Wingfield, Distinct effects of perceptual quality on auditory word recognition, memory formation and recall in a neural model of sequential memory Frontiers in Systems Neuroscience, vol.4, p.14, 2010.

E. M. Bowden and M. Jung-beeman, One hundred forty-four Compound Remote Associate Problems: Short insight-like problems with one-word solutions, Methods, Instruments, and Computers, vol.35, pp.634-639, 2003.

D. Hassabis, D. Kumaran, S. D. Vann, and E. A. Maguire, Patients with hippocampal amnesia cannot imagine new experiences, Proceedings of the National Academy of Sciences, vol.104, issue.5, pp.1726-1731, 2007.

H. Atilgan and A. C. Kwan, Same lesson, varied choices by frontal cortex, Nature Neuroscience, vol.21, p.30420733, 2018.

J. R. Andrews-hanna, The Brain's Default Network and its Adaptive Role in Internal Mentation, Neuroscientist, vol.18, issue.3, pp.251-270, 2012.

R. E. Beaty, M. Benedek, P. J. Silvia, and D. L. Schacter, Creative cognition and brain network dynamics, Trends in cognitive sciences, vol.20, issue.2, pp.87-95, 2016.

M. Benedek, T. Kö-nen, and A. C. Neubauer, Associative abilities underlying creativity, Creativity, and the Arts, vol.6, issue.3, p.273, 2012.

M. Benedek and A. C. Neubauer, Revisiting Mednick's model on creativity-related differences in associative hierarchies. Evidence for a common path to uncommon thought, The Journal of Creative Behavior, vol.47, issue.4, pp.273-289, 2013.

J. P. Guilford, The nature of human intelligence, 1967.

T. S. Braver, D. M. Barch, and J. D. Cohen, Cognition and control in schizophrenia: a computational model of dopamine and prefrontal function, Biological Psychiatry, vol.46, issue.3, p.116, 1999.

J. D. Cohen and D. Servan-schreiber, Context, cortex, and dopamine: a connectionist approach to behavior and biology in schizophrenia, Psychological Review, vol.99, issue.1, pp.45-77, 1992.

J. K. Seamans, D. Durstewitz, B. R. Christie, C. F. Stevens, and T. J. Sejnowski, Dopamine D1/D5 receptor modulation of excitatory synaptic inputs to layer V prefrontal cortex neurons, Proceedings of the National Academy of Sciences, vol.98, pp.301-306, 2001.

T. C. Jhou and P. J. Vento, Bidirectional regulation of reward, punishment, and arousal by dopamine, the lateral habenula and the rostromedial tegmentum (RMTg), vol.26, pp.90-96, 2019.

A. Lak, W. R. Stauffer, and W. Schultz, Dopamine prediction error responses integrate subjective value from different reward dimensions, Proceedings of the National Academy of Sciences, vol.111, issue.6, pp.2343-2348, 2014.

M. Pessiglione, B. Seymour, G. Flandin, R. J. Dolan, and C. D. Frith, Dopamine-dependent prediction errors underpin reward-seeking behaviour in humans, Nature, vol.42, pp.1042-1045, 2006.

U. Kischka, T. H. Kammer, S. Maier, M. Weisbrod, M. Thimm et al., Dopaminergic modulation of semantic network activation, Neuropsychologia, vol.34, issue.11, pp.24-27, 1996.

D. Roesch-ely, S. Weiland, H. Scheffel, M. Schwaninger, H. P. Hundemer et al., Dopaminergic modulation of semantic priming in healthy volunteers, Biological Psychiatry, vol.60, pp.604-611, 2006.

J. P. Stroud, M. A. Porter, G. Hennequin, and T. P. Vogels, Motor primitives in space and time via targeted gain modulation in cortical networks, Nature neuroscience, vol.21, issue.12, pp.1774-1783, 2018.

M. T. Hasan, S. Herná-ndez-gonzá-lez, G. Dogbevia, M. Treviño, I. Bertocchi et al., Role of motor cortex NMDA receptors in learning-dependent synaptic plasticity of behaving mice