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Abstract
Satellite image time series, bolstered by their growing avail-
ability, are at the forefront of an extensive effort towards au-
tomated Earth monitoring by international institutions. In
particular, large-scale control of agricultural parcels is an
issue of major political and economic importance. In this
regard, hybrid convolutional-recurrent neural architectures
have shown promising results for the automated classifica-
tion of satellite image time series.We propose an alterna-
tive approach in which the convolutional layers are advan-
tageously replaced with encoders operating on unordered
sets of pixels to exploit the typically coarse resolution of
publicly available satellite images. We also propose to ex-
tract temporal features using a bespoke neural architecture
based on self-attention instead of recurrent networks. We
demonstrate experimentally that our method not only out-
performs previous state-of-the-art approaches in terms of
precision, but also significantly decreases processing time
and memory requirements. Lastly, we release a large open-
access annotated dataset as a benchmark for future work on
satellite image time series.

1 Introduction
The rising availability of high quality satellite data by both
state [43, 10] and private actors [37] opens up numer-
ous high-impact applications for machine learning meth-
ods. Among these, crop type classification is a major chal-
lenge for agricultural and environmental policy makers. In
the European Union (EU), yearly crop maps are needed to
grant the Common Agricultural Policy subsidies, an endow-
ment of over 50 billion euros each year [1]. Currently, Eu-
ropean farmers declare the cultivated species manually on
a yearly basis. The EU’s Joint Research Center has thus
called for the development of efficient tools to achieve au-
tomated monitoring [2]. This push to automation is mo-
tivated in part by the launch of the Sentinel-2 satellite—

which became fully operational in mid-2017—by the Eu-
ropean Space Agency [10], and whose settings are particu-
larly valuable for crop classification. Indeed, its high spec-
tral resolution (13 bands) and short revisit time of 5 days
are well-suited to analysing crop phenology, i.e. the cycli-
cal evolution of vegetation [40]. Additionally, the farmers’
yearly manual declarations provide a considerable amount
of annotated data (10 million parcels labelled each year in
France alone) to train learning algorithms. Such models
would have a wide array of applications beyond crop moni-
toring, for both public and private entities.

Practitioners mainly rely on traditional methods such as
Random Forest (RF) and Support Vector Machine (SVM),
which operate on handcrafted features for automated crop
classification [15, 47]. Recently, the gradual adoption of
deep learning methods such as Convolutional Neural Net-
works (CNN) and Recurrent Neural Networks (RNN) for
learning spatial and temporal attributes has brought signif-
icant improvements in classification performance. More
specifically, hybrid neural architectures combining convo-
lutions and recurrent units in a single architecture are the
current state-of-the-art for crop type classification [31, 34].

In this paper, we argue that such hybrid recurrent-
convolutional architectures fail to adapt to some key char-
acteristics of the problem under consideration.

Spatial Encoding of Parcels: Sensors typically used for
crop classification, such as the Sentinel-2 satellites, have
a coarser spatial resolution (10m per pixel) than the typi-
cal agricultural textural information such as furrows or tree
rows. However, CNNs rely heavily on texture to extract spa-
tial features [12]. Given this limitation, we propose to view
medium-resolution images of agricultural parcels as un-
ordered sets of pixels. Indeed, recent advances in 3D point
cloud processing have spurred the development of powerful
encoders for data comprised of sets of unordered elements
[29, 45]. We show in this paper that set-based encoders can
successfully extract learned statistics of the distribution of
spectra across the spatial extent of the parcels. Furthermore,
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Figure 1: Example of Sentinel-2 time series (shown: RGB bands, 10m per pixel) for two parcels of the Winter cereal and
Spring cereal classes. The dots on the horizontal axis represent the unevenly distributed acquisition dates over the period of
interest. Note the importance of the temporal evolution of the parcels to discriminate between the classes.

we show that this approach handles the highly-variable size
of parcels in a more efficient way than CNNs.

Temporal Encoding of Satellite Time Series: Earlier
work in crop classification has shown the importance of
the temporal dimension when classifying crop types [34].
While RNNs have been widely used to analyse temporal
sequences, recent work in Natural Language Processing
(NLP) has introduced a promising new approach based
on attention mechanisms [39]. The improved parallelism
brought by this approach is particularly valuable for
automated crop monitoring, as its typical scale spans entire
continents: one year of Sentinel-2 observations amounts to
25Tb of data for agricultural areas in the EU. Therefore,
we propose an adapted attention-based approach for the
classification of time series.

