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Abstract

Non-convex sparse regularizers are common
tools for learning with high-dimensional data.
For accelerating convergence of a Lasso prob-
lem using those regularizers, a working set
strategy addresses the optimization problem
through an iterative algorithm by gradually
incrementing the number of variables to op-
timize until the identification of the solution
support. We propose in this paper the first
Lasso working set algorithm for non-convex
sparse regularizers with convergence guaran-
tees. The algorithm, named FireWorks, is
based on a non-convex reformulation of a re-
cent duality-based approach and leverages on
the geometry of the residuals. We provide
theoretical guarantees showing that conver-
gence is preserved even when the inner solver
is inexact, under sufficient decay of the er-
ror across iterations. Experimental results
demonstrate strong computational gain when
using our working set strategy compared to
full problem solvers for both block-coordinate
descent or a proximal gradient solver.

1 Introduction

Many real-world learning problems are of (very) high
dimension. This is the case for natural language pro-

cessing problems with very large vocabulary or rec-
ommendation problems involving million of items. In
such cases, one way of addressing the learning problem
is to consider sparsity-inducing penalties. Likewise,
when the solution of a learning problem is known to
be sparse, using these penalties yield to models that
can leverage this prior knowledge. The Lasso [31] and
the Basis pursuit [6, 5] were the first approaches that
have employed `1-norm penalty for inducing sparsity.

The Lasso model has enjoyed large practical successes
in the machine learning and signal processing commu-
nities [29, 8, 20, 36]. Nonetheless, it suffers from theo-
retical drawbacks (e.g., biased estimates for large coef-
ficients of the model) which can be overcome by consid-
ering non-convex sparsity-inducing penalties. These
penalties provide continuous approximations of the
`0-(pseudo)-norm which is the true measure of spar-
sity. There exists a flurry of different penalties like
the Smoothly Clipped Absolute Deviation (SCAD) [9],
the Log Sum penalty (LSP) [4], the capped-`1 penalty
[38], the Minimax Concave Penalty (MCP) [37]. We
refer the interested reader to [30] for a discussion on
the pros and cons of such non-convex formulations.

In addition to theoretical statistical analyses, efforts
have also been made for developing computationally
efficient algorithms for non-convex regularized opti-
mization problems. This includes coordinate descent
algorithms [3], proximal gradient descent [15] or New-
ton method [35, 25]. However, all these methods share
one kind of inefficiency in the sense that they spend
a similar computational effort for each variable, even
when these variables will end up being irrelevant (zero
weight) in the final learnt model. In the non-convex
setting, few methods have tried to lift this issue. One
approach mixes importance sampling and randomized



coordinate descent [10], while another one seeks to
safely screen features that are irrelevant [26]. Working
set (also known as active set) strategy aims at focusing
computational effort on a subset of relevant variables,
making them highly efficient for optimization problem
with sparse solutions, provided that the algorithm is
able to quickly identify the “relevant” features. In the
literature, several works on working set algorithms ad-
dress this selection issue mostly for convex optimiza-
tion problems such as the Support Vector Machine
problem [34, 13] or the Lasso problem [11, 32, 18, 22].
Working set strategies have been extended to non-
convex sparse optimization problems [1, 2] but they
are purely heuristic and lack of convergence guaran-
tees.

In this work, inspired by the Blitz algorithm proposed
by Johnson and Guestrin [18](see also [21, 22] for its
connection with safe screening rules) we propose a the-
oretically supported method for selecting a working set
in non-convex regularized sparse optimization prob-
lems. While Blitz can only be implemented for convex
problems, leveraging on primal-dual aspects of the `1-
regularized problem, we introduce a similar algorithm
that exploits the key role of the residual in a sparse
regression problem. Our algorithm proposes a method
for selecting the variables to integrate into a working
set, and provides a theoretical guarantee on objective
value decrease. Based on these results, we provide,
as far as we know, the first convergence guarantee of
working set algorithm in a non-convex Lasso setting
and we show that this convergence property is pre-
served in a realistic inexact setting.

In summary, our contributions are the following: (1)
we propose a novel working set algorithm for non-
convex regularized regression that selects features to
integrate in the model based on a so-called “feasible”
residual; (2) we prove that the algorithm enjoys prop-
erties such as convergence to a stationary point, even
when the inner solver is inexact, under sufficient decay
of the error along the iterations; as such, it is the first
non-convex working set algorithm with such a theoret-
ical convergence proof. (3) Our experimental results
show that our FireWorks algorithm achieves substan-
tial computational gain (that can reach two orders of
magnitude) compared to the baseline approaches with
proven convergence guarantees and on par with the
heuristic working set algorithm of [1].

Notation We denote as X ∈ Rn×d the design ma-
trix. We write vectors of size d or size n in bold
e.g., y ∈ Rn or w ∈ Rd. We will consider several
sets and they are noted in calligraphic mode. We
have set of indices, mostly noted as A, with A be-
ing a subset of indices extracted from {1, . . . , d} and

with cardinality noted |A|. Given a set A, Ā denotes
its complement in {1, . . . , d}. Set defined by (union
of) function level-set will be denoted as C, with in-
dices defining the function. Vectors noted as wA are
of size |A| and we note w̃A ∈ Rd for the vector of
component wj,A for all j ∈ A and 0 elsewhere. Fi-
nally, XA represents matrix X restricted to columns
indexed by A and we will note res(w) , y −Xw and
res(wA) , y −XAwA = y −Xw̃A.

2 Linear regression with non-convex
regularizers

We first introduce the non-convex Lasso problem we
are interested in as well as its first-order optimality
conditions. We emphasize on the form of the opti-
mality conditions which will be key for designing our
working set algorithm.

2.1 The optimization problem

We consider solving the problem of least-squares re-
gression with a generic penalty of the form

min
w∈Rd

f(w) ,
1

2
‖y −Xw‖22 +

d∑
j=1

rλ(|wj |) , (1)

where y ∈ Rn is a target vector, X = [x1, . . . ,xd] ∈
Rn×d is the design matrix with column-wise features
xj ∈ Rn, w is the coefficient vector of the model
and the map rλ : R+ 7→ R+ is monotonically non-
decreasing, concave and differentiable on [0,+∞) with
a regularization parameter λ > 0. In addition, we as-
sume that rλ(| · |) is a lower semi-continuous function.
Note that most penalty functions such as SCAD, MCP
or log sum (see their definitions in Table 2 in the sup-
plementary material) satisfy such a property and that
for these penalties, f(·) is lower bounded.

