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Comment on “Efficient and Secure Outsourcing
Scheme for RSA Decryption in Internet of Things”

Damien Vergnaud, Member, IEEE

Abstract—Internet of Things (IoT) devices have grown in
popularity over the past few years. The RSA public-key cryp-
tographic primitive is time-consuming for resource-constrained
IoT. Recently, Zhang, Yu, Tian, Tong, Lin, Ge and Wang
proposed a two-party outsourcing protocol between a client and
a server for RSA decryption in IoT. It relies on the Chinese
Remainder Theorem as proposed by Quisquater and Couvreur
in 1982 and is very efficient.

We show that their protocol does not achieve the claimed
security guarantees: (1) the (secret) decryption exponent, the
plaintext and the factorization of the RSA modulus are revealed
to a passive adversary, and (2) a malicious server can make the
client accept an (invalid) value of its choice as the result of the
delegated computation.

Index Terms—Cloud computing, Edge computing, Secure out-
sourcing, RSA, Internet of Things, Cryptanalysis

I. INTRODUCTION

HE Internet of Things (IoT) is growing quickly and
brings a new set of security concerns. It connects billions
of physical devices (classical computing and communication
devices, but all kinds of objects used in our everyday lives:
cars, door locks, personal medical devices, ...) for collecting
and sharing data, putting more sensitive information at risk.
Deploying cryptographic mechanisms on IoT devices is
thus often desired (for securing communication, protecting
firmware, and authentication). However, the computational
resources of IoT devices can be very limited, and it seems
very natural, as most of them are online to securely delegate
the costly cryptographic operations to a device capable of
carrying out them. Outsourcing cryptographic computations
is a classical problem which was formalized in [5].

This problem is particularly challenging for public-key
cryptography such as the RSA primitive [15]. In [18], Zhang,
Yu, Tian, Tong, Lin, Ge and Wang designed an efficient out-
sourcing scheme for RSA decryption in IoT. RSA decryption
is achieved via modular exponentiation and their protocol is
based on the Chinese Remainder Theorem (CRT) as proposed
in 1982 by Quisquater and Couvreur [12]. Zhang et al. claimed
that their delegation protocol is highly efficient for both the
client and the server and that the private key and the plaintext
are concealed concurrently within the proposed scheme. They
also claimed that it enables the client to detect any misbehavior
of the server with a probability of 99.17%. They provided
an efficiency analysis and they also mentionned that they
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provided rigorous proofs of security and verifiability in the
formal security model from [5].

In this note, we show that their protocol does not achieve
the claimed security guarantees: (1) the (secret) decryption ex-
ponent, the plaintext and the factorization of the RSA modulus
are revealed to a passive adversary, and (2) a malicious server
can make the client accept an (invalid) value of its choice as
the result of the delegated computation.

II. DESCRIPTION OF ZHANG et al.’S PROTOCOL

We first provide a short description of the classical “text-
book” RSA public-key encryption scheme [15] (using the
notations from [18]):

Key Generation: On input a parameter A\ € N, the
algorithm picks uniformly at random two distinct prime
numbers p and ¢ of bit-length A. It then computes
n = pq and p(n) = (p — 1)(¢ — 1) the Euler totient
function of n. It picks uniformly at random an integer
e€{l,...,p(n)} coprime with ¢(n) and computes the
integer d € {1,...,¢(n)} such that ed = 1 mod ¢(n).
It outputs (n, €) as the public-key and (n, d) as the private
key.

Encryption: To encrypt a plaintext M € Z,, for a public
key (n,e), the algorithm outputs C' = M mod n.

Decryption: To decrypt a ciphertext C' € Z, with a
private key (n, d), the algorithm outputs M = C'? mod n.

It has been proposed as soon as in 1982 by Quisquater and
Couvreur [12] to use the Chinese Remainder Theorem (CRT)
in order to improve the efficiency of the decryption algorithm.
The “textbook” RSA-CRT public-key encryption scheme is
modified as follows:

Key Generation: With the same notation as above, the
algorithm additionally computes

dp, =dmod (p—1) (D)
dy = dmod (¢ —1). 2)

It outputs (n,e) as the public-key and (n, dp, p, dq, q) as
the private key.