The key contributions of this paper are as follows:

• Inspired by Qi et al. [29], we introduce the pixel-set
encoder as an efficient alternative to convolutional neu-
ral networks for medium-resolution satellite images.

• We adapted the work of Vaswani et al. [39] to an end-
to-end, sequence-to-embedding setting for time series.

• We establish a new state-of-the-art for the task of large-
scale agricultural parcel classification. Moreover, our
method not only improves the classification precision
by a significant margin, but simultaneously boasts a
acceleration of over 4 times and a memory imprint re-
duced by over 70% compared to the best-performing
approaches in the literature.

• We release the first open-access dataset of Sentinel-2
images for crop classification with ground truth labels.

2 Related Work
The problem of satellite image time series classification
can be addressed at pixel level or object level. Pixel-based
approaches do not require a priori knowledge of the bor-
ders of parcels, but cannot leverage the spatial homogeneity
of class labels within the object’s extent. Conversely, in
the case of crop classification, object-based approaches can
leverage the parcels’ shape to extract helpful spatial infor-
mation for achieving better classifications [9].

Traditional Machine Learning: Until recently, the com-
mon approach for crop classification has been to use tra-
ditional discriminative models with handcrafted features
[41, 15, 42]. For instance, the Normalized Difference Veg-
etation Index (NDVI) combining the red and near-infrared
spectral bands has been widely used as it relates to crop pho-
tosynthetic activity [38]. Certain work also includes pheno-
logical features derived from the study of the NDVI as well
as external meteorological information [48]. Although ro-
bust and easily interpretable, such handcrafted indices do
not compare favorably to end-to-end learned features.

In such work, the prevalent approach to represent tempo-
ral evolution is to concatenate each date’s spatial and spec-
tral features. This is not well-suited to application over large
geographical areas, in which the acquisition dates vary de-
pending on the satellite orbit, and in which cloud cover and
meteorological condition can be heterogeneous, resulting in
sequences of variable length and temporal sampling. Con-
sequently, other work oriented their efforts towards a better
modeling of time using Hidden Markov Models [36], Con-
ditional Random Fields [3], or Dynamic Time Warping [4].

Convolutional and Recurrent Approaches: More re-
cently, the successful advances in the deep learning liter-
ature have provided efficient tools for both spatial and tem-
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poral feature extraction. Although some work only uses
these tools as feature extractors [26], or combine them with
feature engineering [46], most current work follows the
deep learning paradigm of end-to-end trainable architec-
tures. More specifically, Kussul et al. [20] proposed to use
a Multi Layer Perceptron (MLP) on raw observation data
instead of traditional RF of SVM. Further work sets out to
leverage the spatial and temporal structures of time series of
satellite images. CNNs [21] appeared to be a natural choice
to address the spatial dimensions of the data [19, 32]. Sim-
ilarly, Long-Short Term Memory (LSTM) networks [13]
were successfully applied to model the temporal dimension
of the data [30, 25], outperforming RF and SVM [14].

Furthermore, Rußwurm et al. [31] first proposed to use
hybrid recurrent convolutional approach by applying the
ConvLSTM architecture [44] to parcel classification. This
work yielded state-of-the-art results and also showed that
ConvLSTMs are able to learn to detect and ignore cloud
obstruction. A similar approach was successfully used for
automated change detection from Sentinel-2 data as well
[27]. Finally, Garnot et al. showed in [34] that higher classi-
fication performance can be obtained by implementing such
a hybrid model but with two dedicated modules for spatial
and temporal feature extraction respectively: the series of
images is first embedded by a shared CNN and the result-
ing embeddings sequence is fed to a Gate Recurrent Unit
(GRU) [8]. The use of a GRU is motivated by the smaller
number of parameters required to achieve similar perfor-
mance as LSTM, as corroborated in [32]. Additionally, Gar-
not et al. show that the relatively low spatial resolution of
multi-temporal satellite images may question the relevance
of CNNs since handcrafted descriptors of spectral distribu-
tion performed nearly as well as trainable spatial encoders
when used in combination to the recurrent units. This is one
of the issues we propose to address in the present study.