We consider tools such as Fréchet subdifferentials and
limiting-subdifferentials [19, 27, 23] well suited for non-
smooth and non-convex optimization, so that a vector
w? belongs to the set of minimizers (not necessarily
global) of Problem (1) if following Fermat’s condition
holds (see Definition 1.1 and Proposition 1.2 in [19]
and Chapter 9 of [28]):

∀j, x>j (y −Xw?) ∈ ∂rλ(|w?j |) , (2)

with ∂rλ(| · |) being the Fréchet subdifferential of
rλ(| · |), assuming it exists at w?. In particular, this
is the case for the MCP, log sum and SCAD penal-
ties presented in Table 2. For the sake of clarity, we
present next the optimality conditions for MCP and
log sum.



Example 1. For the MCP penalty (see Table 2 for
its definition and its subdifferential), it is easy to show
that ∂rλ(|0|) = [−λ, λ]. Hence, Fermat’s condition
becomes with the residual res(w?)
−x>j res(w?) = 0, if |w?j | > λθ

−x>j res(w?) + λ sign(w?j ) =
w?

j

θ , if 0 < |w?j | ≤ λθ
|x>j res(w?)| ≤ λ, if w?j = 0

(3)

Example 2. For the log sum penalty, one can ex-
plicitly compute ∂rλ(|0|) = [−λθ , λθ ] and leverage the
smoothness of rλ(|w|) when |w| > 0 for computing
∂rλ(|w|). Then, the condition in Equation (2) can be
written as:{

−x>j res(w?) + λ
sign(w?

j )

θ+|w?
j |

= 0, if w?j 6= 0 ,

|x>j res(w?)| ≤ λ
θ , if w?j = 0 .

(4)

As we can see, first-order optimality conditions lead to
simple equations and inclusions. More interestingly,
one can note that regardless of the regularizer, the
structure of optimality condition for a weight w?j = 0
depends on the correlation of the feature xj with the
optimal residual res(w?) = y − Xw?. Hence, these
conditions can be used for defining a region in which
the optimal residual has to live in.

3 Working set algorithm and analysis

Before presenting the FireWorks algorithm, we first
introduce all concepts needed for defining and analyz-
ing our working set algorithm.

3.1 Restricted problem and optimality

Given a set A of m indices belonging to {1, . . . , d},
the problem defined in Equation (5) is the restriction
of Problem (1) to the columns of X indexed by A:

min
wA∈R|A|

1

2
‖y −XAwA‖22 +

|A|∑
j=1

rλ(|wj,A|) . (5)

Naturally, a vector w?
A minimizing this problem has

to satisfy its own optimality condition. However, the
next proposition derives a necessary condition for op-
timality, that will be useful for characterizing whether
w̃?
A is optimal for the full problem.

Proposition 1. If w?
A satisfies Fermat’s condition of

Problem (5), then for all j ∈ A, we have

|x>j (y −XAw?
A)| ≤ r′λ(0) (6)

where r′λ is the derivative of rλ.

Now given Proposition 1, we are going to define
some sets useful for characterizing candidate station-
ary points of either Equations (1) or (5). Let us we
define the function hj : Rn → R, for j ∈ {1, . . . , d} as
hj(a) = |x>j a| − r′λ(0) and the convex sets Cj as the
slab

Cj , {a ∈ Rn : hj(a) ≤ 0}
and C=

j as its boundary

C=
j , {a ∈ Rn : hj(a) = 0}.

By introducing1 C =
⋂d
j=1 Cj and CA =

⋂
j∈A Cj the

necessary optimality condition defined in Proposition
1 can be written as y−XAw?

A ∈ CA. Hence, assuming
that w?

A is a minimizer of its restricted Problem (5),
its extension w̃?

A ∈ Rd satisfies Fermat’s condition of
the full problem if the following holds

y −Xw̃?
A ∈ CĀ , (7)

where Ā is the complement of A in {1, . . . , d}. In-
deed, since w?

A is optimal for the restricted problem,
Fermat’s condition is already satisfied for all j ∈ A.
Then, the above condition ensures that ∀j ∈ Ā, we
have |x>j (y − Xw̃?

A)| ≤ r′λ(0) since, as by definition,

w̃?j = 0, ∀j ∈ Ā.

Equation 7 provides an easy way to check whether a
solution of a restricted problem is a potential candi-
date for being also a solution to the full problem. For
this purpose, we define the distance of a vector r ∈ Rn
to the convex set Cj and C=

j as

dist(r, Cj) , min
z∈Rn

‖z− r‖2 , s.t. hj(z) ≤ 0 ;

and

distS(s, C=
j ) , min

z∈Rn
‖z− s‖2 , s.t. hj(z) = 0 .

These distances can also be used for defining the
most violated optimality condition, a key compo-
nent of the methods proposed by [1, 10]. Indeed,
given a set A, the solution w?

A of Equation (5)
and the associated residual res(w?

A), the index j? =
arg maxj∈Ā dist

(
res(w?

A), Cj
)

is the index of the most
violated optimality condition among non-active vari-
ables for the residual res(w?

A).

3.2 Feasible Residual Working Set Algorithm
for non-convex Lasso

A working set algorithm for solving Problem (1) con-
sists in sequentially solving a series of restricted prob-
lem as defined in Equation (5) with a sequence of work-
ing sets A0,A1, . . . ,Ak. The main differences among

1For `1-type convex regularizers C is the dual feasible
set.



working set algorithms lie on the way the set is being
updated. For instance, the approach of [1], denoted in
the experiment as MaxVC, selects the variable with
the most violated optimality conditions (as defined
above) in the non-active set to be included in the new
working set, leading to the algorithm presented in the
supplementary material. Flamary et al. [10] followed
a similar approach but considered a randomized selec-
tion in which the probability of selection is related to
dist

(
res(w?

Ak
), Cj

)
.

Our algorithm is inspired by Blitz [18] which is a work-
ing set algorithm dedicated to convex constrained op-
timization problem. But as the problem we address is
a non-convex one, we manipulate different mathemat-
ical objects that need to be redefined. The procedure
is presented in Algorithm 1. It starts by selecting a
small subset of indices for instance the ten indices with
largest |x>j y|) as initial working set and by choosing

a vector s1 such that s1 ∈ C =
⋂d
j=1 Cj , for instance

setting s1 = 0. From this vector s1, we will generate
a sequence {sk} that plays a key role in the selection
of the features to be integrated in the next restricted
model. Then, at iteration k, it solves the restricted
problem with the set Ak and then by computing the
residual rk = res(w?

Ak
) with w?

Ak
the true solution to

the restricted problem. As noted in Equation (7), if
rk ∈ CĀk

then the vector w̃?
Ak

is a stationary point
of the full problem. If rk 6∈ CĀk

, we need to update
the working set Ak. We first prune Ak by removing
indices associated to zero weights in w?

Ak
. Then, in or-

der to add features to the working set, we define sk+1

as the vector on the segment [sk, rk], nearest to rk that
belongs to C. Then, the working set is updated by in-
tegrating predictors j whose associated slab Cj frontier
are nearest to sk+1. Hence, the index j is included in
the new working set if distS(sk+1, C=

j ) ≤ τk, where τk
is a strictly positive term that defines the number of
features to be added to the current working set. In
practice, we have chosen τk so that a fixed number
nadded of features is added to the working set Ak at
each iteration k.

