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Abstract—This paper presents a data fusion method dedicated
to high dimensional astronomical imaging. The fusion process
reconstructs a high spatio-spectral resolution datacube, taking
advantage of a multispectral observation image with high spa-
tial resolution and a hyperspectral image with high spectral
resolution. We define a regularized inverse problem accounting
for the specificities of the astronomical observation instruments,
in particular spectrally variant blurs. To handle convolution
operators as well as the high dimensionality of the data, the
problem is solved in the frequency domain and in a low-
dimensional subspace. The fusion model is evaluated on simulated
observations of the Orion Bar and shows excellent spatial and
spectral reconstructions of the observed scene.

Index Terms—Data fusion, hyperspectral imaging, high dimen-
sional imaging, astrophysics, super-resolution, spectrally varying
blur.

I. INTRODUCTION

In the past two decades, the fusion of hyperspectral (HS) and

multispectral (MS) images has become a common technique

to provide a whole data-cube describing the acquired scene

with high spatial and spectral resolutions. The fusion task

aims at combining the high spectral resolution of the HS

image with the high spatial resolution of the MS image. Such

full resolution images find applications in remote sensing [1],

planetology [2], material science [3], etc. In astrophysics,

fused hyperspectral observations allow to derive, at a high

spatial resolution, integrated maps of features (recombination

lines, ions) unavailable in the MS data. In addition, maps of

local physical conditions combining several spectral lines can

be constructed with high angular resolution.

The data fusion problem has been traditionally investigated

to combine MS and panchromatic (PAN) images for Earth

observation [4]. The first methods emerged as heuristic ap-

proaches, e.g., based on component substitution [5], [6]. These

fusion algorithms are fast and easy to implement and recover

spatial details with high accuracy but are likely to produce

important spectral distortions. The HS and MS images fusion

problem led to new paradigms based on spectral unmixing

and low-rank approximations of the data. These methods may
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also rely on observation forward models accounting for linear

spectral degradations and spectrally constant spatial blur. In

[7], [8], images are linearly decomposed into elementary spec-

tra and spatial coefficients, following a non-negative matrix

factorization (NMF) [9]. The fused product is formed by

combining source spectra matrix from the HS image and

the spatial components matrix extracted from the MS image.

More recently, the fusion problem has been reformulated as an

inverse problem complemented by spatial and/or spectral reg-

ularizations [10]–[12]. These methods also assume a low rank

spectral approximation but they fully exploit the knowledge

on the observation instruments.

In this paper, we propose a MS/HS image fusion method

dedicated to astronomical images. We formulate a regularized

inverse problem derived from the HS and MS observation for-

ward models taking into consideration a spectrally variant blur.

Indeed, the spatial resolution of spaceborne Earth observation

images is limited by atmosphere turbulence [13] whereas

the spatial resolution of spaceborne astronomical images is

wavelength-dependent and limited by diffraction [14], [15].

This limit can be estimated by the Rayleigh criterion [16]

which defines the angular resolution θ = 1.220 λ
D

, where λ

is the wavelength of the light and D the diameter of the

aperture. To deal with the complexity significantly increased

by this issue as well as the huge dimensionality of the

data, we also propose a fast implementation suitable to fuse

large astronomical datasets. The implementation relies on a

reformulation in the Fourier domain and a resolution in a

low-dimensional subspace, which significantly decreases the

computational complexity.

The paper is organized as follows. Section II formulates

the fusion inverse problem derived from the observational

forward models. Section III introduces the proposed fast

implementation. We perform the fusion task on a realistic

simulated dataset of the Orion bar and assess the performance

in Section IV. Conclusions are finally reported in Section V.

II. PROBLEM STATEMENT

The MS and HS images can be modeled through spectral

and spatial degradations of a full resolution data-cube X ∈



R
lh×pm we aim to recover. The forward models associated to

those degradation processes can be written

Ym = LmM(X) +Nm (1)

Yh = LhH(X)S+Nh (2)

where Ym ∈ R
lm×pm and Yh ∈ R

lh×ph are respectively the

MS and HS observed images, l· and p· denote the numbers

of spectral bands and pixels, respectively, with lm < lh and

ph < pm. The spectral degradation operators Lm ∈ R
lm×lh

and Lh ∈ R
lh×lh stand for the spectral response of each

instrument. The spatial degradation operators M : Rlh×pm →
R

lh×pm in (1) and H : R
lh×pm → R

lh×pm in (2) are 2-D

spatial convolutions with spectrally variant kernels and model

the blurs caused by the optical systems. This blur is linearly

dependent of the wavelength, following a Rayleigh criterion

[16]. The matrix S ∈ R
pm×ph is a downsampling operator with

an integer decimation factor d such that ph = pm

d2 . Finally Nm

and Nh stand for random noise and model mismodeling.