Decryption: To decrypt a ciphertext C € Z, with a
private key (n,d,,p,dy,q), the algorithm first computes
M, = C% mod p and M, = C% mod ¢ and outputs
the unique M € Z, such that M = M, mod p and
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M = M, mod q (thanks to the knowledge of p~! mod ¢
and ¢~ ! mod p):

M =p-(p~* mod q)- M, +q-(¢g”* mod p)- M, mod n

Zhang et al.’s delegation protocol for RSA-CRT public-key
encryption scheme works as follows

1) Given a ciphertext C' € Z,, the client picks uniformly
at random two integers 71 and ro of A bits (for some
integer parameter A) and computes:

dp, = dp+r1(p—1) 3)
dgy = dg +72(q = 1) “)

2) For the purpose of verification, it also picks uniformly
at random two integers r3 and r4 of A bits and three
integers t1, t2, k in the range {2, 3,4, ...,11}. The client
then computes:

dp2 = dptl + k + 7“3(]) — 1) (@)
dg, =dgto+k+ra(qg—1) (6)

3) The client queries the server (in a random order) the
modular exponentiation of C' to the power d,,, dp,, dg,
and d,.

4) The serveur computes the values M, = C%: mod n,
M’ = C%: mod n, M, = C%: mod n and M(; =
C’fqz mod n and sends them to the client.

5) The client checks whether the following equalities hold:

ty ok _
M, C" = MI’] mod p @)
to vk /
Mp2C" = M, mod g. )
If this is the case, the client outputs
M =p-(p~* mod q)- M, +q-(¢”* mod p)- M, mod n

as the plaintext corresponding to C.

ITII. CRYPTANALYSIS
A. Passive Attack on the Protocol Privacy

In this subsection, we describe an adversary which can
recover the (secret) plaintext, the (secret) decryption exponent
and the factorization of n from a passive eavesdropping of a
single execution of the delegation protocol. Following Kerck-
hoff’s principles [6], it is natural to assume that the adversary
knows the public key (n, e) it attacks. Zhang et al. [18], indeed
do not add the value of the public exponent e to the list of
secret inputs in their “security proof”. Actually, in practical
applications, RSA users very often use e = 2!6 + 1 = 65537
as the public exponent. In [8], Lenstra, Hughes, Augier, Bos,
Kleinjung and Wachter performed a sanity check of public
keys collected on the web and found in particular that more
than 98.4% of RSA keys in X.509 certificates and more than
48.8% of RSA public keys in PGP (giving a 95.4 percentage
over all the keys) used e = 65537 as the public exponent. For
all considered RSA keys, less than 0.008% of all keys used a
public exponent that does not belong to a very short list of 10
values.

Let us first assume that the adversary knows which query
to the server corresponds to which exponent in the set
{dp,,dp,,dq,,dq, }. From (1), there exists an integer -y such
that

edp =1+~(p—1).
Combined with (3), we get

edy, =e(dy +r1(p—1))=edyp+e-ri(p—1)

=1+ (y+e-r)(p-1)

and thus (p — 1) is a divisor of (ed,, —1).

Similarly from (2) and (4), we obtain that (¢—1) is a divisor
of (ed,, —1). We thus get that (ed), —1)(ed,, —1) is a multiple
of (p = 1)(g = 1) = p(n).

In [13], [14], Rabin provided a probabilistic polynomial-
time algorithm which given an RSA modulus n = pq and its
Euler totient function ¢(n), outputs the factorization (p, ¢) in
expected polynomial time. Rabin algorithm consists simply
in computing some modular exponentiations modulo n of
a random base with an exponent smaller than the known
multiple of ¢(n). The expected number of these computations
is constant and each of them has binary complexity

O(log(n)? - (log(n - €%) 4+ A)) = O(log(n)® + log(n)? - A)
and is thus polynomial time.

The knowledge' of (ed,, —1)(ed,, —1) therefore allows the
adversary to recover the factorization (p,q) of n. It can then
compute ¢(n) = (p — 1)(¢ — 1) and from this knowledge,
it obtains d = e~!mod ¢(n) and recover the plaintext
corresponding to C' as M = C¢ mod n.