We provide the following intuition on why this algo-
rithm works in practice. At first, note that by con-
struction sk+1 is a convex combination of two vectors
one of which is the residual hence justifies its interpre-
tation as a pseudo-residual. However, the main dif-
ference between the sk’s and rk’s is that the former
belongs to C and thus to any CĀ while rk belongs to
C only for a potential w̃?

Ak
optimal for the full prob-

lem. Then, when w?
Ak

is a stationary point for the
restricted problem but not for the full problem, we
have rk ∈ CA but rk 6∈ C. Hence, sk+1 represents a
residual candidate for optimality and slab’s frontiers
near this pseudo-residual sk+1 can be interpreted as

Algorithm 1 FireWorks: Feasible Residual Working
Set Algorithm

Input: {X,y}, A1 active set, s1 ∈ C, a sequence of τk
or a mechanism for defining τk, initial vector w̃A0

Output: w̃Ak

1: for k = 1, 2, . . . do
2: wAk

= arg minw
1
2‖y − XAk

w‖22 +∑
j∈Ak

rλ(|wj |) //warm-start solver with
wAk−1

3: rk = y −XAk
wAk

//get residual
4: αk = max{α ∈ [0, 1] : αrk + (1− α)sk ∈ C}
5: sk+1 = αkrk + (1− αk)sk //define the most

”feasible” residual
6: Ak = Ak/{j ∈ Aj : wj,Ak

= 0} //prune the set
from inactive features

7: compute τk // e.g., sort distS(sk+1, C=
j ) so as

to keep constant number of features to add
8: Ak+1 = {j : distS(sk+1, C=

j )} ≤ τk} ∪ Ak //up-
date working set

9: end for
10: Build w̃Ak

the slabs associated to features that need to be inte-
grated in the working set (allowing associated weights
wj ’s to be potentially non-zero at the next iteration).
This mechanism for selection is shown in Figure 1.

Relation with maximum violated optimality
condition algorithm [1]. The mechanism we have
proposed for updating the working set is based on
the current residual rk and a feasible residual sk. By
changing how sk+1 is defined, we can retrieve the al-
gorithm proposed by Boisbunon et al. [1]. Indeed, if
we set at Line 5 of Algorithm 1, ∀k, sk = 0 and sk+1 =
αkrk, with αk ∈ [0, 1] then sk+1 is a rescaling of the
current residual and the scale is chosen so that sk+1 ∈
C. Using a simple inequality argument, it is straight-
forward to show that αk = min(minj∈Āk

λ
|x>j rk|

, 1) and

the minimum in j occurs for the largest value of |x>j rk|.
From the theoretical side, we want to emphasize that
Boisbunon et al. [1] do not provide convergence proof
of this algorithm. Nonetheless, we conjecture that
the polynomial convergence of this algorithm is guar-
anteed for exact inner solver and when working set
is never pruned (removing from the set Ak variables
which weights are 0 is not allowed).

3.3 Some properties of the algorithm

In this subsection, we analyze some properties of the
proposed algorithm. At first, we introduce an alterna-
tive optimality condition (whose proof is in the supple-
mental), based on αk for the full problem. Based on
this property and some intermediate results, we will
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Figure 1: Illustrating the feature selection. (left) Given three variables, we plot their associate slabs {Cj}3j=1. C
is the intersection of the 3 slabs. We assume that the initial working set is {2}. (middle) After the first iteration,
the residual r1 satisfies the condition h2(a) ≤ 0 and thus lies in region C2. Then, the segment [s1, r1] gives us
the most feasible point s2 ∈ C. If τ1 is chosen so as to select only one feature, it is then j = 1. The new working
set is {2, 1}. (right) After optimizing over this working set, the residual r2 lies in the C1 ∩ C2 region.

show that the iterates w̃?
Ak

converge towards a sta-
tionary point of the full problem.

Proposition 2. Given a working set Ak and w?
Ak

solving the related restricted problem, w̃?
Ak

is also op-
timal for the full problem if and only if α = 1 in Algo-
rithm 1, step 4 (which also means sk+1 = rk).

Now, we are going to characterize the decrease in ob-
jective value obtained between two updates of working
sets, assuming that in the update, there is a least one
feature that does not satisfy its optimality condition.

Proposition 3. Assume that ‖X‖2 > 0 and w?
Ak

and w?
Ak+1

are respectively the solutions of the re-
stricted problem with the working set Ak and Ak+1,
with Ak+1 = {j1, · · · , jnadded

} ∪ Ak, such that there
exists at least one ji with dist(rk, Cji) > 0. As we note

rk , res(w?
Ak

), the following inequality holds for all ji
such that dist(rk, Cji) > 0

‖w̃?
Ak+1

− w̃?
Ak
‖2 ≥

1

‖X‖2
dist(rk, Cji) .

Proof. We have the following inequalities

‖rk+1−rk‖2 = ‖X(w̃?
Ak+1
−w̃?

Ak
)‖2 ≤ ‖X‖2‖w̃?

Ak+1
−w̃?

Ak
‖2 .

(8)

Now recall that rk 6∈ CAk+1
since ∃ji : dist(rk, Cji) > 0,

while rk+1 ∈ CAk+1
as w?

Ak+1
has been optimized over

Ak+1. As such, for all ji : dist(rk, Cji) > 0, we also
have hj(rk+1) ≤ 0. Now by definition of dist(rk, Cji)
either rk+1 is the minimizer of the distance optimiza-
tion problem, hence dist(rk, Cji) = ‖rk+1 − rk‖2 or
dist(rk, Cj) ≤ ‖rk+1 − rk‖2. Plugging this latter in-
equality in 8 concludes the proof.

Given the right hand side of the equation in Proposi-
tion 3, we now show that the distance of the residual
rk at step k to a set Cj , defined by a feature j that is
not yet in the active set, is lower bounded by a term
depending on the parameter τk−1 which governs the
number of features that has been added to the active
set at step k − 1.

Lemma 1. At step k ≥ 2, consider a set Cj such that
hj(rk) > 0 and hj(sk) < 0, then

dist(rk, Cj) ≥
1− αk
αk

τk−1 . (9)

The proof of this lemma is available in the supple-
mentary material. From the above Proposition 3 and
Lemma 1, we can ensure that the sequence {w̃Ak

} pro-
duced by Algorithm 1 converges towards a stationary
point under mild conditions on the inner solver.

Theorem 1. Suppose that for each step k, the algo-
rithm solving the inner problem ensures a decrease in
the objective value in the form

f(w̃?
Ak+1

)− f(w̃?
Ak

) ≤ −γk‖w̃?
Ak+1

− w̃?
Ak
‖22 .

with ∀k, γk ≥ γ > 0. For the inner solver, we
also impose that when solving the problem with set
Ak+1, the inner solver is warm-started with w?