Recovering X from these two observations Ym and Yh can

be formulated as the generic optimization problem

X̂ = argmin
X

(
1

2σ2
m

‖Ym − LmM(X)‖2F

+
1

2σ2
h

‖Yh − LhH(X)S‖2F + ϕspec(X) + ϕspac(X)

)
(3)

where the two first terms are related to MS and HS obser-

vations, generally named as data fidelity terms. The two last

terms ϕspec(·) and ϕspac(·) are spectral and spatial regular-

ization terms discussed hereafter. First, the pixel spectra of

X are expected to live in a subspace whose dimension lsub
is much smaller than the spectral dimension lh [10], [11],

[17]. This can be formulated by rewriting X = VZ, where

the matrix Z ∈ R
lsub×pm is the projection of X onto the

subspace spanned by V ∈ R
lh×lsub , which gathers elementary

spectra. Imposing this low-rank structure implicitly ensures a

spectral regularization. The spectra composing the columns

of V are generally identified beforehand, e.g., by a principal

component analysis (PCA) of the HS image. Furthermore, we

define ϕspac(·) based on a Sobolev regularization, assuming

that the image to be reconstructed is a priori spatially smooth.

ϕspac(Z) = µ‖ZD‖2F

where D is a 1st order 2-D finite differences operator and

µ ≥ 0 is the regularization parameter adjusting the strength of

the regularization.

III. FAST IMPLEMENTATION

A. Reformulation in the Fourier domain

In high dimensional imaging, spectrally variant kernels

in M(·) and H(·) prevent an efficient direct application of

fast gradient descent [18] or conjugate gradient [19]. Indeed,

evaluating the gradient at each iteration requires computing

thousands of convolutions and on-the-fly loading of each point

spread function (PSF), leading to a considerable computational

complexity both in time and memory.

First, we fully reformulate the problem in the Fourier

domain. We denote by ⊙ the element-wise matrix multi-

plication and F the 2D discrete Fourier transform matrix

(FFH = FHF = I) such that Ż = ZF, Ẏm = YmF

and Ẏh = YhF. Under periodic boundary assumptions, the

spectrally variant convolutions M(·) and H(·) are rewritten

as point-wise multiplications, such that, for any spectral band

l

(M(VZ))l ≃
(
Ṁl ⊙ (VŻ)l

)
FH

(H(VZ))l ≃
(
Ḣl ⊙ (VŻ)l

)
FH

where Ṁl and Ḣl stand for the 2-D discrete Fourier transforms

(DFT) of the PSFs related to the multi- and the hyperspectral

observation instruments, respectively. Then, the subsampling

operator S is written in the Fourier domain as an aliasing

operator Ṡ = SF, which sums d2 equally weighted blocks

of an input matrix. This operator acts independently on every

pm pixels spectral band to produce a ph = pm

d
pixels output.

The spatial regularization term can also be expressed in the

Fourier domain, as the operator D can be seen as a 2D

convolution operator with kernels
(
1 −1

)
and

(
1
−1

)
. Under

cyclic boundary conditions, we express the regularization term

as a point-wise multiplication such that

ZD =
(
Ż⊙ Ḋ

)
FH .

Following Parseval’s identity, the problem (3) is rewritten

̂̇
Z = argmin

Ż

(
1

2σ2
m

‖Ẏm − Lm((VŻ)⊙ Ṁ)‖2F

+
1

2σ2
h

‖Ẏh − Lh((VŻ)⊙ Ḣ)Ṡ‖2F + µ‖Ż⊙ Ḋ‖2F

)
. (4)

Finally, the fused product is then obtained by X̂ = V
̂̇
ZFH .