Attention-Based Approach: Following the adoption of
self-attention in the NLP literature as an efficient alterna-
tive to RNNs, Rußwurm et al. proposed in [33] to apply
the Transformer architecture [39]—a self-attention based
network—to pixel-based classification. Their extensive ex-
periments show that the Transformer yields classification
performance that is on par with RNN-based models and
present the same robustness to cloud-obstructed observa-
tions. Likewise, we propose to extend self-attention mech-
anisms to end-to-end sequence-to-embedding learning on
images for object-level classification.

Purely Convolutional Approach: Multiple papers pro-
pose to address the temporal dimension with convolutions.
Ji et al. present in [17] a spatio-temporal 3D-CNN for
parcel-based classification, and spectro-temporal convolu-
tions are found to outperform LSTMs for pixel-based seg-
mentation on temporal profiles in [28], and outperform an

MLP in [19]. Similar results are found in [49], where tem-
poral convolutions yield better results than an LSTM net-
work for classification based on NDVI temporal profiles.
In addition, temporal convolutions have significantly lower
processing times than RNNs. Yet, the ability to account for
long-term dependencies requires deeper architectures. Fur-
thermore, the fixed architecture of temporal CNN prevents
the same network from being used on sequences of different
lengths or with different acquisition dates.

Lastly, 2D and 3D convolutions have been extensively
used in video analysis for object segmentation [5, 35] or
action recognition [6, 11]. However, specificities of satellite
time series such as their different time-scale and resolution
prevents the direct application of such networks.

3 Methods
In this section, we present the different components of our
proposed architecture for encoding time series of medium-
resolution multi-spectral images. We denote the observa-
tions of a given parcel by a spatio-spectro-temporal tensor
[x(0), · · · , x(T )]Tt=1 of size T × C × H × W , with T the
number of temporal observations, C the number of spectral
channels, and H and W the dimension in pixels of a tight
bounding box containing the spatial extent of the parcel. All
values are set to 0 outside the parcel’s borders, as shown in
Figure 1.

3.1 Spatial Encoder
In recent years, CNNs have become the established ap-
proach to extract spatial features from images. However,
our analysis suggests that convolutions may not be well-
suited for the analysis of medium-resolution satellite im-
ages of agricultural parcels. Indeed, as mentioned above,
the typical spatial resolution of satellites with high revisit
frequency struggles to capture textural information. Sec-
ond, efficiently training CNNs requires organizing the data
into batches of images of identical dimensions. The irregu-
lar size of the parcels makes this process very memory in-
tensive. Indeed, to limit textural information loss for large
parcels, this amounts to oversampling most smaller parcels
several times over.

To circumvent both these issues, we propose an alter-
native architecture called Pixel-Set Encoder (PSE) and in-
spired by the point-set encoder PointNet [29] and the Deep-
Set architecture [45] commonly used for 3D point cloud
processing. The motivation behind this design is that, in-
stead of textural information, the network computes learned
statistical descriptors of the spectral distribution of the par-
cel’s observations.

The network proceeds as follows to embed an input ob-
servation x(t):

3



Figure 2: Schematic view of our spatio-temporal encoder. Variables in bold are tensors concatenated along the temporal
dimension, e.g. e = [e(0), · · · , e(T )].

i) A set S ⊂ [1, · · · , N ] of S pixels is randomly drawn
from the N pixels within the parcel, as described in
Equation 1. When the total number of pixels in the
image is smaller than S, an arbitrary pixel is repeated
to match this fixed size. The same set S is used for
sampling all T acquisitions of a given parcel.

ii) Each sampled pixel s is processed by a shared multi-
layer perceptron MLP1, as seen in Equation 2, com-
posed of a succession of fully-connected layers, batch-
norms [16], and Rectified Linear Units [24].

iii) The resulting set of values is pooled along the pixel
axis—of dimension S—to obtain a vector capturing
the statistics of the whole parcel and which is invari-
ant by permutation of the pixels’ indices. We concate-
nate to this learned feature a vector of pre-computed
geometric features f : perimeter, pixel count N , cover
ratio (N divided by the number of pixels in the bound-
ing box) and the ratio between perimeter and surface
of the parcel.

iv) This vector is processed by another perceptron MLP2,
as shown in Equation 3, to yield e(t) the parcel’s
spatio-spectral embedding at time t.