Ak
. As-

sume also that ‖X‖2 > 0, τk ≥ τ > 0 and hj sat-
isfies assumption in Lemma 1, then the sequence of
αk produced by Algorithm 1 converges towards 1 and
∀j, limk→∞ |x>j rk| ≤ r′λ(0).

The above theorem ensures convergence to a station-
ary point under some conditions on the inner solver
and on the γk’s which needs to be lower bounded by



γ > 0 . Several algorithms may satisfy this assump-
tion. For instance, any first-order iterative algorithm
which selects its step size as tk based on line search cri-
terion of the form ∀k, f(wk+1) ≤ f(wk)− σ

2 tk‖wk+1−
wk‖22 , where σ is a constant in the interval (0, 1), pro-
vides such a guarantee. This is the case of the gener-
alized proximal algorithm of Gong et al. [15][Section
2.3.2] or proximal Newton approaches [25], assuming
that f is differentiable with gradient Lipschitz and
rλ(·) admits a proximal operator. Since non-convex
block coordinate descent algorithms [3] can also be in-
terpreted as proximal algorithm, they also satisfy this
sufficient decrease condition under the same assump-
tions than proximal approaches.

Another important condition for convergence is based
on the parameter τk. We note the lower bound τ can
be set to any arbitrary small positive value. At a
non-optimal for the full problem w̃Ak

, and as small
as this lower bound is, the set {j : distS(sk+1, C=

j ) ≤
τ} always contains at least the index j that makes
αk maximal and corresponds to the j such that
distS(sk+1, C=

j ) = 0 (see Line 4 of the algorithm). This
would correspond to updating the working set by one
element at each iteration.

The above theorem states about the convergence of the
working set strategy. We want to emphasize here that
the convergence rate of the whole algorithm 1 (working
set + inner solver) depends on the convergence rate of
the inner solver. For instance, if we consider as an in-
ner solver the proximal algorithm of Gong et al. [15],
then the convergence rate for each inner problem is of

the form C · ‖f(w0)−f(w?)‖
T where C is a constant de-

pending on the inner problem, T the total number of
iterations for that solver, and w0 the initial point when
solving that problem. Since Algorithm 1 runs this in-
ner solver several times, the convergence rate is still in
O(n) but with a different constant. The gain in com-
putation time achieved by using a working set strategy
comes from the fact that each inner solver involves far
fewer variables than the full problem dimensionality d
and thus gradients are cheaper to compute.

Inexact inner solver One key point when consid-
ering a meta-solver like Blitz [18] or a working set al-
gorithm is that for some approaches, theoretical prop-
erties hold only when the solution of the inner solver
is exact. This is for instance the case for the Sim-
pleSVM algorithm of Vishwanathan et al. [34] or the
active set algorithm proposed by Boisbunon et al. [1].
The convergence of these approaches are based on non-
cyclicity of the working set selection (prohibiting prun-
ing) and thus on the ability of solving exactly the inner
problem. For the approach we propose, we show next
that the distance between two consecutive inexact so-

lutions of the inner problem is still lower bounded.

Proposition 4. Let w?
Ak

and w?
Ak+1

the approximate
solutions of the inner problem with respectively the
working sets Ak and Ak+1, as defined in Proposition
3. Assume that w?

Ak+1
has been obtained through a tol-

erance of ξk+1 ≤ τk of its Fermat’s condition (e.g., for
the log sum penalty, Equation (4) are satisfied up to
ξk+1), then the following inequality holds :

‖w̃?
Ak+1

− w̃?
Ak
‖22 ≥

1

‖X‖2
(
dist(rk, Cj)− ξk+1

)
.

Proof. First note that if w?
Ak+1

is such that rk+1 ∈
CAk+1

then we are in the same condition than in Propo-
sition 3 and the same proof applies. Let us assume
then that rk+1 6∈ CAk+1

and dist(rk+1, Cj) ≤ ξk+1. De-
fine as u the point in Cj that defines the distance of rk
to Cj and as p the point that minimizes the distance
between rk+1 and the segment [u, rk]. Then, owing
to simple geometrical arguments and orthogonality we
have : ‖rk+1 − rk‖2 = ‖rk+1 − p‖2 + ‖p − rk‖2 and
thus ‖rk+1− rk‖ ≥ ‖rk −p‖. Now, because p belongs
to the segment defined by u and rk, we have

‖rk+1−rk‖ ≥ ‖rk−u‖−‖u−p‖ ≥ dist(rk, Cj)− ξk+1

where the last inequality comes from the fact that ‖u−
p‖ = dist(rk+1, Cj) ≤ ξk+1. Plugging this inequality
into Equation (8) completes the proof.

Note that the above lower bound is meaningful only if
the tolerance ξk+1 is smaller than the distance of the
residual to the set Cj . This is a reasonable assumption
to be made since we expect rk to violate Cj . Now, we
can derive condition of convergence towards a station-
ary point of the full problem.

Corollary 1. Under the assumption of Theorem 1 and
assuming that the sequence of tolerances ξk is such that∑
k ξk < ∞, then Algorithm 1 produces a sequence of

iterates that converges towards a stationary point.

The proof follows the same steps as for Theorem 1,
with the addition that sequence {ξk} is convergent and
thus has been omitted. Note that the assumption of
convergent sum of errors is a common assumption, no-
tably in the proximal algorithm literature [7, 33] and
it helps guaranteeing convergence towards exact sta-
tionary point instead of an approximate convergence.

4 Numerical Experiments

Set-up We now present some numerical studies
showing the computational gain achieved by our ap-
proach. Our main baselines are algorithms that also



Table 1: Running time in seconds of different algorithms on different problems. In the first column, we reported
data, the tolerance on the stopping criterion and the constant K such that λ = K maxj |x>j y| (the larger the
K, the sparser w? is). The small Toy dataset has n = 100, d = 1000 and p = 30; the large one has n = 1000,
d = 5000, p = 500. For each inner solver, we bold the most efficient algorithm. The symbol ”−” denotes that
the algorithm did not finish one iteration in 24 hours and the 0.0 as a standard deviation means that only one
iteration were terminated after 48 hours.. The number in parenthesis is the number of non-zero weights in w?