B. Vectorization

Subsequently, we propose to solve the problem in the low-

dimensional subspace spanned by the columns of V after

vectorizing all quantities with the dedicated notations

ẏm =
[
Ẏ1

m . . . Ẏlm
m

]T
ẏh =

[
Ẏ1

h . . . Ẏ
lh
h

]T

V = V ⊗ Ipm×pm
ż =

[
Ż1 . . . Żlsub

]T

where ⊗ stands for the Kronecker product and Ip×q the p× q

identity matrix. Hereafter, we denote by Lm, Lh, Ṁ, Ḣ, Ṡ

and Ḋ the vectorized forms of Lm, Lh, Ṁ, Ḣ, Ṡ and Ḋ,

respectively, such that

LmṀVż =




[
Lm((VŻ)⊙ Ṁ)

]1

...[
Lm((VŻ)⊙ Ṁ)

]lm






and

ṠLhḢVż =




[
Lh((VŻ)⊙ Ḣ)Ṡ

]1

...[
Lh((VŻ)⊙ Ḣ)Ṡ

]lh



.

Using these notations, setting the gradient in (4) to zero

amounts to solving the following linear system

Aż = b (5)

where A ∈ R
lsubpm×lsubpm and b ∈ R

lsubpm are defined by

A =
1

σ2
m

VHṀ
H
LH
mLmṀV

+
1

σ2
h

VHḢ
H
LH
h Ṡ

H
ṠLhḢV + µḊ

H
Ḋ, (6)

b = −
1

σ2
m

VHṀ
H
LH
m ẏm −

1

σ2
h

VHḢ
H
LH
h Ṡ

H
ẏh. (7)

These quantities A and b combine all spatial and spectral

operators to be expressed in the low-dimensional subspace. As

explicitly written in (6), the backward and forward projection

operators V and VH gathered in A enable the wavelength-

dependent PSFs in Ṁ and Ḣ to be combined. Furthermore,

this matrix A is symmetric and sparse, composed of d2l2subpm
non-zero over l2subp

2
m entries. Consequently, the matrix A can

be computed only once as a pre-processing step and stored in

memory at low cost. An efficient computating scheme of this

sparse matrix is detailed in [20]. Afterwards, the problem (5)

can be solved with a gradient-based algorithm [18], [19] by

calling this matrix A along iterations, significantly decreasing

the computational complexity in terms of time and memory.

IV. EXPERIMENTS

A. Synthetic data

In this section, we study the performance of the proposed

fast fusion method on a realistic simulated dataset of the Orion

Bar. This dataset has been generated to assess data fusion

performed on high dimensional astronomical observations

[21]. It is composed of a simulated reference image of high

spatial and high spectral resolution and corresponding HS

and MS images that would be observed by two dedicated

sensors. The simulated scene represents a photodissociation

region (PDR) located in the Orion Bar and is built under a

low-rank assumption. More precisely, this simulated PDR is

a linear combination of 4 elementary spectra and 4 spatial

maps derived from real observations. This reference image

is composed of 300 × 300 pixels and 4974 spectral bands

in the near-infrared range, from 1 to 2.35 microns. A RGB

composition of 3 spectral lines of this image is shown in

Fig. 2 a).

From this reference scene, MS and HS observed images

have been derived following forward models (1) and (2) to

mimic observations of the near-infrared camera (NIRCam)

imager and the near-infrared spectrograph integral field unit

(NIRSpec IFU) embedded in the James Webb Space Telescope

Offset (arsec) Offset (arsec)

Fig. 1. PSFs of the NIRCam Imager calculated with webbpsf [26] for two
particular wavelengths (logarithmic scale).

(JWST) [22]. The MS image is composed of 300 × 300 pixels

and 11 spectral bands while the HS image is made of 100 ×
100 pixels and 4974 spectral bands. The degradation operators

that model the response of the two instruments are provided

by the JWST documentation [23]–[25]. Figure 1 emphasizes

the spectral dependency of the PSFs of the NIRCam Imager.

To mimic a mixed Poisson-Gaussian noise, the noise-free

measurements are first corrupted by a multiplicative Gaussian

noise of mean and variance the photon count in the pixel.

Then we consider an additive spatially correlated Gaussian

noise whose mean and covariance depend on the instruments,

as specified in the JWST documentation. To evaluate the

performance of our method on low SNR observations, we

consider that the signal is 10 times less intense than the

expected signal that would be observed in the Orion bar region

presented in [21]. MS and HS observed images are shown in

Fig. 2 b) and c) as RGB compositions of 3 spectral bands.