The PSE architecture is represented in Figure 2, and can be
summarized by the following equations:

S = sample (S,N) (1)

ê(t)s = MLP1

(
x(t)s

)
, ∀s ∈ S (2)

e(t) = MLP2

([
pooling

(
{ê(t)s }s∈S

)
, f
])

. (3)

Among possible pooling operations, we had the best results
for the concatenation of the mean and the standard deviation

across the sampled pixel dimension S. For parcels smaller
than S, repeated pixels should be removed before pooling
to obtain unbiased estimates.

Although only a limited amount of information per par-
cel is used by this encoder, the sampling being different
at each training step ensures the learning of robust embed-
dings exploiting all the available information.

3.2 Temporal Attention Encoder

RNNs have proven efficient for encoding sequential infor-
mation [23]. However, since RNNs process the elements
of the sequence successively, they prevent parallelization
and incur long training times. In [39], Vaswani et al. intro-
duce the Transformer architecture, an attention-based net-
work achieving equal or better performance than RNNs on
text translation tasks, while being completely parallelizable
and thus faster. We propose to adapt their ideas to the the
encoding of satellite image time series.

Transformer Network: In the original Transformer
model a query-key-value triplet

(
q(t), k(t), v(t)

)
is com-

puted simultaneously for each element of the input se-
quence by three fully-connected layers. For a given ele-
ment of a sequence, the key k(t) conveys information about
the nature of its content, while the value v(t) encodes the
content itself. The output of a given element is defined as
the sum of the values of previous elements weighted by an
attention mask. This mask is defined as the compatibility
(dot product) of the keys of the previous elements with the
query q(t), re-scaled through a modified softmax layer. In
other words, each element indicates which kind of informa-
tion it needs through its query, and what sort of information
it contains through its key.
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Since the computation of the triplets
(
q(t), k(t), v(t)

)
and

their multiplications can be performed in parallel, the Trans-
former takes full advantage of modern GPU architecture
and boasts a significant speed increase compared to recur-
rent architectures. This procedure can be computed several
times in parallel with different set of independent parame-
ters, or heads. This approach, called multi-head attention,
allows for the specialization of different set of query-key
compatibility.

Positional Encoding: In their paper on text translation,
Vaswani et al. add order information to elements of the in-
put sequence by adding a positional encoding tensor to each
element. Equation 4 describes this positional encoding of
the observation t, with de the dimension of the input, and i
the coordinates of the positional encoding. Since our con-
sidered sequences are typically shorter than the ones con-
sidered in NLP, we chose τ = 1000—instead of 10 000.
Additionally, day(t) is the number of days since the first ob-
servation for observation t instead of its index. This helps to
account for inconsistent temporal sampling (see Figure 1).

[p(t)]de
i=1 = sin

(
day(t)\τ

2i
de +

π

2
mod(i, 2)

)
(4)

End-to-End Encoding: The original Transformer net-
work takes pretrained word embeddings as inputs. In our
setting however, the parameters of the network producing
the inputs are learnt simultaneously to the attention param-
eters. Therefore, we propose that each head only computes
key-query pairs from the spatial embeddings (5) since these
embeddings can directly serve as values: v(t) = e(t) + p(t).
This removes needless computations, and avoids a potential
information bottleneck when computing the values.

Sequence-to-Embedding Attention: While the original
Transformer produces an output for each element of a se-
quence, our goal is to encode an entire time series into a
single embedding. Consequently, we only retain the en-
coder part of the Transformer and define a single master
query q̂h for each head h. Such a query, in combination
with the keys of the elements of the sequence, determines
which dates contain the most useful information. A first ap-
proach would be to select the query of a given date, such as
the last one. However, the selected element of the sequence
may not contain enough information to produce a mean-
ingful query. Instead, we propose to construct the master
query as a temporal average of the queries of all dates and
processed by a single fully-connected layer (6). As shown
in Equation 7, this query is then multiplied with the keys of
all elements of the sequence to determine a single attention
mask a(h) ∈ [0, 1]T , in turn weighting the input sequence
of embeddings (8).

Multi-Head Self-Attention: We concatenate the output
oh of each head h for the H different heads and process
the resulting tensor with MLP3, to obtain the final output
ô of the Temporal Attention Encoder (TAE), as shown in
Equation 9. Note that unlike the Transformer network, we
directly use ô as the spatio-temporal embedding instead of
using residual connections.