A.
All experiments have been run on one single core of an Intel Xeon CPU E5-2680 clocked at 2,4Ghz.

Data and Setting MM prox GIST MaxVC Gist FireWorks Gist MM BCD BCD MaxVC BCD FireWorks BCD

Toy small - 1.00e-03 - 0.07 1.4±0.4 (34) 0.8±0.2 (34) 0.3±0.2 (34) 0.2±0.1 (34) 3.4±0.9 (34) 14.2±4.9 (34) 1.9±0.8 (34) 1.5±0.9 (34)
Toy small - 1.00e-05 - 0.07 1.5±0.4 (34) 1.4±0.6 (34) 0.7±0.8 (34) 0.4±0.1 (34) 3.3±0.8 (34) 22.9±11.0 (34) 8.3±9.7 (34) 2.7±1.2 (34)
Toy small - 1.00e-03 - 0.01 11.2±1.2 (71) 6.3±2.2 (71) 1.6±0.6 (71) 1.3±0.6 (71) 83.7±18.6 (71) 73.7±21.7 (71) 15.6±4.5 (71) 8.2±2.0 (71)
Toy small - 1.00e-05 - 0.01 17.6±6.0 (66) 14.1±9.8 (66) 7.1±5.3 (66) 4.6±2.8 (66) 88.2±23.3 (66) 154.6±93.6 (66) 67.0±44.5 (66) 40.8±24.1 (66)
Toy large - 1.00e-03 - 0.07 41.1±15.3 (365) 26.2±13.0 (365) 5.8±1.3 (365) 8.2±3.3 (365) 1040.8±0.0 (365) 355.9±83.8 (365) 82.7±19.3 (365) 73.5±9.7 (365)
Toy large - 1.00e-05 - 0.07 - 50.5±7.6 (371) 36.8±13.3 (371) 31.7±7.4 (371) 1356.7±178 (371) 1030.5±471.7 (371) 561.7±208.8 (371) 465.6±111.4 (371)
Toy large - 1.00e-03 - 0.01 589.5±185.4 (758) 91.6±22.9 (758) 65.4±14.5 (758) 34.9±4.1 (758) 52848.8±0.0 (758) 1192.1±340.1 (758) 777.5±181.5 (758) 337.0±46.3 (758)
Toy large - 1.00e-05 - 0.01 - 583.8±140.7 (759) 1020.6±250.6 (759) 609.4±177.6 (759) 60897±5990 (759) 7847±2774 (759) 12720±2520 (759) 6699±1686 (759)

Data and Setting MM prox GIST MaxVC Gist FireWorks Gist MM BCD BCD MaxVC BCD FireWorks BCD

Leukemia - 1.00e-03 - 0.07 6.3±2.0 (7) 17.9±0.4 (7) 0.2±0.0 (7) 0.4±0.0 (7) 3.8±0.7 (7) 144.4±1.1 (7) 0.8±0.0 (7) 0.8±0.0 (7)
Leukemia - 1.00e-05 - 0.07 8.0±2.7 (9) 26.1±0.6 (9) 0.3±0.0 (9) 0.5±0.0 (9) 4.6±1.1 (9) 218.8±1.1 (9) 1.2±0.0 (9) 1.1±0.0 (9)
Leukemia - 1.00e-03 - 0.01 31.4±6.2 (41) 186.1±1.7 (41) 5.4±0.0 (41) 5.5±0.0 (41) 53.6±9.6 (41) 1168.3±0.2 (41) 19.9±0.0 (41) 17.4±0.0 (41)
Leukemia - 1.00e-05 - 0.07 71.4±7.5 (46) 525.2±8.5 (46) 20.3±0.0 (46) 14.6±0.0 (46) 65.5±4.9 (46) 1412.8±0.3 (46) 71.5±0.0 (46) 42.7±0.0 (46)
Newsgroup-3 - 1.00e-02 - 0.01 955.8±389.1 6041.1±7.2 6.5±0.0 8.3±0.0 7926.6±3183.6 3792.4±6.2 4.9±0.0 5.6±0.0
Newsgroup-3 - 1.00e-03 - 0.01 1200.6±402.7 5790.6±8.0 49.8±0.1 36.6±0.0 12078.0±3879.1 24070.5±18 53.2±0.1 36.8±0.0
Newsgroup-3 - 1.00e-04 - 0.01 1237.9±415.5 5734.0±3.9 1439.3±2.4 326.1±0.2 12130.8±3849.7 37639.8±19 279.2±0.2 167.7±0.1
Newsgroup-5 - 1.00e-02 - 0.01 - 26711.1±44 1001.2±2.7 343.6±0.9 - 77378.7±74 421.7±0.8 172.5±0.1
Newsgroup-5 - 1.00e-03 - 0.01 - 26685.6±14 2163.6±4.4 876.9±0.6 - 91603.9±0.0 728.9±2.9 312.3±0.6
Newsgroup-5 - 1.00e-04 - 0.01 - 26752.5±15 4285.2±6.1 1632.5±3.2 - 117749.0±0.0 1093.7±3.7 554.2±1.0
Criteo - 1.00e-02 - 0.005 - - - - - - 41095.3±2218 31052.7±1202
Criteo - 1.00e-03 - 0.005 - - - - - - 49006.7±1431 37534.6±1576
Criteo - 1.00e-04 - 0.005 - - - - - - 59303.8±1308 42773.9±1022

feature convergence guarantees. As such, we have con-
sidered, for solving the full problem a proximal algo-
rithm [15] and a coordinate descent approach [3]; they
are respectively denoted as GIST and BCD. We have
also used those algorithms as inner solvers into our
working set algorithm, denoted as FireWorks (for Fea-
sIble REsidual WORKing Set). All methods have been
implemented in Python/Numpy [16] and the code will
be published under MIT License. As another baseline
with theoretical convergence guarantees, we have con-
sidered a solver based on majorization-minimization
(MM) approach, which consists in iteratively minimiz-
ing a majorization of the non-convex objective func-
tion as in [17, 12, 26]. Each iteration results in a
weighted convex Lasso problem that we solve, after
warm-starting with previous iteration result, with a
Blitz-based proximal Lasso or BCD Lasso (up to pre-
cision of 10−5 for its optimality conditions). Our last
baseline is the maximum-violating optimality condi-
tion working set algorithm (MaxVC) described in Al-
gorithm 2 in supplementary and that is known to be
very efficient, but does not come with a convergence
proof (though we conjecture it can be proved when no
pruning occurs).

For all approaches, we leverage the closed-form prox-
imal operator available for several (non-convex) regu-
larizers. For our experiments, we have used the log-
sum penalty which has an hyperparameter θ that has
been set to 1. For all algorithms, the stopping cri-

terion is based on the tolerance (either 10−3 or 10−5

) over Fermat’s optimality condition given in Equa-
tion 2 The used performance measure for compar-
ing all algorithms is the CPU running time. For all
problems, we have set τk adaptively (by sorting as de-
scribed in Algorithm 1 line 7) so as to add the same
fixed number nadded of features into the working set of
our FireWorks algorithm and for MaxVC. Results are
averaged over 5 different runs.