In the general case where the adversary does not
know which delegated exponentiation in (C, 1), (C,as),
(C,a3) and (C,a4) corresponds to which exponent in
{dp,,dg,,dp,,dqg,}, it can simply apply the previous attack
for the six pairs {x,y} C {a1, a2, a3, a4} and apply Rabin’s
algorithm with the 6 values (ex—1)(ey—1) as a possible multi-
ple of ¢(n). This increases the running time only by a constant
factor. Zhang et al.’s protocol does not provide privacy since
this probabilistic polynomial time recovers the plaintext, the
(secret) decryption exponent and the factorization of n from
a passive eavesdropping of a single execution of the protocol
(and Theorem 1 from [18] is therefore flawed).

Remark 1. It is worth mentioning that even if we assume
that the public exponent e is kept secret, an adversary can
run the same attack by using the information obtained in
two independent executions of the protocol. Indeed, given the
pair (dp,,dq,) from the first execution and (d, ,d; ) from
the second execution, it can computes dy,, — d;, which is a
multiple of (p—1) and d, —d;, which is a multiple of (¢—1).
From those two multiples, the adversary can again compute a
multiple of ¢(n) and run the previous attack.

I'The knowledge of (edp, — 1) is most likely sufficient since for = € Z,
we have z(¢%r1 =1 = 1 mod p and in most cases zledp —1) Z 1 mod g
and thus gcd(x(Edl’l -1, n) = p reveals the factorization (p, q) of n.
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B. Active Attack on the Protocol Verifiability

In this subsection, we show that a malicious server can make
the client accept (with overwhelming probability) an arbitrary
message M € Z,, with M # M as the output of a delegation
protocol.

First of all, when it receives the four exponentiation queries
(C,aq), (C,a2), (C,as) and (C,a4), the server runs the
previous attack to obtain the decryption exponent d and the
factorization (p, q) of n.

The malicious server then computes d, = d mod (p — 1)
and d, = d mod (¢ — 1). Among the four received exponents
(o1, g, g, aug), it identifies dp, as the «; such that (dp — o)
is a multiple of (p — 1) for i € {1,2,3,4} (and d, as the «;
such that (d,—a;) is a multiple of (¢—1), for j € {1,2,3,4}).
With overwhelming probability (over the randomness used in
the key generation algorithm), these exponents d,,, and d,, are
identified uniquely.

To identify d,,,, the server checks which of the two remain-
ing exponents modulo (p—1) is equal to [dpt+k mod (p—1)]
for ¢t and k in the range {2,3,4,...,11}. Again, with over-
whelming probability (over the randomness used in the key
generation algorithm), the exponent d,,, is identified uniquely
and when this is done the four exponents sent in a random
order are identified. Eventually, using an exhaustive search
over the range {2,3,4,...,11}, the malicious server can also
compute the integers t1, to and k& which satisfy (5) and (6).

It can thAe/n set ]\?/p = ]\7modp and M:g = M:vvntllod q for an
arbitrary M # M in Z,. It computes M), = M, C* mod p
and ]\7}1 = @tzqf mfcld q. It reply to the client with the
4-tuple (Mp, M), My, M) in the order corresponding to the
identified exponents (dp17dp2, ququz). These values satisfy

(7) and (8) and the user outputs M # M as the plaintext
corresponding to C'.

Zhang et al.’s protocol does not achieve verifiability since
this probabilistic polynomial time (and Theorem 2 from [18]
is therefore flawed).

IV. CONCLUSION

There is a long history of protocols for outsourcing
group exponentiations in different settings (e.g. public/secret,
fixed/variable bases and public/secret exponents) in groups of
known prime order and in the RSA setting of groups of secret
unknown prime order (see [10], [7], [1], [9], [2], [3], [17],
[4], [16]). Chevalier et al. [4] provided simple constructions
(essentially optimal in terms of operations in the underlying
group) in groups of known prime order. For RSA-based
cryptography, most proposed protocols are variants of two
protocols (named RSA-S1 and RSA-S2) that were proposed
by Matsumoto, Kato and Imai in 1988 [10] and analyzed by
Mefenza and Vergnaud [11]. For a variable base (which is
the case of interest for RSA decryption/signature), all known
secure delegation protocols only improve the client efficiency
by a constant factor and are thus probably not suitable for
limited devices in IoT. Chevalier et al. proved lower bounds

on the efficiency for generic modular outsourcing protocols (in
prime order groups) [4]. These bounds suggest that improving
the protocols from [11] in unknown order groups is probably
difficult.
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