Temporal Attention Encoder For each head h, we de-
note by FC(h)

1 the fully-connected layer generating the key-
query pairs, FC(h)

2 the fully-connected layer yielding the
master query, and dk the shared dimensions of keys and
queries. Our attention mechanism can be summarized by
the following equations for all t ∈ [1, . . . , T ] and h ∈
[1, · · · , H]:

k
(t)
h , q

(t)
h = FC(h)

1

(
e(t) + p(t)

)
(5)

q̂h = FC(h)
2

(
mean

(
{q(t)h }

T
t=1

))
(6)

ah = softmax
(

1√
dk

[
q̂h · k(t)h

]T
t=1

)
(7)

oh =

T∑
t=1

ah[t]
(
e(t) + p(t)

)
(8)

ô = MLP3 ([o1, · · · , oH ]) . (9)

3.3 Spatio-Temporal Classifier
Our spatio-temporal classifier architecture combines the
two components presented in the previous sections: all in-
put images of the time series are embedded in parallel by
a shared PSE, and the resulting sequence of embeddings
is processed by the temporal encoder, as illustrated in Fig-
ure 2. Finally, the resulting embedding is processed by an
MLP decoder MLP4 to produce class logits y:

y = MLP4 (ô) . (10)

3.4 Implementation details
All the architectures presented here are implemented in
PyTorch, and released on GitHub upon publication.1 We
trained all models on a machine with a single GPU (Nvidia
1080Ti) and an 8-core Intel i7 CPU for data loading from
an SSD hard drive. We chose the hyperparameters of each
architecture presented in the numerical experiments such
that they all have approximately 150k trainable parameters.
The exact configuration of our network is displayed in Ta-
ble 1. We use the Adam optimizer [18] with its default
values (lr = 10−3, β = (0.9, 0.999)) and a batch size
of 128 parcels. We train the models with focal loss [22]
(γ = 1) and implement a 5-fold cross-validation scheme:

1github.com/VSainteuf/psetae
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Modules Hyperparameters Number of
parameters

PSE 19 936

S 64
MLP1 10→ 32→ 64
MLP2 68→ 128

TAE 116 480

de, dk, H 128, 32, 4
FC1 128→ (32× 2)
FC2 32→ 32
MLP3 512→ 128→ 128

Decoder 11 180

MLP4 128→ 64→ 32→ 20

Total 147 604

Table 1: Configuration of our model chosen for the numer-
ical experiments. The dimension of each successive feature
space is given for MLPs and fully connected layers. We
show the corresponding number of trainable parameters on
the last column.

for each fold the dataset is split into train, validation, and
test set with a 3:1:1 ratio. The networks are trained for
100 epochs, which is sufficient for all models to achieve
convergence. We use the validation step to select the best-
performing epoch, and evaluate it on the test set. For aug-
mentation purpose, we add a random Gaussian noise to x(t)

with standard deviation 10−2 and clipped to 5.10−2 on the
values of the pixels, normalized channel-wise and for each
date individually.

4 Numerical Experiments

4.1 Dataset
We evaluate our models using Sentinel-2 multi-spectral im-
age sequences in top-of-canopy reflectance. We leave out
the atmospheric bands (bands 1, 9, and 10), keepingC = 10
spectral bands. The six 20m-resolution bands are resampled
to the maximum spatial resolution of 10m.

The area of interest (AOI) corresponds to a single tile
of the Sentinel-2 tiling grid (T31TFM) in southern France.
This tile provides a challenging use case with a high di-
versity of crop type and different terrain conditions. The
AOI spans a surface of 12 100 km2 and contains 191 703
individual parcels, all observed on 24 dates from January
to October 2017. The values of cloudy pixels are linearly
interpolated from the first previous and next available pixel
using Orfeo Toolbox [7].

We retrieve the geo-referenced polygon and class label
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Figure 3: Class repartition in the AOI.

of each parcel from the French Land Parcel Identification
System records.2 We crop the satellite images using this
polygon to constitute the image time series.

Data Preparation: In order to evaluate both ours and
convolution-based methods, we organize the parcels into
two different formats: patches and pixel sets.

In the patch format, we resize each parcel into a tensor
of size T ×C×32×32 by interpolating each spectral chan-
nel and temporal acquisition independently into patches of
fixed size 32 × 32. We use nearest neighbor interpolation,
and both the horizontal and vertical axes are rescaled so
that the overall shape of the parcel may be altered. We use
zero-padding outside the extent of the parcel (see Figure 1).
This same size of 32 pixels was used in [34], while a larger
48 × 48 patch size was used in [31], albeit for a pixel-wise
classification task.