Toy problem Here, the regression matrix X ∈ Rn×d
is drawn uniformly from a standard Gaussian distribu-
tion (zero-mean unit variance). For given n, d and a
number p of active variables, the true coefficient vector
wtrue is obtained as follows. The p non-zero positions
are chosen randomly, and their values are drawn from
a zero-mean unit variance Gaussian distribution, to
which we added ±0.1 according to sign(wtrue

j ). Finally,
the target vector is obtained as y = Xwtrue + e where
e is a zero-mean Gaussian noise with standard devia-
tion σ = 0.01. For these problems, we have arbitrarily
set nadded = 30 and extra experiments in the appendix
illustrates the impact of this choice. Table 1 presents
the running time for different algorithms to reach con-
vergence under various settings. We note that our
FireWorks algorithm is faster than the genuine inner
solver and (at least on par) with the MaxVC approach
especially in setting where λ is properly tuned with re-
spect to the number of variables, ie when the solution
is not too sparse. Note that the MM+Blitz approaches



is performing worse than all other methods in almost
all settings. We explain this gain by the working set
framework and the ability to prune the working set,
which size is therefore not monotonically increasing.

Real data We have reported comparisons on three
real datasets. The first one is the Leukemia dataset
[14] which has a dense regression matrix with n = 72
and d = 7129. We have also considered sparse prob-
lem such as newsgroups dataset in which we have kept
only 3 categories (religion, atheism and graphics) re-
sulting in n = 1441, d = 26488 and 5 categories comp
leading to n = 4891, d = 94414 (see the supplemental
for details). For these two problems, we have respec-
tively 223173 and 676247 non-zeros elements in the re-
lated design matrix X. We have also used a large-scale
dataset which is a subset of the Criteo Kaggle dataset
composed of 2M samples and 1M features, with about
78M non-zero elements in X. For Leukemia, we have
nadded = 30 at each iteration, whereas we have added
300 and 1000 features respectively for the newsgroup
and Criteo problem. Figure 2 presents an example of
how objective value and maximum constraint viola-
tion (measured as maxj(|x>j rk| − r′λ(0))) evolve dur-
ing the optimization process for the two Newsgroup
datasets. We see in these examples that both MaxVC
and FireWorks algorithms achieve approximately the
same objective value whereas our FireWorks approach
converges faster. Quantitative results are reported in
the bottom part of Table 1. At first, we can note
that the convex relaxation approach using MM and
Blitz is always more efficient than the baseline non-
convex methods using either BCD or GIST. Moreover,
the table also shows that using FireWorks leads to a
speedup of at least one order of magnitude compared
to the baseline algorithm and the MM approach. For
large λ leading to sparse solutions, MaxVC is the most
efficient approach on Leukemia, while for large-scale
datasets newsgroup-3 and newsgroup-5, FireWorks is
substantially faster than all competitors. For Criteo,
only the BCD working set algorithms are able to ter-
minate in reasonable time and FireWorks is more effi-
cient than MaxVC. Again the MM+Blitz approach is
performing worse than the two non-convex active set
algorithms and fails to converge in a reasonable time
for large datasets.

Running-time on a grid-search. We report here
the sum of running time (in seconds) of FireWorks
and MaxVC for solving the problem with 10 differ-
ent values of λ varying from 0.6λmax to 0.01λmax with
λmax = maxj |x>j y| on the Leukemia dataset. For a

tolerance of 10−5, we have for GIST as inner solver,
MaxVC runs in 24.3s and Fireworks takes 18.8s while
for BCD as inner solver, we have for MaxVC 91s and

for Fireworks 53.5s. Hence, in this context, the run-
ning time of our approach is still better than the most
efficient competitor. We have similar results for the
(small) toy problem.

Additional experiments in supplementary.
Since our main metric for comparing our algorithm
to competitors is its computational running time, as
a sanity check, we have also evaluated the quality of
the estimate w̃?. For instance, for the toy problem we
have measured whether our approach is able to recover
the support of the true vector wtrue. Our results show
that there is no approach that outperforms the others
under other metrics. This makes clear that the gain
in running time of FireWorks is not at the expense of
worse estimate. We have also reported some studies
that analyze the impact of the parameter nadded (and
the related τk) and of pruning on the running time
of our algorithm FireWorks and on MaxVC. Accord-
ing to our results, the 1% rule seems to be a good
heuristic for both algorithms and across the range of
parameters, FireWorks is as efficient as MaxVC.

5 Conclusion

We have introduced in this paper a working set based
meta-algorithm for non-convex regularized regression.
By generalizing the concept of primal-dual approach
in a non-convex setting, we were able to derive a novel
rule for updating the features optimized by an itera-
tive incremental algorithm. From a theoretical point
of view, we showed convergence of the algorithm, even
when the inner problem is not solved exactly but up
to a certain tolerance. This is in contrast with the
classical maximal violating optimality condition algo-
rithms approach whose convergence requires the ex-
act resolution of each inner problem. Our experimen-
tal results show the computational gain achieved for
a given solver when applied directly on the full vari-
ables or within our working set algorithm. The main
limitation of our work is that our provably convergent
method is not always as efficient as heuristic ones.

Broader and potential negative impact We ex-
pect this work to benefit research and applications re-
lated to large scale sparse learning problems. Since the
work is a methodological work and as such it is hard to
see any foreseeable societal consequences without pre-
cise applications. The computational gain from our
algorithm can be interesting fro practitioners from a
computational (and financial) perspective but it can
also be counterbalanced by the potential use on larger
dataset that this can also bring.
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Figure 2: Example of evolution of the objective value and the maximum violation constraint on the 0-valued
weights. The tolerance on the inner problem is set to 10−6; (most-left) performance on Newsgroup-3 ; (most-
right) performance on Newsgroup-5.

Acknowledgments

This work benefited from the support of the project
Chaire AI RAIMO, 3IA Côte d’Azur Investments
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A Supplementary material
Provably Convergent Working Set

Algorithm for Non-Convex Regularized
Regression

A.1 Maximum-Violating Optimality
Condition Working Set Algorithm

The maximum-violating constraint algorithm is a sim-
ple algorithm that solves at each iteration a sub-
problem with a subset of variables and then add some
others that violate the most the statement y−Xw̃?

Ak
∈

CĀk
, where “the most” is evaluated in term of distance

to each set Cj , with j ∈ Āk. Hence, at each iteration,
we compute all these distances, sort them in descend-
ing order and add to the current working set, the nk
variables that yield to the largest distances. The algo-
rithm is presented below.

Algorithm 2 Maximum Violating Constraints Algo-
rithm
Input: {X,y}, A1 active set, nk number of variables

to add at iteration k, initial vector w̃A0

Output: w̃Ak

1: for k = 1, 2, . . . do

2: wAk
= arg min

w∈Ak

1

2
‖y − XAk

w‖22 +
∑
j∈Ak

rλ(|wj |)

warm-start solver with wAk−1

3: rk = y −XAk
wAk

current residual
4: v = argsort dist(rk, Cj) in descending order
5: Ak+1 = v[1 : nk] ∪ Ak update working set by

adding the nk most violating variables
6: end for
7: Build w̃Ak

A.2 Proof of Proposition 1

Proposition 1. If w?
A satisfies Fermat’s condition of

Problem (5), then for all j ∈ A, we have

|x>j (y −XAw?
A)| ≤ r′λ(0) (10)

where r′λ is the derivative of rλ.