B. Compared methods

First, we compare our fusion algorithm with a naive super-

resolution technique, hereafter referred to as the baseline

method. As for the proposed method, it relies on a low-

rank assumption on the spectral content and consists in up-

sampling the projection of the HS image onto the spectral

signal subspace with a bi-cubic spline interpolation. Secondly,

we consider the Brovey method which has been intensively

used for fusing MS and PAN images in the context of

Earth observation. It consists in extracting spatial details from

the MS image that are subsequently injected into an up-

sampled interpolated version of the projection of the HS image

onto the spectral subspace [27]. Finally, we evaluate the two

non-symmetric counterparts of our method derived from the

original inverse problem (3). The first one, called MS-only,

considers a unique data fitting term associated with the MS

image in (3). Thus, this problem is equivalent to the spectral

reconstruction of the MS image, similarly to [28]. The second

one, HS-only, can be seen as a hyperspectral super-resolution

method as only the data fitting term related to the HS image

is kept. Note that all aforementioned methods, as well as the

proposed one, require a spectral subspace identification. In this

work, this step has been performed by a PCA on the HS image.



a) b) c)

d) e)

f) g) h)

Fig. 2. RGB compositions of a) the reference image, b) the multispectral
observed image, c) the hyperspectral observed image and fused products of
d) the baseline, e) the Brovey, f) the MS-only, g) the HS-only and h) the
proposed methods.
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Fig. 3. Hyperspectral, reference and reconstructed (with the proposed method)
spectra from a) a sharp edge and b) a smooth region corresponding to a pixel
displayed in blue and red respectively in Fig. 2.

C. Results

Figure 2 d) to h) shows RGB compositions of the fused

products along with the reference image (a) to reconstruct.

The proposed method clearly provides the best visual results.

In particular, the reconstruction of thin spatial details around

edges (blue pixels) appears to be much better than the baseline,

Brovey and HS-only results. The MS-only method seems able

to reconstruct these details but produces a noisier fused image.

Spectra of the hyperspectral image, reference image and

reconstructed image with the proposed method are presented

in Fig. 3 for two particular areas. On the top (resp. bottom),

the spectra are associated to a pixel in a sharp (resp. smooth)

region, displayed in blue (resp. red) in Fig 2. For the two

regions, our method is able to recover most of the lines, even

of low-intensity. More generally, the spectral reconstruction

TABLE I
PERFORMANCE OF FUSION METHODS: ASAM (RAD), ASSIM, PSNR

(DB), AND TIME (PRE-PROCESSING + FUSION, SECONDS).

Methods aSAM aSSIM PSNR Time

Baseline 0.052 0.9502 66.90 /

Brovey 0.052 0.9930 69.48 19

HS-only 0.029 0.9741 70.69 1300 + 20

MS-only 0.068 0.9908 70.38 600 + 15

Proposed 0.037 0.9948 72.64 1900 + 20

is excellent but Fig. 3 a) underlines the limitations of the

spatial regularization which smooths intensities around sharp

edges and leads to spectral aberrations. According to these two

illustrations, the spatial and spectral denoising performed by

the fusion seems to be efficient.

To evaluate the quality of the reconstruction beyond a

crude visual inspection, we propose to study three quantitative

measures. We assess the quality of the spectral reconstruction

by computing the spectral angle mapper (SAM) [29]. This

value measures the spectral distortion between the reference

and reconstructed spectra. Here, we denote aSAM the average

SAM values over the pixels. Then, we consider the structural

similarity (SSIM) index [30], evaluating the degradation of

spatial structures on each spectral band. We rather calculate

its average value denoted aSSIM across all bands. Finally,

the peak signal-to-noise ratio (PSNR) is used to evaluate the

overall reconstruction quality in the least-square sense. A low

value of aSAM as well as a close to 1 aSSIM value and a

large PSNR indicate a good reconstruction. The quantitative

results are reported in Table I where, for each metric, the

two best results appear in bold. Compared to all the other

methods, the proposed fusion algorithm appears to be the best

trade-off providing the best spatial and global reconstruction

and the second best spectral reconstruction. While HS-only

shows good spectral reconstruction but poor spatial results and

the opposite for MS-only, the Brovey method only slightly

improves the baseline reconstruction.

V. CONCLUSION

In this paper, we proposed a hyperspectral and multispectral

image fusion method suitable to combine high dimensional as-

tronomical images. We formulated observation forward models

based on accurate instrumental properties and taking into

account some specificities, in particular spectrally variant

blurs. To solve this problem in a computationally efficient

scheme, we introduced a fast implementation of the fusion

task, capitalizing on the frequency properties of convolutions

and on a low-rank assumption on the spectral content. Finally,

we applied our fusion method to a simulated yet realistic

scene of the Orion Bar and showed that it outperforms state-

of-the-art methods, recovering spatial and spectral features.

Future work includes the design of a tailored regularization

and exhaustive tests on real data.
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