For the pixel-set format, the pixels of each parcels are
stored in arbitrary order into a tensor of size T × C × N ,
with N the total number of pixels in a given parcel. Note
that this format neither lose nor create information, regard-
less of parcel size. Hence, this setup saves up to 70% disk
space compared to the patch format (28.6Gb vs. 98.1Gb).
Note that the geometric features f must be computed and
saved before preparing the dataset, as all spatial structure is
henceforth lost.

The classification labels are defined with respect to a 20
class nomenclature designed by the subsidy allocation au-
thority of France. We show the class break-down on the
AOI in Figure 3. The dataset is highly imbalanced as is
often the case in such real word applications and this moti-
vated the use of the focal loss to train our models.

Both datasets will be released upon publication.3 To the
best of our knowledge, no benchmark dataset currently ex-
ists for object-based agricultural parcel classification. Our

2http://professionnels.ign.fr/rpg
3github.com/VSainteuf/psetae
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datasets are a first step towards more reproducible and com-
parable methodological work in this field.

4.2 Comparison with State-of-the-Art
Competing Methods: We compare our approach to re-
cent algorithms operating on similar dataset, which we have
re-implemented. The different hyperparameters chosen for
each model are shown in the appendix. All share the same
decoding layer configuration MLP4.

CNN+GRU In [34], Garnot et al. propose a similar
approach to ours, but with CNNs instead of PSE, and
GRUs instead of our proposed temporal encoder. The
last hidden state of the recurrent unit is used as input
to MLP4 for classification.

CNN+TempCNN In [28], Pelletier et al. propose to
use one-dimensional temporal convolution to address
the sequential nature of the observations. While their
approach is applied on a per-pixel classification task
and therefore not comparable, we have implemented
a variation of CNN+GRU in which the GRUs are re-
placed with one-dimensional convolutions as the clos-
est translation of their ideas.

Transformer In [33], Rußwurm et al. perform object-
based classification with the encoder part of the Trans-
former network. They do not use a spatial encoder
and compute average values of the different spectral
bands over each parcel. Furthermore they produce a
single embedding for the whole sequence with a global
maximum pooling through the temporal dimension of
the output sequence. We re-implemented the same
pipeline and simply modified the hyperparameters to
match the 150k parameters constraint.

ConvLSTM In [31], Rußwurm et al. process the time
series of patch images with a ConvLSTM network [44]
for pixel-based classification. We adapt the architec-
ture to the parcel-based setting by using the spatially-
averaged last hidden state of the ConvLSTM cell to be
processed by MLP4.

Random Forest Lastly, we use a Random Forest clas-
sifier with 100 trees as a non-deep learning baseline.
The classifier operates on handcrafted features com-
prised of the mean and standard deviation of each band
within the parcel, and concatenated along the temporal
axis, as described by [3].

We present the results of our experiments in Table 2. Our
proposed architecture outperforms the other deep learning
models in Overall Accuracy (OA) by 0.4 points, and mean
per-class Intersect over Union (mIoU) by 3 to 9 points. It
also provides a four-fold speed up over convolution-based

methods, and a decrease in disk usage of over 70% for train-
ing, and close to 90% when considering the inference task
alone (i.e. when only S pixels per parcels are kept). This
speed-up is due both to improved loading time as the pixel
set dataset is smaller, but also inference and backpropaga-
tion time, as detailed in Table 2 of the appendix. While the
temporal convolutions of TempCNN are faster to train, they
yield worse performance and suffer from the limitations dis-
cussed in section 2. The Transformer method, which pro-
cesses pre-computed parcel means, is also faster to train,
but only achieves a 46.3 mIoU score.

Beyond its poor precision, the RF classifier has a sig-
nificant speed and memory advantage. This can explain its
persisting popularity among practitioners. However, our ap-
proach bridges in part this performance gap and provides
much higher classification rates, making it a compelling
strategy for large-scale object-based crop type mapping.

4.3 Ablation Studies
In order to independently assess the contribution of the spa-
tial and temporal components of our proposed architecture,
we present in Table 3 the results obtained when alternatively
replacing the PSE by a CNN (CNN+TAE) or the TAE by a
GRU (PSE+GRU).