Proof. At first, note that since the function rλ is mono-
tone and concave, then its derivative is positive and
non-increasing. Hence ∀w ≥ 0, r′λ(w) ≤ r′λ(0). Now,
for j ∈ {i ∈ A : w?i,A = 0}, the inequality in Equa-
tion 10 naturally comes from Fermat’s condition in
Equation 2. When j ∈ {i ∈ A : w?i,A 6= 0}, we have

x>j res(w?
A) = r′λ(|w?j,A|). Taking the absolute value

of this equation and plugging in the inequality of the
derivatives concludes the proof.

A.3 Proof of Proposition 2

Proposition 2. Given a working set Ak and w?
Ak

solving the related restricted problem, w̃?
Ak

is also op-
timal for the full problem if and only if α = 1 (which
also means sk+1 = rk).

Proof. Assume that w?
Ak

and w̃?
Ak

are optimal re-
spectively for the restricted and the full problem.
Let us show that in this case αk = 1. Since w̃?

Ak

is optimal for the full problem, we thus have ∀j ∈
Āk, |x>j (y −Xw̃?

Ak
)| ≤ r′λ(0). And thus we have the

following equivalent statement

y −Xw̃?
Ak
∈ C ⇔ y −XAk

w?
Ak
∈ C ⇔ rk ∈ C

and thus αk = 1.

Now assume that αk = 1 and let us show that w̃?
Ak

is optimal for the full problem. Since αk = 1, we
have sk+1 = rk and thus rk ∈ C. The latter means
that ∀j ∈ Āk, |x>j (y − XAk

w?
Ak

)| ≤ r′λ(0) and thus

∀j ∈ Āk, |x>j (y − Xw̃?
Ak

)| ≤ r′λ(0). Given this last
property and the definition of w̃A?

k
based on w?

Ak
, we

can conclude that w̃?
Ak

is optimal for the full problem.

A.4 Proof of Lemma 1

The proof follows similar steps as those given by John-
son and Guestrin [18].

Lemma 1. At step k ≥ 2, consider a constraint Cj
such that hj(rk) > 0 and hj(sk) < 0 then

dist(rk, Cj) ≥
1− αk
αk

τk−1 . (11)

Proof. Denote as j the index of the function hj such
that hj(rk) > 0 and hj(sk) < 0. Let’s zk ∈ {z ∈ Rn :
hj(z) = 0}. The following equality holds

dist(rk, Cj) = ‖zk − rk‖2
= ‖zk −

1

αk
(sk+1 − (1− αk)sk)‖

=

∥∥∥∥zk − 1

αk
sk+1 +

1− αk
αk

sk

∥∥∥∥
=

∥∥∥∥−zk +
1

αk
sk+1 −

1− αk
αk

sk

∥∥∥∥
=

1− αk
αk

∥∥∥∥− αk
1− αk

zk +
1

1− αk
sk+1 − sk

∥∥∥∥
(12)

Note that because hj(rk) > 0 and hj(sk) < 0, αk 6= 0
since hj is a continuous function. By construction,
we have hj(zk) = 0 as zk is a minimizer of the dis-
tance and hj(sk+1) = 0 as we have chosen j as the



Penalty rλ(|w|) ∂rλ(|w|)

Log sum λ log(1 + |w|/θ)

{ [−λ
θ
, λ
θ

]
if w = 0{

λ sign(w)
θ+|w|

}
if w 6= 0

MCP

{
λ|w| − w2

2θ
if |w| ≤ λθ

θλ2/2 if |w| > θλ

 [−λ, λ] if w = 0
{λ sign(w)− w

θ
} if 0 < |w| ≤ λθ

{0} if |w| > θλ

SCAD


λ|w| if |w| ≤ λ
−w2+2θλ|w|−λ2

2(θ−1)
if λ < |w| ≤ λθ

λ2(1+θ)
2

if |w| > θλ


[−λ, λ] if w = 0
{λ sign(w)} if 0 < |w| ≤ λ{
−w+θλ sign(w)

θ−1

}
if 0 < |w| ≤ λθ

{0} if |w| > θλ

Table 2: Common non-convex penalties with their sub-differentials. Here λ > 0, θ > 0 (θ > 1 for MCP, θ > 2
for SCAD).

index of the set that makes sk+1 6∈ C. Since hj(·) ≤ 0
is a convex set and the coefficients − αk

1−αk
and 1

1−αk

do not lead to a convex combination of zk and sk+1

and hence, we have hj(− αk

1−αk
zk + 1

1−αk
sk+1) ≥ 0.

On the other hand by construction, we have sk ∈ Cj .
Furthermore, we have distS(sk, C=

j ) ≥ τk−1. Indeed,
since hj(rk) > 0, we have j 6∈ Ak as by construction
rk ∈ CAk

(wAk
has been optimized over Ak). Because

j 6∈ Ak means that distS(sk, C=
j ) ≥ τk−1, by definition

of the construction of Ak in Algorithm 1.

Now as hj(− αk

1−αk
zk + 1

1−αk
sk+1) ≥ 0 and

distS(sk, C=
j ) ≥ τk−1, the norm in the above equation

(12) is lower bounded by τk and we have

dist(rk, Cj) ≥
1− αk
αk

τk−1.

A.5 Proof of Theorem 1

Theorem 1. Suppose that for each step k, the algo-
rithm solving the inner problem ensures a decrease in
the objective value in the form

f(w̃?
Ak+1

)− f(w̃?
Ak

) ≤ −γk‖w̃?
Ak+1

− w̃?
Ak
‖22 .

with ∀k, γk ≥ γ > 0. For the inner solver, we
also impose that when solving the problem with set
Ak+1, the inner solver is warm-started with w?

Ak
. As-

sume also that ‖X‖2 > 0, τk ≥ τ > 0 and hj sat-
isfies assumption in Lemma 1, then the sequence of
αk produced by Algorithm 1 converges towards 1 and
∀j, limk→∞ |x>j rk| ≤ r′λ(0).

Proof. Before going into details, note that pruning
w?
Ak

before warm-starting does not affect f(w̃?
Ak

), and
thus the proof still holds for that situation. Using re-
sults in Proposition 3 and Lemma 1 and the above

assumption, we have, for k ≥ 2,

f(w̃?
Ak+1

) ≤ f(w̃?
Ak

)− γk
‖X‖22

(
1− αk
αk

)2

τ2
k−1

≤ f(w̃?
A2

)− 1

‖X‖22

k∑
`=2

γ`

(
1− α`
α`

)2

τ2
`−1.