Contribution of the PSE: As seen in Table 3, the PSE
accounts for an increase of 1.7 points of mIoU compared to
the CNN-based model (CNN+TAE). This supports both the
hypothesis that CNNs are only partly relevant on medium-
resolution images, and that considering the image as an un-
ordered set of pixels is a valid alternative. Not only does
this approach yield better classification performance, but
it also circumvents the problem of image batching, which
leads to faster data loading (see Table 2 in the appendix).
Additionally, we train a TAE on pre-computed means and
standard deviations of the spectral channels over the parcels
(MS+TAE), which achieves a 48.9 mIoU score. We can
thus conclude that the PSE learns statistical descriptors of
the acquisitions’ spectra which are more meaningful than
simple means and variances or convolutional features.

Design of the PSE: We show in Table 3, the performance
of our architecture without geometric features f . The result-
ing 0.9 point decrease in mIoU confirms that geometric in-
formation plays a role in the classification process. We note
that, even without such features, our proposed approach
outperforms the convolution-based model (CNN+TAE ).

We have tried replacing the handcrafted geometric fea-
tures f with a CNN operating on the binary mask of the
parcel. However, the gains were minimal, and we removed
this extra step for simplicity’s sake.

Lastly, we tried training our architecture with a reduced
number of sampled pixels (S = 16, and S = 32). The
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OA mIoU Training Inference Disk Size
(s/epoch) (s/dataset) Gb

PSE+TAE (ours) 94.2 ±0.1 50.9 ±0.8 158 149 28.6 / 12.31

CNN+GRU [34] 93.8 ±0.3 48.1 ±0.6 656 633 98.1
CNN+TempCNN [28] 93.3 ±0.2 47.5 ±1.0 635 608 98.1
Transformer [33] 93.0 ±0.2 46.3 ±0.9 13 420 + 43 28.6 / 0.224

ConvLSTM [31] 92.5 ±0.5 42.1 ±1.2 1 283 666 98.1
Random Forest [3] 91.6 ±1.7 32.5 ±1.4 2932 420 + 43 28.6 / 0.44 4

Table 2: Classification metrics and time benchmark of the different architectures. The inter-fold standard deviation of the OA
and mIoU is given in smaller font. Additionally, the total time for one epoch of training, and for inference on the complete
dataset are given on the third and fourth columns. 1 disk space required for training and pure inference, 2 time for the entire training
step, 3 preprocessing and inference time, 4 dataset before and after preprocessing.

model maintains a good performance with an mIoU over
50 points. This indicates that the decrease in processing
time and memory could be further improved at the cost of a
minor drop in precision.

O.A. mIoU

PSE+TAE (ours) 94.2 ±0.1 50.9 ±0.8

q̂ = q(T ) 94.2 ±0.1 50.7 ±0.5
S = 16 94.3 ±0.2 50.5 ±0.8

q̂ = maxt q
(t) 94.2 ±0.2 50.3 ±0.7

S = 32 94.2 ±0.1 50.1 ±0.5
No geometric features 93.9 ±0.1 50.0 ±0.7

PSE+Transformer+q̂ 94.1 ±0.2 49.5 ±0.7
CNN+TAE 94.0 ±0.1 49.2 ±1.1
MS+TAE 93.7 ±0.1 48.9 ±0.9
PSE+GRU+p 93.6 ±0.2 48.7 ±0.3
PSE+GRU 93.6 ±0.2 47.3 ±0.3
PSE+Transformer 93.4 ±0.2 46.6 ±0.9

Table 3: Ablation study of our different design choices,
sorted by decreasing mIoU.

Contribution of the TAE: Replacing the temporal atten-
tion encoder with a GRU (PSE+GRU) decreases the perfor-
mance by 3.6 points of mIoU (Table 3). The TAE not only
produces a better classification but also trains faster thanks
to parallelization.

Unlike the comparison between Transformer and RNNs
architectures in [33], our modified self-attention mechanism
extracts more expressive features than the RNN-based ap-
proach.

We also evaluate the influence of the positional encod-
ing p of the Transformer by adding p to the input tensors of
the GRU unit (PSE+GRU+p). This reduces the gap with
our method to 2.2 points of mIoU. This shows that the im-
provement brought by the TAE is due to both its structure

and the use of a positional encoding.

Design of the TAE: In order to evaluate the bene-
fits of our different contributions over the Transformer,
we adapted the architecture presented in [33] to use
a PSE network instead of spectral means for embed-
ding parcels (PSE+Transformer), for a performance 4.3
points below our TAE. By replacing the proposed tempo-
ral max-pooling by our our master query forming scheme
(PSE+Transformer+q̂), we observed an increase of 2.9
points of mIoU. The remaining 1.4 mIoU points between
this implementation and ours can thus be attributed to our
direct use of inputs to compute the TAE’s output instead of
a smaller intermediary value tensor.

Finally, we compare our mean-pooling strategy with
max-pooling (q̂ = maxt q

(t)) and computing the master
query from the last element of the sequence (q̂ = q(T )).
While the mean query approach yields the best perfor-
mance, the last element of the sequence in our dataset pro-
duces a meaningful query as well. However, this may not
be the case for other regions or acquisition years.

Conclusion
In this paper, we considered the problem of object-based
classification from time series of satellite images. We pro-
posed to view such images as unordered sets of pixels to
reflect the typical coarseness of their spatial resolution, and
introduced a fitting encoder. To exploit the temporal dimen-
sion of such series, we adapted the Transformer architecture
[39] for embedding time-sequences. We introduced a mas-
ter query forming strategy, and exploited that our network
learns end-to-end to simplify some operations.

Evaluated on our new open-access annotated benchmark
of agricultural parcels, our method produces a better clas-
sification than all other re-implemented methods. Further-
more, our network is several times faster and more parsimo-
nious in memory than other state-of-the-art methods such as
convolutional-recurrent hybrid networks. We hope that by
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mitigating some of the limitations of deep learning meth-
ods such as processing time and memory requirement, our
approach would accelerate their adoption in real-life, large-
scale Earth observation applications.

Our results suggest that attention-based models are an
interesting venue to explore for analysing the temporal pro-
files of satellite time series, as well as other analogous
vision tasks such as action recognition in videos. Like-
wise, set-based encoders are a promising and overlooked
paradigm for working with the coarser resolutions of remote
sensing applications.
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Supplementary Material

We show the hyperparameters of the different competing
methods in Table 1. We also provide a breakdown of the
processing times during training for the different architec-
tures in Table 2. The average time per batch is decomposed
into data loading time, forward pass and gradient back-
propagation.

Number of parameters

CNN+GRU 144 204

• 3× 3 convolutions: 32, 32, 64 kernels
• Global average pooling
• Fully connected layer: 128 neurons
• Hidden state size: 130

CNN+TempCNN 156 788

• 3× 3 convolutions: 32, 32, 64 kernels
• Global average pooling
• Fully connected layer: 64 neurons
• Temporal convolutions:
32, 32, 64 kernels of size 3
• Flatten layer

Transformer 178 504

• dk = 32, dv = 64, dmodel = 128, dinner = 256
• nhead = 4, nlayer = 1

ConvLSTM 178 356

• Hidden feature maps: 64

RF
• Number of trees: 100

Table 1: Hyperparameters of the competing architectures.
For all models we use the same values for the decoder
MLP3.

Time in Total Loading Forward Backwardms/batch
PSE+TAE (ours) 107 85 11 11
CNN+TempCNN 381 365 4 12
CNN+GRU 437 365 14 58
Transformer 8 1 2 5
ConvLSTM 530 365 61 104

Table 2: Comparison of processing time for different meth-
ods for batches of 128 parcels. We can see that the process-
ing time is dominated by the loading time except for the
Transformer which processes pre-computed means.

Lastly, for a more qualitative evaluation of our PSE+TAE
architecture, we provide its confusion matrix on the test set

on Figure 1 as well as a visual representation of its predic-
tions on Figure 2.
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Figure 1: Confusion matrix for our PSE+TAE architecture
on the AOI. The color represents the number of parcels, ex-
pressed relatively to the total population of the class they
belong to. We note many of the errors are misclassifica-
tion as Meadows, the most represented class in our dataset.
Additionally, the model struggles to discriminate between
Winter Durum Wheat and Winter Cereal, likely due to their
similar phenology.
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Figure 2: The left picture shows the true labels of a set of parcels, drawn from the test set. The right hand figure shows the
parcels for which our PSE+TAE architecture produced a correct prediction in green and a false prediction in red. On both
figures, the background corresponds to a Sentinel-2 observation (May 2017).
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