This means that 1
‖X‖22

∑k
`=2 γ`

(
1−α`

α`

)2

τ2
`−1 ≤

f(w̃?
A2

) − f(w̃?
Ak+1

). Since f is bounded from below,
the right hand side is less than some positive constant,

hence
∑∞
`=2 γj

(
1−α`

α`

)2

τ2
`−1 < ∞. Since the latter

sum is bounded, it implies that γ`

(
1−α`

α`

)2

τ2
`−1 → 0

as ` → ∞, and as γ` ≥ γ > 0, τ` ≥ τ > 0, we have
lim`→∞ α` = 1. Now using the definition of sk+1, we
have ∀j, x>j rk = 1

αk
x>j sk+1− 1−αk

αk
x>j sk. Then, taking

the absolute value, triangle inequality, using the fact
that ∀k, sk ∈ C and taking the limit concludes the
proof.

A.6 Experimental analysis

A.6.1 Data

The toy dataset has been built from scratch and can
be reproduced from the companion code of the paper.

The Leukemia dataset we have used is avail-
able at https://web.stanford.edu/~hastie/CASI_

files/DATA/leukemia.html

The Newsgroup dataset is part of the Sklearn dataset
package. The 3 categories is composed of the topic
: talk.religion.misc, comp.graphics and alt.atheism.
The 5 categories is composed by comp.graphics,
comp.os.ms-windows.misc comp.sys.ibm.pc.hardware
comp.sys.mac.hardware, comp.windows.x. We have
used the natural default train split as proposed by
sklearn [24] and the features are based on TF-IDF rep-
resentation (using the tfidf function of sklearn) keeping
default parameters.

https://web.stanford.edu/~hastie/CASI_files/DATA/leukemia.html
https://web.stanford.edu/~hastie/CASI_files/DATA/leukemia.html


A.6.2 Comparing on other metrics

The main contribution of our work is to propose a
working set algorithm for sparse non-convex regression
problem with theoretical guarantees of convergence.
We have shown that the main benefit of this algorithm
is its computational efficiency.

We report below some results on other metrics. We
want to show that there is no approach outperform-
ing the others. For the Large toy problem, we re-
port the objective value (white background, top) and
support recovery F-measure (in percent) (blue back-
ground, middle). For the Leukemia dataset, once fea-
ture selection has been performed, we report the clas-
sification accuracy in percent, (averaged over 5 trials )
of a linear SVM trained on the non-zero features of a
part of the dataset (50/22 sample splits). Remind that
for Leukemia, there is a computational gain of more
than 30 between GIST and Fireworks GIST.

A.6.3 On the effect of the number of features
to add

In working set algorithms, the number of features to
add nadded to the working set at each iteration can be
considered as an hyperparameter. Usually, one adds
one feature at each iteration but it is not clear whether
it is an optimal choice. In the results we reported in
Table 1, for the toy problems we fixed nadded = 30. We
report in Figure 3 the running time (averaged over 5
runs) we obtain for the Large toy problem (which has
5000 features and 500 informative ones), with respects
to that parameter nadded. Note that we have reported
the performance of MaxVC, a version of MaxVC with
pruning (feature with zero weights are removed from
Ak) and our FireWorks using a BCD algorithm as an
inner solver. .

We remark that for most configurations, adding 1 fea-
ture at a time is not optimal and a better choice is
to add between 20 to 40 features at a time. When
comparing the performance of the different algorithms,
as we anticipated, FireWorks is mostly as efficient as
MaxVC and its variants. However, we want to empha-
size again that MaxVC and its variants are algorithms
without convergence proofs, and thus we believe that
FireWorks achieves the best compromise between the-
oretical supported and practical efficiency.



Figure 3: Running time of MaxVC, Max VC with pruning, and our FireWorks on the Large toy problem. The
four panels varies in the choice of K in the regularization parameter expressed as λ = K maxj |x>j y| and in the

tolerance t on the stopping criterion . (top-left) K = 0.07 and t = 1e−3 (top-right) K = 0.07 and t = 1e−5.
(bottom-left) K = 0.01 and t = 1e−3 (bottom-right) K = 0.01 and t = 1e−5.
.



Data - tol - K MM prox GIST MaxVC Gist FireWorks Gist MM BCD BCD MaxVC BCD FireWorks BCD
Toy large - 1.00e-03 - 0.07 75.8±4.8 76.5±8.4 76.5±8.4 76.5±8.6 75.6±0.0 76.5±8.5 76.5±8.4 76.5±8.6
Toy large - 1.00e-05 - 0.07 - 76.5±8.4 76.5±8.5 76.5±8.6 75.6±0.0 76.5±8.4 76.5±8.5 76.5±8.6
Toy large - 1.00e-03 - 0.01 11.5±0.9 11.5±1.4 11.6±1.4 11.5±1.4 11.5±0.0 11.5±1.4 11.6±1.4 11.5±1.4
Toy large - 1.00e-05 - 0.01 - 11.5±1.4 11.5±1.4 11.5±1.4 11.5±0.0 11.5±1.4 11.5±1.4 11.5±1.4

Toy large - 1.00e-03 - 0.07 43.6±2.9 44.4±2.9 43.7±3.9 44.2±3.5 43.1±0.0 44.2±2.7 43.6±3.4 44.4±3.6
Toy large - 1.00e-05 - 0.07 - 44.4±2.9 42.8±4.2 43.9±3.2 43.6±0.0 43.9±2.6 42.8±4.2 43.9±3.2
Toy large - 1.00e-03 - 0.01 39.1±2.3 39.1±1.1 38.3±1.7 39.3±1.3 37.4±0.0 38.4±1.9 38.4±1.9 39.4±1.2
Toy large - 1.00e-05 - 0.01 - 39.4±1.7 39.2±1.5 39.8±1.7 38.9±0.0 38.7±1.7 39.0±1.2 39.1±2.1

Leukemia - 1.00e-03 - 0.07 90.00±5.3 91.82±3.4 90.00±5.3 90.91±6.4 90.00±5.3 88.18±6.2 90.91±6.4 90.91±6.4
Leukemia - 1.00e-05 - 0.07 86.36±6.4 91.82±3.4 89.09±4.6 91.82±5.3 87.27±6.0 89.09±6.8 90.91±6.4 90.00±7.8
Leukemia - 1.00e-03 - 0.01 95.45±4.1 96.36±3.4 95.45±2.9 95.45±4.1 95.45±4.1 92.73±4.6 92.73±4.6 97.27±2.2
Leukemia - 1.00e-05 - 0.01 96.59±3.8 96.36±3.4 94.55±3.4 93.64±2.2 95.45±4.1 92.73±5.5 94.55±3.4 93.64±2.2
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